function [error_x, error_y, fex, fey, ae] = stokespost_q1q1_p(q1q1sol,jmpx,jmpy,els,xy,ev) %stokespost_q1q1_p computes Poisson error estimator for Q1-Q1 % [err_x, err_y, fex, fey, ae] = stokespost_q1p0_p(q1q1sol,jmpx,jmpy,els,xy,ev); % input % q1q1sol Q1-Q1 flow solution % jmpx, jmpy component elementwise edge stress jumps % els elementwise edge lengths % xy vertex coordinate vector % ev element mapping matrix % output % err_x, err_y component of velocity elementwise error estimate % fex, fey component elementwise rhs vectors % ae elementwise Poisson problem matrices % % IFISS function: DJS; 8 March 2005. % Copyright (c) 2005 D.J. Silvester, H.C. Elman, A. Ramage fprintf('computing local error estimator... ') x=xy(:,1); y=xy(:,2);nvtx=length(x); nel=length(ev(:,1)); error_x=zeros(nel,1); error_y=zeros(nel,1); psol=q1q1sol(2*nvtx+1:end); % % set up 3x3 Gauss points gpt=sqrt(0.6); s(1) = -gpt; t(1) = -gpt; wt(1)=25/81; s(2) = gpt; t(2) = -gpt; wt(2)=25/81; s(3) = gpt; t(3) = gpt; wt(3)=25/81; s(4) = -gpt; t(4) = gpt; wt(4)=25/81; s(5) = 0.0; t(5) = -gpt; wt(5)=40/81; s(6) = gpt; t(6) = 0.0; wt(6)=40/81; s(7) = 0.0; t(7) = gpt; wt(7)=40/81; s(8) = -gpt; t(8) = 0.0; wt(8)=40/81; s(9) = 0.0; t(9) = 0.0; wt(9)=64/81; % % inner loop over elements for ivtx = 1:4 xl_v(:,ivtx) = x(ev(:,ivtx)); yl_v(:,ivtx) = y(ev(:,ivtx)); psol_v(:,ivtx) = psol(ev(:,ivtx)); end ae = zeros(nel,5,5); elerrx=zeros(5,nel); elerry=zeros(5,nel); fex = zeros(nel,5); fey = zeros(nel,5); % loop over Gauss points for igpt = 1:9 sigpt=s(igpt); tigpt=t(igpt); wght=wt(igpt); % evaluate derivatives etc [jac_v,invjac_v,phi_v,dphidx_v,dphidy_v] = deriv(sigpt,tigpt,xl_v,yl_v); [psi_v,dpsidx_v,dpsidy_v] = qderiv(sigpt,tigpt,xl_v,yl_v); for j = 1:5 for i = 1:5 ae(:,i,j) = ae(:,i,j)+wght*dpsidx_v(:,i+4).*dpsidx_v(:,j+4).*invjac_v(:); ae(:,i,j) = ae(:,i,j)+wght*dpsidy_v(:,i+4).*dpsidy_v(:,j+4).*invjac_v(:); end for ss=1:4 fex(:,j) = fex(:,j)-wght*dphidx_v(:,ss).*psol_v(:,ss).*psi_v(:,j+4); fey(:,j) = fey(:,j)-wght*dphidy_v(:,ss).*psol_v(:,ss).*psi_v(:,j+4); end end % end of Gauss point loop end % % include edge jumps (evaluated at the midpoint) for ee = 1:4 fex(:,ee) = fex(:,ee) - jmpx(:,ee) .* els(:,ee)*(1/3); fey(:,ee) = fey(:,ee) - jmpy(:,ee) .* els(:,ee)*(1/3); end % % solve for local estimate for ielem = 1:nel elerrx(:,ielem) = squeeze(ae(ielem,1:5,1:5))\(fex(ielem,1:5)'); elerry(:,ielem) = squeeze(ae(ielem,1:5,1:5))\(fey(ielem,1:5)'); end %% for ivtx=1:5, error_x(:) = error_x(:) + fex(:,ivtx) .* elerrx(ivtx,:)'; error_y(:) = error_y(:) + fey(:,ivtx) .* elerry(ivtx,:)'; end %% fprintf('done.\n') return