
Enhancing Control Flow Graph Based
Binary Function Identification

Clemens Jonischkeit
Technical University of Munich

Garching, Germany
jonischk@sec.in.tum.de

Julian Kirsch
Technical University of Munich

Garching, Germany
kirschju@sec.in.tum.de

ABSTRACT
Recognition of binary functions in compiled code is a major step-
ping stone towards any advanced binary analysis technique. Nu-
cleus [? ] is a novel algorithm based on the idea of using the Interpro-
cedural Control Flow Graph (ICFG) to detect function boundaries.
Building upon this technology we propose a new approach to ad-
dress the related problem of identifying previously-seen known
functions within a binary. Our idea is based on comparing the Con-
trol Flow Graphs (CFGs) of unknown functions from a binary to
known functions from a previously generated database. Compared
to traditional approaches, our method is aware of the underlying
graph matching problem being performed on CFGs of binary code:
First, it utilizes instruction level knowledge about basic blocks as ad-
ditional constraints for graph isomorphism. Second, optimizations
and transformations introduced by different compilers affecting the
shape of the CFG are taken into account.

Our approach aims to avoid false positives (wrongly assigning a
known function symbol to an unknown function) at all cost: The
evaluation shows that this method is very effective in reducing false
positive matches (below one percent in most cases) and doubles
recall rates compared to the traditional graph matching based ap-
proach whenmatching one version of nginx compiled with different
optimization levels.

CCS CONCEPTS
• Security and privacy→ Software reverse engineering;

KEYWORDS
Binary Function Identification, Control Flow Graph, Graph Match-
ing

ACM Reference Format:
Clemens Jonischkeit and Julian Kirsch. 2017. Enhancing Control Flow Graph
Based Binary Function Identification. In ROOTS: Reversing and Offensive-
oriented Trends Symposium, November 16–17, 2017, Vienna, Austria. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3150376.3150384

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROOTS, November 16–17, 2017, Vienna, Austria
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5321-2/17/11. . . $15.00
https://doi.org/10.1145/3150376.3150384

1 INTRODUCTION
Function recognition is a fundamental building block in reverse en-
gineering. It is a necessity for many advanced analysis techniques,
like binary instrumentation or the detection of software vulnerabil-
ities. The goal of function recognition is to group instructions to
resemble source level functions. This can easily be done in situa-
tions where symbol data for a binary is available but is challenging
when no such information is present.

While identifying the exact position of functions is a crucial
step during reverse engineering a binary, reverse engineers find
themselves to spend significant amounts of time to analyze the
same function in any unknown binary over and over again. One
purpose of function identification is consequently to save analysts
from wasting their time determining that functions in an unknown
binary are equivalent to (potentially known) functions previously
encountered earlier in a different binary. With function information
available, a reverse engineer can more efficiently decide which parts
of an unknown binary are of interest to look at, as the functionality
of library functions statically linked into a binary is already known.
For example, analysts looking for software vulnerabilities could
focus on closely analyzing code that calls potentially dangerous or
error prone library functions like the strcpy function from glibc.

For dynamically linked executables this task is trivial as the
external function name has to be known to the dynamic loader:
When resolving an external symbol, the dynamic loader looks up
the address of the symbol in the library and patches the executable
such that calls are dispatched correctly. On the other hand, for
statically linked functions no information has to be preserved as
the referenced library code is included into the binary making
addresses and jump distances known at compile time. The linker
can then strip the names of the library symbols without affecting
the correct functionality of the binary, resulting in an additional
analysis step for a reverse engineer.

Therefore, with no information about the type of functions be-
ing present in a particular binary, function recognition methods
need to be developed: Function boundaries have to be accurately
detected before matching candidates against a database containing
information about well known functions—in case of a successful
match the unknown function ideally has the same semantics as
the candidate from the database. We note that matching functions
based on their semantics alone is theoretically impossible in gener-
ality as it would entail solving the halting problem. For this reason,
function identification is always done based on heuristics and any
matching approach requiring finite time is generally not sound,
incomplete or both.

In this work, we propose a graph matching based approach to
recognize known functions in unknown binaries. As opposed to

https://doi.org/10.1145/3150376.3150384
https://doi.org/10.1145/3150376.3150384


ROOTS, November 16–17, 2017, Vienna, Austria Clemens Jonischkeit and Julian Kirsch

if condition

then

...

Figure 1: Two basic blocks forming an if–then statement

other graph matching based methods, our central contribution is to
make the matching algorithm aware of the fact that it is operating
on graphs consisting of basic blocks containing assembly code: First,
we keep instruction information with the basic blocks stored in
the database, and second control flow graphs are compared in a O–
O2 (n.) form that takes into account different transformations per-
formed by different compilers operating in different optimization
levels.

2 BACKGROUND
In this section we will briefly highlight concepts we base our work
on.

2.1 Basic Blocks
We will use the notion of multiple entry single exit basic blocks
throughout this work: A basic block is a (ordered) list of consecutive
machine instructions. Within these basic blocks, all instructions
spanning from an entry point to the last instruction of the block
will be executed (i.e. the block will not be left early) resulting in a
single exit point, right after the last instruction. Unlike exit points it
is possible for a basic block to have multiple different entry points.
This implies that there can be edges pointing into the middle of a ba-
sic block, such that instructions at the beginning are skipped. With
this notation an if–then construct can be translated into two basic
blocks, with the second one having two entry points. This can be
seen in figure 1. All basic blocks belonging to one function together
with the edges introduced by control flow changing instructions
form the static CFG of this function.

2.2 Graph Theory and Terminology
A CFG is a directed graph G consisting of a set of vertices V and
a set of edges E ⊆ V × V . An edge e = (vi ,vj ) ∈ E represents a
possible transition from vertex vi to vertex vj , but not vice versa.
The vertex vi is said to be the direct ancestor of vj , whereas vj is
called the descendant of vi .

All vertices vi ∈ G connected by a path, regardless of the direc-
tion of the edges, form a weakly connected component of G. An
undirected path connects all vertices within this weakly connected
component. Each weakly connected component is a subgraph ofG
and G can have multiple weakly connected components.

Wewill call verticesvi ∈ G without a descendant (∀vj ∈ V .(vi ,vj ) <
E) leaf vertices, to account for the fact that control flow moves to a
different function after the execution of such a vertex.

call

Figure 2: Analysis of an ICFG, splitting it into components
and identifying the entry points

Two Graphs G and H are called isomorph, iff there exists a
bijection f : V (G) → V (H ) between the vertices V (G) of G and
V (H ) of H , such that (a,b) ∈ E(G) ⇔ (f (a), f (b)) ∈ E(H ).

Furthermore, throughout this work, we will use the term vertex
and node interchangeably to refer to a basic block within a function.

3 GRAPH-BASED FUNCTION
IDENTIFICATION

Like Nucleus [? ] utilizes the ICFG to reliably detect function bound-
aries, the CFGs can be used to identify functions. The idea is that
with an increasing number of basic blocks, the possible number of
CFGs grows exponentially making large functions identifiable by
their unique CFG. Additional measures, like the size, call targets,
and referenced strings, can be used to match more strictly than just
graph isomorphism. Our approach is based on Nucleus to recognize
function boundaries, which we briefly explain before we divert out
our algorithm to identify the recognized functions.

3.1 Function Recognition
Nucleus is a newly proposed algorithm for function recognition. It
is entirely different from previous approaches as it does not rely on
any (implicit or explicit) function signature databases. It attempts to
overcome the difficulties and disadvantages of approaches based on
byte patterns. Instead of searching for predetermined byte strings,
it uses the observation that (in compiler generated code) interpro-
cedural calls differ from intra procedural jumps.

Nucleus’ algorithm for graph based function recognition can be
broken down into four steps. First the ICFG is generated. A basic
block in the executable is represented by a vertex in the graph and an
edge represents a control flow transfer, examples of these transfers
are jumps, calls, and return instructions. This graph is generated by
disassembling and subsequently grouping instructions into basic
blocks and then analyzing the control flow. It is next preprocessed
to improve the analysis.

Temporarily hiding all call edges facilitates a weakly connected
components analysis. Figure 2 shows an example of these compo-
nents. The goal of this analysis is to find groups of basic blocks, such
that each group of basic blocks contains all yet only basic blocks be-
longing to a single function. Hiding the call edges removes all inter
procedural edges from the graph leaving only the intra procedural
edges, with some exceptions, in the graph. Without edges between



Enhancing Control Flow Graph Based
Binary Function Identification ROOTS, November 16–17, 2017, Vienna, Austria

...

...
...

ret

...

ret

...

ret

...

Figure 3: Leaf Node Inlining

functions the ICFG can be split into weakly connected components,
each representing one function.

Once the components have been identified their entry blocks
have to be determined. Scanning over the instructions of all basic
blocks reveals direct calls using the call instruction. Basic blocks
targeted by these calls are expanded to full functions by following
control flow edges until a weakly connected component is formed.
After this step all components building a directly called function
are known.

In a last step an attempt is made to find unreachable functions
(e.g. functions that are never called) and indirect calls by expanding
all basic blocks that do not belong to any function into one like in
the step before. Finally, the entry point of the function is determined
using different heuristics.

3.2 Function Identification
After recognizing functions within the target binary, our algorithm
to identify known functions in unknown binaries is performed. It
consists of four steps (Reconnaissance, Normalizing, Graph Match-
ing, and Proximity Analysis) which we describe in the following.

3.2.1 Reconnaissance. In a first step, we use Nucleus (a) to solve
the base problem of finding functions in a particular binary and (b)
to obtain the boundaries of the basic blocks of each function. We
slightly modified Nucleus to extract additional information, such
as the number of instructions in each basic block. However, the
core functionality and the algorithm remain untouched. With this
information at hand, a function can be represented as a set of basic
blocks associated with additional meta information. In context of
our work, this additional meta information currently comprises
two features: First, a list of called targets (if any), and second the
number of instructions. This list of features can be extended to
allow for a more exact matching or even to loosen up the strict
matching. Based on the information recovered by Nucleus and the
intra procedural edges a CFG is generated for each function.

3.2.2 Normalizing. Once the CFG and the features have been
extracted from the binary by Nucleus the resulting data is trans-
formed during a normalization step to allow for a more versatile
matching. Concretely, the function graphs are transformed in two
ways:

First, in an attempt to cope with different compiler and opti-
mization levels leaf vertices in the CFG are duplicated and then
merged into the respective preceding basic block(s). The reason
is that gcc with optimization level one tends to create a common
sink when control flow should return from a function, while clang

Figure 4: Graphs compared against the first one, color and
shape of a node indicate different meta data

using optimization level two emits multiple nodes from which the
function might return. To increase the probability of a successful
match leaf nodes are duplicated and merged into blocks which only
have the (returning) leaf vertex as descendant. The resulting basic
block does not exist in this way in the binary but it is semantically
equivalent to the version consisting of the two merged blocks. In
this step meta data from both blocks is coalesced as well to keep
the block size and other measures consistent. This procedure is
illustrated in Figure 3.

The second transformation being performed concerns merging
of some nodes. In many cases the generated function CFGs contain
basic blocks that have only one ancestor. If such a block does not
have any other incoming edges, both basic blocks can be merged.
In particular, such mergeable blocks occur for two reasons:

First, Nucleus treats function calls as exits from a particular basic
block, resulting in blocks immediately ending after call instruc-
tions. Furthermore, if two calls to side effect free functions do not
depend on each other then their order in the binary does not matter
for the correctness of the function result. Consequently, both calls
could be emitted at compile time in any order. Merging these two
nodes allows the graph checker to account for compiler introduced
function call reordering.

Second, distinct basic blocks can be mergeable because of jmp
instructions: A basic block targeted by a direct, unconditional jump
can be merged into its ancestor if the edge represented by the
jump is the only connection of the ancestor and descendant. Since
the next instruction after these kind of jumps is always the same,
both blocks can be seen as one large block since the sequence of
instructions executed is always the same regardless of the presence
of the control flow change. It is important to note that merging only
occurs if the block targeted by the jump has no other incoming
edges, like the fall through edge of conditional jumps and jumps in
general.

The purpose of the normalizing step is to make the matching
phase more resistant while matching across different compilers,
compiler versions, code generation strategies, optimization levels,
or binary versions. However, normalization introduces ambiguities
that can decrease the rate of successful matches. Therefore, in case
the exact version of a binary is known, the normalization step can
be omitted.

3.2.3 Graph Matching. Once the CFGs of all functions have
been determined and (optionally) normalized, the actual matching
of functions is performed. For two CFGs to be considered similar,
they not only have to be isomorph, but also the meta data of the



ROOTS, November 16–17, 2017, Vienna, Austria Clemens Jonischkeit and Julian Kirsch

Algorithm 1: Finding an isomorph mapping between
graphs
1 function match (n1, n2, mapping);
Input :One Node from each graph n1, n2, and a mapping

between the nodes of the graphs
Output :A list of mappings between nodes of the graphs

2 nMap := mapping;
3 if n1 < mapping.keys() then
4 if !check(n1, n2) || mapping (suc1 n1) ⊈ suc2 n2 then
5 return [];
6 end
7 nMap := mapping ∪{(n1,n2)};
8 end
9 sN1 := [a | a ← suc1 n1, a < nMap.keys()];

10 sN2 := [a | a ← suc2 n2, a < nMap.elems()];
11 if sN1 = [] then
12 if nMap (suc1 n1) = suc2 n2 then
13 return [nMap];
14 else
15 return [];
16 end
17 end
18 nxt := concat([match(sN1.first(), tar, nMap) | tar← sN2]);
19 return concat([match(n1, n2, resMap) | resMap← nxt]);

basic blocks has to match. For example, in Figure 4 the first, third,
and fourth graphs are isomorph, but the third one has a rectan-
gle node representing different meta data. Consequently only the
first and fourth graphs are considered similar by our algorithm.
As mentioned earlier, meta data involved in this step can be any
metric collected by Nucleus during the Reconnaissance phase. In
our concrete implementation, the number of instructions forming
the basic block and the number of calls and their targets are consid-
ered. To enable matching among different compilers, the number
of instructions is not required to be exactly the same, but rather
within a similar magnitude. A measure found to be working de-
cently for the considered cases is ±25% of the size of the bigger
block. The number of calls is checked strictly, meaning that there
must be the same amount of calls for matching basic blocks, and
call targets have to be consistent within one function: If a function
signature dispatches calls to the same target from multiple basic
blocks, matching only succeeds if the call targets in the basic blocks
observed in the unknown code are consistent. Our algorithm to
find an isomorph mapping between nodes of two graphs д1 and д2
makes two assumptions. The function has only one entrypoint, and
second all nodes are reachable from the entrypoint. Algorithm 1
shows pseudocode of our implementation. It is initially called with
the entry points as n1 and n2 and an empty mapping. suc1 returns
the list of descendants of a node n in д1, likewise suc2 returns a
list for the descendants in д2. Check implements the before men-
tioned comparison of meta data. The algorithm performs a depth
first search parallel in both graphs. Under the assumptions made,
this function is called at least once for every node in the graphs.
Already matched nodes are excluded from sN1 and sN2, so that

recursive calls either have two unmatched nodes as parameters
or n and f (n), resulting in an one to one mapping. When there
are no unmatched descendant left, the mapping is tested to ensure
∀n ∈ V (д1).(n1,n) ∈ E(д1) ↔ (f (n1), f (n)) ∈ E(д2). Since all nodes
have to be visited the function terminates and returns a non empty
list iff ∀n,m ∈ V (д1).(n,m) ∈ E(д1) ↔ (f (n), f (m)) ∈ E(д2)

3.2.4 Proximity Analysis. To improve the matches obtained by
the constrained version of graph isomorphism (i.e. to rule out
further false positives) the interprocedural call graph is analyzed.
Specifically, the number of called functions of all descendants of
the current function and the (isomorph) candidate function from
the signature database are compared. If the numbers do not match,
we assume that the currently analyzed function does not fit into
the same location of the interprocedural call graph as the candidate
function.

In case of equivalence, isomorphism of the graphs of all descen-
dants of the current function all their corresponding descendants
from the signature is checked. This can be interpreted as a unique
recursive application of the first three steps of the algorithm to all
descendants of the current function. Only if this step succeeds, the
current unknown function gets assigned the symbolic name from
the function contained in the database.

If the last step fails, however, this is due to either an additional
or a missing function call in the descendants. Both possibilities
imply that at least one function down the call graph has changed
on source code level, as different compiler or optimization levels,
apart from function inlining, would leave the interprocedural call
graph intact.

Note that recursively checking isomorphism of all descendants
for more than one level in the interprocedural call graph (i.e. check-
ing isomorphism of descendants of descendants) turned out to be
practically not feasible in our implementation.

Any match that passes all tests of the algorithm is assumed to be
correct. As we try to avoid false positives (wrongly labelled func-
tions), we require matches to be unique across all candidates from
the database. An example where this is problematic are the strcpy
and stpcpy functions from glibc. Both functions copy strings, but
the former returns a pointer to the beginning whereas the latter
returns a pointer to the end of the copied string. These small se-
mantic differences can not be detected, resulting in both functions
to look the same to our algorithm. We present a list of all matching
candidates to the reverse engineer for manual analysis, if desired.

4 EVALUATION
We tested our approach on a diverse set of binaries from different
open source projects, that can be seen in Table 5: nginx1, a popular
web server, the reference implementation of the interpreter of the
python2 programming language, and finally the GNU C library
glibc3. We compare the results of our approach to Diaphora, a
function identification toolkit implemented as an extention to the
Interactive Disassembler (IDA).

For each step in the evaluation, we generate a signature database
from one binary, and then try to match the graphs contained in

1https://nginx.org/en/
2https://www.python.org/
3https://www.gnu.org/s/libc/



Enhancing Control Flow Graph Based
Binary Function Identification ROOTS, November 16–17, 2017, Vienna, Austria

Project Versions

nginx 1.10.3, 1.12.1
libc 2.15, 2.19, 2.21, 2.23, 2.24
python 3.4.0 - 3.6.2

Figure 5: Version numbers of open source projects used dur-
ing the evaluation

the signature database to the graphs extracted from the second
binary. Note that (part of) our algorithm is used for both steps:
first to generate the signature database, and afterwards to match
the functions from the database to the candidate functions of the
second binary.

We obtain ground truth from symbol data attached to the binaries
itself. If a match is found, the label attached to the target function
is compared to the symbol name indicated by the signature. If the
name is identical, then the match is assumed to be correct. Leaving
the symbol data attached to the binary adds no bias to the matching
as symbol data is completely disregarded by our algorithm and only
serves to verify the results.

As mentioned before, if a function could not be uniquely iden-
tified, all possible matches are presented to the reverse engineer.
Depending on the demand for unique matches the result is consid-
ered a true positive or false negative. In the results of our evaluation,
we indicate numbers for both operation modes of the algorithm
(unique and non-unique). If the correct label is not among the
presented ones, the data point is treated as a false positive.

To quantify the results, we use the common notion of precision
and recall. Precision is the number of true positives TP divided by
the sum of true positives and false positives FP

Precision =
TP

TP + FP

whereas the recall rate isTP divided byTP plus the number of false
negatives FN

Recall =
TP

TP + FN
.

4.1 Sample Set Selection
As the central criterion in Algorithm 3.2 for considering two func-
tions similar is graph isomorphism, it is evident that our approach
requires a certain degree of complexity of the control flow graphs
of the functions during matching.

To develop an understanding of the minimum required com-
plexity, we applied the algorithm successively to one glibc and one
python binary, where in each step the group of functions consisting
of the smallest amount of basic blocks was removed. This effectively
creates artificial sets in which only the functions with high amounts
of basic blocks (and therefore higher complexity) are contained.

Figure 6 shows how the functions are distributed over the num-
ber of Nodes. The graph clearly shows that a non-negligible number
of functions consists of less than 10 basic blocks. A second inter-
esting observation is that there exist more functions with one or

1 10 100
0

1,000

2,000

Basic Blocks (#)

Fu
nc
tio

ns
(#
)

0

20

40

60

80

100

Pr
ec
is
io
n
(%
)

Normalized
Original
Precision

Figure 6: Distribution of function sizes measured in basic
blocks, and precision of the algorithm performed on python
and glibc

three basic blocks as there are with two, and that normalization
amplifies this difference. The reasons for this is that for a function
to consist of exactly two basic blocks, it either has to contain a
loop or do a call. As a call only has one successor in the CFG of
the function both basic blocks will be merged into one during nor-
malization. Functions with a small number of basic blocks are very
restricted in the diversity of their CFG and matching becomes less
precise.Matching of these small functions can therefore not be done
in meaningful way using only graph isomorphism.

For our approachwe therefore set an artificial lower bound of five
basic blocks for a function after the normalization step. All functions
that fall below this threshold are disregarded in the evaluation. In
our experience, this bound decreases the number of functions that
can be handled by the algorithm by about a third, depending on
the binary. In the following parts of the evaluation the recall rate
is calculated on the base of the number of functions that are large
enough. The set of functions with enough basic blocks that can also
be found in the target binary is the set of all possible matches.

4.2 Normalization Effects
To understand the effects of the (optional) normalization step of our
algorithm, we performed matching on all tested pairs of binaries
twice, once with normalization enabled and once with normaliza-
tion disabled.

In Figure 7 we can see the results of matching glibc and python
against all other versions in a pair-wise fashion. Specifically, we
matched each binary against each other binary, and computed the
arithmetic mean over all obtained numbers. The python binaries
were build using gcc version 7.2.0 on optimization level ’-O3’ and the
libc binaries were obtained from ubuntu packages like mentioned
earlier.Here we observe that the normalization has no positive
impact on the matching. For example, the number of true positive
matches (regardless of their uniqueness) decreases by 4.5 percentage
points from 48.4% to 43.9% for glibc when turning on normalization.

The resulting precision for this test amounts between 95 and 99
percent, with the precision being slightly worse in case normaliza-
tion was performed.

To understand the effects of normalization when using different
compilers and optimization levels to compile the same program,



ROOTS, November 16–17, 2017, Vienna, Austria Clemens Jonischkeit and Julian Kirsch

0 20 40 60 80 100

python
python (n.)

python (Dia.)
libc

libc (n.)

16.8
17.6

15.4
15.2

45.3
44.7

80.9
33
28.7

1.4
1.4

21.1
0.9
0.8

Average Matched functions (%)

false positive correct (unique) correct

Figure 7: Sum of false and true positives relative to all pos-
sible matches, with unique and non-unique matches sepa-
rated, (n.) indicates that normalizationwas active during sig-
nature matching. The results of Diaphora are marked with
(Dia.). Numbers are arithmetic means of all runs matching
one program version to all other versions of the same pro-
gram.

we compiled nginx and python with gcc versions 6 and 7 and clang
version 4.0.1, and with optimization levels 1, 2, and 3.

Figure 8 depicts the results for python and nginx built with differ-
ent compilers and options. The numbers indicate that normalization
improves the recall rate notably, but also introduces additional false
positives. While the recall rate is doubled for comparing binaries
compiled with -O1 with their -O2-counterparts, the overall recall
rate of 3.5% of the underlying graph matching algorithm is still low.

While Diaphora was able to correctly identify many more func-
tions than our approach, it also produced considerably more false
positives. While our approach achieved a precision of 78% compar-
ing functions on optimization levels ’-O1’ and ’-O2’, Diaphora only
had 31%.

4.3 Performance
Runtime was not a focus point for this approach, subsequently
the analysis can be rather costly. Matching different versions of
the libc took five seconds, while matching the about 19000 func-
tions of the opencv library took about three minutes when running
single-threaded on an Intel Core i5-3550M @ 3.10Ghz. The only ob-
served abnormal runtime, where the naïve implementation of graph
isomorphism timed out was the implementation of the strftime
function consisting of a large switch statement implemented by a
jump table with 123 entries. This case occurs once within our set of
about 34000 different functions, so we conclude that this explosion
in runtime is an exception. All other (smaller) switch statements
were handled seamlessly.

5 DISCUSSION & FUTUREWORK
While the results presented in the evaluation look promising, the
limitations of the approach can be clearly seen as well. Differences
in the compiler seem to have the highest impact to the recall rate.
This can be even severe enough to render this approach useless
in some circumstances. In the following, we highlight the most
common reasons preventing successful graph based matching, and
give ideas on how to overcome the limitations of our approach.

5.1 Compiler Code Generation Habits
Difficulties to this approach mainly arise from the code genera-
tion habits of compilers while translating different aspects of the
program.

A switch statement for example can be implemented as a binary
search tree, or by performing a relative (or absolute) jump based
on values taken from a jump table generated at compile time. The
method and layout used are dependent on the compiler, the value
ranges on which the switch operates on, and the optimization level.

Loop unrolling is another optimization employed by compilers
with severe consequences to the CFG. Here, knowledge about a
loop is used to unfold the loop body into a sequence of statements,
eventually getting rid of the loop entirely. All these techniques
distort the CFG and impede a graph isomorphism based approach
to identify functions.

5.2 Cross-Architecture Matching
Further problems arise from the availability of instructions for a
certain Instruction Set Architecture (ISA). For example, a short
if—then-statement only setting a variable for example can be im-
plemented in different ways. The straightforward way to implement
this is to let the compiler emit an explicit check of the condition
followed by a conditional jump skipping the body of the if-branch.
On the other hand, RISC architectures like ARMv7 provide predi-
cated instructions, which can commonly be emitted by compilers
to implement if-statements. This constitutes a problem for graph
based function matching across different architectures, as one im-
plementation introduces an additional edge to the CFG, whereas
the other implementation leaves this jump implicit. Even worse,
with the availability of conditional move instructions (i.e. cmovz)
the problem can also occur when comparing code from different
compilers or different optimization levels on the same (x86) ar-
chitecture. Conceivably, this issue could be addressed by adding
another normalization step which—depending on the presence of
conditional instructions—creates a new basic block containing the
corpus of the if statement and inserts a new edge into the CFG.

More subtle ways of ISAs to differ are branch prediction and
cache coherency. Advanced compilers like gcc or clang can take
these differences into account to create code optimized for the exact
platform. This is also a factor preventing machine independent
function matching.

5.3 Obfuscation Resistance
Another limitation is that no semantic analysis of the code is per-
formed in any way. Functions that differ in the control flow graph
but have the same semantics are unlikely to get matched by our
algorithm as the normalization steps are insufficient. For example,
machine code obfuscation is a common scenario where (typically)
semantics preserving changes are made to the CFG. Inserting jumps
that are never taken (so-called Bogus Control Flow) distorts the CFG
sufficiently such that functions do not match any more. These
problems can be addressed by improving the normalization and
preprocessing step:While matching functions based on their seman-
tics is not possible in the general case, functions without backward
edges could be semantically checked for equivalence, as they are
guaranteed to terminate.



Enhancing Control Flow Graph Based
Binary Function Identification ROOTS, November 16–17, 2017, Vienna, Austria

0 10 20 30 40 50 60 70 80 90

-O2, -O3 (Dia.)
-O2, -O3 (n.)

-O2, -O3

-O1, -O2

-O1, -O2 (Dia.)
-O1, -O2 (n.)

clang, gcc
clang, gcc (n.)

gcc7, gcc6
gcc7, gcc6 (n.)

Average Matched functions (%)

false positive correct (unique) correct

Figure 8: Sum of false and true positives relative to all possible matches, with unique and non-unique matches separated,
(n.) indicates that normalization was active during signature matching. Results of Diaphora are marked with (Dia.) The tests
performed compare the effects of using different compilers and optimization levels on normalization. Numbers are arithmetic
means obtained while matching nginx and python

Another improvement can be made by employing a fine grained
semantic analysis at basic block level to reveal more subtle differ-
ences of blocks that are indistinguishable by other measures. This
however would be costly and should only be employed if otherwise
there would be exponentially many possible matches, or as a re-
fining step after the matching to resolve non unique matches. One
example where this idea could be employed is to solve the prob-
lem arising from jump-table-based switch statements containing
many entries, that most likely caused a timeout while matching
one particular function.

6 RELATEDWORK
Compiler like gcc and clang produce a deterministic instruction
stream to allow reproducibility of software build. Together with
the use of calling conventions function entry points have a pre-
dictable pattern. Building upon these principals, a byte signature
based approach for identifying functions has been created. The first
attempt towards identifying library routines in binary executables
was published in 1998[? ] by Van Emmerik. The method proposed
hashes the first few bytes of a function to quickly match byte se-
quences against known library functions. Before any function can
be successfully matched, a pattern database has to be build up. This
is done before analyzing the target binary by examining known
libraries and object files that contain the functions together with
identifying symbols. From these symbols the start of the functions
in the binary can be determined and subsequently patterns are
derived from the functions. Later, these patterns can be used on
unidentified functions during the analysis of a target binary. A
famous implementation that follows this idea is implemented in
the well known Interactive Disassembler (IDA)4 and called ’Fast
Library Identification and Recognition Technology’ (F.L.I.R.T).

4https://www.hex-rays.com/products/ida/

Shirani et al. propose BinShape [? ], an approach that shares
some parts with our method: In a first step functions are detected
and features about them are extracted. These features include the
CFG, instruction level features like the number of calls, as well as
general statistical features. Now the approaches diverge, while we
do a costly analysis based on the function graph, they propose to
use machine learning to generate possible matches. As no source
code has been published an evaluation and direct comparison was
not possible.

BinDiff5 has to be noted in the context of function identification
as well. It is implemented as a plugin for IDA and employs a wide
variety of different measures to identify functions. It builds up a
diverse list of attributes per function including callgraph and CFG
related ones. Some normalization is applied to the CFG like in our
approach, leaf inlining is not[? ? ]. These attributes are then used
to find functions across binaries.

Diaphora6 is similar to BinDiff as it also builds upon IDA and
uses a wide variety of measures.

Compared to the mentioned approaches above, the central idea
of our method is to use additional normalization steps prior to
performing graph based matching, as well as the use of basic block
level information during the matching.

7 CONCLUSION
While the original goal was to create an algorithm that can match
functions between different compiler versions to some extent, the
result shows that even for small functions compiler output varies
greatly. While the proposed transformations have a positive impact
in these circumstances, even doubling the amount of matches in
some occasions, the number of functions identified across different
compiler versions (amounting about one percent) is rather insignif-
icant. Matching in these cases worked best with gcc and clang both
5https://www.zynamics.com/bindiff.html
6http://diaphora.re/

https://www.hex-rays.com/products/ida/
https://www.zynamics.com/bindiff.html
http://diaphora.re/


ROOTS, November 16–17, 2017, Vienna, Austria Clemens Jonischkeit and Julian Kirsch

operating on optimization level -O3. We conclude that further trans-
formations are required to unify the control flow graphs to further
improve matching results.


	Abstract
	1 Introduction
	2 Background
	2.1 Basic Blocks
	2.2 Graph Theory and Terminology

	3 Graph-Based Function Identification
	3.1 Function Recognition
	3.2 Function Identification

	4 Evaluation
	4.1 Sample Set Selection
	4.2 Normalization Effects
	4.3 Performance

	5 Discussion & Future Work
	5.1 Compiler Code Generation Habits
	5.2 Cross-Architecture Matching
	5.3 Obfuscation Resistance

	6 Related Work
	7 Conclusion

