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Abstract

Applications of tracking eye fixation location span from
neuroscience and the study of human vision to advertising
and human computer interaction. By creating a model to
generate a prediction of where the eye may be most at-
tracted to, industries can circumvent the expense of run-
ning studies on eye-tracking with actual human subjects. We
look to improve upon existing models of saliency by using
Bayesian methods with deep learning techniques.

1. Introduction

It is estimated that 80% of all external sensory input pro-
cessed by the human brain is processed by the visual path-
way [1]. As such, optimizing image layout for processing
by the human brain allows for better information retrieval
and retention across the image. Studying how humans’ eyes
move across images is thus relevant for fields from neuro-
science to advertising and art. Being able to predict where
humans are most likely to look provides a guideline as to
whether the image has an effective layout, what humans
are attracted to in viewing art, or how an image should be
cropped to feature the subject. Using an existing dataset of
eye movements, we build a predictive model to generate the
most likely fixation locations on a new image.

Our main contribution in this paper is combining
Bayesian methods with deep learning to perform the eye-
fixation prediction task. We also explore a dataset of fix-
ation locations that has not yet been used for the fixation
prediction task. Additionally, we introduce a method to use
an auxiliary dataset to learn image priors based on the area
of the image that encodes the most semantic meaning.

2. Related Work

Traditionally, studies on eye movements have been car-
ried out such that viewers look at images on a monitor while
an eye tracker records the eye-fixations that stay within a

threshold angle of movement. This procedure is very costly,
and necessitated formulating a method to predict where
users will look. Thus, models of saliency—the likelihood
of a location to attract the visual attention of a human—
developed that are modeled mathematically using biologi-
cally plausible linear filters. For example, linear combina-
tions of filters for low-level features such as color, inten-
sity, and orientation filters can be used to compute a total
saliency map for an image, providing a bottom-up under-
standing of the image [2]].

These models do not account for particular tasks that
the viewer may have in looking at the image, and often do
not align with the ground truth fixation locations. Judd et
al. [3]] propose using deep learning for this task rather than
deriving mathematical models and show that training from
a large database of eye-tracking data outperforms existing
models. Kiimmerer et al. [4] also employ deep learning for
predicting fixation locations, using the AlexNet architecture
in DeepGaze I and building upon the VGG-19 network in
DeepGaze I1.

Developing a dataset for use by saliency models is also
a field of exploration. Judd et al. [3] create a dataset of
1003 images with the fixation locations from 15 viewers
each and make it publicly available. Jiang et al. [3] relies on
an assumption of eye-mouse coordination—they simulate
recording eye-tracking data by instead recording mouse-
tracking data using Amazon Mechanical Turk. This pro-
vides a less expensive and training-intensive method of de-
veloping a simulated saliency map. Finally, the MIT300
dataset [[6] looks to provide a performance benchmark for
new predictive models for saliency, with performance statis-
tics for over 80 models at the time of writing.

3. Dataset

We make use of two datasets: ImageNet [7]] for the train
set for our prior and an eye-fixation dataset for our classifier.


https://github.com/laurenarnett/eye-movements

Figure 1. Eye-tracking locations on sample images from dataset.

3.1. Use of ImageNet for Training a Prior

We use the complete training set with the original image
and the label information of ImageNet for training our prior.
We select the best prior model based on the performance on
the validation set.

3.2. Source for Eye-Tracking Data

We use an open-source dataset developed at Osnabriick
University and the University Medical Center in Hamburg-
Eppendorf 8, 9]. This dataset comprises images of many
categories, including urban and rural settings, fractals,
faces, and websites. For our purposes, we use the images
of urban and rural settings, which have been taken from the
LabelMe dataset [10]. Each image in this category is shown
to the viewer for eight seconds, and this category has the x-
and y-coordinates of 70,026 fixation locations for seven ob-
servers over 600 images. Figure [T|shows examples of fixa-
tion locations across the image. We use a 500/100 train/test
split.

3.3. Preprocessing

We preprocess the fixation data by adding weight to
those pixels in the image that have fixations to produce
ground truth labels. We apply a Gaussian blur to also add
weight to neighboring pixels to account for the 0.5° angle of
error due to the eye-tracking machine. Figure [2] shows the
fixation locations and corresponding ground truth labels.

4. Learning a Model
4.1. Baseline Model Setting

We conduct a binary classification task for each output
pixel in our baseline eye fixation model. We propose a U-
Net architecture, using a fixed pretrained VGG model. We

Figure 2. Preprocessing of the fixation locations.
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Figure 3. U-Net Architecture for our baseline model.

take the features of layer numbers 3, 8, 15, and 22 in the
VGG model and feed them into our fixation prediction net-
work. We first learn a upsampling of the high-level, low-
resolution features of VGG, and then concatenate it with the
low-level, high-resolution features to produce a final predic-
tion.

4.2. Overcoming the Checkerboard Artifacts of Up-
sampling

Building the upsampling using the deconvolution oper-
ation introduces checkerboard artifacts, as shown in Figure
[] This is partly due to the overlap of the deconvolution, ac-
cording to Odena er al. [I1]]. We overcome this by first se-
quencing a nearest-neighbor interpolation along with a nor-
mal convolution operation.

4.3. Learning Prior from the ImageNet

Due to the high cost of collecting eye movement data,
which requires subjects to sit in front of the computer with
an expensive eye-tracking machine, the number of samples
that could be acquired in a training set may be limited.



Figure 4. Example of checkerboard artifacts.
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Figure 5. Architecture for learning the prior

We make an attempt to address these challenges by utiliz-
ing some prior knowledge of eye fixation from an auxiliary
dataset.

We interpret eye fixation points as the places which en-
code the most semantic information for the image. With this
prior, we construct a model which predicts a binary mask
with 0 and 1 to select the appropriate locations of the im-
age. Applying this binary mask to the image, we then use
a neural network to predict the semantic information of the
masked image.

The elements with value 1 in the predicted binary mask
mimic saliency map, where the selection of these points
should maximize the semantic information in the resulting
image after training.

We denote the semantic label of a given image x; as y;,
the predicted mask as M, and the loss function as L,

Mi = Fl(LL'i, k)

L(X,Y) = > logP(y;| Fa(M; * ;)
z, €X

where * denotes element-wise multiplication and & denotes
the number of elements we use in the binary mask. Here,
F denotes the mask-prediction network, and F» denotes
the pretrained classification network.

After training, the M; can be interpreted as a learned
prior knowledge, which is fixed during the Bayesian learn-
ing procedure.

4.4. Incorporating Prior Improves Prediction

The main contribution of our work is a Bayesian infer-
ence procedure that builds upon a prior knowledge learned
with our auxiliary dataset. We denote the eye-fixation
ground truth as ¢,

L =logP(M,t|z) = log(P(M|x)) + log(t|M, z)

The prior M gives a good estimation of the eye fixation
in advance, which enhances the optimization achieved by
this loss function.

4.5. Training

We train our baseline model using SGD, with a learning
rate of 1le—5 and weight decay of 1e—6. We train 50 epoch
before we stop.

We use ImageNet data for our prior training, where the
mask prediction network is based on a pretrained VGG-
16 network, and the network to predict semantic meaning
from the masked image is a DenseNet, which we believe
to have more accurate gradient information. We train this
mask prediction network using SGD with a learning rate of
le—5.

4.6. Evaluating the Prior

We visualize our binary mask prediction using both Im-
ageNet and our fixation dataset. In Figure [6] we show the
output of applying the mask to an ImageNet sample. This
output is in line with expectations of eye-fixations on the
bird. We then extrapolate our learned prior model for usage
with our eye-fixation dataset, as seen in Figure[7] Through
visualizing the application of the mask across images in our
eye-fixation dataset, we see that the prior, after training on
ImageNet, is able to generalize to the new dataset.

4.7. Evaluation Metric

In accordance with Judd et al. [3]], we use the true pos-
itive rate TPEL% as the evaluation metric, where TP is
number of true positives, and F'/N is the number of false



Figure 7. Example of extrapolating the prior learned on ImageNet
to the eye fixation dataset

negatives. This is evaluated using the probability predic-
tion output of how salient each pixel is. We threshold this
saliency map at the top k percent probability, where k =
1,3,5,10,15,20,25 and 30 percent of the image saliency
map.

4.8. Performance

Figure [8| shows our model’s performance. We draw the
ROC curve for the true positive rate. We can see that the
Bayesian model outperforms the baseline model by a large
margin. Specifically, at the 10% threshold for the saliency
map, the performance of the baseline model achieves 94.1%
performance of the Bayesian model, and at the 30% thresh-
old, the baseline model achieves 97% performance of the
Bayesian model.

5. Conclusion

Our study looks at using new methods and a new dataset
for the task of predicting eye-fixation locations. We use a
subset of a large dataset of fixation locations to account for
the difficulty of obtaining such data. By combining a neu-
ral network classification model with a learned image prior,
we achieve a higher performance than that of our classifier
alone.
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Figure 8. Example of a short caption, which should be centered.
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