function triangulation_order3_contour ( prefix ) %*****************************************************************************80 % %% TRIANGULATION_ORDER3_CONTOUR creates contour plots on an order 3 triangulation. % % Discussion: % % This program assumes that you have computed the value of some scalar % quantity (such as pressure or temperature) at a set of nodes. % % You may have determined an order 3 triangulation of these nodes, % but if you have not, the program will work that out internally. % % This program can read that data, and display a color contour of the % solution data. % % The program first displays an image of the triangulation, then an image % of the data that uses a constant color over each triangle, and finally, % a nice looking contour plot that uses interpolation. % % The program pauses after each plot is displayed. Aside from admiring % a particular plot, you might also want to manipulate the viewing angle, % or save it as a JPEG file, for instance. % % Usage: % % triangulation_order3_contour ( 'prefix' ) % % where % % * 'prefix'_nodes.txt contains the node coordinates; % * 'prefix'_elements.txt contains the element definitions % (this file is optional, and if missing, the elements will be generated % by the program); % * 'prefix'_values.txt contains the nodal values. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 11 January 2010 % % Author: % % John Burkardt % % Parameters: % % Input, string PREFIX, the common file prefix. % timestamp ( ); fprintf ( 1, '\n' ); fprintf ( 1, 'TRIANGULATION_ORDER3_CONTOUR:\n' ); fprintf ( 1, ' MATLAB version\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' Plot a scalar U(X,Y) on a triangulated data set.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' This program expects to find three files to read:\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' * a node file, containing the node coordinates,\n' ); fprintf ( 1, ' * an element file, containing triples of nodes that form triangles,\n' ); fprintf ( 1, ' (optional; if not supplied, the program will\n' ); fprintf ( 1, ' create the element information);\n' ); fprintf ( 1, ' * a value file, containing solution values.\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' It reads the files and makes plots of:\n' ); fprintf ( 1, '\n' ); fprintf ( 1, ' * the triangulation,\n' ); fprintf ( 1, ' * a crude contour plot that is constant over each triangle, and\n' ); fprintf ( 1, ' * a nicer contour plot that uses interpolation.\n' ); % % The command line argument is the common filename prefix. % if ( nargin < 1 ) fprintf ( 1, '\n' ); fprintf ( 1, 'TRIANGULATION_ORDER6_CONTOUR:\n' ); prefix = input ( ... 'Please enter the filename prefix:' ); end % % Create the filenames. % node_filename = strcat ( prefix, '_nodes.txt' ); element_filename = strcat ( prefix, '_elements.txt' ); value_filename = strcat ( prefix, '_values.txt' ); % % Read the node data. % [ dim_num, node_num ] = r8mat_header_read ( node_filename ); fprintf ( 1, '\n' ); fprintf ( 1, ' Read the header of "%s".', node_filename ); fprintf ( 1, '\n' ); fprintf ( 1, ' Spatial dimension DIM_NUM = %d\n', dim_num ); fprintf ( 1, ' Number of points NODE_NUM = %d\n', node_num ); if ( dim_num ~= 2 ) fprintf ( 1, '\n' ); fprintf ( 1, 'TRIANGULATION_ORDER3_CONTOUR - Fatal error!\n' ); fprintf ( 1, ' Dataset must have spatial dimension 2.\n' ); error ( 'TRIANGULATION_ORDER3_CONTOUR - Fatal error!' ); end node_xy = r8mat_data_read ( node_filename, dim_num, node_num ); fprintf ( 1, '\n' ); fprintf ( 1, ' Read the data in "%s".\n', node_filename ); r8mat_transpose_print_some ( dim_num, node_num, node_xy, 1, 1, dim_num, 5, ... ' First 5 nodes:' ); % % Read or create the element data. % if ( file_exist ( element_filename ) ) [ triangle_order, triangle_num ] = i4mat_header_read ( ... element_filename ); if ( triangle_order ~= 3 && triangle_order ~= 6 ) fprintf ( 1, '\n' ); fprintf ( 1, 'TRIANGULATION_ORDER3_CONTOUR - Fatal error!\n' ); fprintf ( 1, ' Data is not for a 3-node or 6-node triangulation.\n' ); error ( 'TRIANGULATION_ORDER3_CONTOUR - Fatal error!' ); end fprintf ( 1, '\n' ); fprintf ( 1, ' Read the header of "%s".\n', ... element_filename ); fprintf ( 1, '\n' ); fprintf ( 1, ' Triangle order = %d\n', triangle_order ); fprintf ( 1, ' Number of triangles TRIANGLE_NUM = %d\n', ... triangle_num ); triangle_node = i4mat_data_read ( element_filename, ... triangle_order, triangle_num ); fprintf ( 1, '\n' ); fprintf ( 1, ' Read the data in "%s".\n', element_filename ); else fprintf ( 1, '\n' ); fprintf ( 1, ' Creating triangulation for data.\n' ); triangle_node = delaunayn ( node_xy' ); triangle_node = triangle_node'; [ triangle_order, triangle_num ] = size ( triangle_node ); i4mat_write ( element_filename, triangle_order, triangle_num, triangle_node ); fprintf ( 1, ' Triangulation data written to "%s".\n', element_filename ); end i4mat_transpose_print_some ( triangle_order, triangle_num, ... triangle_node, 1, 1, triangle_order, 10, ... ' First 10 elements:' ); % % Detect and correct 0-based indexing. % triangle_node = mesh_base_one ( node_num, triangle_order, triangle_num, ... triangle_node ); % % Read the values. % [ value_dim, value_num ] = r8mat_header_read ( value_filename ); fprintf ( 1, '\n' ); fprintf ( 1, ' Read the header of "%s".', value_filename ); fprintf ( 1, '\n' ); fprintf ( 1, ' Spatial dimension = %d\n', value_dim ); fprintf ( 1, ' Number of values = %d\n', value_num ); if ( value_dim ~= 1 ) fprintf ( 1, '\n' ); fprintf ( 1, 'TRIANGULATION_ORDER3_CONTOUR - Fatal error!\n' ); fprintf ( 1, ' VALUE data must be scalar.\n' ); error ( 'TRIANGULATION_ORDER3_CONTOUR - Fatal error!' ); end value = r8mat_data_read ( value_filename, value_dim, value_num ); fprintf ( 1, '\n' ); fprintf ( 1, ' Read the data in "%s".\n', value_filename ); r8mat_transpose_print_some ( value_dim, value_num, value, 1, 1, value_dim, 5, ... ' First 5 values:' ); % % Display the mesh. % t = triangle_node(1:3,1:triangle_num)'; trimesh ( t, node_xy(1,:), node_xy(2,:), 'Color', 'blue' ); xlabel ( 'X', 'FontName', 'Helvetica', 'FontWeight', 'bold', ... 'FontSize', 16 ); ylabel ( 'Y', 'FontName', 'Helvetica', 'FontWeight', 'bold', ... 'FontSize', 16, 'Rotation', 0 ); title ( 'Triangulation', 'FontName', 'Helvetica', 'FontWeight', ... 'bold', 'FontSize', 16 ); xmax = max ( node_xy(1,:) ); xmin = min ( node_xy(1,:) ); ymax = max ( node_xy(2,:) ); ymin = min ( node_xy(2,:) ); scale = max ( xmax - xmin, ymax - ymin ); xmax = xmax + 0.025 * scale; xmin = xmin - 0.025 * scale; ymax = ymax + 0.025 * scale; ymin = ymin - 0.025 * scale; axis ( [ xmin, xmax, ymin, ymax ] ) axis ( 'equal' ) fprintf ( 1, '\n' ); fprintf ( 1, 'Press return for the piecewise constant contour plot:\n' ); pause % % Display the solution on the mesh, constant over each triangle. % trisurf ( t, node_xy(1,:), node_xy(2,:), value ) xlabel ( 'X', 'FontName', 'Helvetica', 'FontWeight', 'bold', ... 'FontSize', 16 ); ylabel ( 'Y', 'FontName', 'Helvetica', 'FontWeight', 'bold', ... 'FontSize', 16, 'Rotation', 0 ); zlabel ( 'U', 'FontName', 'Helvetica', 'FontWeight', 'bold', ... 'FontSize', 16, 'Rotation', 0 ); title ( 'Scalar U(X,Y)', 'FontName', 'Helvetica', 'FontWeight', ... 'bold', 'FontSize', 16 ); fprintf ( 1, '\n' ); fprintf ( 1, 'Press return for the interpolated contour plot:\n' ); pause % % Make a nicer plot on the finer mesh by using color interpolation. % trisurf ( t, node_xy(1,:), node_xy(2,:), value, 'FaceColor', 'interp', ... 'EdgeColor', 'interp' ) xlabel ( 'X', 'FontName', 'Helvetica', 'FontWeight', 'bold', ... 'FontSize', 16 ); ylabel ( 'Y', 'FontName', 'Helvetica', 'FontWeight', 'bold', ... 'FontSize', 16, 'Rotation', 0 ); zlabel ( 'U', 'FontName', 'Helvetica', 'FontWeight', 'bold', ... 'FontSize', 16, 'Rotation', 0 ); title ( 'Scalar U(X,Y)', 'FontName', 'Helvetica', 'FontWeight', ... 'bold', 'FontSize', 16 ); fprintf ( 1, '\n' ); fprintf ( 1, 'Press return to finish:\n' ); pause % % Terminate. % fprintf ( 1, '\n' ); fprintf ( 1, 'TRIANGULATION_ORDER3_CONTOUR:\n' ); fprintf ( 1, ' Normal end of execution.\n' ); fprintf ( 1, '\n' ); timestamp ( ); return end function column_num = file_column_count ( input_file_name ) %*****************************************************************************80 % %% FILE_COLUMN_COUNT counts the columns in the first line of a file. % % Discussion: % % The file is assumed to be a simple text file. % % Most lines of the file are presumed to consist of COLUMN_NUM words, % separated by spaces. There may also be some blank lines, and some % comment lines, which have a "#" in column 1. % % The routine tries to find the first non-comment non-blank line and % counts the number of words in that line. % % If all lines are blanks or comments, it goes back and tries to analyze % a comment line. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 21 February 2004 % % Author: % % John Burkardt % % Parameters: % % Input, string INPUT_FILE_NAME, the name of the file. % % Output, integer COLUMN_NUM, the number of columns in the file. % FALSE = 0; TRUE = 1; % % Open the file. % input_unit = fopen ( input_file_name ); if ( input_unit < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'FILE_COLUMN_COUNT - Error!\n' ); fprintf ( 1, ' Could not open the file "%s".\n', input_file_name ); error ( 'FILE_COLUMN_COUNT - Error!' ); end % % Read one line, but skip blank lines and comment lines. % Use FGETL so we drop the newline character! % got_one = FALSE; while ( 1 ) line = fgetl ( input_unit ); if ( line == -1 ) break; end if ( s_len_trim ( line ) == 0 ) elseif ( line(1) == '#' ) else got_one = TRUE; break; end end fclose ( input_unit ); if ( got_one == FALSE ) fprintf ( 1, '\n' ); fprintf ( 1, 'FILE_COLUMN_COUNT - Warning!\n' ); fprintf ( 1, ' The file does not seem to contain any data.\n' ); column_num = -1; return; end column_num = s_word_count ( line ); return end function value = file_exist ( file_name ) %*****************************************************************************80 % %% FILE_EXIST reports whether a file exists. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 29 October 2004 % % Author: % % John Burkardt % % Parameters: % % Input, character FILE_NAME, the name of the file. % % Output, logical FILE_EXIST, is TRUE if the file exists. % fid = fopen ( file_name ); if ( fid == -1 ) value = 0; else fclose ( fid ); value = 1; end return end function row_num = file_row_count ( input_file_name ) %*****************************************************************************80 % %% FILE_ROW_COUNT counts the number of row records in a file. % % Discussion: % % Each input line is a "RECORD". % % The records are divided into three groups: % % * BLANK LINES (nothing but blanks) % * COMMENT LINES (begin with a '#') % * DATA RECORDS (anything else) % % The value returned by the function is the number of data records. % % By the way, if the MATLAB routine FGETS is used, instead of % FGETL, then the variable LINE will include line termination % characters, which means that a blank line would not actually % have zero characters. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 31 December 2006 % % Author: % % John Burkardt % % Parameters: % % Input, string INPUT_FILE_NAME, the name of the input file. % % Output, integer ROW_NUM, the number of rows found. % input_unit = fopen ( input_file_name ); if ( input_unit < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'FILE_ROW_COUNT - Error!\n' ); fprintf ( 1, ' Could not open the file "%s".\n', input_file_name ); error ( 'FILE_ROW_COUNT - Error!' ); end blank_num = 0; comment_num = 0; row_num = 0; record_num = 0; while ( 1 ) line = fgetl ( input_unit ); if ( line == -1 ) break; end record_num = record_num + 1; record_length = s_len_trim ( line ); if ( record_length <= 0 ) blank_num = blank_num + 1; elseif ( line(1) == '#' ) comment_num = comment_num + 1; else row_num = row_num + 1; end end fclose ( input_unit ); return end function table = i4mat_data_read ( input_filename, m, n ) %*****************************************************************************80 % %% I4MAT_DATA_READ reads data from an I4MAT file. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 27 January 2006 % % Author: % % John Burkardt % % Parameters: % % Input, string INPUT_FILENAME, the name of the input file. % % Input, integer M, N, the number of rows and columns in the data. % % Output, integer TABLE(M,N), the point coordinates. % table = zeros ( m, n ); % % Build up the format string for reading M real numbers. % string = ' '; for i = 0 : m string = strcat ( string, ' %d' ); end input_unit = fopen ( input_filename ); if ( input_unit < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'I4MAT_DATA_READ - Error!\n' ); fprintf ( 1, ' Could not open the input file.\n' ); error ( 'I4MAT_DATA_READ - Error!' ); end i = 0; while ( i < n ) line = fgets ( input_unit ); if ( line == -1 ) fprintf ( 1, '\n' ); fprintf ( 1, 'I4MAT_DATA_READ - Error!\n' ); fprintf ( 1, ' End of input while reading data.\n' ); error ( 'I4MAT_DATA_READ - Error!' ); end if ( line(1) == '#' ) elseif ( s_len_trim ( line ) == 0 ) else [ x, count ] = sscanf ( line, string ); if ( count == m ) i = i + 1; table(1:m,i) = x(1:m); end end end fclose ( input_unit ); return end function [ m, n ] = i4mat_header_read ( input_filename ) %*****************************************************************************80 % %% I4MAT_HEADER_READ reads the header from an I4MAT file. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 22 October 2004 % % Author: % % John Burkardt % % Parameters: % % Input, string INPUT_FILENAME, the name of the input file. % % Output, integer M, the spatial dimension. % % Output, integer N, the number of points. % m = file_column_count ( input_filename ); if ( m <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'I4MAT_HEADER_READ - Fatal error!\n' ); fprintf ( 1, ' There was some kind of I/O problem while trying\n' ); fprintf ( 1, ' to count the number of data columns in\n' ); fprintf ( 1, ' the file %s.\n', input_filename ); end n = file_row_count ( input_filename ); if ( n <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'I4MAT_HEADER_READ - Fatal error!\n' ); fprintf ( 1, ' There was some kind of I/O problem while trying\n' ); fprintf ( 1, ' to count the number of data rows in\n' ); fprintf ( 1, ' the file %s\n', input_filename ); end return end function i4mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) %*****************************************************************************80 % %% I4MAT_TRANSPOSE_PRINT_SOME prints some of an I4MAT, transposed. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 21 June 2005 % % Author: % % John Burkardt % % Parameters: % % Input, integer M, N, the number of rows and columns. % % Input, integer A(M,N), an M by N matrix to be printed. % % Input, integer ILO, JLO, the first row and column to print. % % Input, integer IHI, JHI, the last row and column to print. % % Input, string TITLE, a title. % incx = 10; fprintf ( 1, '\n' ); fprintf ( 1, '%s\n', title ); for i2lo = max ( ilo, 1 ) : incx : min ( ihi, m ) i2hi = i2lo + incx - 1; i2hi = min ( i2hi, m ); i2hi = min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; fprintf ( 1, '\n' ); fprintf ( 1, ' Row: ' ); for i = i2lo : i2hi fprintf ( 1, '%7d ', i ); end fprintf ( 1, '\n' ); fprintf ( 1, ' Col\n' ); fprintf ( 1, '\n' ); j2lo = max ( jlo, 1 ); j2hi = min ( jhi, n ); for j = j2lo : j2hi fprintf ( 1, '%5d ', j ); for i2 = 1 : inc i = i2lo - 1 + i2; fprintf ( 1, '%7d ', a(i,j) ); end fprintf ( 1, '\n' ); end end return end function i4mat_write ( output_filename, m, n, table ) %*****************************************************************************80 % %% I4MAT_WRITE writes an I4MAT file. % % Discussion: % % An I4MAT is an array of I4's. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 09 August 2009 % % Author: % % John Burkardt % % Parameters: % % Input, string OUTPUT_FILENAME, the output filename. % % Input, integer M, the spatial dimension. % % Input, integer N, the number of points. % % Input, integer TABLE(M,N), the points. % % Input, logical HEADER, is TRUE if the header is to be included. % % % Open the file. % output_unit = fopen ( output_filename, 'wt' ); if ( output_unit < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'I4MAT_WRITE - Error!\n' ); fprintf ( 1, ' Could not open the output file.\n' ); error ( 'I4MAT_WRITE - Error!' ); end % % Write the data. % for j = 1 : n for i = 1 : m fprintf ( output_unit, ' %12d', round ( table(i,j) ) ); end fprintf ( output_unit, '\n' ); end % % Close the file. % fclose ( output_unit ); return end function element_node = mesh_base_one ( node_num, element_order, ... element_num, element_node ) %*****************************************************************************80 % %% MESH_BASE_ONE ensures that the element definition is one-based. % % Discussion: % % The ELEMENT_NODE array contains nodes indices that form elements. % The convention for node indexing might start at 0 or at 1. % Since a MATLAB program will naturally assume a 1-based indexing, it is % necessary to check a given element definition and, if it is actually % 0-based, to convert it. % % This function attempts to detect 0-based node indexing and correct it. % % Thanks to Feifei Xu for pointing out that I was subtracting 1 when I % should have been adding 1! 29 November 2012. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 29 November 2012 % % Author: % % John Burkardt % % Parameters: % % Input, integer NODE_NUM, the number of nodes. % % Input, integer ELEMENT_ORDER, the order of the elements. % % Input, integer ELEMENT_NUM, the number of elements. % % Input/output, integer ELEMENT_NODE(ELEMENT_ORDE,ELEMENT_NUM), the element % definitions. % node_min = min ( min ( element_node(1:element_order,1:element_num) ) ); node_max = max ( max ( element_node(1:element_order,1:element_num) ) ); if ( node_min == 0 && node_max == node_num - 1 ) fprintf ( 1, '\n' ); fprintf ( 1, 'MESH_BASE_ONE:\n' ); fprintf ( 1, ' The element indexing appears to be 0-based!\n' ); fprintf ( 1, ' This will be converted to 1-based.\n' ); element_node(1:element_order,1:element_num) = ... element_node(1:element_order,1:element_num) + 1; elseif ( node_min == 1 && node_max == node_num ) fprintf ( 1, '\n' ); fprintf ( 1, 'MESH_BASE_ONE:\n' ); fprintf ( 1, ' The element indexing appears to be 1-based!\n' ); fprintf ( 1, ' No conversion is necessary.\n' ); else fprintf ( 1, '\n' ); fprintf ( 1, 'MESH_BASE_ONE - Warning!\n' ); fprintf ( 1, ' The element indexing is not of a recognized type.\n' ); fprintf ( 1, ' NODE_MIN = %d\n', node_min ); fprintf ( 1, ' NODE_MAX = %d\n', node_max ); fprintf ( 1, ' NODE_NUM = %d\n', node_num ); end return end function table = r8mat_data_read ( input_filename, m, n ) %*****************************************************************************80 % %% R8MAT_DATA_READ reads data from an R8MAT file. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 27 January 2006 % % Author: % % John Burkardt % % Parameters: % % Input, string INPUT_FILENAME, the name of the input file. % % Input, integer M, N, the number of rows and columns of data. % % Output, real TABLE(M,N), the point coordinates. % table = zeros ( m, n ); % % Build up the format string for reading M real numbers. % string = ' '; for i = 0 : m string = strcat ( string, ' %f' ); end input_unit = fopen ( input_filename ); if ( input_unit < 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'R8MAT_DATA_READ - Error!\n' ); fprintf ( 1, ' Could not open the file.\n' ); error ( 'R8MAT_DATA_READ - Error!' ); end i = 0; while ( i < n ) line = fgets ( input_unit ); if ( line == -1 ) break; end if ( line(1) == '#' ) elseif ( s_len_trim ( line ) == 0 ) else [ x, count ] = sscanf ( line, string ); if ( count == m ) i = i + 1; table(1:m,i) = x(1:m); end end end fclose ( input_unit ); return end function [ m, n ] = r8mat_header_read ( input_filename ) %*****************************************************************************80 % %% R8MAT_HEADER_READ reads the header from an R8MAT file. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 22 October 2004 % % Author: % % John Burkardt % % Parameters: % % Input, string INPUT_FILENAME, the name of the input file. % % Output, integer M, the spatial dimension. % % Output, integer N, the number of points. % m = file_column_count ( input_filename ); if ( m <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'R8MAT_HEADER_READ - Fatal error!\n' ); fprintf ( 1, ' There was some kind of I/O problem while trying\n' ); fprintf ( 1, ' to count the number of data columns in\n' ); fprintf ( 1, ' the file %s.\n', input_filename ); end n = file_row_count ( input_filename ); if ( n <= 0 ) fprintf ( 1, '\n' ); fprintf ( 1, 'R8MAT_HEADER_READ - Fatal error!\n' ); fprintf ( 1, ' There was some kind of I/O problem while trying\n' ); fprintf ( 1, ' to count the number of data rows in\n' ); fprintf ( 1, ' the file %s\n', input_filename ); end return end function r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, jhi, title ) %*****************************************************************************80 % %% R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 23 May 2005 % % Author: % % John Burkardt % % Parameters: % % Input, integer M, N, the number of rows and columns. % % Input, real A(M,N), an M by N matrix to be printed. % % Input, integer ILO, JLO, the first row and column to print. % % Input, integer IHI, JHI, the last row and column to print. % % Input, string TITLE, an optional title. % incx = 5; if ( 0 < s_len_trim ( title ) ) fprintf ( 1, '\n' ); fprintf ( 1, '%s\n', title ); end for i2lo = max ( ilo, 1 ) : incx : min ( ihi, m ) i2hi = i2lo + incx - 1; i2hi = min ( i2hi, m ); i2hi = min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; fprintf ( 1, '\n' ); fprintf ( 1, ' Row: ' ); for i = i2lo : i2hi fprintf ( 1, '%7d ', i ); end fprintf ( 1, '\n' ); fprintf ( 1, ' Col\n' ); j2lo = max ( jlo, 1 ); j2hi = min ( jhi, n ); for j = j2lo : j2hi fprintf ( 1, '%5d ', j ); for i2 = 1 : inc i = i2lo - 1 + i2; fprintf ( 1, '%12f', a(i,j) ); end fprintf ( 1, '\n' ); end end return end function len = s_len_trim ( s ) %*****************************************************************************80 % %% S_LEN_TRIM returns the length of a character string to the last nonblank. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 14 June 2003 % % Author: % % John Burkardt % % Parameters: % % Input, string S, the string to be measured. % % Output, integer LEN, the length of the string up to the last nonblank. % len = length ( s ); while ( 0 < len ) if ( s(len) ~= ' ' ) return end len = len - 1; end return end function word_num = s_word_count ( s ) %*****************************************************************************80 % %% S_WORD_COUNT counts the number of "words" in a string. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 30 January 2006 % % Author: % % John Burkardt % % Parameters: % % Input, string S, the string to be examined. % % Output, integer WORD_NUM, the number of "words" in the string. % Words are presumed to be separated by one or more blanks. % FALSE = 0; TRUE = 1; word_num = 0; s_length = length ( s ); if ( s_length <= 0 ) return; end blank = TRUE; for i = 1 : s_length if ( s(i) == ' ' ) blank = TRUE; elseif ( blank == TRUE ) word_num = word_num + 1; blank = FALSE; end end return end function timestamp ( ) %*****************************************************************************80 % %% TIMESTAMP prints the current YMDHMS date as a timestamp. % % Licensing: % % This code is distributed under the GNU LGPL license. % % Modified: % % 14 February 2003 % % Author: % % John Burkardt % t = now; c = datevec ( t ); s = datestr ( c, 0 ); fprintf ( 1, '%s\n', s ); return end