from ps4a import * import time # # # Computer chooses a word # # def compChooseWord(hand, wordList, n): """ Given a hand and a wordList, find the word that gives the maximum value score, and return it. This word should be calculated by considering all the words in the wordList. If no words in the wordList can be made from the hand, return None. hand: dictionary (string -> int) wordList: list (string) n: integer (HAND_SIZE; i.e., hand size required for additional points) returns: string or None """ # Create a new variable to store the maximum score seen so far (initially 0) bestScore = 0 # Create a new variable to store the best word seen so far (initially None) bestWord = None # For each word in the wordList for word in wordList: # If you can construct the word from your hand if isValidWord(word, hand, wordList): # find out how much making that word is worth score = getWordScore(word, n) # If the score for that word is higher than your best score if (score > bestScore): # update your best score, and best word accordingly bestScore = score bestWord = word # return the best word you found. return bestWord # # Computer plays a hand # def compPlayHand(hand, wordList, n): """ Allows the computer to play the given hand, following the same procedure as playHand, except instead of the user choosing a word, the computer chooses it. 1) The hand is displayed. 2) The computer chooses a word. 3) After every valid word: the word and the score for that word is displayed, the remaining letters in the hand are displayed, and the computer chooses another word. 4) The sum of the word scores is displayed when the hand finishes. 5) The hand finishes when the computer has exhausted its possible choices (i.e. compChooseWord returns None). hand: dictionary (string -> int) wordList: list (string) n: integer (HAND_SIZE; i.e., hand size required for additional points) """ # Keep track of the total score totalScore = 0 # As long as there are still letters left in the hand: while (calculateHandlen(hand) > 0) : # Display the hand print("Current Hand: ", end=' ') displayHand(hand) # computer's word word = compChooseWord(hand, wordList, n) # If the input is a single period: if word == None: # End the game (break out of the loop) break # Otherwise (the input is not a single period): else : # If the word is not valid: if (not isValidWord(word, hand, wordList)) : print('This is a terrible error! I need to check my own code!') break # Otherwise (the word is valid): else : # Tell the user how many points the word earned, and the updated total score score = getWordScore(word, n) totalScore += score print('"' + word + '" earned ' + str(score) + ' points. Total: ' + str(totalScore) + ' points') # Update hand and show the updated hand to the user hand = updateHand(hand, word) print() # Game is over (user entered a '.' or ran out of letters), so tell user the total score print('Total score: ' + str(totalScore) + ' points.') # # Problem #6: Playing a game # # def playGame(wordList): """ Allow the user to play an arbitrary number of hands. 1) Asks the user to input 'n' or 'r' or 'e'. * If the user inputs 'e', immediately exit the game. * If the user inputs anything that's not 'n', 'r', or 'e', keep asking them again. 2) Asks the user to input a 'u' or a 'c'. * If the user inputs anything that's not 'c' or 'u', keep asking them again. 3) Switch functionality based on the above choices: * If the user inputted 'n', play a new (random) hand. * Else, if the user inputted 'r', play the last hand again. * If the user inputted 'u', let the user play the game with the selected hand, using playHand. * If the user inputted 'c', let the computer play the game with the selected hand, using compPlayHand. 4) After the computer or user has played the hand, repeat from step 1 wordList: list (string) """ # TO DO... <-- Remove this comment when you code this function print("playGame not yet implemented.") # <-- Remove this when you code this function # # Build data structures used for entire session and play game # if __name__ == '__main__': wordList = loadWords() playGame(wordList)