
Ethereum state rent - rough proposal
This is a non-formalised, pre-EIP description of one of the ways the state rent
could be introduced on top of the existing Ethereum protocol. It has not been
approved, ratified, voted for by any individual, organisation, or group. It is just a
proposal. It distills some ideas expressed in the past, and adds some novel data
and insights.

The goal of this is to inform production of other proposals, Proof of Concept
implementations, and formal descriptions (EIPs), when it is deemed appropriate.

Copyright
Copyright and related rights waived via CC0

https://creativecommons.org/publicdomain/zero/1.0/

Warnings and disclaimers
Data used for the charts and table has not been cross-verified and may contain
errors. It should only be used as a guidance for your own research.

Not all contracts have been analysed and classified into tokens, NFTs, DEXs etc.
More research on such classification is welcome.

Different charts have been produced at different state of the blockchain.

Working group is not unanimous on any of the parts of this proposal.

There was no Proof Of Concept, so some or all parts may contain fatal flaws.

Immediate next steps
After publication of this document, the Proof Of Concept needs to be prepared at
the same time as public discussions are taking place. This will help identify
unseen difficulties and/or unimplementable ideas. Only following that, a series of
EIPs can be prepared with sufficient level of formalism and concreteness. Proof Of
Concept will also be useful for generating test cases for the EIPs.

Proof Of Concept does not have to be written by the same working group that
worked on the proposal, but likely there will be a big overlap.

Chart 1 - growth of accounts (contracts and EOAs)

Comments to Chart 1
Out of 47.64m accounts in total, 40.01m are Externally Owned (non-contracts).

The bump around blocks 2.4m is 2016 DOS attack and subsequent clearing after
Spurious Dragon protocol change.

Chart 2 - growth of contract storage

Chart 3 - top 16 contracts by storage items

Comments to Chart 3
Lines stopping at a block before reaching the right side of the chart means that the
contracts were not used since that block

Three largest active contracts are IDEX_1, EtherDelta_2, and CryptoKitties. They
occupy 10% of the storage.

Top 216 occupy 50% of the storage, top 421 - 60%, 806 - 70%, 1866 - 80%, 16k -
90%. Total number of contracts in the state is around 7m

Apart from storing tokens balances, contract storage is often used as write-only
sets

Chart 4 - top 20 creators of contracts and EOAs

Comments to the Chart 4
GasToken-2 (working by creating self-destructing contracts and not by reserving
storage as GasToken-1) is the largest active creator of accounts at the moment.

The biggest creator (Bittrex_Controller) seem to have stopped, leaving all created
contracts in the state. Current Bittrex creator is the second largest active creator.

This chart does not show deposit non-contract accounts belonging to exchanges,
because their identification requires a bit more advanced heuristics

Chart 5 - number of EOAs (Y) with <= X wei

Table1 - top 100+ contracts by storage
Contract name Storage items %, cumulative

0 IDEX_1 6687388 4.633

1 EtherDelta_2 4320148 7.625

2 CryptoKitties_Core 3585370 10.109

3 LivePeer_Token 2598735 11.909

4 MerkleMine 2598081 13.709

5 ENS_Registrar 1570676 14.797

6 MLBNFT 1495249 15.833

7 EOS_TokenSale 1428756 16.822

8 Ambisafe_EToken2 1325533 17.741

9 StatusToken 1213111 18.581

10 TronToken 1067753 19.321

11 LastWinner 1030760 20.035

12 Acronis_Contract 976385 20.711

13 VIUToken 956662 21.374

14 SiaCashCoin 806085 21.932

15 Etheroll_Old3 796685 22.484

16 XENON_Token 748143 23.002

17 OmiseGo_Token 673952 23.469

18 Dex.top_Dex2 609900 23.892

19 Etheroll 593935 24.303

20 BTCRelay 586440 24.709

21 NePay_Token 576136 25.108

22 Ethermon_CastleBattle 558198 25.495

23 CryptoKitties_SalesAuction 556393 25.88

24 Etheroll_Contract 551113 26.262

25 Etheroll_Old4 526288 26.627

26 Player_Tokens 517965 26.986

27 IG_Token 508063 27.338

28 0xProtocol_Exchange1 503683 27.686

29 VinToken 478918 28.018

30 DodgersNFT 478862 28.35

31 AirDropToken 472082 28.677

Table 1 - top 100+ contracts by storage
32 District0xNetworkToken 451617 28.99

33 Streamr_Token 435625 29.292

34 Mysterious_Minter? 432693 29.591

35 XID_Registrar? 430191 29.889

36 GasToken_Fake? 397153 30.164

37 BitcoinEOS_Token 391044 30.435

38 CarLiveChain_IOVToken 382081 30.7

39 BeautyChain_Token 364849 30.953

40 Aragon_Token 355470 31.199

41 OasisDEX_MatchingMarket 352353 31.443

42 EOS_DSToken 346414 31.683

43 GodsUnchained_CardMigration 338556 31.918

44 flamingostar_Token 337699 32.152

45 Ethermon_Data 331396 32.381

46 AICToken 322719 32.605

47 UCashToken 318859 32.826

48 GSENetwork_Token 304999 33.037

49 BinanceToken 300855 33.245

50 IONChain_Token 292288 33.448

51 GSG_Coin 285341 33.645

52 ENS-EthNameService 280371 33.84

53 NYBCoin 261406 34.021

54 VGAMES_Token 259765 34.201

55 Sachio_Token 254853 34.377

56 MST_Token 244438 34.546

57 IdleEth_Game 241961 34.714

58 Dice2Win_2 241144 34.881

59 Cindicator_Token 239766 35.047

60 FunKoin 236755 35.211

61 Enumivo_Token 234164 35.373

62 SoPay_Token 230085 35.533

63 QMQ_Token 225352 35.689

Table 1 - top 100+ contracts by storage
64 TokenStore 224492 35.844

65 Wei_Reciever_Jan2016? 222009 35.998

66 BitClave_Token 221158 36.151

67 OCoin 219945 36.304

68 Lottery? 217965 36.455

69 StorjToken 208745 36.599

70 Edgeless_Blackjack 200598 36.738

71 BOBsRepairToken 195328 36.874

72 PundiXToken 193914 37.008

73 DecenturionToken 193222 37.142

74 BeautyChain_Token? 192946 37.275

75 FoMo3Dlong 191060 37.408

76 Envion_Token 187417 37.538

77 DataToken 184898 37.666

78 PentaNetwork_Token 178788 37.79

79 IDAG_Token 175925 37.911

80 79048730d53691268249fc0275f70af9046c3134 175556 38.033

81 EMO_Token 173649 38.153

82 TimeNewBank_Token 173486 38.274

83 TrekChain_Token 172978 38.393

84 AVINOCToken 171073 38.512

85 DRC_Token 170356 38.63

86 EthLend_Token 166042 38.745

87 06a6a7af298129e3a2ab396c9c06f91d3c54aba8 164158 38.859

88 BITDINERO_Token 162927 38.971

89 BroFistCoin 162900 39.084

90 Rebellious_Token 162781 39.197

91 Dice2Win_1 159506 39.308

92 MCPSale_Token 158369 39.417

93 IFoods_Token 155392 39.525

94 CryptoKitties_SiringAuction 154183 39.632

95 OrmeusCoin 153266 39.738

Table 1 - top 100+ contracts by storage
96 ForAgricultureCoin 152892 39.844

97 GenaroX_Token 152616 39.95

98 f87e31492faf9a91b02ee0deaad50d51d56d5d4d 152479 40.055

99 Academicon 152453 40.161

100 SuperEdge_Token 151973 40.266

101 EtherBots? 150447 40.37

102 BrahmaOS_Token 146748 40.472

103 KickCoin_CSToken 146328 40.573

104 StorJ_Issuer 144444 40.673

105 HashPowerToken 142949 40.772

106 OMTM_Token 142849 40.871

107 5371a8d8d8a86c76de935821ad1a3e9b908cfced 142803 40.97

108 FTI_Token 141886 41.069

109 EC_Token 141617 41.167

110 ThreeDBToken 141595 41.265

111 e694010c4f1fcd35ebc04ceb60f847caaf2cd6f2 141591 41.363

112 DACC_Token 139631 41.46

113 eddbit 139409 41.556

114 SilentNotary_Token 139408 41.653

115 XMAX_Token 139289 41.749

116 CryptoSpinners 137952 41.845

117 HadesCoin 137592 41.94

118 Etheroll 135270 42.034

119 007ac2f589eb9d4fe1cea9f46b5f4f52dab73dd4 133907 42.127

120 ExTradeCash_Token 133521 42.219

Comments to Table 1
Some notable contracts, like Status and Aragon tokens use much more storage
than 1 word per holder. That is because they are based on MiniMe token, which
stores the entire history of transfers in the contract state. It needs to research to
see how the state would shrink if these were to become non-MiniMe tokens.

Problem statement - prevalent use case
Following the data analysis shown before, we will focus on the seemingly
prevalent use case of Ethereum as a claim storage system.

Ethereum

Time

value

claim

certificate

Ethereum

proof

claim

value

Problem statement - no claim maintenance
Claims do not need to be maintained if Ethereum state is allowed to grow without
bounds:

Ethereum

claim

Ethereum

claim

Ethereum

claim

Time

claim

claim

claim

claim

claim

claim

Problem statement - bounded state
If Ethereum state becomes bounded, claims will require maintenance (hypothesis,
intuition). With active maintenance, users need to regularly interact with Ethereum
and add value to renew their claims. With reactive maintenance, users need to keep
storing the history of Ethereum state to keep their proof of their claims verifiable.

Active maintenance Reactive maintenance

Time Time

Ethereum

value

claim

certificate

Ethereum

proof+
value

claim

certificate

Ethereum

value

claim

certificate

Ethereum

claim

Ethereum

history

Storing
history

Problem statement - solutions
Active and reactive maintenance approaches are not mutually exclusive, and they
most probably need to coexist.

Reactive maintenance solutions could be described as “witness-based”
techniques, “stateless” contracts, and they are most probably implementable today
without any modifications to the Ethereum protocol.

Active maintenance solutions are described here in form of linear cross-contract
storage and alternative ideas, which are less radical, but also less general.

Main position
Note that this part of the position is not unanimous, and currently there are alternative points of view within the
working group.

Given that the biggest class of storage users are currently token contracts and
NFTs, the existing model of storage is incompatible with rent for two main
reasons:

Reason 1: Ownership of storage (currently with token contracts) is not aligned with
its utility (currently with the token holders). That creates free-riding problem
(holders are not incentivised to contribute to the contract’s rent), and it would very
challenging for contracts to collect rent from the holders. Alternative point of view:
It is possible to get token holders to contribute to the rent by offering tokens in
exchange for the contributions.

Main position
Reason 2

Token dust griefing attack. Any token holder with access to transfer function can
increase storage rent for the contract forever, paying only once for the attack.
Alternative point of view: Tokens could require a signed ACK (consent for the
receipt of tokens) from recipients. Those are to be provided during transfer. In
combination with minimum transfer and minimum holding limits, this could prevent
token dust griefing attack. There will have to a special handling for contracts that
would like to be token holders, perhaps an ABI-based standard.

Main position
It is expected that after introduction of the full rent, most of the contracts that exist
today will be non-viable and vulnerable to the token-dust griefing attacks.

If the notion of rent is introduced without a “safe place” to migrate to, the only
recourse of current contracts would be to use reactive maintenance approach, in
the form of stateless contracts, which might too big of a leap in terms of usability.

In Step 3, such a “safe place” is described, in a form of a new storage model
(following active maintenance approach). This (or an alternative “safe place”
solution, if found) needs to be introduced before storage rent for the entire storage
(currently at Steps 4 and 5).

Main position
Alternative point of view: fungible token contracts can be modified to be viable, as
described earlier. Case of Non-Fungible assets needs to be researched.

Step 1 - replay protection for new accounts
Eviction creates a replay problem when account is recreated

Time

eth

account
nonce: 0

account
nonce: 1

Tx1, nonce: 0 Tx2, nonce: 1

account
nonce: 2

evicted

eth

account
nonce: 0

Tx1, nonce: 0

REPLAY!

account
nonce: 1

Tx2, nonce: 1

Step 1, Variant 1 - nonce based
Newly created accounts now have a nonce equal to TOTAL_TXS instead of zero.
Value TOTAL_TXS becomes part of the state. All client implementations calculate
the correct value of TOTAL_TXS upon the upgrade, using blocks bodies (for full
sync) or receipts (for fast sync), with some checkpoint values hard-coded.

Time

eth

account
nonce:
TOTAL_TXS_X

account
nonce:
TOTAL_TXS_X
+1

account
nonce:
TOTAL_TXS_X
+2

evicted eth

account
nonce:
TOTAL_TXS_Y

account
nonce:
TOTAL_TXS_Y+
1

Block X Block Y

TOTAL_TXS_Y > TOTAL_TXS_X+2 !

Step 1, Variant 2, temporal protection

Block X Block Y

EIP draft: https://gist.github.com/holiman/5300039af83375e1698117619554acf7

eth

account
nonce: 0

account
nonce: 1

Tx1, nonce: 0,
valid-until: X + 3

Tx2, nonce: 1

account
nonce: 2

evicted

eth

account
nonce: 0

tx1, nonce: 0
valid-until: X + 3

account
nonce: 1

tx2, nonce: 1,
valid-until: Y+10

Not the
same as tx2!Invalid, X+3 < Y

After X, before Y,
optional field

After Y,
mandatory field

https://gist.github.com/holiman/5300039af83375e1698117619554acf7

Step 2 - Fixed small rent on Externally Owned Accts
For example, 2 Gwei per account per block. That means, in a year, the rent would
be 0.001 ETH per account. ETH paid as rent gets burnt.

When rent is not paid, account is removed from the state, so Step 1 is for replay
protection.

If no one paid that rent, in a year, that would eliminate around 28 million (Chart 5)
of dust accounts, roughly 15% of the current state (Charts 1 and 2).

Every non-contract account now has 2 extra field: rentblock (last time rent was
calculated), with default = STEP2_HARD_FORK_BLOCK, and rentbalance, which
can be negative

Step 2 - calculation of dues

Calculation of dues happens whenever account is modified by EVM. Both
rentbalnce and balance fields of an account may be updated as a result.

due = (BLOCK-rentblock)*rent rentbalance -= due
rentblock = BLOCK

rentbalance < 0

repayment = min(-rentbalance, balance)
rentbalance += repayment
balance -= repayment

yes

Step 2 - Priority queue (eviction)
During the initial sync, when client software receives current state from other
nodes in the network, it calculates this value (as a rational number, for
determinism) for each account:

balance + rentbalance

advance = --------------------------------- - [cumulative rent since rentblock]

storagesize

For non-contract accounts, storagesize is fixed. Cumulative rent is calculated
since rentblock until the block of the initial sync.

Step 2 - Priority queue
The value of “advance” determines how much rent has to accumulate from the
block of initial sync to some future block, for the account to go into arrears.

Accounts are placed into a priority queue ordered by “advance” with some
tie-breaking condition, for example, using ordering of address hashes.

Now, if an account is modified, its fields are updated by the rent recalculation, so
the account is removed from the priority queue, its “advance” is recalculated, and
the account is placed back into the priority queue. Note that rentblock will now be
larger than block of initial sync, therefore, [cumulative rent since rentblock] will be
negative.

Step 2 - Priority queue
Each block, the top of priority queue is checked, and a limited number of accounts
is removed, if they are in arrears. Condition of being in arrears is calculated as:

[cumulative rent since init sync block] > advance.

Hypothesis - even though different client instances will have different values of
init sync block, and assign different “advance” values to accounts, the order in
which the accounts will be removed from the top of the priority queue, will be the
same across all the instances, and predictable prior to the next block (so that
miners cannot use that as an attack vector against other miners).

Step 2 - Priority queue
For each account popped from the priority queue, a transaction is added to the
block, in which eviction is happening. At Step 3, this transaction will also make a
callback to the <writer> contract to notify of the eviction. The eviction
transactions do not need to be transmitted over the network, but generated by full
clients by the rules of the protocol. Eviction receipts might need to be served to
light clients, though.

Step 2 - Priority queue: init and modifications

Initial sync

account

account

account

account

account

advance
account

advance
account

advance
account

advance
account

advance
account

Priority queue as
binary heap

State Block X

accountmodified

advance
account

advance
account

advance
account

advance
account

remove from
priority queue

advance
account

advance
account

advance
account

advance
account

rearrange priority
queue - O(log N)

Block X

build priority queue -
O(N*log N)

Step 2 - priority queue: modifications
Block X

accountmodified

advance
account

advance
account

advance
account

advance
account

remove from
priority queue

advance
account

advance
account

advance
account

advance
account

rearrange priority
queue - O(log N)

Block X

advance
account

advance
account

advance
account

advance
account

advance
account

reinsert with new
“advance”

Still Block X

advance
account

advance
account

advance
account

advance
account

advance
account

rearrange priority
queue - O(log N)

Step 2 - priority queue - evictions

advance
account

advance
account

advance
account

advance
account

advance
account

advance <
[cumulative rent
since init sync
block]

yes

evict
advance
account

advance
account

advance
account

advance
account

advance
account

advance
account

advance
account

advance
account

rearrange priority
queue - O(log N)

pop

Step 2 - priority queue: efficiency
Rent recalculation only happens when accounts are modified (as opposed to when
they are “touched”).

Priority queue requires O(N*log N) time to build up during the initial sync, where N
- number of accounts in the state.

After that, every modification of an account, or an eviction requires O(log N)
operation on the priority queue.

Therefore, it is believed that this priority queue design does not bring significant
overhead, both in computation and in number of transactions.

Step 3 - Linear cross-contract storage
writers, can write

owners,
pay rent,
cannot write

Only contracts can
be owners and
writers in this
model!

Step 3 - Linear cross-contract storage - opcodes
XGROW <owner> <writer> <growth>

If executed by the owner of the cell, and within limits, succeeds and returns the size
of the cell after resize. Otherwise, fails, and returns 0

Step 3 - Linear cross-contract storage - opcodes
XCLEAR <owner> <writer>

If executed by the owner of the cell, clears the cell. Otherwise, silently fails

Step 3 - Linear cross-contract storage - opcodes
XSIZE <owner> <writer>

3

Succeeds if called by owner or writer of the cell, and returns size of the cell.
Otherwise, fails and returns 0

Step 3 - Linear cross-contract storage - opcodes
XREAD <owner> <writer> <strg_pos> <mem_pos> <size>

Memory

If called by owner or writer of the cell, copies region of the storage to
memory and returns number of words copied. Otherwise, fails and
returns 0

Step 3 - Linear cross-contract storage - opcodes
XWRITE <owner> <writer> <strg_pos> <mem_pos> <size>

Memory

If called by the writer of the cell, copies region of memory to storage
and returns number of words copied. Otherwise, fails and returns 0

Step 3 - new account fields
Contract accounts get 3 additional fields: (rentblock, rentbalance, storagesize).

New opcode SSIZE can read storagesize field. Default for rentblock for contracts
is STEP3_HARDFORK_BLOCK

storagesize field of a
contract now includes

Total size of linear cross-contract storage with
<owner>==contract’s address

Step 3 - calculation of dues
Rent is now calculated not per account, but per unit of storagesize field. Price per
unit is still fixed (for example, 1Gwei per block per item).

due = (BLOCK-rentblock)*rent*storagesize rentbalance -= due
rentblock = BLOCK

rentbalance < 0

repayment = min(-rentbalance, balance)
rentbalance += repayment
balance -= repayment

yes

Step 3 - eviction
When rent is not paid, contract loses linear cross-contract storage it owns for all
writers, and that storage cannot be resurrected (only until Step 4). In an eviction
transaction, SYSTEM account makes a call to the <writer> contract with the call
data containing the address of the <owner> contract, with a stipend proportional
to the size of evicted storage.

“Poke”
transaction

Calculation of dues

rentbalance < 0

yes

Evict notification to

Evict notification for

for with gas

<owner>

for with gasremove and

Step 3 - gathering rent for the code
Since contracts need to pay rent for maintenance of their account, and their code,
the free-riders problem does not completely go away. In order keep totally
unmanned contracts viable and also promote code reuse, contracts have an
additional parameter: callfee. When set (most probably during deployment), each
invocation of the contract is charged extra fee equal to callfee. This is added to the
contract’s rentbalance, and cannot be turned back to ETH.

Setting callfee is done via a new opcode CALLFEE

There can be a way for waive the calling fee if the rentbalance is above some
threshold, but this needs to be researched.

Step 3 - motivational example
In the model of linear cross-contract storage, a token contract would be the
<writer>, whereas token holders would be <owner>s. Owners consent to be
given tokens by executing XGROW with the <writer> corresponding to the token
contract. They can destroy tokens any time by calling XCLEAR.

When a storage cell gets evicted, or removed by XCLEAR, token contract gets a
notification call by SYSTEM account with a gas stipend enough to update token
supply counter, and other summary information.

Critique 1 - active measures to retain tokens
This model requires active measures from users to retain their tokens, which
creates ‘ooops I lost million dollars while in coma’ problem.

The problem appears to come from the proposed irrecoverability of linear storage
(it becomes recoverable after step 4), and also from separating the fates of tokens
for individual token holders.

This problem is reflecting the property of the real world, where every asset
requires some sort of looking after. Ability to keep an asset forever, without doing
anything for it, and just with storing limited (even though large) amount of data is
unattainable unless we allow unbounded state growth, as conjectured in section
“Problem statement - bounded state”.

Critique 2 - extra transaction churn
Extra transaction churn to maintain the status quo can come from two sources:

1. Users topping up their balanced to keep their storage alive
2. Eviction mechanism re-computing rentbalance and modifying rentbalance,

balance, rentblock, even though actual eviction does not happen

For churn coming from the source (1), larger top ups could be solution. For churn
coming from the source (2), hopefully priority queue design at Step 2 is a solution.

It has also been described as “rent payments are micro-transactions” in
https://media.rsk.co/rsk-research-news-storage-rent/

https://media.rsk.co/rsk-research-news-storage-rent/

Alternative to Step 3 - Stateless contracts
If Step 3 is not implemented, but Step 4 is implemented directly after Step 2,
contracts that cannot afford paying rent for all their users’ assets, and do not have
user-owned storage to use, might resort to the technique of stateless contracts.

Contract

storage item

storage item

storage item

storage item

storage item

Contract

bucket root 1

bucket root 2

storage item

storage item

storage item

storage item

storage item

storage item

Merkle trees

Off - chain

Alternative to Step 3 - Stateless contracts
Most of the contract’s data is moved off-chain, and only the bucket roots are
stored on-chain. Each transaction that interacts with such contract’s data will need
to have 2 new components: state read proofs (together with state read values),
and state write proofs.

Contract

bucket root 1

bucket root 2

storage item

storage item

storage item

storage item

storage item

storage item

Merkle trees

Transaction (blue->orange)

input data

Alternative to Step 3 - Stateless contracts
Transactions that are trying to modify items in the same bucket are now mutually
exclusive, and the “losing” transactions will have to be recreated and re-submitted.

That is why contract’s state is split into buckets, to reduce contention

Transaction (blue->orange)

input data

Transaction (blue->red)

input data

Transaction (orange->red)

input data

Alternative to Step 3 - Stateless contracts
A new user who has not watched the contract from the beginning, and knows the
contract’s state only partially, will need to obtain a copy of the state by using some
kind of sub-protocol

Contract

bucket root 1

bucket root 2 ?

Transaction (blue->orange)

input data

Transaction (orange->red)

input data

seen this

seen this

?

?

Missing off-chain data

Off-chain data
delivery
sub-protocol

Step 4 - Top-up and recovery mechanism
As described: https://gist.github.com/fjl/b495aa2154944263811eb1a73c6498cd

New opcode PAYRENT is introduced to top up rentbalance by spending ETH, and
RENTBALANCE (to read rentbalance). This can help keep existing contracts alive
until they are migrated.

When rent is not paid, contracts leave a “hash stump”, which can be used to
restore the contract using opcode RESTORETO. This is different from semantics
after Step 3, where linear cross-contract storage would be lost. At this step, linear
cross-contract storage can also be recovered with RESTORETO.

https://gist.github.com/fjl/b495aa2154944263811eb1a73c6498cd

Step 4 - opcode RESTORETO
It solves the problem of contract restoration from a “hash stump” left in the state.

storage root

storage item

storage item

storage item

storage item

storage item

code hash

bytecode

RESTORETO <addr> <codeaddr>

storage root
code hash

storage item

storage item

storage item

storage item

storage item

bytecode

storage root
code hash

This is a “hash stump” of an evicted contract

executed from,
storage template

address where
contract to be
restored was

code template

Step 4 - restoring linear cross-contract storage
Semantics of RESTORETO opcode needs to be modified for restoration of linear
cross-contract storage, to designate cells for various writers. One idea is for the
storage template to have everything in its own linear storage, with some descriptor
in front:

Template contract (in the cell with <owner>==<writer>==template contract)
<owner1><offset1>
<owner2><offset2>
<end_offset>

Template for cell
<owner><writer1>

Template for cell
<owner><writer2>

Step 4 - storage size field
Field storagesize changes its composition to:

Newly created (via SSTORE) non-linear storage (that exists now) now increases
the storagesize field of a contract, and emptying storage items decreases the field.
Refunds for SSTORE are abandoned.

storagesize field of a
contract now includes

Small constant number for the account object

Size of the bytecode

Total size of linear cross-contract storage with
<owner>==contract’s address

Non-linear storage allocated since STEP4_HARDFORK -
non-linear storage cleared since STEP4_HARDFORK

Step 5 - floating rent
Subsequent protocol upgrade adds the sizes of non-linear storage that existed
before Step 4 to the storagesize. This can be done efficiently because the
calculation of the storage sizes at Step 4 block is done off-line and reconciled
between all client implementations ahead of the upgrade.

Now all the storage is counted. This allows introduction of storage upper limit and
floating rent price, depending on the “storage pressure”. Storage pressure is the
measure of how closely the current size of all storage is to the upper limit.

Some more info on maintenance fees:
https://gist.github.com/zsfelfoldi/c40ff6637b9a6a095ddada87eb0d4891

https://gist.github.com/zsfelfoldi/c40ff6637b9a6a095ddada87eb0d4891

Step 5 - storage size field
Field storagesize now includes all the storage.

storagesize field of a
contract now includes

Small constant number for the account object

Size of the bytecode

Total size of linear cross-contract storage with
<owner>==contract’s address

Non-zero non-linear storage

Step 5 - calculation of rent
Since rent is calculated at each modification of an account, the storagesize field
does not change in between, so the only complexity is to aggregate the potentially
changing rent over the calculation period.

Blocks

Total size
of state

Rent
calculation 1

Rent
calculation 2

Area to
“integrate” rent
over

Step 5 - calculation of rent
In order to integrate over the history of state size, the protocol needs to keep track
of that history for BLOCK - min(rentblock) blocks, where “min” is taken over all the
accounts that are presently in the state. Alternatively, it might be more space
efficient to only keep track of intervals between various values of rentblock

State

account rentblock

account rentblock

account rentblock

account rentblock
Blocks

only keep aggregated values for the intervals

Step 6 - removing/resurrecting hash stumps
2 options so far:

1) Vitalik’s suggested exclusion proofs, which imposes minimum live time on
contracts, chapters 8-9 of
https://github.com/ethereum/research/blob/master/papers/pricing/ethpricing.p
df

2) Graveyard tree - state includes a merkle root of the tree containing all
removed contracts. To remove a contract, one needs to show the path in the
graveyard tree where the contract’s hash will live (this requires knowledge of
the history of all removals). To resurrect a contract, one needs to show the
path to the contract in the graveyard tree. The root of the tree gets updated
that the contract is not in the tree anymore (it is now alive).

https://github.com/ethereum/research/blob/master/papers/pricing/ethpricing.pdf
https://github.com/ethereum/research/blob/master/papers/pricing/ethpricing.pdf

