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APPENDIX 1

Selecting ecological characteristics for plant species classification.

For each of selected dominant plant species (n = 136), we chose species features or traits to
represent six key-life history characteristics: dispersal ability, response to competition for light
(whether they germinate and grow under specific light conditions), resistance to disturbance
(grazing and mowing), competitive effects (estimated through the height of the species),
tolerance to abiotic conditions (ecological niche) and demography (life form, longevity, age of
maturity). Dispersal ability was taken and adapted from (Vittoz & Engler, 2007). This typology
is based on the most efficient dispersal mode, plant height, habitat, seed mass and dispersal
attributes (e.g., wings, pappi). It identifies seven classes that discriminate a log-increase of
dispersal distances. To estimate the response to competition for light, we used an ecological
indicator value for species light requirements adapted to the study region (Landolt et al., 2010).
Following the same idea of competition for light, species’ competitive effect was measured by
plant height. In the Bauges regional park, since domestic stock is the main disturbance regime
we used a palatability index based on forage values for cattle to represent species response to
grazing. This forage value for cattle represents an ordinal variable made of 9 categories (from
from poisonous to best forage value) made by experts following (Briemle, 1992; Jouglet, 1999).
We measured species tolerance to abiotic conditions using species distribution models (SDMs)
calibrated on each of 136 plant species and in function of a set of uncorrelated climatic, soil and
topographic variables at 100m resolution (Thuiller et al., 2009; Thuiller et al., 2014). From the
calibrated SDMs, we calculated the ecological niche overlap between species following
Broennimann et al. (2012). Given the limited amount of available data and uncertainty related
to species demography (e.g., longevity), we used a pre-classification based on Raunkiaer’s life
forms (Raunkiaer, 1934) that represent the main differences in demographic traits such as
individual longevity, age at maturity, and fecundity (phanerophyte, chamaephyte, and
herbaceous). Most traits values were extracted from ANDROSACE database (Thuiller, et al.
unpublished, Table S1) and additional available (Kiihn et al., 2004) and local database.
Concerning the diet of the chamois, we built a regular five-class variable to summarize the
relative abundance of each plant species (measured by eDNA) within the chamois faceas (from

zero to high relative abundance).
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Databases used for species traits or characteristics. They all form the database ANDROSACE
that compiles trait values from field measurements in the study area and other trait databases

containing species from the study area or nearby.

Classification procedure. For each life form group (phanerophyte, chamaephyte, and
herbaceous), we built a distance matrix using Gower's formula to integrate both categorical and
quantitative traits. Niche overlap between each species pair was converted into Euclidean
distance. We used the Unweighted Pair Group Method with Arithmetic Mean clustering
algorithm (UPGMA, (Kaufman & Rousseeuw, 1990) to build the different PFGs from the
combination of these two distance matrices.

The Dunn index, the R-squared (Halkidi et al., 2001), the index of Calinski & Harabasz (1974),
and the average silhouette (Kaufman & Rousseeuw, 1990) were calculated to choose the

optimal number of groups for each life form.



PFGs description. The classification identified two chamaephyte groups (C1-C2), eigh
herbaceous groups (H1-HS8) and six phanerophyte groups (P1-P6). The species list is given for

each group.

PFG | Species list

- Clematis vitalba, Cornus sanguinea, Crataegus monogyna, Hedera helix, Ligustrum vulgare,
Lonicera xylosteum, Rubus fruticosus.

Arctostaphylos  uva-ursi,  Helianthemum — nummularium, Polygala  chamaebuxus,
C2 Rhododendron ferrugineum, Vaccinium myrtillus, Vaccinium uliginosum, Vaccinium vitis-

idaea.

Ajuga reptans, Briza media, Bromus erectus, Carex panicea, Filipendula ulmaria, Gagea
H1 villosa, Geranium robertianum, Gymnadenia conopsea, Leontodon hispidus, Polygonum

viviparum, Potentilla erecta, Salvia pratensis, Sanguisorba minor, Teucrium chamaedrys.

Anthoxanthum odoratum, Astrantia major, Carex sempervirens, Festuca rubra, Geranium
- sylvaticum, Heracleum sphondylium, Knautia arvensis, Nardus stricta, Onobrychis montana,
Phyteuma orbiculare, Pimpinella major, Rhinanthus alectorolophus, Rumex arifolius, Silene

dioica, Trollius europaeus.

0 Carex ferruginea, Gentiana lutea, Leucanthemum adustum, Plantago atrata, Rumex
pseudalpinus, Sesleria caerulea, Trifolium badium.

Ha Brachypodium rupestre, Cirsium palustre, Lysimachia vulgaris, Mentha aquatica, Origanum
vulgare, Phragmites australis, Solidago gigantea.

Arnica montana, Campanula rhomboidalis, Carduus defloratus, Centaurea uniflora,
Chaerophyllum hirsutum, Deschampsia flexuosa, Epilobium angustifolium, Gentiana
purpurea, Globularia nudicaulis, Homogyne alpina, Hypericum richeri, Juncus filiformis,
e Knautia dipsacifolia, Laserpitium latifolium, Linum alpinum, Luzula sieberi, Pulsatilla
alpina, Ranunculus tuberosus, Sempervivum tectorum, Serratula tinctoria, Traunsteinera

globosa, Valeriana montana.

Aruncus dioicus, Athyrium filix-femina, Cardamine pentaphyllos, Dryopteris filix-mas,
He Galium odoratum, Hieracium murorum, Hordelymus europaeus, Lamium galeobdolon,
Melica uniflora, Mercurialis perennis, Phyteuma spicatum, Prenanthes purpurea, Saxifraga

rotundifolia.

Anthyllis vulneraria, Campanula rotundifolia, Carex elata, Dactylis glomerata, Deschampsia
H7 cespitosa, Euphorbia cyparissias, Fragaria vesca, Hippocrepis comosa, Holcus lanatus,
Lathyrus pratensis, Linum catharticum, Lotus corniculatus, Plantago lanceolata, Trifolium

pratense, Urtica dioica.




HS8 Carex flacca, Carex sylvatica, Listera ovata, Thymus serpyllum.
P1 Acer campestre, Sorbus aria, Sorbus aucuparia.
Corylus avellana, Juniperus communis, Sambucus nigra, Sorbus chamaemespilus, Viburnum
= lantana.
P3 Abies alba, Acer pseudoplatanus.
P4 Fagus sylvatica, Picea abies.
P5 Alnus alnobetula.
P6 Fraxinus excelsior.

PFG classification traits values. Traits values were attributed to each group using the mean

across species for continuous traits and the majority class for ordinal values, after removing

outlier species. The three life forms classes are P=Phanerophytes, C=Chamaephytes, and

H=Herbaceous. There are seven dispersal classes with increasing median distance (Short: 0.1-

2m; Medium: 40-100m; Long: 400-500m). Light classes increase with decreasing shade

tolerance. Plant height is given in cm. Palatability (forage value for cattle) ranges from 0 (not

grazed) to 9 (grazed, with high nutritional value). Diet preference for chamois from 1 (not

important in chamois diet) to 5 (really important in chamois diet). Habitat represents climatic

niche in 3 categories (C=collinean; M=mountainous; S=subalpine) that can be represented at

the same time depending on the preferences of the species within the PFGs.

PFC Growth Dispersal Light Height Palatability Diet Habitat
form distance preference (cm) preference

Cl C Medium (5) | Any (3) 217 1 4 C-M

c2 |C Medium (4) | Any (3) 21 1 5 M-S

Hl |H Medium (4) | Full light (4) | 20 2 4 C-M-S

H2 | H Long (7) Full light (4) | 37 3 3 M-S

H3 | H Long (6) Full light (4) | 35 4 4 S

H4 | H Medium (4) | Full light (4) | 98 1 2 C

H5 | H Short (3) Any (3) 34 2 2 S

H6 | H Short (3) Shade (2) 49 5 2 M

H7 |H Long (7) Full light (4) | 23 6 4 C-M

H8 | H Long (6) Any (3) 42 3 1 M

P1 P Long (6) Any (3) 1167 1 4 M

P2 P Long (6) Any (3) 248 1 4 C-M-S

P3 P Medium (4) | Shade (2) 2000 1 2 M




P4 Long (6) Shade (2) 2500 M
P5 Short (3) Full light (5) | 300 S
P6 Medium (5) | Any (3) 2000 C-M
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Appendix 2

Distribution data of the chamois

We used different source of data to map the spatial locations of chamois. At both the BNRP
and NGWR scales, hunters recorded spatial locations of chamois harvested since 2004 (n =
3830). Such data were completed within the NGWR by data recorded during yearly censuses,
long-term resightings of marked animals and GPS locations of chamois fitted with GPS collars.
Yearly censuses were based on repeated foot surveys along 3 to 6 pre-defined paths (since 1995)
and from 12 fixed points (since 2013) covering the NGWR and repeatedly done (3-6 times)
each year by a restricted number of professionals. During these surveys, all group seen (from 1
to 94 animals, average = 5.95) were spatially located (based on a 100x100m grid size or directly
pointed on a map; n = 2686). Chamois were also trapped and re-sighted each year since 1985
within the 3-4 main alpine pastures composing the NGWR. Captures were done using traps and
drop nets baited with salt licks and trapped chamois were marked with collared/numbered
collars. More recently (2003-2015), part of trapped chamois were also fitted with GPS collars
Lotek 3300S (Engineering Inc.). Re-sightings of groups including marked chamois provided
10,805 spatial locations and 38,491 spatial locations from GPS collars for 67 different animals.
GPS data were screened for erroneous locations following Bjerneraas et al. (2010). All non-
harvested data collected within the NGWR (censuses, re-sightings and GPS) were pooled and
subsequently sub-sampled to get a balanced design in term of sample size with harvesting data
collected at the BNRP scale. This step was performed to avoid an over-sampling of a very local
zone over the study area which may artificially biased the point process model. Data sampling
was in accordance with guidelines approved by the American Society of Mammalogists

(Gannon et al., 2007).
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APPENDIX 3

R Code to run the point process model of the chamois. The following lines of code were
used to fit a ppm model on the chamois data using the R package spatstat.

ron(list=1s())

#Set library
library(raster)
library(rgdal)
library(biomod?)
library(spatstat)

library(ecospat)

#Set directories
path_input <- "SDM_chamois/"
path_data_save <- "SDM_chamois/"

path_output <- "PPM_chamois/"

#Mask of BRP
mask <- raster(pasteO(path_input,"MASK_100m.img"))

quad <- xyFromCell(mask,which(mask[]==0))

#L.oad occurrences

pts<-get(load("/PPM_chamois/pts.RData"))

#Load PFG data

pfg.names <- c("C2", "H1", "H4", "H6", "H7", "P2")

nbPFGs <- length(pfg.names)

y <- 850

PFGfiles <- pasteO("FATE_Bauges/RESULTS/ABUND perPFG _allStrata/Abund_YEAR "y," ", pasteO(pfg.names,
" STRATA alltif"))

PFG.stk <- stack(PFG files)

names(PFG.stk) <- sub("Abund_YEAR_850 ","",names(PFG.stk))

names(PFG.stk) <- sub("_STRATA all","",names(PFG.stk))



# Load environmental data

path_ras <- c(paste0('SDM_chamois/Bauges_ClimVar_SELECTED/',c("bio_1_.img","slope.img")))

#Projecting on the mask and converting data to a table
stk_ras <- stack(path_ras)

stk_ras <- stack(stk_ras,PFG.stk)

stk_ras <- projectRaster(stk_ras,mask)

nam_stk = names(stk_ras)

mask1 = mask

mask1[which(mask1[]==0)] = 1

stk_ras <- stk_ras*maski

names(stk_ras) = nam_stk

env.data = as.data.frame(stk_ras)

env.data = na.exclude(env.data)

#Setting up the study window

ux = sort(unique(quadl,1])) #x coordinates

uy = sort(unique(quadl,2])) #y coordinates"

nx = length(ux)

ny = length(uy)

col.ref = match(quad[,1], ux) # index of x coordinates of quad within ux
row.ref = match(quad[,2], uy)

all.vec = rep(NA, max(row.ref)*max(col.ref))

vec.ref = (col.ref - T)*max(row.ref) + row.ref

all.vec|vec.ref] = 1

Bauges.mask = matrix(all.vec, max(row.ref), max(col.ref),dimnames = list(uy, ux))

Bauges.win = as.owin(im(Bauges.mask, xcol = ux, yrow = uy))

#Creating point pattern

ppp.dat = ppp(pts$x, pts$y, window = Bauges.win, check = FALSE)

#Quadrature points are the same pixels of the original mask, as their grid resolution is 100m

quads = ppp(quad$x, quad$y, window = Bauges.win)



Q = quadscheme(data = ppp.dat, dummy = quads, method = "grid",ntile = c(nx, ny), npix = c(nx, ny))

#Variables selection by a forward AlC algorithm

#Polynomial with all the possible variables
X.des = poly(env.data$bio 1 0, env.data$slope,
sgrt(env.data$H1), sqrt(env.data$C?), sqrt(env.data$H4),sqrt(env.data$He),
sqrt(env.data$H?),sqrt(env.data$P2), degree = 2, raw = TRUE)
#Converting to a list
int.list = list()
for (i in T:dim(X.des)[2]){
all.vec = rep(NA, max(row.ref)*max(col.ref))
vec.ref = (col.ref - 1)*max(row.ref) + row.ref
all.vec[vec.ref] = X.desl,i]
intlist[[i]] = im(matrix(all.vec, max(row.ref), max(col.ref),dimnames = list(uy, ux)), xcol = ux, yrow = uy)
}
names(int.list) = pasteO("V", 1:dim(X.des)[2])
pred.list = intlist

list.names<-names(int.list)

nbVar <- length(int.list)
not_chosen <- 1:nbVar
prev_list <- list()

ordre <- aic_final <- vector()

#Every loop we add to the model the variable that optimise the AIC
for (i in T:nbVar){
aic<-vector()
#Loop to select the variable that optimise the AIC
for(j in not_chosen){
newVarlist<-prev_list
newVarlist[[length(newVarlist)+1]] <-int.list[[j]]
names(newVarlist) <-c(ordre, listnames[j])
#Fit the model we the new added variable and evaluate the likelihood

int.form = as.formula(paste("~", paste(names(newVarlist), collapse = "+")))



ftint = ppm(Q, trend = as.formula(int.form), covariates = newVarlist)

aic <- c(aic, AIC(ft.int))
}
keep <- not_chosen[which(aic==min(aic))] # Which variable induces the lowest AIC
ordre <- c(ordre,list.names[keep]) # Update the order of chosen variable
not_chosen <- not_chosen[-which(not_chosen==keep)] # Remove selected variable
aic_final <- c(aic_final,min(aic)) # Add AIC of the last updated model
prev_list[[length(prev_list)+1]] <- int.list[[keep]] # Update the list of chosen variables

names(prev_list) <- ordre

cat(paste0("\n selected variable: ", list.names[keep]))

cat(paste0("\n AIC value: ", min(aic)))

#Take variables corresponding to the AIC minimum

intlist<-prev_list[T:.which(aic_final==min(aic_final))]

#Final formula
int.form = as.formula(paste("~", paste(ordre[T:which(aic_final==min(aic_final))], collapse = "+")))
#Fitting the model

ftint = ppm(Q, trend = as.formula(int.form), covariates = int.list)



Appendix 4

PCA shows the correlation between PFG abundances. Correlated PFGs are representative of
the same habitat. It is the case of P1, P3 and P4, trees characteristics of low altitude forests, or

C2, P5, H2, H3, HS5 that, on the contrary, represent subalpine habitats.

To build the final set of PFGs to be used into the chamois’ model, we chose among every
correlated group of PFGs the one that was the most important in chamois diet (highlighted in
light grey). To prevent temperature from over-driving the model, we excluded P6 and C1
because they were highly correlated with it. As precipitations and temperature were highly

inversely correlated, we only kept temperature.
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Supplementary Figures
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Figure S1. Spatial distribution of the vegetation plots used to select the dominant species list

and to model the habitat suitability of the plant functional groups.
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Figure S2. Change in mean abundance of the modeled PFGs through time under the scenario

RCP 8.5.
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Figure S3. Change in mean PFGs’ abundance through the Bauges Regional Park in function of altitude (columns with different colors). Only the
retained PFGs in the point-process models of the chamois are shown. The width of the boxplot is proportional to the relative available area. C2,

H1, H4 and H6 are predicted to increase their abundances mostly at high altitude (>1500m).
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Figure S4. Change in Pearson’ correlation between chamois’ predictions from the climate-only

model and the climate and vegetation model through time and for the three RCP scenarios.
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Figure S5 Change in the predicted species occupancy of the chamois (Rupicapra rupicapra)
over time and for the two point-process models (i.e. climate-only and, climate and vegetation)
in function of the RCP2.5 climate scenarios. The top figure represents the change in occupancy

of the PFGs selected by the point-process model (climate and vegetation).
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Figure S6 Change in the predicted species occupancy of the chamois (Rupicapra rupicapra)
over time and for the two point-process models (i.e. climate-only and, climate and vegetation)
in function of the RCP8.5 climate scenarios. The top figure represents the change in occupancy

of the PFGs selected by the point-process model (climate and vegetation).






