function [a,n,r,epe,eph,epw] = mg_q1cd(xy,ev) %mg_q1cd convection-diffusion matrix generator for GMG % [a,n,r,epe,eph,epw] = mg_q1cd(xy,ev) % input % xy vertex coordinate vector % ev element mapping matrix % output % a discrete diffusion operator % n discrete convection operator % r dummy variable % epe viscosity normalised element peclet numbers % eph flow specific element lengths % epw centroid evaluated wind % % IFISS function: DJS; 5 January 2005. % Copyright (c) 2005 D.J. Silvester, H.C. Elman, A. Ramage % Analogous to femq1_cd % x=xy(:,1); y=xy(:,2); nvtx=length(x); nel=length(ev(:,1)); lx=max(x)-min(x); ly=max(y)-min(y); hx=max(diff(x)); hy=max(diff(y)); % % initialise global matrices a = sparse(nvtx,nvtx); n = sparse(nvtx,nvtx); r = sparse(nvtx,nvtx); % % set up 2x2 Gauss points gpt=1.0e0/sqrt(3.0e0); s(1) = -gpt; t(1) = -gpt; s(2) = gpt; t(2) = -gpt; s(3) = gpt; t(3) = gpt; s(4) = -gpt; t(4) = gpt; % % inner loop over elements for ivtx = 1:4 xl_v(:,ivtx) = x(ev(:,ivtx)); yl_v(:,ivtx) = y(ev(:,ivtx)); end ae = zeros(nel,4,4); ne = zeros(nel,4,4); % loop over 2x2 Gauss points for igpt = 1:4 sigpt=s(igpt); tigpt=t(igpt); % evaluate derivatives etc [jac,invjac,phi,dphidx,dphidy] = deriv(sigpt,tigpt,xl_v,yl_v); [flowx,flowy] = gauss_transprt(sigpt,tigpt,xl_v,yl_v); for j = 1:4 for i = 1:4 ae(:,i,j) = ae(:,i,j) + dphidx(:,i).*dphidx(:,j) .* invjac(:); ae(:,i,j) = ae(:,i,j) + dphidy(:,i).*dphidy(:,j) .* invjac(:); ne(:,i,j) = ne(:,i,j) + flowx(:) .* phi(:,i) .* dphidx(:,j); ne(:,i,j) = ne(:,i,j) + flowy(:) .* phi(:,i) .* dphidy(:,j); end end % end of Gauss point loop end % % perform assembly of global matrix and source vector for krow=1:4 nrow=ev(:,krow); for kcol=1:4 ncol=ev(:,kcol); a = a + sparse(nrow,ncol,ae(:,krow,kcol),nvtx,nvtx); n = n + sparse(nrow,ncol,ne(:,krow,kcol),nvtx,nvtx); end end % % % computation of element Peclet number (at the centroid) % rectangle specific calculation here hx=abs(xl_v(:,2)-xl_v(:,1)); hy=abs(yl_v(:,3)-yl_v(:,2)); [flowx,flowy] = gauss_transprt(0,0,xl_v,yl_v); flow_l2 = sqrt(flowx(:) .* flowx(:) + flowy(:) .* flowy(:)); if all(flowx==0), flow_h=hy; elseif all(flowy==0), flow_h=hx; else angle = atan(abs(flowy./flowx)); flow_h = min([hx./cos(angle),hy./sin(angle)],[],2); end eph = flow_h; epe = flow_h.*flow_l2/2; epw = flow_l2; % return