{
"cells": [
{
"cell_type": "markdown",
"id": "80bf830b",
"metadata": {},
"source": [
" # Final Project: Leah Fitzgerald"
]
},
{
"cell_type": "markdown",
"id": "c0a6d14a",
"metadata": {},
"source": [
"The purpose of my final project analysis is to see what show viewers on Twitter like more, Jeopardy! or Wheel of Fortune. One motivation that has driven me in the creation of this analysis is a debate between a few of my roommates and Erica and I. Ms. Erica and I believe that Jeopardy! is a better show for numerous reasons. Our roommates disagree. With this analysis, I can show them step-by-step what users are saying on Twitter. \n",
"\n",
"I will start my analysis of tweets regarding Jeopardy! and Wheel of Fortune by importing the libraries necessary. The hypothesis I am testing in this analysis is: Users of Twitter will generally favor and say more positive things about Jeopardy! vs. Wheel of Fortune. The audience of my analysis would be Jeopardy! and Wheel of Fortune fans, and viewers of both shows. \n",
"\n",
"My conclusions will give me insight as to whether Twitter users are more positively talking about either WOF or Jeopardy, and also specifics about what people have to say about the hosts. So first, understanding which show is better received based on the tweets collected. I have done this by pulling data about each game and the hosts into 2 files.\n",
"\n",
" The data used is all coming from the Twitter API that has pulled tweets from the past 7 days. It provides personal experiences and perspectives from a wide variety of users on Twitter."
]
},
{
"cell_type": "markdown",
"id": "fd7fda34",
"metadata": {},
"source": [
"### Data Collection"
]
},
{
"cell_type": "markdown",
"id": "de9c3188",
"metadata": {},
"source": [
"I have collected 600 samples of tweets regarding Jeopardy and 600 tweets regarding Wheel of Fortune. "
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "bb2d2236",
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"import pandas as pd\n",
"import urllib\n",
"import json"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "24a69bd9",
"metadata": {},
"outputs": [],
"source": [
"from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39d13cc0",
"metadata": {},
"outputs": [],
"source": [
"ls"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "9e6021bf",
"metadata": {},
"outputs": [],
"source": [
"bearer_token = pd.read_csv('bearer_token.txt', header = 0)"
]
},
{
"cell_type": "markdown",
"id": "316453d3",
"metadata": {},
"source": [
"I start by asking it to read my bearer_token text file. This contains the token I need to get data back from the Twitter API"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c6135c25",
"metadata": {},
"outputs": [],
"source": [
"bearer_token['Bearer_token'].iloc[0]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "308eba77",
"metadata": {},
"outputs": [],
"source": [
"header = {'Authorization' : 'Bearer {}'.format(bearer_token['Bearer_token'].iloc[0])}"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "0f824e5a",
"metadata": {},
"outputs": [],
"source": [
"endpoint_url = 'https://api.twitter.com/2/tweets/search/recent'"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "95ce32d7",
"metadata": {},
"outputs": [],
"source": [
"query = urllib.parse.quote('#Jeopardy OR #KenJennings OR @KenJennings OR @MissMayim OR #MayimBialik OR @Jeopardy lang:en')"
]
},
{
"cell_type": "markdown",
"id": "e6792905",
"metadata": {},
"source": [
"Here I am creating a query to parse the topics and language for my url. "
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "2a85541a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'%23Jeopardy%20OR%20%23KenJennings%20OR%20%40KenJennings%20OR%20%40MissMayim%20OR%20%23MayimBialik%20OR%20%40Jeopardy%20lang%3Aen'"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "aab08f18",
"metadata": {},
"outputs": [],
"source": [
"tweet_fields = 'public_metrics,created_at,lang,possibly_sensitive,attachments,source'"
]
},
{
"cell_type": "markdown",
"id": "1d06c872",
"metadata": {},
"source": [
"I am declaring the tweet fields I would like to see from Twitter."
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "71de45c1",
"metadata": {},
"outputs": [],
"source": [
"my_api_url = endpoint_url + '?query={}&tweet.fields={}'.format(query, tweet_fields)"
]
},
{
"cell_type": "markdown",
"id": "3ba08719",
"metadata": {},
"source": [
"Here I am consolidating my url with the query."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1921e6c9",
"metadata": {},
"outputs": [],
"source": [
"my_api_url"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "ce3c3b30",
"metadata": {},
"outputs": [],
"source": [
"expansions = 'author_id'"
]
},
{
"cell_type": "markdown",
"id": "4c6a9ec6",
"metadata": {},
"source": [
"I added author_id as an expansion to get more information."
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "ff158998",
"metadata": {},
"outputs": [],
"source": [
"url = endpoint_url + '?query={}&tweet.fields={}'.format(query, tweet_fields)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "506487d7",
"metadata": {},
"outputs": [],
"source": [
"url_expansions = endpoint_url + '?query={}&max_results=100&tweet.fields={}&expansions={}&user.fields={}'.format(query, tweet_fields, expansions, 'username')"
]
},
{
"cell_type": "markdown",
"id": "c1dacc86",
"metadata": {},
"source": [
"Here I am specifying what I would like from the twitter data. Specifically max results of 100 tweets, tweet fields, expansions, and user fields. "
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "b924b2f0",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'https://api.twitter.com/2/tweets/search/recent?query=%23Jeopardy%20OR%20%23KenJennings%20OR%20%40KenJennings%20OR%20%40MissMayim%20OR%20%23MayimBialik%20OR%20%40Jeopardy%20lang%3Aen&max_results=100&tweet.fields=public_metrics,created_at,lang,possibly_sensitive,attachments,source&expansions=author_id&user.fields=username'"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"url_expansions"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "7ba72289",
"metadata": {},
"outputs": [],
"source": [
"response_1 = requests.request(\"GET\", url_expansions, headers = header)"
]
},
{
"cell_type": "markdown",
"id": "968f6fbb",
"metadata": {},
"source": [
"Here I am asking Twitter to answer my request using \"GET\" with my url. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b3fa5f0",
"metadata": {},
"outputs": [],
"source": [
"response_1.text"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "e743e67b",
"metadata": {},
"outputs": [],
"source": [
"response_1_dict = json.loads(response_1.text)"
]
},
{
"cell_type": "markdown",
"id": "486448ed",
"metadata": {},
"source": [
"Loading Twitter data into json"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "e9cd88a2",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"dict_keys(['data', 'includes', 'meta'])"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"response_1_dict.keys()"
]
},
{
"cell_type": "markdown",
"id": "e36db869",
"metadata": {},
"source": [
"This tells me what I can ask the API to show me. "
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "f7313493",
"metadata": {},
"outputs": [],
"source": [
"my_df = pd.DataFrame(response_1_dict['data'])"
]
},
{
"cell_type": "markdown",
"id": "36241312",
"metadata": {},
"source": [
"I am creating a data frame with the 'data' key."
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "fd3e4d8f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
"
],
"text/plain": [
" Unnamed: 0 possibly_sensitive \\\n",
"0 0 False \n",
"1 1 False \n",
"2 2 False \n",
"3 3 False \n",
"4 4 False \n",
"\n",
" text author_id lang \\\n",
"0 RT @patsajak: A Christmas message to my fellow... 7.406850e+17 en \n",
"1 RT @patsajak: A Christmas message to my fellow... 2.752687e+08 en \n",
"2 RT @patsajak: A Christmas message to my fellow... 1.409894e+18 en \n",
"3 RT @patsajak: I don’t know which is stranger: ... 1.820274e+08 en \n",
"4 @patsajak @proudtigerlsu Start by encouraging ... 1.330241e+18 en \n",
"\n",
" source public_metrics \\\n",
"0 Twitter for iPhone {'retweet_count': 1014, 'reply_count': 0, 'lik... \n",
"1 Twitter for iPhone {'retweet_count': 1014, 'reply_count': 0, 'lik... \n",
"2 Twitter for Android {'retweet_count': 1014, 'reply_count': 0, 'lik... \n",
"3 Twitter for Android {'retweet_count': 281, 'reply_count': 0, 'like... \n",
"4 Twitter Web App {'retweet_count': 0, 'reply_count': 0, 'like_c... \n",
"\n",
" created_at id attachments \n",
"0 2021-12-09T21:19:18.000Z 1469054067867533317 NaN \n",
"1 2021-12-09T21:17:37.000Z 1469053646876905475 NaN \n",
"2 2021-12-09T21:17:29.000Z 1469053612580028422 NaN \n",
"3 2021-12-09T21:13:40.000Z 1469052653019832322 NaN \n",
"4 2021-12-09T21:11:57.000Z 1469052218737414150 NaN "
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"oly.head()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"id": "89147f77",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 en\n",
"1 en\n",
"2 en\n",
"3 en\n",
"4 en\n",
" ..\n",
"495 en\n",
"496 en\n",
"497 en\n",
"498 en\n",
"499 en\n",
"Name: lang, Length: 500, dtype: category\n",
"Categories (3, object): ['en', 'tr', 'und']"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"oly['lang'].astype('category')"
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "119bdcee",
"metadata": {},
"outputs": [],
"source": [
"oly_enposts = oly[(oly['lang'] == 'en')]"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "869646d4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 RT @patsajak: A Christmas message to my fellow...\n",
"1 RT @patsajak: A Christmas message to my fellow...\n",
"2 RT @patsajak: A Christmas message to my fellow...\n",
"3 RT @patsajak: I don’t know which is stranger: ...\n",
"4 @patsajak @proudtigerlsu Start by encouraging ...\n",
"Name: text, dtype: object"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"oly_enposts['text'].head()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "6f2eec92",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'RT @patsajak: “Please hold. Your call is important to us. Just not important enough to hire enough operators to answer your call.”'"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"oly_enposts['text'].iloc[6]"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "6c212d83",
"metadata": {},
"outputs": [],
"source": [
"analyser = SentimentIntensityAnalyzer()"
]
},
{
"cell_type": "code",
"execution_count": 49,
"id": "3561e7a8",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'neg': 0.0, 'neu': 0.913, 'pos': 0.087, 'compound': 0.2716}\n"
]
}
],
"source": [
"print(analyser.polarity_scores(oly_enposts['text'].iloc[3]))"
]
},
{
"cell_type": "code",
"execution_count": 50,
"id": "0862e34a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'RT @patsajak: A Christmas message to my fellow Californians: If you plan to steal merchandise, please keep it under $950. This way, it’s a…'"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"oly_enposts['text'].iloc[400]"
]
},
{
"cell_type": "code",
"execution_count": 51,
"id": "0615f4ab",
"metadata": {},
"outputs": [],
"source": [
"a_sent = analyser.polarity_scores(oly_enposts['text'].iloc[400])"
]
},
{
"cell_type": "code",
"execution_count": 52,
"id": "eabf1834",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.084"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"a_sent['pos']"
]
},
{
"cell_type": "code",
"execution_count": 53,
"id": "fb2fd1ac",
"metadata": {},
"outputs": [],
"source": [
"sentiments = [analyser.polarity_scores(x) for x in oly_enposts['text']]"
]
},
{
"cell_type": "code",
"execution_count": 54,
"id": "f899c4eb",
"metadata": {},
"outputs": [],
"source": [
"sentiments_df = pd.DataFrame(sentiments)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"id": "edbd39f6",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
neg
\n",
"
neu
\n",
"
pos
\n",
"
compound
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
0.116
\n",
"
0.800
\n",
"
0.084
\n",
"
-0.2263
\n",
"
\n",
"
\n",
"
1
\n",
"
0.116
\n",
"
0.800
\n",
"
0.084
\n",
"
-0.2263
\n",
"
\n",
"
\n",
"
2
\n",
"
0.116
\n",
"
0.800
\n",
"
0.084
\n",
"
-0.2263
\n",
"
\n",
"
\n",
"
3
\n",
"
0.000
\n",
"
0.913
\n",
"
0.087
\n",
"
0.2716
\n",
"
\n",
"
\n",
"
4
\n",
"
0.109
\n",
"
0.741
\n",
"
0.150
\n",
"
0.2960
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" neg neu pos compound\n",
"0 0.116 0.800 0.084 -0.2263\n",
"1 0.116 0.800 0.084 -0.2263\n",
"2 0.116 0.800 0.084 -0.2263\n",
"3 0.000 0.913 0.087 0.2716\n",
"4 0.109 0.741 0.150 0.2960"
]
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sentiments_df.head()"
]
},
{
"cell_type": "code",
"execution_count": 56,
"id": "898cedb4",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 498.000000\n",
"mean 0.096492\n",
"std 0.091340\n",
"min 0.000000\n",
"25% 0.077000\n",
"50% 0.077000\n",
"75% 0.084000\n",
"max 0.610000\n",
"Name: pos, dtype: float64"
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sentiments_df['pos'].describe()"
]
},
{
"cell_type": "code",
"execution_count": 58,
"id": "bc80888f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"count 498.000000\n",
"mean 0.066952\n",
"std 0.052092\n",
"min 0.000000\n",
"25% 0.000000\n",
"50% 0.068000\n",
"75% 0.116000\n",
"max 0.545000\n",
"Name: neg, dtype: float64"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sentiments_df['neg'].describe()"
]
},
{
"cell_type": "code",
"execution_count": 59,
"id": "f5f816f8",
"metadata": {},
"outputs": [],
"source": [
"from matplotlib import pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 61,
"id": "492f06e6",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfu0lEQVR4nO3de5xdZX3v8c8XiAiCAhIwhEAQYhE8EjCg1htUWsALSIsStAqWGu0BLa2eI9C+FNvmlPalKNaiBqWg5RalYIp4QYQgKJeg4RIuJZJAQlISUQxBGkj4nj/WMyubyZ6ZNcns2TOT7/v12q+91rOetdbv2Xtm/9b1WbJNREQEwBbdDiAiIkaOJIWIiKglKURERC1JISIiakkKERFRS1KIiIhakkLUJFnSPh1Y7oWS/mEj5z1W0hJJqyUdONSxRcTzJSmMUZLOkHRNr7IH+yibPrzRDcpngVNtb2f7F70nlkT2VEkaqyU90YkgJN0g6c87sewB1vuVlrY9I+nZlvHvdXjdZ0n69wHqvFHSTyX9VtKvJd0s6eBOxhWdlaQwdt0IvEHSlgCSXgaMAw7qVbZPqTtS7QksGKDOASVpbGd7h6FcuSpd+z+x/ZGetgH/D7i8pa1HdSsuAEkvBq4G/gXYCZgIfAZYM8Tr2XIolxf9S1IYu26nSgJTy/ibgeuBB3qV/dL2spb5Di97D7+R9K+S1DNB0p9Juq9M+4GkPVum7Svp2rK1+ICk9zQJUtIWkv5W0sOSVkj6hqSXSNpa0mpgS+BOSb8cTOPLMr4haWVZ9t/2/Lj33gKWNLnscWxVxm+QNFPSzcDvgG8CbwK+VLbQv9R7npb5/rwMnyTpJkmfLZ/XIklH9Yrv65KWS3pU0j8M5sdP0kWSPl6GJ5ZY/ncZ36d8Dyrj75A0X9ITZav+1S3L2U3SFeVzWiTpY6X8SOBM4PjS5jvbhPEKANuX2l5n+2nbP7R9V8vyP1T+Zp6UdK+kg0r5K8vn9YSkBZKObpnnQklflnSNpKeAw/qKs9Q/RNI8SaskPSbpnKafY2woSWGMsv0McCvVDz/l/SfATb3Keu8lvAM4GDgAeA9wBICkd1H9SPwxML4s69Iy7UXAtcAlwC7ACcB5kvZvEOpJ5XUY8HJgO+BLtteUrWOo9gT2btTw9f4FeElZ5luADwAfHMT87wdmANuX+H7C+sNYpzZcxmupkvDOwD8DX29JshcBa6n21A4E/ggYzOGpucChZfgtwEPlHcp3bdvlR/gC4MPAS4GvAnNK0t0C+E/gTqqt/LcCp0k6wvb3ef6eyQFtYvgvYF1JUEdJ2rF1oqR3A2dRffYvBo4GHpc0rqz3h1R/Lx8FLpb0ey2zvxeYSfX5/7SvOEvdc4Fzbb8Y2BuY3fAzjDaSFMa2uaxPAG+i+mH7Sa+yub3mOdv2E7YfodqzmFrKPwz8o+37bK+l+sGYWvYW3gEstv1vttfa/jlwBXBcgxjfB5xj+yHbq4EzgOmtW+AN/LxscT4h6Ytli/t44AzbT9peDHyO6oe+qQttLyjteXYQ87V62Pb5ttdRJYEJwK6SdgWOAk6z/ZTtFcDngcGc25kLvKn8sL+ZKum8oUx7C+u/1w8BX7V9a9mav4jq8M7rqJL/eNt/Z/sZ2w8B5zeNw/Yq4I2Ay3wrJc0p7YMqyf2z7dtdWWj74bLu7aj+1p6x/WOqw1AntCz+O7Zvtv0c8L8GiPNZYB9JO9tebfuWph9ibChJYWy7EXhj2YIbb/tBqq2u3y9lr2LDPYX/bhn+HdU/L1TH9s/t+fEFfg2IasttT+C1LT/MT1D92L+sQYy7AQ+3jD8MbAXs2r56WwfZ3qG8Pka1Zf6CNsudOIhlLhlE3b7Un6Xt35XB7ag+r3HA8pbP66tUW82N2P4lsJoqab+J6kd1Wdnabk0KewIf7/XdTKL63PcEdus17UwG8dmXjYSTbO9O9fe0G/CFMnkS0O6w327AkvKD36P399P6+Q8U58lUh7Lul3S7pHc0jT82NJitsRh9fkZ1CGUGcDNUW3eSlpWyZbYXNVzWEmCm7Yt7Tyh7C3Nt/+FGxLiM6p++xx5Uh1Ue24hl9fgV1dbjnsC9Lct9tAw/BWzbUr9d8urdfXDv8afK+7bAqn6W084Sqq31ncte18aaS7U39gLbj0qaS3WoZkdgfsu6Ztqe2XtmSa8HFtme0sfyB9WFsu37JV1ItVfZs+52h/2WAZMkbdGSGPagOhzVbt1L+ouzbOycUPaa/hj4tqSX2n6qXf3oX/YUxjDbTwPzgL+mOmzU46ZSNpirjr4CnNFznqCcKH13mXY18ApJ75c0rrwOlvTKBsu9FPgrSXtJar3CZqN/LMvhmtnATEnbl6T110DPyeX5wJsl7SHpJVSHrAbyGNX5iZ51rKRKMn8qaUtJf0b7H8B28S2nOp7+OUkvVnWyfW9Jbxlo3l7mAqey/nu8ger4/E3lM4DqMMtHJL1WlRdJeruk7YHbgFWSPilpm9KOV2n9JaWPAZPVx9VXqi4u+Lik3cv4JKpDQD2Hb74GfELSa8q69ynfxa1USfX/lr+VQ4F3Apf10c5+45T0p5LGlwTzRJlnXR/LigEkKYx9c6kOS9zUUvaTUtY4Kdi+Evgn4DJJq4B7qI6LY/tJqhOl06m2Av+71N26waIvoLq650ZgEfA/VD9sm+qjVD88D1G1/ZKyLmxfC1wO3AXcQZXUBnIucJyqK4m+WMo+BPwf4HFgf6pDc019gOoQ173Ab4BvU51zGIy5VCdie77Hm6j2XOrv1fa8EueXynoWUp0470me76Q6BLWIag/ra1R7lwDfKu+PS/p5m/U/SXUy/VZVVwndQvV38fGy/G9RnSy+pNS9CtipXARxNNXfz6+A84AP2L6/XSMbxHkksEDV1WrnAtNt/0/7jywGojxkJyIiemRPISIiakkKERFRS1KIiIhakkJERNRG9X0KO++8sydPntztMCIiRpU77rjjV7bHt5s2qpPC5MmTmTdvXrfDiIgYVSQ93Ne0HD6KiIhakkJERNSSFCIiopakEBERtSSFiIioJSlEREQtSSEiImpJChERUUtSiIiIWsfuaJb0QqqHfWxd1vNt25+WdBbVQz9Wlqpn2r6mzHMG1fNW1wEfs/2DTsXXTZNP/25X1rv47Ld3Zb0RMXp0spuLNcAf2F4taRxwk6TvlWmft/3Z1sqS9qN6ctf+VA/2/pGkV7Q8VjAiIjqsY4ePXFldRseVV3+PeTsGuMz2mvIw+YXAIZ2KLyIiNtTRcwrlAdvzgRXAtbZvLZNOlXSXpAsk7VjKJgJLWmZfWsp6L3OGpHmS5q1cubL35IiI2AQdTQq219meCuwOHCLpVcCXgb2pHsK9HPhcqa52i2izzFm2p9meNn58255fIyJiIw3L1Ue2nwBuAI60/VhJFs8B57P+ENFSYFLLbLsDy4YjvoiIqHQsKUgaL2mHMrwNcDhwv6QJLdWOBe4pw3OA6ZK2lrQXMAW4rVPxRUTEhjp59dEE4CJJW1Iln9m2r5b0TUlTqQ4NLQY+DGB7gaTZwL3AWuCUXHkUETG8OpYUbN8FHNim/P39zDMTmNmpmCIion+5ozkiImpJChERUUtSiIiIWpJCRETUkhQiIqKWpBAREbUkhYiIqCUpRERELUkhIiJqSQoREVFLUoiIiFqSQkRE1JIUIiKilqQQERG1JIWIiKglKURERC1JISIiakkKERFRS1KIiIhakkJERNQ6lhQkvVDSbZLulLRA0mdK+U6SrpX0YHnfsWWeMyQtlPSApCM6FVtERLTXyT2FNcAf2D4AmAocKel1wOnAdbanANeVcSTtB0wH9geOBM6TtGUH44uIiF46lhRcWV1Gx5WXgWOAi0r5RcC7yvAxwGW219heBCwEDulUfBERsaGOnlOQtKWk+cAK4FrbtwK72l4OUN53KdUnAktaZl9aynovc4akeZLmrVy5spPhR0RsdjqaFGyvsz0V2B04RNKr+qmudotos8xZtqfZnjZ+/PghijQiImCYrj6y/QRwA9W5gsckTQAo7ytKtaXApJbZdgeWDUd8ERFR6eTVR+Ml7VCGtwEOB+4H5gAnlmonAt8pw3OA6ZK2lrQXMAW4rVPxRUTEhrbq4LInABeVK4i2AGbbvlrSz4DZkk4GHgHeDWB7gaTZwL3AWuAU2+s6GF9ERPTSsaRg+y7gwDbljwNv7WOemcDMTsUUERH9yx3NERFRS1KIiIhakkJERNSSFCIiopakEBERtSSFiIioJSlEREQtSSEiImpJChERUUtSiIiIWpJCRETUkhQiIqKWpBAREbUkhYiIqCUpRERELUkhIiJqSQoREVFLUoiIiFqSQkRE1JIUIiKi1rGkIGmSpOsl3SdpgaS/LOVnSXpU0vzyelvLPGdIWijpAUlHdCq2iIhob6sOLnst8HHbP5e0PXCHpGvLtM/b/mxrZUn7AdOB/YHdgB9JeoXtdR2MMSIiWnRsT8H2cts/L8NPAvcBE/uZ5RjgMttrbC8CFgKHdCq+iIjY0LCcU5A0GTgQuLUUnSrpLkkXSNqxlE0ElrTMtpQ2SUTSDEnzJM1buXJlJ8OOiNjsdDwpSNoOuAI4zfYq4MvA3sBUYDnwuZ6qbWb3BgX2LNvTbE8bP358Z4KOiNhMdTQpSBpHlRAutv0fALYfs73O9nPA+aw/RLQUmNQy++7Ask7GFxERz9fJq48EfB24z/Y5LeUTWqodC9xThucA0yVtLWkvYApwW6fii4iIDXXy6qM3AO8H7pY0v5SdCZwgaSrVoaHFwIcBbC+QNBu4l+rKpVNy5VFExPDqWFKwfRPtzxNc0888M4GZnYopIiL6lzuaIyKilqQQERG1JIWIiKglKURERK1RUpC0t6Sty/Chkj4maYeORhYREcOu6Z7CFcA6SftQ3XuwF3BJx6KKiIiuaJoUnrO9lupmsy/Y/itgwgDzRETEKNM0KTwr6QTgRODqUjauMyFFRES3NE0KHwReD8y0vah0Q/HvnQsrIiK6odEdzbbvlfRJYI8yvgg4u5OBRUTE8Gt69dE7gfnA98v4VElzOhhXRER0QdPDR2dRdXH9BIDt+VRXIEVExBjSNCmstf3bXmUbPAAnIiJGt6a9pN4j6b3AlpKmAB8Dftq5sCIiohua7il8FNgfWANcCqwCTutQTBER0SVNrz76HfA35RUREWNUv0lB0hdsnybpP2lzDsH20R2LLCIiht1AewrfLO+f7XQgERHRff0mBdt3lMF5wNO2nwOQtCWwdYdji4iIYdb0RPN1wLYt49sAPxr6cCIiopuaJoUX2l7dM1KGt+2nPpImSbpe0n2SFkj6y1K+k6RrJT1Y3ndsmecMSQslPSDpiI1pUEREbLymSeEpSQf1jEh6DfD0APOsBT5u+5XA64BTJO0HnA5cZ3sK1R7I6WWZ+wHTqS59PRI4rxymioiIYdL05rXTgG9JWlbGJwDH9zeD7eXA8jL8pKT7gInAMcChpdpFwA3AJ0v5ZbbXAIskLaTqWuNnDWOMiIhN1PQ+hdsl7Qv8HiDgftvPNl2JpMnAgcCtwK4lYWB7uaRdSrWJwC0tsy0tZb2XNQOYAbDHHns0DSEiIhpouqcAcDAwucxzoCRsf2OgmSRtR/U4z9Nsr5LUZ9U2Ze3ujZgFzAKYNm1a+l+KiBhCjZKCpG8Ce1N1n72uFBvoNylIGkeVEC62/R+l+DFJE8pewgRgRSlfCkxqmX13YBkRETFsmu4pTAP2s914y1zVLsHXgftsn9MyaQ7VYz3PLu/faSm/RNI5wG7AFOC2puuLiIhN17iXVOBllBPHDb0BeD9wt6T5pexMqmQwW9LJwCPAuwFsL5A0G7iX6sqlU2yv22CpERHRMU2Tws7AvZJuo+opFei/7yPbN9H+PAHAW/uYZyYws2FMERExxJomhbM6GURERIwMTS9JnStpT2CK7R9J2hbIjWUREWNMozuaJX0I+Dbw1VI0EbiqQzFFRESXNO3m4hSqE8erAGw/COzS7xwRETHqNE0Ka2w/0zMiaSva3FgWERGjW9OkMFfSmcA2kv4Q+Bbwn50LKyIiuqFpUjgdWAncDXwYuAb4204FFRER3dH06qPngPPLKyIixqimfR8ton3ndC8f8ogiIqJrBtP3UY8XUnVNsdPQhxMREd3U6JyC7cdbXo/a/gLwB50NLSIihlvTw0cHtYxuQbXnsH1HIoqIiK5pevjocy3Da4HFwHuGPJqIiOiqplcfHdbpQCIiovuaHj766/6m93qITkREjFKDufroYKqnowG8E7gRWNKJoCIiojsG85Cdg2w/CSDpLOBbtv+8U4FFRMTwa9rNxR7AMy3jzwCThzyaiIjoqqZ7Ct8EbpN0JdWdzccC3+hYVBER0RVNrz6aKel7wJtK0Qdt/6JzYUVERDc0PXwEsC2wyva5wFJJe/VXWdIFklZIuqel7CxJj0qaX15va5l2hqSFkh6QdMSgWxIREZus6eM4Pw18EjijFI0D/n2A2S4EjmxT/nnbU8vrmrL8/YDpwP5lnvMk5RnQERHDrOmewrHA0cBTALaXMUA3F7ZvBH7dcPnHAJfZXmN7EbAQOKThvBERMUSaJoVnbJvSfbakF23COk+VdFc5vLRjKZvI8+95WFrKIiJiGDVNCrMlfRXYQdKHgB+xcQ/c+TKwNzAVWM76PpXUpm7bZ0BLmiFpnqR5K1eu3IgQIiKiLwNefSRJwOXAvsAq4PeAT9m+drArs/1Yy3LPB64uo0uBSS1VdweW9bGMWcAsgGnTprVNHBERsXEGTAq2Lekq268BBp0IWkmaYHt5GT0W6LkyaQ5wiaRzgN2AKcBtm7KuiIgYvKY3r90i6WDbtzddsKRLgUOBnSUtBT4NHCppKtWhocXAhwFsL5A0G7iXqmvuU2yva7quiIgYGk2TwmHARyQtproCSVQ7Ea/uawbbJ7Qp/no/9WcCMxvGExERHdBvUpC0h+1HgKOGKZ6IiOiigfYUrqLqHfVhSVfY/pNhiCkiIrpkoEtSWy8VfXknA4mIiO4bKCm4j+GIiBiDBjp8dICkVVR7DNuUYVh/ovnFHY0uIiKGVb9JwXY6pYuI2IwMpuvsiIgY45IUIiKilqQQERG1JIWIiKglKURERC1JISIiakkKERFRS1KIiIhakkJERNSSFCIiopakEBERtSSFiIioJSlEREQtSSEiImodSwqSLpC0QtI9LWU7SbpW0oPlfceWaWdIWijpAUlHdCquiIjoWyf3FC4EjuxVdjpwne0pwHVlHEn7AdOB/cs850nKsxwiIoZZx5KC7RuBX/cqPga4qAxfBLyrpfwy22tsLwIWAod0KraIiGhvuM8p7Gp7OUB536WUTwSWtNRbWsoiImIYjZQTzWpT5rYVpRmS5kmat3Llyg6HFRGxeRnupPCYpAkA5X1FKV8KTGqptzuwrN0CbM+yPc32tPHjx3c02IiIzc1wJ4U5wIll+ETgOy3l0yVtLWkvYApw2zDHFhGx2duqUwuWdClwKLCzpKXAp4GzgdmSTgYeAd4NYHuBpNnAvcBa4BTb6zoVW0REtNexpGD7hD4mvbWP+jOBmZ2KJyIiBjZSTjRHRMQIkKQQERG1JIWIiKglKURERC1JISIiakkKERFRS1KIiIhakkJERNSSFCIiopakEBERtSSFiIiodazvo9Fg8unf7XYIEREjSvYUIiKilqQQERG1JIWIiKglKURERC1JISIiakkKERFRS1KIiIhakkJERNSSFCIiotaVO5olLQaeBNYBa21Pk7QTcDkwGVgMvMf2b7oRX0TE5qqbewqH2Z5qe1oZPx24zvYU4LoyHhERw2gkHT46BrioDF8EvKt7oUREbJ66lRQM/FDSHZJmlLJdbS8HKO+7tJtR0gxJ8yTNW7ly5TCFGxGxeehWL6lvsL1M0i7AtZLubzqj7VnALIBp06a5UwFGRGyOurKnYHtZeV8BXAkcAjwmaQJAeV/RjdgiIjZnw54UJL1I0vY9w8AfAfcAc4ATS7UTge8Md2wREZu7bhw+2hW4UlLP+i+x/X1JtwOzJZ0MPAK8uwuxRURs1oY9Kdh+CDigTfnjwFuHO56IiFhvJF2SGhERXZakEBERtSSFiIioJSlEREQtSSEiImpJChERUUtSiIiIWrf6PooumHz6d7u27sVnv71r646I5rKnEBERtSSFiIioJSlEREQtSSEiImo50RzRId06sZ+T+rEpsqcQERG1JIWIiKglKURERC1JISIiakkKERFRS1KIiIhaLkmNYZHLMyNGhxGXFCQdCZwLbAl8zfbZXQ4pRrFudgLYLZtjm7tlLG50jKjDR5K2BP4VOArYDzhB0n7djSoiYvMx0vYUDgEW2n4IQNJlwDHAvV2NKiKijbHYHf1ISwoTgSUt40uB17ZWkDQDmFFGV0t6YBPWtzPwq02YfyQYC22AtGOkSTtGlg3aoX/apOXt2deEkZYU1KbMzxuxZwGzhmRl0jzb04ZiWd0yFtoAacdIk3aMLMPZjhF1ToFqz2BSy/juwLIuxRIRsdkZaUnhdmCKpL0kvQCYDszpckwREZuNEXX4yPZaSacCP6C6JPUC2ws6uMohOQzVZWOhDZB2jDRpx8gybO2Q7YFrRUTEZmGkHT6KiIguSlKIiIjamE8Kko6U9ICkhZJObzNdkr5Ypt8l6aBuxDmQBu3YV9LPJK2R9IluxNhEg3a8r3wPd0n6qaQDuhHnQBq045jShvmS5kl6YzfiHMhA7Wipd7CkdZKOG874mmrwfRwq6bfl+5gv6VPdiHMgTb6P0pb5khZImjvkQdgesy+qk9W/BF4OvAC4E9ivV523Ad+jukfidcCt3Y57I9uxC3AwMBP4RLdj3oR2/D6wYxk+ahR/H9ux/pzdq4H7ux33xrSjpd6PgWuA47od90Z+H4cCV3c71iFoxw5UPTzsUcZ3Geo4xvqeQt1thu1ngJ5uM1odA3zDlVuAHSRNGO5ABzBgO2yvsH078Gw3AmyoSTt+avs3ZfQWqntVRpom7Vjt8l8LvIheN2GOEE3+PwA+ClwBrBjO4AahaTtGuibteC/wH7Yfger/fqiDGOtJoV23GRM3ok63jYYYmxhsO06m2osbaRq1Q9Kxku4Hvgv82TDFNhgDtkPSROBY4CvDGNdgNf27er2kOyV9T9L+wxPaoDRpxyuAHSXdIOkOSR8Y6iBG1H0KHTBgtxkN63TbaIixicbtkHQYVVIYicfiG7XD9pXAlZLeDPw9cHinAxukJu34AvBJ2+ukdtVHhCbt+Dmwp+3Vkt4GXAVM6XRgg9SkHVsBrwHeCmwD/EzSLbb/a6iCGOtJoUm3GaOha43REGMTjdoh6dXA14CjbD8+TLENxqC+D9s3Stpb0s62R1LnbE3aMQ24rCSEnYG3SVpr+6phibCZAdthe1XL8DWSzhul38dS4Fe2nwKeknQjcAAwZEmh6ydXOnziZivgIWAv1p+42b9Xnbfz/BPNt3U77o1pR0vdsxi5J5qbfB97AAuB3+92vJvYjn1Yf6L5IODRnvGR8hrM31WpfyEj80Rzk+/jZS3fxyHAI6Px+wBeCVxX6m4L3AO8aijjGNN7Cu6j2wxJHynTv0J1RcXbqH6Ifgd8sFvx9qVJOyS9DJgHvBh4TtJpVFcurOprucOt4ffxKeClwHll63StR1gvlw3b8SfAByQ9CzwNHO/yXz1SNGzHiNewHccBfyFpLdX3MX00fh+275P0feAu4Dmqp1PeM5RxpJuLiIiojfWrjyIiYhCSFCIiopakEBERtSSFiIioJSlEREQtSSFGldJT53xJ90j6lqRtBzn/bpK+XYanlrtbe6Yd3V9PoaXO30k6vAyfNtj1l/kOlGRJRwx23qEk6SRJu3Uzhhh5cklqjCqSVtvergxfDNxh+5yNXNZJwDTbp27k/IvL/IO6K1bSPwOvB35p+6SNWfdQkHQD1Y2O87oVQ4w82VOI0ewnwD6SdpJ0VXl+wS2lmwwkvaWl//xfSNpe0uSyl/EC4O+A48v048uW85ckvUTSYklblOVsK2mJpHGSLpR0nKSPAbsB10u6XtLJkj7fE5ikD0naIFmpuiPvOOAk4I8kvbCUT5Z0v6SvlfgulnS4pJslPSjpkFKvr7aepZbnaJRlTC6v+ySdr6r//R9K2kbVcxGmAReX9m/Tge8nRqEkhRiVJG1F9byFu4HPAL+w/WrgTOAbpdongFNsTwXeRHUnKwCuuib+FHC57am2L2+Z9luqLgbeUoreCfzA9rMtdb5I1S/NYbYPo+rm+GhJ40qVDwL/1ib0NwCLbP8SuIHqbvoe+wDnUj1/YV+qbpLfWNpxZqnTV1v7MwX4V9v7A08Af2L721R3wL+vtP/p/hYQm48khRhttpE0n+oH7RHg61Q/nN8EsP1j4KWSXgLcDJxTtup3sL12EOu5HDi+DE8v431y1UHZj4F3SNoXGGf77jZVT6BKIJT3E1qmLbJ9t+3ngAXAdaUrhruByaVOX23tzyLb88vwHS3LitjAmO77KMakp8uWf03t+3S27bMlfZdqa/yWcoL4fxquZw7wj5J2ouqq+McN5vka1db7/bTZS5C0JVWfSEdL+huqThhfKmn7UmVNS/XnWsafY/3/al/dK6/l+Rt5L2wZbl3uOqoulyPayp5CjAU3Au+D6vm1VF0Lr5K0d9ny/ieqPYt9e833JLA9bdheDdxGdTjnatvr2lR73vy2b6Xq+vi9wKVt6h8O3Gl7ku3JtvekeqLZuxq2E/poK7CYqjdWVD1nfK8Gy+qz/bH5SlKIseAsYJqku4CzgRNL+WnlhOudVOcTej/F7Xpgv54TzW2Weznwp/R96GgW8D1J17eUzQZu9vpHirY6AbiyV9kVVEmkqbNo39YrgJ3KobW/oFn/+hcCX8mJ5miVS1IjhpCkq4HP276u27FEbIzsKUQMAUk7SPovqnMeSQgxamVPISIiatlTiIiIWpJCRETUkhQiIqKWpBAREbUkhYiIqP1/1T4MqBzvLr0AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig0, ax0 = plt.subplots()\n",
"ax0.hist(sentiments_df['pos'])\n",
"ax0.set_title(\"Wheel of Fourtune Tweet Scores\") \n",
"ax0.set_xlabel(\"Positivity Amount\") \n",
"ax0.set_ylabel(\"Frequencies\") \n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "0a8700ae",
"metadata": {},
"source": [
"Graph based on the positive sentiment % of the tweets regarding WOF. "
]
},
{
"cell_type": "code",
"execution_count": 62,
"id": "b4b6ad2d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfdUlEQVR4nO3deZwcZb3v8c+XsCibLBkwhIRhiSJ4IeAERRZBVECRgLIkehARCdwDchC8V+D4Eo7X3IteVkWECBxAIRCMICIqESUBkWXAgAmLBBIkJCcZEQybgYTf+aOerjRNz0xNZrprlu/79epXVz21/Z7umf5VPVX1lCICMzMzgDXKDsDMzPoPJwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4LlJIWk7Rqw3qskfXs1lz1U0rOSXpa0S1/HZmZv5aQwSEk6Q9JtNWVPdlI2obnR9ci5wEkRsX5E/Kl2Ykpkr6Sk8bKkFxsRhKQ7JX25EevuZruXVtXtdUlvVI3/qsHbPlvST7qZZ09J90j6h6S/S/qDpHGNjMsay0lh8JoF7CFpGICkdwNrAbvWlG2X5u2vtgLmdjPPzilprB8RG/XlxpUp7f8kIk6o1A34v8ANVXU9sKy4ACRtCNwKfB/YBBgJ/AewvI+3M6wv12ddc1IYvB4gSwJj0/jewO+BJ2rKnoqIRVXLfSwdPbwg6QeSVJkg6UuSHkvTfiNpq6pp20uakfYWn5B0RJEgJa0h6RuSnpG0VNI1kt4laR1JLwPDgIclPdWTyqd1XCOpI637G5Uf99o9YEmt6YhjzTR+p6TJkv4AvAr8GNgLuDjtoV9cu0zVcl9Ow1+UdLekc9PnNV/SgTXxXSFpsaTnJH27Jz9+kq6WdFoaHpli+dc0vl36HpTGD5I0W9KLaa9+p6r1bCFpevqc5ks6OZUfAJwJHJnq/HCdMN4DEBFTI2JlRLwWEbdHxCNV6z8u/c28JOlRSbum8velz+tFSXMlHVy1zFWSfijpNkmvAPt2FmeafzdJ7ZKWSVoi6fyin6O9nZPCIBURrwP3kf3wk97vAu6uKas9SjgIGAfsDBwB7A8g6RCyH4nPAC1pXVPTtPWAGcB1wGbAROASSTsWCPWL6bUvsA2wPnBxRCxPe8eQHQlsW6jiq3wfeFda50eALwDH9GD5o4BJwAYpvrtY1Yx1UsF1fJAsCQ8HvgtcUZVkrwZWkB2p7QJ8AuhJ89RMYJ80/BHg6fQO6buOiEg/wlcCxwObApcBt6SkuwbwC+Bhsr38/YBTJO0fEb/mrUcmO9eJ4S/AypSgDpS0cfVESYcDZ5N99hsCBwPPS1orbfd2sr+XrwDXSnpv1eKfAyaTff73dBZnmvci4KKI2BDYFphW8DO0OpwUBreZrEoAe5H9sN1VUzazZplzIuLFiPgr2ZHF2FR+PPD/IuKxiFhB9oMxNh0tHAQsiIj/jIgVEfEQMB04rECMnwfOj4inI+Jl4AxgQvUeeAEPpT3OFyV9L+1xHwmcEREvRcQC4DyyH/qiroqIuak+b/RguWrPRMSPImIlWRIYAWwuaXPgQOCUiHglIpYCFwA9ObczE9gr/bDvTZZ09kjTPsKq7/U44LKIuC/tzV9N1rzzIbLk3xIR34qI1yPiaeBHReOIiGXAnkCk5Tok3ZLqB1mS+25EPBCZeRHxTNr2+mR/a69HxO/ImqEmVq3+5xHxh4h4E/gf3cT5BrCdpOER8XJE3Fv0Q7S3c1IY3GYBe6Y9uJaIeJJsr+vDqez9vP1I4b+qhl8l++eFrG3/osqPL/B3QGR7blsBH6z6YX6R7Mf+3QVi3AJ4pmr8GWBNYPP6s9e1a0RslF4nk+2Zr11nvSN7sM5nezBvZ/LPMiJeTYPrk31eawGLqz6vy8j2mguJiKeAl8mS9l5kP6qL0t52dVLYCjit5rsZRfa5bwVsUTPtTHrw2aedhC9GxJZkf09bABemyaOAes1+WwDPph/8itrvp/rz7y7OY8mash6X9ICkg4rGb2/Xk70xG3j+SNaEMgn4A2R7d5IWpbJFETG/4LqeBSZHxLW1E9LRwsyI+PhqxLiI7J++YjRZs8qS1VhXxd/I9h63Ah6tWu9zafgVYN2q+eslr9rug2vHX0nv6wLLulhPPc+S7a0PT0ddq2sm2dHY2hHxnKSZZE01GwOzq7Y1OSIm1y4saXdgfkSM6WT9PepCOSIel3QV2VFlZdv1mv0WAaMkrVGVGEaTNUfV2/azXcWZdnYmpqOmzwA/lbRpRLxSb37rmo8UBrGIeA1oB04lazaquDuV9eSqo0uBMyrnCdKJ0sPTtFuB90g6StJa6TVO0vsKrHcq8FVJW0uqvsJmtX8sU3PNNGCypA1S0joVqJxcng3sLWm0pHeRNVl1ZwnZ+YnKNjrIksy/SBom6UvU/wGsF99isvb08yRtqOxk+7aSPtLdsjVmAiex6nu8k6x9/u70GUDWzHKCpA8qs56kT0naALgfWCbp65Lemerxfq26pHQJ0KpOrr5SdnHBaZK2TOOjyJqAKs03lwNfk/SBtO3t0ndxH1lS/d/pb2Uf4NPA9Z3Us8s4Jf2LpJaUYF5My6zsZF3WDSeFwW8mWbPE3VVld6WywkkhIm4CvgNcL2kZMIesXZyIeInsROkEsr3A/0rzrlNg1VeSXd0zC5gP/JPsh623vkL2w/M0Wd2vS9siImYANwCPAA+SJbXuXAQcpuxKou+lsuOA/wU8D+xI1jRX1BfImrgeBV4Afkp2zqEnZpKdiK18j3eTHbnk32tEtKc4L07bmUd24rySPD9N1gQ1n+wI63Kyo0uAG9P785IeqrP9l8hOpt+n7Cqhe8n+Lk5L67+R7GTxdWnem4FN0kUQB5P9/fwNuAT4QkQ8Xq+SBeI8AJir7Gq1i4AJEfHP+h+ZdUd+yI6ZmVX4SMHMzHJOCmZmlnNSMDOznJOCmZnlBvR9CsOHD4/W1taywzAzG1AefPDBv0VES71pAzoptLa20t7eXnYYZmYDiqRnOpvm5iMzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLOekYGZmOScFMzPLDeg7mgeq1tN/Wcp2F5zzqVK2a2YDh48UzMws56RgZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ncw5KCpFGSfi/pMUlzJf1bKt9E0gxJT6b3jauWOUPSPElPSNq/UbGZmVl9jTxSWAGcFhHvAz4EnChpB+B04I6IGAPckcZJ0yYAOwIHAJdIGtbA+MzMrEbDkkJELI6Ih9LwS8BjwEhgPHB1mu1q4JA0PB64PiKWR8R8YB6wW6PiMzOzt2vKOQVJrcAuwH3A5hGxGLLEAWyWZhsJPFu12MJUVruuSZLaJbV3dHQ0NG4zs6Gm4UlB0vrAdOCUiFjW1ax1yuJtBRFTIqItItpaWlr6KkwzM6PBSUHSWmQJ4dqI+FkqXiJpRJo+AliayhcCo6oW3xJY1Mj4zMzsrRp59ZGAK4DHIuL8qkm3AEen4aOBn1eVT5C0jqStgTHA/Y2Kz8zM3q6RXWfvARwF/FnS7FR2JnAOME3SscBfgcMBImKupGnAo2RXLp0YESsbGJ+ZmdVoWFKIiLupf54AYL9OlpkMTG5UTGZm1jXf0WxmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLNfIx3FeKWmppDlVZTdImp1eCypPZJPUKum1qmmXNiouMzPrXCMfx3kVcDFwTaUgIo6sDEs6D/hH1fxPRcTYBsZjZmbdaOTjOGdJaq03TZKAI4CPNmr7ZmbWc2WdU9gLWBIRT1aVbS3pT5JmStqrswUlTZLULqm9o6Oj8ZGamQ0hZSWFicDUqvHFwOiI2AU4FbhO0ob1FoyIKRHRFhFtLS0tTQjVzGzoaHpSkLQm8BnghkpZRCyPiOfT8IPAU8B7mh2bmdlQV8aRwseAxyNiYaVAUoukYWl4G2AM8HQJsZmZDWmNvCR1KvBH4L2SFko6Nk2awFubjgD2Bh6R9DDwU+CEiPh7o2IzM7P6Gnn10cROyr9Yp2w6ML1RsZiZWTG+o9nMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8s18iE7V0paKmlOVdnZkp6TNDu9Plk17QxJ8yQ9IWn/RsVlZmada+SRwlXAAXXKL4iIsel1G4CkHcieyLZjWuaSyuM5zcyseRqWFCJiFlD0kZrjgesjYnlEzAfmAbs1KjYzM6uvjHMKJ0l6JDUvbZzKRgLPVs2zMJW9jaRJktoltXd0dDQ6VjOzIaXZSeGHwLbAWGAxcF4qV515o94KImJKRLRFRFtLS0tDgjQzG6qamhQiYklErIyIN4EfsaqJaCEwqmrWLYFFzYzNzMyanBQkjagaPRSoXJl0CzBB0jqStgbGAPc3MzYzM4M1G7ViSVOBfYDhkhYCZwH7SBpL1jS0ADgeICLmSpoGPAqsAE6MiJWNis3MzOprWFKIiIl1iq/oYv7JwORGxWNmZt3zHc1mZpZzUjAzs5yTgpmZ5ZwUzMws56RgZma5QlcfSdoWWBgRyyXtA+wEXBMRLzYutMZrPf2XZYdgZtavFD1SmA6slLQd2WWlWwPXNSwqMzMrRdGk8GZErCC7C/nCiPgqMKKbZczMbIApmhTekDQROBq4NZWt1ZiQzMysLEWTwjHA7sDkiJif+if6SePCMjOzMhQ60RwRj0r6OjA6jc8HzmlkYGZm1nxFrz76NHAusDawderU7lsRcXADY7M+VubVVgvO+VRp2zaz4oo2H51N9uyDFwEiYjbZFUhmZjaIFE0KKyLiHzVldZ+MZmZmA1fRrrPnSPocMEzSGOBk4J7GhWVmZmUoeqTwFWBHYDkwFVgGnNKgmMzMrCSFkkJEvBoR/x4R4yKiLQ3/s6tlJF0paamkOVVl/1/S45IekXSTpI1Seauk1yTNTq9Le1UrMzNbLV0mBUkXpvdfSLql9tXNuq8CDqgpmwG8PyJ2Av4CnFE17amIGJteJ/SoFmZm1ie6O6fw4/R+bk9XHBGzJLXWlN1eNXovcFhP12tmZo3TZVKIiAfTYDvwWkS8CSBpGLBOL7f9JeCGqvGtJf2J7HzFNyLirnoLSZoETAIYPXp0L0MwM7NqRU803wGsWzX+TuC3q7tRSf8OrACuTUWLgdERsQtwKnCdpA3rLRsRU9J5jbaWlpbVDcHMzOoomhTeEREvV0bS8LpdzN8pSUcDBwGfj4hI61seEc+n4QeBp4D3rM76zcxs9RVNCq9I2rUyIukDwGs93ZikA4CvAwdHxKtV5S2pSQpJ2wBjgKd7un4zM+udojevnQLcKGlRGh8BHNnVApKmAvsAwyUtBM4iu9poHWCGJIB705VGewPfkrQCWAmcEBF/71lVzMyst4r2kvqApO2B9wICHo+IN7pZZmKd4is6mXc62dPdzMysREWPFADGAa1pmV0kERHXNCQqMzMrRdGus38MbAvMJmvegaxDPCcFM7NBpOiRQhuwQ+VqITMzG5yKXn00B3h3IwMxM7PyFT1SGA48Kul+sp5SAfCT18zMBpeiSeHsRgZhZmb9Q9FLUmdK2goYExG/lbQuMKyxoZmZWbMVOqcg6Tjgp8BlqWgkcHODYjIzs5IUPdF8IrAHWQ+mRMSTwGaNCsrMzMpRNCksj4jXKyOS1iS7T8HMzAaRoklhpqQzgXdK+jhwI/CLxoVlZmZlKJoUTgc6gD8DxwO3Ad9oVFBmZlaOolcfvQn8KL3MzGyQKtr30XzqnEOIiG36PCIzMytNT/o+qngHcDiwSd+HY2ZmZSp0TiEinq96PRcRFwIf7WoZSVdKWippTlXZJpJmSHoyvW9cNe0MSfMkPSFp/9WtkJmZrb6iN6/tWvVqk3QCsEE3i10FHFBTdjpwR0SMAe5I40jaAZgA7JiWuaTyeE4zM2ueos1H51UNrwAWAEd0tUBEzJLUWlM8nuwRnQBXA3eSPbN5PHB9RCwH5kuaB+wG/LFgfGZm1geKXn20bx9tb/OIWJzWuVhS5a7okcC9VfMtTGVvI2kSMAlg9OjRfRSWmZlB8auPTu1qekSc38s4VG+1nWxrCjAFoK2tzXdVm5n1oZ5cfTQOuCWNfxqYBTzbw+0tkTQiHSWMAJam8oXAqKr5tgQW9XDdZmbWSz15yM6uEfESgKSzgRsj4ss93N4twNHAOen951Xl10k6H9gCGAPc38N1m5lZLxVNCqOB16vGXwdau1pA0lSyk8rDJS0EziJLBtMkHQv8lex+ByJirqRpwKNkJ7JPjIiVxathZmZ9oWhS+DFwv6SbyNr6DwWu6WqBiJjYyaT9Opl/MjC5YDxmZtYARa8+mizpV8BeqeiYiPhT48IyM7MyFO0lFWBdYFlEXAQslLR1g2IyM7OSFL2j+Syym8zOSEVrAT9pVFBmZlaOokcKhwIHA68ARMQiuu/mwszMBpiiSeH1iAjSDWWS1mtcSGZmVpaiSWGapMuAjSQdB/wWP3DHzGzQ6fbqI0kCbgC2B5YB7wW+GREzGhybmZk1WbdJISJC0s0R8QHAicDMbBAr2nx0r6RxDY3EzMxKV/SO5n2BEyQtILsCSWQHETs1KjAzM2u+LpOCpNER8VfgwCbFY2ZmJeruSOFmst5Rn5E0PSI+24SYzMysJN2dU6h++M02jQzEzMzK111SiE6GzcxsEOqu+WhnScvIjhjemYZh1YnmDRsanZmZNVWXSSEihvX1BiW9l+xmuIptgG8CGwHHAR2p/MyIuK2vt29mZp0reklqn4mIJ4CxAJKGAc8BNwHHABdExLnNjsnMzDI9eZ5CI+wHPBURz5Qch5mZUX5SmABMrRo/SdIjkq6UtHFZQZmZDVWlJQVJa5M9o+HGVPRDYFuypqXFwHmdLDdJUruk9o6OjnqzmJnZairzSOFA4KGIWAIQEUsiYmVEvEnWLfdu9RaKiCkR0RYRbS0tLU0M18xs8CszKUykqulI0oiqaYcCc5oekZnZENf0q48AJK0LfBw4vqr4u5LGkt0kt6BmmpmZNUEpSSEiXgU2rSk7qoxYzMxslbKvPjIzs37EScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5ZwUzMws56RgZmY5JwUzM8uV9eS1BcBLwEpgRUS0SdoEuAFoJXvy2hER8UIZ8ZmZDVVlHinsGxFjI6ItjZ8O3BERY4A70riZmTVRf2o+Gg9cnYavBg4pLxQzs6GprKQQwO2SHpQ0KZVtHhGLAdL7ZvUWlDRJUruk9o6OjiaFa2Y2NJRyTgHYIyIWSdoMmCHp8aILRsQUYApAW1tbNCpAM7OhqJQjhYhYlN6XAjcBuwFLJI0ASO9Ly4jNzGwoa3pSkLSepA0qw8AngDnALcDRabajgZ83OzYzs6GujOajzYGbJFW2f11E/FrSA8A0SccCfwUOLyE2M7MhrelJISKeBnauU/48sF+z4zEzs1X60yWpZmZWMicFMzPLOSmYmVnOScHMzHJOCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxyTgpmZpZzUjAzs5yTgpmZ5cp48tooSb+X9JikuZL+LZWfLek5SbPT65PNjs3MbKgr48lrK4DTIuKh9FjOByXNSNMuiIhzS4jJzMwo58lri4HFafglSY8BI5sdh5mZvV2p5xQktQK7APelopMkPSLpSkkbd7LMJEntkto7OjqaFaqZ2ZBQWlKQtD4wHTglIpYBPwS2BcaSHUmcV2+5iJgSEW0R0dbS0tKscM3MhoRSkoKktcgSwrUR8TOAiFgSESsj4k3gR8BuZcRmZjaUlXH1kYArgMci4vyq8hFVsx0KzGl2bGZmQ10ZVx/tARwF/FnS7FR2JjBR0lgggAXA8SXEZmY2pJVx9dHdgOpMuq3ZsZiZ2Vv5jmYzM8s5KZiZWc5JwczMck4KZmaWc1IwM7Ock4KZmeWcFMzMLFfGzWs2BLWe/stStrvgnE+Vsl2zgcpHCmZmlnNSMDOznJOCmZnlnBTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxy/S4pSDpA0hOS5kk6vex4zMyGkn6VFCQNA34AHAjsQPaIzh3KjcrMbOjob91c7AbMi4inASRdD4wHHi01KhuwyupeA9zFxlAwGP+++ltSGAk8WzW+EPhg9QySJgGT0ujLkp7oxfaGA3/rxfL92WCuGwyA+uk7vVq839evl1y/Xurl39dWnU3ob0lBdcriLSMRU4ApfbIxqT0i2vpiXf3NYK4buH4DnevXf/WrcwpkRwajqsa3BBaVFIuZ2ZDT35LCA8AYSVtLWhuYANxSckxmZkNGv2o+iogVkk4CfgMMA66MiLkN3GSfNEP1U4O5buD6DXSuXz+liOh+LjMzGxL6W/ORmZmVyEnBzMxygz4pdNdthjLfS9MfkbRrGXGurgL1217SHyUtl/S1MmLsjQL1+3z63h6RdI+kncuIc3UVqN/4VLfZktol7VlGnKuraLc1ksZJWinpsGbG1xsFvrt9JP0jfXezJX2zjDh7LCIG7YvsZPVTwDbA2sDDwA4183wS+BXZPRIfAu4rO+4+rt9mwDhgMvC1smNuQP0+DGychg8chN/f+qw697cT8HjZcfdl/arm+x1wG3BY2XH34Xe3D3Br2bH29DXYjxTybjMi4nWg0m1GtfHANZG5F9hI0ohmB7qauq1fRCyNiAeAN8oIsJeK1O+eiHghjd5Ldm/LQFGkfi9H+oUB1qPmZs5+rsj/H8BXgOnA0mYG10tF6zbgDPakUK/bjJGrMU9/NZBjL6Kn9TuW7KhvoChUP0mHSnoc+CXwpSbF1he6rZ+kkcChwKVNjKsvFP3b3F3Sw5J+JWnH5oTWO4M9KXTbbUbBefqrgRx7EYXrJ2lfsqTw9YZG1LcK1S8iboqI7YFDgP/T6KD6UJH6XQh8PSJWNj6cPlWkbg8BW0XEzsD3gZsbHVRfGOxJoUi3GQO5a42BHHsRheonaSfgcmB8RDzfpNj6Qo++v4iYBWwraXijA+sjRerXBlwvaQFwGHCJpEOaEl3vdFu3iFgWES+n4duAtQbCdzfYk0KRbjNuAb6QrkL6EPCPiFjc7EBX02DvFqTb+kkaDfwMOCoi/lJCjL1RpH7bSVIa3pXspOZASXzd1i8ito6I1ohoBX4K/GtE3Nz0SHuuyHf37qrvbjey39t+/931q24u+lp00m2GpBPS9EvJrnj4JDAPeBU4pqx4e6pI/SS9G2gHNgTelHQK2VUSy8qKu6iC3983gU3J9jABVsQA6Z2yYP0+S7bT8gbwGnBk1Ynnfq1g/QakgnU7DPifklaQfXcTBsJ3524uzMwsN9ibj8zMrAecFMzMLOekYGZmOScFMzPLOSmYmVnOScH6PUkh6byq8a9JOrsB2zmzZvyebuZvk/S9NLyPpA+v5nYfljR1dZbtK5LGSvpkmTFY/+CkYAPBcuAzTbgb9C1JISK6/JGPiPaIODmN7kPWY2uPSHof2f/h3pLW6+nyfWgs2f06NsQ5KdhAsILsmbdfrZ0gqUXSdEkPpNceVeUzJD0k6TJJz1SSiqSbJT0oaa6kSansHOCdqd/7a1PZy+n9huq9aElXSfpsOjq4VVIrcALw1bT8XpLmS1orzb+hpAWV8RqfA34M3A4cXLWNOyVdIGmWpMeUPW/gZ5KelPTtqvlOlTQnvU5JZa2S5lTNkx9ZpfV+R9L9kv6SYl0b+BZwZIr/yJ59PTaYOCnYQPED4POS3lVTfhFwQUSMI7v79/JUfhbwu4jYFbgJGF21zJci4gNk/e6cLGnTiDgdeC0ixkbE52u2cT1wJED6Ad2P7E54ACJiAVkvnxek5e8C7gQ+lWaZAEyPiHrdlx8J3ABMBSbWTHs9IvZO6/45cCLwfuCLkjaV9AGyO/A/SPYskOMk7VJnG7XWjIjdgFOAs1LXz98Ebkjx31BgHTZIOSnYgJC65bgGOLlm0seAiyXNJut7ZkNJGwB7kv2YExG/Bl6oWuZkSQ+TPX9hFDCmm83/CviopHXIHuQzKyJe62aZy1nVZcoxwH/WziBpHNAREc8AdwC7Stq4apZKXzp/BuZGxOKIWA48neLeE7gpIl5JHa/9DNirm7hI8wE8CLQWmN+GkEHd95ENOheSdUdc/QO7BrB77Y90pSOyWpL2IUsku0fEq5LuBN7R1UYj4p9pvv3J9uy7PSkcEX9IzTgfAYZFxJw6s00EtlfWQyhk/VNVH+0sT+9vVg1XxtekfvfNkDW3Ve/w1davsq6V+DfAavhIwQaMiPg7MI3suQkVtwMnVUYkjU2DdwNHpLJPAJU98HcBL6SEsD1Zs0vFG520+0N21HEM2Z74b+pMfwnYoKbsGrIEUu8oYQ3gcGCnql5Cx/P2JqSuzAIOkbRuOkl9KHAXsATYLDUxrQMcVGBd9eK3IchJwQaa84Dqq5BOBtqUPdz+UbITvgD/AXxC0kNkTT6LyX74fg2sKekRsgfW3Fu1rinAI5UTzTVuB/YGfpva4Gv9Aji0cqI5lV1LlozqHVnsDTwXEc9Vlc0CdlDBx8FGxEPAVcD9wH3A5RHxp3Tu4lup7Fbg8QKr+33atk80D3HuJdUGpbSHvDJ1cbw78MOIGNvkGA4je/DPUc3crllvuD3RBqvRwLTUTPM6cFwzNy7p+2RHKL723wYUHymYmVnO5xTMzCznpGBmZjknBTMzyzkpmJlZzknBzMxy/w1SER4jYIpR5QAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig1, ax1 = plt.subplots()\n",
"ax1.hist(sentiments_df['neg'])\n",
"ax1.set_title(\"Wheel of Fourtune Tweet Scores\") \n",
"ax1.set_xlabel(\"Negativity Amount\") \n",
"ax1.set_ylabel(\"Frequencies\")\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 63,
"id": "2ea37f4e",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAb40lEQVR4nO3de5gkdX3v8ffHBREEQdwVuS8CRsGjiAvGgxeMJt5FvAU0isSIJiox0RzB5InknGwOuWgkUaN4A4yCKBExEiNiXIQEYTGA3IzILheXAKJkAQ24yzd/VE3RDLMzNbvb07Mz79fz9DNd1dVV3193T3/qV1VdlapCkiSAh4y6AEnS7GEoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoI6SSrJXkOY70lJ/nQ9n3tokhuT3JXkKRu7NkkPZCjMUUmOTXL2uHE/WMe4w2a2umn5K+DtVbV1Vf37+AfbILu7DY27ktwxjCKSfCvJbw1j3lMs96MDbbs3yS8Ghv9pyMs+LsnfTzHNM5L8a5L/SvKTJBckOWCYdWm4DIW56zzgoCQLAJI8Btgc2H/cuL3aaWer3YErp5jmyW1obF1V223Mhacxsv+TqnrrWNuAPwM+P9DWF46qLoAkjwD+EfhbYHtgZ+BPgHs28nIWbMz5aXKGwtx1MU0I7NcOPwv4F+D748b9sKpWDTzveW3v4adJPpwkYw8k+c0kV7eP/XOS3Qcee3ySc9q1xe8neU2fIpM8JMkfJbk+ya1JTkmybZItktwFLAAuS/LD6TS+nccpSW5r5/1HY1/u49eAkyxuexybtcPfSrI0yQXAz4DPAM8EPtSuoX9o/HMGnvdb7f03Jjk/yV+1r9eKJC8cV98nk9yc5EdJ/nQ6X35JTk7yrvb+zm0tv9MO79W+D2mHX5Lk0iR3tGv1TxqYz05JzmhfpxVJjm7HvwB4L/DrbZsvm6CMxwFU1alVtbaqfl5VX6+qywfm/+b2M3NnkquS7N+Of0L7et2R5MokLxt4zklJ/i7J2UnuBp6zrjrb6Q9MsjzJ6iS3JPlA39dRD2YozFFVdS/wHZovftq/3wbOHzdufC/hJcABwJOB1wDPB0jycpoviVcAi9p5ndo+9nDgHOBzwKOBw4GPJNm3R6lvbG/PAR4LbA18qKruadeOoekJ7Nmr4ff7W2Dbdp7PBt4AHDmN578eOArYpq3v29y/GevtPefxNJoQXgj8BfDJgZA9GVhD01N7CvBrwHQ2Ty0DDm7vPxu4rv0L7XtdVdV+CX8KeAvwKOBjwFlt6D4E+ApwGc1a/nOBdyZ5flV9jQf2TJ48QQ3/AaxtA+qFSR45+GCSVwPH0bz2jwBeBtyeZPN2uV+n+by8A/hskl8aePprgaU0r/+/rqvOdtoTgBOq6hHAnsDpPV9DTcBQmNuWcX8APJPmi+3b48YtG/ec46vqjqq6gaZnsV87/i3A/6+qq6tqDc0Xxn5tb+ElwMqq+nRVramq7wJnAK/qUePrgA9U1XVVdRdwLHDY4Bp4D99t1zjvSPI37Rr3rwPHVtWdVbUSeD/NF31fJ1XVlW17fjGN5w26vqo+XlVraUJgR2CHJDsALwTeWVV3V9WtwF8D09m3swx4ZvvF/iya0DmofezZ3P++vhn4WFV9p12bP5lm884v04T/oqr6v1V1b1VdB3y8bx1VtRp4BlDt825LclbbPmhC7i+q6uJqXFtV17fL3prms3ZvVX2TZjPU4QOz/3JVXVBV9wH/a4o6fwHslWRhVd1VVRf2fRH1YIbC3HYe8Ix2DW5RVf2AZq3rf7fjnsiDewr/OXD/ZzT/vNBs2z9h7MsX+AkQmjW33YGnDXwx30HzZf+YHjXuBFw/MHw9sBmww8STT2j/qtquvR1Ns2b+0Anmu/M05nnjNKZdl+61rKqftXe3pnm9NgduHni9Pkaz1txLVf0QuIsmtJ9J86W6ql3bHgyF3YF3jXtvdqV53XcHdhr32HuZxmvfriS8sap2ofk87QR8sH14V2CizX47ATe2X/hjxr8/g6//VHW+iWZT1jVJLk7ykr7168GmszamTc+/0WxCOQq4AJq1uySr2nGrqmpFz3ndCCytqs+Of6DtLSyrql9djxpX0fzTj9mNZrPKLesxrzE/pll73B24amC+P2rv3w1sNTD9ROE1/vTB44fvbv9uBayeZD4TuZFmbX1h2+taX8toemMPraofJVlGs6nmkcClA8taWlVLxz85ydOBFVW19zrmP61TKFfVNUlOoulVji17os1+q4BdkzxkIBh2o9kcNdGyb5ysznZl5/C21/QK4ItJHlVVd080vSZnT2EOq6qfA8uB36fZbDTm/HbcdI46+ihw7Nh+gnZH6avbx/4ReFyS1yfZvL0dkOQJPeZ7KvB7SfZIMniEzXp/Wbaba04HlibZpg2t3wfGdi5fCjwryW5JtqXZZDWVW2j2T4wt4zaakPmNJAuS/CYTfwFOVN/NNNvT35/kEWl2tu+Z5NlTPXecZcDbuf99/BbN9vnz29cAms0sb03ytDQenuTFSbYBLgJWJ3lPki3bdjwx9x9SeguwOOs4+irNwQXvSrJLO7wrzSagsc03nwDeneSp7bL3at+L79CE6v9pPysHAy8FTltHOyetM8lvJFnUBswd7XPWrmNemoKhMPcto9kscf7AuG+343qHQlV9Cfhz4LQkq4EraLaLU1V30uwoPYxmLfA/22m36DHrT9Ec3XMesAL4b5ovtg31Dpovnuto2v65dllU1TnA54HLgUtoQm0qJwCvSnMk0d+0494M/AFwO7Avzaa5vt5As4nrKuCnwBdp9jlMxzKaHbFj7+P5ND2X7n2tquVtnR9ql3MtzY7zsfB8Kc0mqBU0PaxP0PQuAb7Q/r09yXcnWP6dNDvTv5PmKKELaT4X72rn/wWancWfa6c9E9i+PQjiZTSfnx8DHwHeUFXXTNTIHnW+ALgyzdFqJwCHVdV/T/ySaSrxIjuSpDH2FCRJHUNBktQxFCRJHUNBktTZpH+nsHDhwlq8ePGoy5CkTcoll1zy46paNNFjm3QoLF68mOXLl4+6DEnapCS5fl2PuflIktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktTZpH/RLGl2WXzMV0ey3JXHv3gky52L7ClIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjpDC4Ukuyb5lyRXJ7kyye+247dPck6SH7R/HznwnGOTXJvk+0meP6zaJEkTG2ZPYQ3wrqp6AvDLwNuS7AMcA5xbVXsD57bDtI8dBuwLvAD4SJIFQ6xPkjTO0EKhqm6uqu+29+8ErgZ2Bg4BTm4nOxl4eXv/EOC0qrqnqlYA1wIHDqs+SdKDzcg+hSSLgacA3wF2qKqboQkO4NHtZDsDNw487aZ23Ph5HZVkeZLlt91221DrlqT5ZuihkGRr4AzgnVW1erJJJxhXDxpRdWJVLamqJYsWLdpYZUqSGHIoJNmcJhA+W1X/0I6+JcmO7eM7Are2428Cdh14+i7AqmHWJ0l6oGEefRTgk8DVVfWBgYfOAo5o7x8BfHlg/GFJtkiyB7A3cNGw6pMkPdhmQ5z3QcDrge8lubQd917geOD0JG8CbgBeDVBVVyY5HbiK5silt1XV2iHWJ0kaZ2ihUFXnM/F+AoDnruM5S4Glw6pJkjQ5f9EsSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkztBCIcmnktya5IqBcccl+VGSS9vbiwYeOzbJtUm+n+T5w6pLkrRuw+wpnAS8YILxf11V+7W3swGS7AMcBuzbPucjSRYMsTZJ0gSGFgpVdR7wk56THwKcVlX3VNUK4FrgwGHVJkma2Cj2Kbw9yeXt5qVHtuN2Bm4cmOamdtyDJDkqyfIky2+77bZh1ypJ88pMh8LfAXsC+wE3A+9vx2eCaWuiGVTViVW1pKqWLFq0aChFStJ8NaOhUFW3VNXaqroP+Dj3byK6Cdh1YNJdgFUzWZskaYZDIcmOA4OHAmNHJp0FHJZkiyR7AHsDF81kbZIk2GxYM05yKnAwsDDJTcD7gIOT7EezaWgl8BaAqroyyenAVcAa4G1VtXZYtUmSJja0UKiqwycY/clJpl8KLB1WPZKkqfmLZklSp1coJNkzyRbt/YOTHJ1ku6FWJkmacX17CmcAa5PsRbMJaA/gc0OrSpI0En1D4b6qWkNzxNAHq+r3gB2neI4kaRPTd0fzL5IcDhwBvLQdt/lwSpK0IRYf89VRl6BNWN+ewpHA04GlVbWi/S3B3w+vLEnSKPTqKVTVVUneA+zWDq8Ajh9mYZKkmdf36KOXApcCX2uH90ty1hDrkiSNQN/NR8fRnKfoDoCqupTmCCRJ0hzSNxTWVNV/jRs34VlMJUmbrr5HH12R5LXAgiR7A0cD/zq8siRJo9C3p/AOmktl3gOcCqwG3jmkmiRJI9L36KOfAX/Y3iRJc9SkoZDkg1X1ziRfYYJ9CFX1sqFVJkmacVP1FD7T/v2rYRciSRq9SUOhqi5p7y4Hft5eRpMkC4AthlybJGmG9d3RfC6w1cDwlsA3Nn45kqRR6hsKD6uqu8YG2vtbTTK9JGkT1DcU7k6y/9hAkqcCPx9OSZKkUen747V3Al9Isqod3hH49aFUJEkamb6/U7g4yeOBXwICXFNVvxhqZZKkGde3pwBwALC4fc5TklBVpwylKknSSPQKhSSfAfakOX322nZ0AYaCJM0hfXsKS4B9qsozo0rSHNb36KMrgMcMsxBJ0uj17SksBK5KchHNmVIBz30kSXNN31A4bphFSJJmh76HpC5Lsjuwd1V9I8lWwILhliZJmmm99ikkeTPwReBj7aidgTOHVJMkaUT67mh+G3AQzRXXqKofAI8eVlGSpNHoGwr3VNW9YwNJNmOCi+5IkjZtfUNhWZL3Alsm+VXgC8BXhleWJGkU+obCMcBtwPeAtwBnA380rKIkSaPR9+ij+4CPtzdJ0hzV99xHK5hgH0JVPXajVyRJGpnpnPtozMOAVwPbb/xyJEmj1GufQlXdPnD7UVV9EPiV4ZYmSZppfTcf7T8w+BCansM2Q6lIkjQyfTcfvX/g/hpgJfCajV6NJGmk+h599JzpzjjJp4CXALdW1RPbcdsDn6e5gttK4DVV9dP2sWOBN9FcxOfoqvrn6S5TkrRh+m4++v3JHq+qD0ww+iTgQzzw6mzHAOdW1fFJjmmH35NkH+AwYF9gJ+AbSR5XVWuRJM2Yvj9eWwL8Ns2J8HYG3grsQ7NfYcJ9C1V1HvCTcaMPAU5u758MvHxg/GlVdU9VrQCuBQ7sWZskaSOZzkV29q+qOwGSHAd8oap+a5rL26GqbgaoqpuTjJ1Ub2fgwoHpbmrHPUiSo4CjAHbbbbdpLl6SNJm+PYXdgHsHhu+l2S+wsWSCcROecK+qTqyqJVW1ZNGiRRuxBElS357CZ4CLknyJ5sv6UB64r6CvW5Ls2PYSdgRubcffBOw6MN0uwKr1mL8kaQP0/fHaUuBI4KfAHcCRVfVn67G8s4Aj2vtHAF8eGH9Yki2S7AHsDVy0HvOXJG2Avj0FgK2A1VX16SSLkuzR7hSeUJJTgYOBhUluAt4HHA+cnuRNwA00p8ugqq5McjpwFc3vIN7mkUeSNPP6HpL6PpojkH4J+DSwOfD3NFdjm1BVHb6Oh567jumXAkv71CNJGo6+O5oPBV4G3A1QVavwNBeSNOf0DYV7q6pojwhK8vDhlSRJGpW+oXB6ko8B2yV5M/ANvOCOJM05U+5TSBKa8xU9HlhNs1/hj6vqnCHXJkmaYVOGQlVVkjOr6qmAQSBJc1jfzUcXJjlgqJVIkkau7+8UngO8NclKmiOQQtOJeNKwCpMkzbxJQyHJblV1A/DCGapHkjRCU/UUzqQ5O+r1Sc6oqlfOQE2SpBGZap/C4NlLHzvMQiRJozdVKNQ67kuS5qCpNh89Oclqmh7Dlu19uH9H8yOGWp0kaUZNGgpVtWCmCpEkjV7f3ylIkuYBQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEmdzUZdgCRtqhYf89WRLXvl8S8eynztKUiSOoaCJKljKEiSOiPZp5BkJXAnsBZYU1VLkmwPfB5YDKwEXlNVPx1FfZI0X42yp/Ccqtqvqpa0w8cA51bV3sC57bAkaQbNps1HhwAnt/dPBl4+ulIkaX4aVSgU8PUklyQ5qh23Q1XdDND+ffRET0xyVJLlSZbfdtttM1SuJM0Po/qdwkFVtSrJo4FzklzT94lVdSJwIsCSJUtqWAVK0nw0kp5CVa1q/94KfAk4ELglyY4A7d9bR1GbJM1nMx4KSR6eZJux+8CvAVcAZwFHtJMdAXx5pmuTpPluFJuPdgC+lGRs+Z+rqq8luRg4PcmbgBuAV4+gNkma12Y8FKrqOuDJE4y/HXjuTNcjSbrfbDokVZI0YoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOqM6S6okbTSLj/nqqEuYM+wpSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6/k5Bc9ooj19fefyLR7ZsaX3ZU5AkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdeb1NZpHef3eURjlNYPn22sN87PN2vTZU5AkdWZdKCR5QZLvJ7k2yTGjrkeS5pNZFQpJFgAfBl4I7AMcnmSf0VYlSfPHbNuncCBwbVVdB5DkNOAQ4KqRVjVHuI1b0lRmWyjsDNw4MHwT8LTBCZIcBRzVDt6V5PsbuYaFwI838jxn2lxoA9iO2cZ2zCL58w1qx+7remC2hUImGFcPGKg6EThxaAUky6tqybDmPxPmQhvAdsw2tmN2GVY7ZtU+BZqewa4Dw7sAq0ZUiyTNO7MtFC4G9k6yR5KHAocBZ424JkmaN2bV5qOqWpPk7cA/AwuAT1XVlTNcxtA2Tc2gudAGsB2zje2YXYbSjlTV1FNJkuaF2bb5SJI0QoaCJKkzL0Oh76k0khyQZG2SV81kfX1N1Y4kByf5rySXtrc/HkWdU+nzfrRtuTTJlUmWzXSNffR4P/5g4L24ov1sbT+KWifTox3bJvlKksva9+PIUdQ5lR7teGSSLyW5PMlFSZ44ijonk+RTSW5NcsU6Hk+Sv2nbeHmS/Td4oVU1r240O7B/CDwWeChwGbDPOqb7JnA28KpR170+7QAOBv5x1LVuhHZsR/Or9t3a4UePuu71/VwNTP9S4Jujrns934/3An/e3l8E/AR46KhrX492/CXwvvb+44FzR133BO14FrA/cMU6Hn8R8E80v/H6ZeA7G7rM+dhT6E6lUVX3AmOn0hjvHcAZwK0zWdw09G3HbNenHa8F/qGqbgCoqtn4nkz3/TgcOHVGKpuePu0oYJskAbamCYU1M1vmlPq0Yx/gXICqugZYnGSHmS1zclV1Hs3ruy6HAKdU40JguyQ7bsgy52MoTHQqjZ0HJ0iyM3Ao8NEZrGu6pmxH6+ltN/+fkuw7M6VNS592PA54ZJJvJbkkyRtmrLr++r4fJNkKeAHNSsds06cdHwKeQPPD0u8Bv1tV981Meb31acdlwCsAkhxIc+qHXWakuo2n9+eur1n1O4UZMuWpNIAPAu+pqrXNytCs1Kcd3wV2r6q7krwIOBPYe9iFTVOfdmwGPBV4LrAl8G9JLqyq/xh2cdPQpx1jXgpcUFWTrQGOSp92PB+4FPgVYE/gnCTfrqrVQ65tOvq043jghCSX0oTbvzP7ejxTmc7nrpf5GAp9TqWxBDitDYSFwIuSrKmqM2ekwn6mbMfgP2lVnZ3kI0kWVtVsOhlYn/fjJuDHVXU3cHeS84AnA7MpFKZzipbDmJ2bjqBfO44Ejq9mo/a1SVbQbJO/aGZK7KXv/8eR0OywBVa0t03Jxj810Kh3pIxgx81mwHXAHty/A2rfSaY/idm5o3nKdgCP4f4fKB4I3DA2PFtuPdvxBJptv5sBWwFXAE8cde3r87kCtqXZRvzwUde8Ae/H3wHHtfd3AH4ELBx17evRju1od5ADb6bZNj/y2idoy2LWvaP5xTxwR/NFG7q8eddTqHWcSiPJW9vHZ/N+hE7PdrwK+O0ka4CfA4dV+0maLfq0o6quTvI14HLgPuATVTXhIXqjMo3P1aHA16vp9cw6Pdvx/4CTknyP5svoPTW7ep992/EE4JQka2mObnvTyApehySn0hxFuDDJTcD7gM2ha8PZNEcgXQv8jLbns0HLnGXfEZKkEZqPRx9JktbBUJAkdQwFSVLHUJAkdQwFSVLHUNAmLUklef/A8LuTHLee89ouye+s53NXJlm4jsee0tb5/PWZ98aS5I1JdhplDZr9DAVt6u4BXrGuL+Rp2g6YMBSSLNiA+R4OnN/+HaU3AoaCJmUoaFO3huZatb83/oEki5KckeTi9nZQO/64JO8emO6KJItpzoWzZ3u9g79sr+HwL0k+R3NuHJKc2Z6U78okR01VXHv6hFfRfCH/WpKHteMXJ7kmySfa5X82yfOSXJDkB+0J2kiyfbvMy5NcmORJk7WhvV2d5ONtjV9PsmWaa4IsAT7btm/L9XmxNfcZCpoLPgy8Lsm248afAPx1VR0AvBL4xBTzOQb4YVXtV1V/0I47EPjDqtqnHf7NqnoqzRfs0UkeNcU8DwJWVNUPgW/R/Pp0zF5tjU+iOXfQa4FnAO+muWYBwJ8A/15VT2rHnTLF8qA56eGHq2pf4A7glVX1RWA58Lq2fT/vMR/NQ/PuNBeae6pqdZJTgKNpTucx5nnAPgNnun1Ekm2mOfuLqmrwJGlHJzm0vb8rzRfw7ZM8/3Cac/nT/n098A/t8IqqGuuBXElzkZdqTx+xuJ3mGTSBRlV9M8mjJgi/8VZU1aXt/UsG5iVNyVDQXPFBmlOFf3pg3EOAp49fK27PBTXYS37YJPPtzlGU5GCaoHl6Vf0sybcme267H+KVwMuS/CHNeYIeNRBM9wxMft/A8H3c/7+5rlMjT9aGwfmupTnduNSLm480J1RzbYLTeeBJzb4OvH1sIMl+7d2VNJc4JM01bfdox98JTNaT2Bb4aRsIj6c5K+VkngdcVlW7VtXiqtqd5sI6L+/RpDHnAa9raz2Y5hTiqydpw2Smap9kKGhOeT/N9S/GHA0saXfSXgW8tR1/BrB9e3GV36a9LkNV3Q5c0O60/csJ5v81YLMkl9OcKfTCKeo5HPjSuHFn0Ow76Ou4sTbQ7Ag/YrI2TOEk4KPuaNZkPEuqJKljT0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1Pkf9x0oXT0WPTEAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig3, ax3 = plt.subplots()\n",
"ax3.hist(sentiments_df['neu'])\n",
"ax3.set_title(\"Wheel of Fourtune Tweet Scores\") \n",
"ax3.set_xlabel(\"Neutral Amount\") \n",
"ax3.set_ylabel(\"Frequencies\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "6b81c631",
"metadata": {},
"source": [
"### Analysis:"
]
},
{
"cell_type": "markdown",
"id": "87fa6304",
"metadata": {},
"source": [
"The data is organized within data frames. Once I had all 500 tweets about each subject, they are sent to a csv/excel file for easier analysis. \n",
"\n",
"Limitations\n",
"- Some limitations I've had were attempting to steer clear of a null hypothesis, and ensuring a univariant distribution. \n",
"\n",
"Conclusion:\n",
"- Comparing the positive and negative scores, Jeopardy! had a higher positive mean value of 0.127. WOF had a 0.096 positive mean score. But, Jeopardy! had a much higher negative mean value than WOF at 0.154 while WOF had 0.066. \n",
"- My conclusion is, there are simply more people on Twitter talking about Jeopardy!. Some people might not tweet until they have felt a certain emotion after watching. I think that Jeopardy! could be the more watched show because there are more tweets regarding it, Or the fanbase of Jeopardy! could use Twitter more than fans of WOF. \n",
"- Another possibility is, Jeopardy! could me less liked. This is because while there are more unique tweets regarding Jeopardy!, they are more negative 0.27. \n",
"- There are multiple ways that I could expand this analysis. For example, I could expand on this analysis by using other social media platforms to get a better sample of data. "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}