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Radiometric homogenisation of aerial images by calibrating with satellite 

data 

The use of very high resolution (VHR) aerial imagery for quantitative remote sensing 

has been limited by unwanted radiometric variation over temporal and spatial extents.  

In this paper we propose a simple yet effective technique for the radiometric 

homogenisation of the digital numbers of aerial images.  The technique requires a 

collocated and concurrent, well-calibrated satellite image as surface reflectance 

reference to which the aerial images are calibrated.  The bands of the reference satellite 

sensor should be spectrally similar to those of the aerial sensor. Using radiative transfer 

theory, we show that a spatially varying local linear model can be used to approximate 

the relationship between the surface reflectance of the reference image and the digital 

numbers of the aerial images.  The model parameters for each satellite pixel location 

are estimated using least squares regression inside a small sliding window.  The 

technique was applied to a set of aerial images captured over multiple days with an 

Intergraph Digital Mapping Camera (DMC) system.  A near-concurrent Moderate 

Resolution Imaging Spectroradiometer (MODIS) nadir bidirectional reflectance 

distribution function (BRDF) adjusted reflectance image was used as the reflectance 

reference dataset.  The resulting DMC mosaic was compared to a near-concurrent 

Satellite Pour l’Observation de la Terre (SPOT) 5 reflectance image of a portion of the 

same area, omitting the blue channel from the DMC mosaic due to its absence in the 

SPOT 5 data.  The mean absolute reflectance difference was found to be 3.43% and the 

mean coefficient of determination (R2) over the bands was 0.84.  The technique allows 

the production of seamless mosaics corrected for coarse scale atmospheric and BRDF 

effects and does not require the manual acquisition (or provision) of ground reflectance 

references.  The accuracy of corrections is limited by the resolution of the reference 

image, which is generally significantly coarser than VHR imagery.  The method cannot 

correct for small scale BRDF or other variations not captured at the reference 

resolution.  Nevertheless, results show a significant improvement in homogeneity and 

correlation with SPOT 5 reflectance. 

Keywords: aerial images; radiometric calibration; surface reflectance; BRDF 

correction; atmospheric effects; mosaic  
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1 Introduction 

Very high resolution (VHR) aerial and drone imagery is increasingly being used in remote 

sensing studies.  The high spatial resolution of these images enables analyses on a finer 

spatial scale than most satellite-based platforms can provide and consequently allows the 

exploitation of information such as texture, object-based features and unmixed pixel spectra 

that is not available in lower resolution images (Markelin et al. 2012; Collings et al. 2011; 

López et al. 2011; Chandelier and Martinoty 2009; Honkavaara et al. 2009).  Accurate 

geometric calibration techniques for producing orthorectified images are well established and 

form part of typical aerial imagery processing workflows (Chandelier and Martinoty 2009).  

Because aerial image mosaics are commonly produced for the purpose of visual 

interpretation, techniques such as dodging and lookup tables (LUTs) are often used to 

produce smooth and visually appealing results (López et al. 2011).  This kind of adjustment 

can damage the spectral information content and is not suited to quantitative remote sensing.  

Also, spatial and temporal radiometric variations in aerial imagery limit the spatial and 

temporal extents to which quantitative remote sensing techniques can be successfully applied 

(Markelin et al. 2012). Ideally, quantitative analyses should be carried out on reflectance 

values.  Atmospheric influences, bidirectional reflectance distribution function (BRDF) 

effects and sensor variations all contribute to radiometric variations in the imagery.  To 

obtain surface reflectance, these radiometric variations must be removed, or reduced as far as 

possible.  Transformation to surface reflectance is beneficial, as, unlike at-sensor quantities or 

surface radiance, surface reflectance is invariant to changes in atmospheric conditions and 

viewing geometry.  This allows the surface reflectance data to be used in physical models, 

fused with other reflectance data and used in multi-temporal studies (Downey et al. 2010; 

Vicente-Serrano, Pérez-Cabello, and Lasanta 2008).   
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There is some confusion and ambiguity around the use of reflectance terminology in 

the literature (Schaepman-Strub et al. 2006).  In this paper, ‘surface reflectance’ is used to 

refer to the nadir BRDF-adjusted reflectance (NBAR) measurement provided by the 

Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43 BRDF/albedo products.  

NBAR is the bidirectional reflectance factor normalised to local solar noon and viewed at 

nadir.  It is worth noting that it is not possible or practical to correct for all the sources of 

radiometric variation in aerial imagery.  The surface reflectance in most so-called ‘corrected’ 

or ‘calibrated’ images is only an approximation of the actual value. 

 

A number of techniques for the correction of BRDF effects are available, including 

the popular kernel-based method (Roujean, Leroy, and Deschamps 1992).  Approaches based 

on radiometric transfer modelling, such as Atmospheric/Topographic Correction (ATCOR) 

(Richter 1997), Moderate Resolution Atmospheric Transmission (MODTRAN) (Berk et al. 

1999) and Second Simulation of a Satellite Signal in the Solar Spectrum (6S) (Vermote et al. 

1997) are used for atmospheric correction.  While these atmospheric and BRDF correction 

methods are effective on single images (Markelin et al. 2012), blocks of multiple aerial 

images present unique challenges.  The large field of view of aerial imaging cameras causes 

the viewing geometry to vary significantly within images (Lelong et al. 2008).  Aerial 

campaigns are usually carried out over multiple days, resulting in significant variation in 

BRDF and atmospheric conditions.  Each land cover also has its own unique BRDF and 

corrections should ideally model each of these covers separately (Collings et al. 2011; 

Honkavaara et al. 2009).  Aerial campaigns can also consist of thousands of images, making 

it impractical to apply time-consuming atmospheric and BRDF correction models to every 

image (López et al. 2011).    Even if it was practical, remnant radiometric variation due to the 
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inexact nature of BRDF and atmospheric corrections will result in discontinuities, or seam 

lines, between adjacent images (S. Gehrke and Beshah 2016). 

 

Approaches to calibrating mosaics of aerial imagery are receiving increasing attention 

(Chandelier and Martinoty 2009; Downey et al. 2010; Collings et al. 2011; López et al. 2011; 

S. Gehrke and Beshah 2016).  Collings et al. (2011) introduced an empirical spatially varying 

model to perform combined atmospheric and BRDF correction.  Land cover is assumed 

uniform in each image, resulting in a per-image BRDF parameterisation.  The parameters of 

the model are solved by minimising a cost function that considers the internal accuracy of 

each image, similarity of overlapping image regions and smoothness (i.e. the lack of seam 

lines) of the mosaic.  In a second stage the entire mosaic is calibrated to absolute reflectance 

using specially placed ground targets with known reflectance.  In Chandelier and Martinoty 

(2009) a simple semi-empirical three parameter model of combined atmospheric and hot spot 

BRDF effects is fitted for each image by minimising the difference between ‘radiometric tie-

points’, a selection of points in the overlapping image regions.  It is a relative calibration 

method and no adjustment to absolute reflectance is made.  López et al. (2011) apply 

theoretical atmospheric and semi-empirical BRDF kernel models using field-acquired 

spectral data.  Gehrke (2010) uses standard atmospheric and BRDF methods, followed by a 

relative radiometric normalisation step using invariant points in overlapping regions to 

smooth the mosaic.  A new radiometric normalisation method for heterogeneous image data, 

presented in Gehrke and Beshah (2016), improves on that of Gehrke (2010).  The 

shortcomings of existing atmospheric and BRDF image adjustments are corrected using a 

spatially varying linear model.  Model parameters are found at points in overlapping image 

regions and then interpolated into the remainder of the images. 
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A disadvantage of the aerial mosaic calibration techniques described above is their 

complexity and need for known ground references to achieve transformation to absolute 

surface reflectance.  A number of the techniques also assume uniform BRDF characteristics 

within an image (Collings et al. 2011; Chandelier and Martinoty 2009; López et al. 2011).  

The options of placing targets of known reflectance to be captured as part of the mosaic or 

measuring the reflectance of suitably invariant sites on the ground are often not possible or 

practical.  Many applications make use of archived imagery that had been captured prior to 

the commencement of the research and for which concurrent ground measurements are 

consequently not possible.  Another approach is to make use of vicarious calibration 

involving knowledge of the spectral characteristics of specific ground sites, but this is 

recognised as being labour-intensive and costly (Gao et al. 2013; Chander, Meyer, and Helder 

2004; Liu et al. 2004).   

 

In this paper, we propose a method of homogenising aerial imagery to coarse scale 

surface reflectance by calibrating to a concurrent and collocated satellite image that has been 

corrected for atmospheric and BRDF effects.  Satellite programmes such as MODIS make 

such coarse-resolution surface reflectance products freely available.  The proposed method 

avoids the need to perform atmospheric and BRDF corrections explicitly.  It also does not 

require the placement of known reflectance targets or field spectral measurements, which can 

be impractical, error-prone and time-consuming in many instances.  The technique was 

applied to a large set of aerial images captured with an Intergraph Digital Mapping Camera 

(DMC).  A near-concurrent MODIS MCD43A4 NBAR product was used as the reflectance 

reference dataset.  The resulting DMC mosaic was compared to a near-concurrent Satellite 

Pour l’Observation de la Terre (SPOT) 5 reflectance image of the same area.   
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2 Methods 

2.1 Formulation of the Local Linear Model 

The proposed method is based on approximating combined BRDF, atmospheric and sensor 

effects as a spatially varying linear relationship between surface reflectance and sensor 

measurement.  Similar local linear relationships are used by Chandelier and Martinoty 

(2009), Collings et al. (2011) and Gehrke and Beshah (2016) for the radiometric correction of 

aerial image mosaics.  In this section, we show that a spatially varying linear model is 

supported by radiative transfer theory.  

 

Following the notation of López et al. (2011), the digital number (DN) measurement 

of an aerial sensor for each band can be expressed as: 

DN = 𝑐0𝐿s + 𝑐1 (1) 

where 𝐿s is the radiance at the sensor and 𝑐0 and 𝑐1 are coefficients determined by the 

characteristics of the sensor.  The proposed method requires the sensor radiance response to 

be linear; it should first be corrected for any non-linearity where this is not the case.  The 

radiance at the sensor is expressed as:   

𝐿s =
𝜌s𝐸scos𝜃

π
 (2) 

where 𝜌s is the reflectance at the sensor, 𝐸s is the irradiance at the sensor, and 𝜃 is the solar 

zenith angle.  The reflectance of a uniform Lambertian surface at the sensor is described by 

the radiative transfer equation (Vermote et al. 2006):  
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𝜌s = 𝜌a +
𝜌t

1 − 𝑆𝜌t
udg (3) 

where 𝜌a is the intrinsic atmospheric reflectance, 𝜌t is the surface reflectance and 𝑆 is the 

atmospheric albedo. u and d are the atmospheric transmittances due to molecular and 

aerosol scattering between the surface and sensor and between the sun and the surface 

respectively, and g is the global atmospheric transmittance due to molecular absorption.  It is 

common for aerial surveys to be conducted on clear days (Chandelier and Martinoty 2009).  

This was the case for the imagery used in our study.  In clear sky conditions, the atmospheric 

albedo, 𝑆, is typically around 0.07 (Manabe and Strickler 1964).  With a small value for 𝑆 

and a maximum value of one for 𝜌t, the denominator in Equation (3) is approximately one 

and the reflectance at the sensor can be approximated as: 

𝜌s ≃ 𝜌a + 𝜌tudg (4) 

Equations (1), (2) and (4) express the relationship between the sensor measurement, 

atmospheric conditions and the surface reflectance.  With the approximation of Equation (4), 

there is a linear relationship between surface reflectance and the sensor measurement.  This 

linear relationship can be expressed as: 

DN = 𝑀𝜌t + 𝐶 (5) 

where 

𝑀 =
1

π
𝑐0udg𝐸scos𝜃 (6) 

and 
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𝐶 = 𝑐1 +
1

π
𝑐0𝜌a𝐸scos𝜃 (7) 

The parameters 𝑀 and 𝐶 are spatially varying functions of the viewing geometry and 

atmospheric conditions.  Implicit in any radiometric calibration technique is an 

approximation of these parameters so that the relationship can be inverted.  A discussion of 

pertinent model assumptions is provided in the following section.   

 

2.2 Parameter Estimation 

In our proposed method, we solve for 𝑀 and 𝐶 of the aerial sensor using a reference estimate 

for the surface reflectance parameter, 𝜌t
ref, obtained from a well-calibrated satellite image.  

The reference surface reflectance image should have been captured at a similar time to the 

uncalibrated aerial image(s).  The spatially varying property of the model allows the 

reduction of atmospheric effects that vary during aerial campaigns.  The time difference 

between the reference and uncalibrated aerial images should, however, be small enough to 

avoid phenological or structural land cover changes.  Such changes cannot be accounted for 

by the proposed method and will lead to errors (local to the area of change) in the calibrated 

result.  In this study we use a 16 day composite reference image comprised of data from 25 

January to 9 February 2010 and aerial images captured over multiple days between 22 

January and 8 February 2010.  

   

Least squares estimates of 𝑀 and 𝐶, for the aerial sensor, are found for each pixel of 

the reference image inside a sliding window.  Equation (5) can be rewritten in vector form, 

using the reference surface reflectance, 𝜌t
ref, for the pixels inside a sliding window.  
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𝑫𝑵 = 𝑀𝝆t
ref

 
+ 𝐶1 (8) 

where 𝝆t
ref and 𝑫𝑵 are column vectors of the N values inside the sliding window and 1 is a 

column vector of ones of length N.  𝝆t
ref is obtained from the reference image and 𝑫𝑵 from 

the uncalibrated aerial image(s).  The parameters can then be estimated as follows:   

[
𝑀
𝐶

] = [𝝆𝑡
𝑟𝑒𝑓

    1]−1(𝑫𝑵) (9) 

In this form, the sliding window should consist of at least two pixels to solve for the 

two parameters.  In order to accommodate the differing spatial resolutions, 𝑀 and 𝐶 must be 

found at the reference spatial resolution, resampled to the aerial spatial resolution, and then 

used to estimate surface reflectance at this resolution by inverting the relationship of 

Equation (5).  The choice of the sliding window size involves a trade-off between the 

accuracy and effective spatial resolution of the estimated radiometric correction parameters, 

M and C.  In essence, it is the typical parameter estimation trade-off between bias and 

variance or under- and over-fitting (Webb 2002).  Larger sliding windows will be less 

susceptible to over-fitting on noisy data, while smaller sliding windows will provide higher 

spatial resolution correction parameters.  The choice of sliding window size for the case study 

is discussed in Sections 2.5 and 3.4, and the effect of varying the sliding window size is 

investigated in Section 3.4.   

 

The reference image will typically be at a substantially lower spatial resolution than 

the aerial imagery.  BRDF corrected surface reflectance products, such as those produced 

from MODIS and Multi-angle Imaging SpectroRadiometer (MISR), have resolutions of the 

order of 500 m while aerial images usually have resolutions of 2 m or higher.  This large 
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resolution discrepancy affects the accuracy of the results.  While the Equation (5) model 

applies to an aerial pixel, M and C are estimated at the reference resolution before resampling 

them to the aerial resolution.  The reference resolution is only sufficient to capture gradual 

changes in BRDF and atmospheric conditions.  Real BRDF can vary significantly over short 

distances where land cover is heterogeneous.  This type of small scale BRDF variation is not 

captured at the resolution of the reference image and cannot be corrected for by the method.  

The theoretical formulation of Section 2.1 is intended to lend support to the use of the local 

linear model.  It is acknowledged that the model involves a number of approximations and 

simplifications.  These include ignoring adjacency effects and BRDF coupling with 

atmospheric effects (Vermote et al. 2006).  We regard these approximations as necessary 

limitations of the method.  Related methods make similar assumptions about BRDF 

homogeneity, often assuming a per-image BRDF model (Collings et al. 2011; Chandelier and 

Martinoty 2009; López et al. 2011) and also using simplified local linear models for 

approximating radiative transfer (Chandelier and Martinoty 2009; Collings et al. 2011; S. 

Gehrke and Beshah 2016).    

 

2.3 Incorporation of Viewing Geometry and Relative Spectral 

Response Effects 

The formulation of the local linear model in section 2.1 does not consider the effect of 

viewing geometry and relative spectral response (RSR) differences between the aerial and 

reference images.  In this section, we show that these effects can also be modelled as locally 

linear relations, which can then be combined with Equation (5) to form a single linear relation 

between 𝜌t
ref of the reference image and DN of the uncalibrated aerial image(s).   These 

combined effects are thus still approximated by a spatially varying linear model with 

parameters as estimated with Equation (9).    
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The surface reflectance in Equation (4) represents the simplified case of a Lambertian 

reflector (i.e. it reflects equally in all directions), but in practice is subject to BRDF effects 

and so also varies with the viewing geometry (i.e. spatially) as in Equation (10).   

𝜌t = 𝑓(𝜉) (10) 

where 𝑓 is the BRDF and 𝜉 = (𝜃, 𝜗, 𝜙) is the viewing geometry, 𝜃 is the solar zenith angle, 𝜗 

is the view zenith angle and 𝜙 the relative azimuth.  To incorporate BRDF into the model, it 

is necessary to account for the viewing geometry differences between the reference and aerial 

images.  It is not valid to simply replace the unknown aerial surface reflectance with the 

reference surface reflectance in Equation (5) when they occur at different viewing 

geometries.  To describe the relationship between the two reflectances at a particular location, 

we express their ratio in Equation (11). 

𝜌t
aerial

𝜌t
ref

=
𝑓(𝜉aerial)

𝑓(𝜉ref)
 (11) 

Here 𝜌t
aerial and 𝜌t

ref are the aerial and reference surface reflectances respectively, and 𝜉aerial 

and 𝜉ref are the aerial and reference viewing geometries respectively.  The aerial surface 

reflectance can then be expressed as a multiple of the reference surface reflectance. 

𝜌t
aerial =

𝑓(𝜉aerial)

𝑓(𝜉ref)
𝜌t

ref = 𝐹𝜌t
ref (12) 

𝐹 is a spatially varying function of the aerial and reference viewing geometries.  As 

this relation is locally linear, it can be incorporated into the model of Equation (5), 

maintaining the linearity and spatially varying properties.  Coupling between atmospheric and 
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BRDF effects (Vermote et al. 2006) are not included in the model.  The parameter F of 

Equation (12) is effectively estimated at the reference image resolution.  The effects of 

viewing angle variations at the aerial image resolution are approximated by interpolating the 

coarse scale homogenisation parameters to the aerial resolution.   

 

The model presentation in Section 2.1, ignored the effect of the spectral responses of 

the reference and uncalibrated sensors.  The relation between surface reflectance and sensor 

measurement in Equation (5) becomes non-linear when including the spectral response effect.  

The surface reflectance in Equation (5) is a band averaged quantity, as represented by 

Equation (13).  

𝜌t =
∫ 𝜌t(𝜆)𝑅(𝜆)d𝜆

∫ 𝑅(𝜆)d𝜆
 (13) 

where 𝜌t(𝜆) is the spectral surface reflectance and 𝑅(𝜆) is the sensor RSR for a particular 

band.  Without knowledge of the surface reflectance spectra, it is not possible to completely 

calibrate for this effect.  However, for real world surface reflectances it can often be shown 

that the relationship between the band averaged values for different sensors is approximately 

linear (Gao et al. 2013; Jiang and Li 2009).  This means the relationship between surface 

reflectance and sensor measurement remains approximately linear even when the sensor 

spectral response is considered.  We therefore approximate the effect of sensor spectral 

responses as a locally linear relationship that is incorporated into the linear model of Equation 

(5).  This approximation is supported by simulations for the case study sensors in Sections 

2.6 and 3.1.   
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2.4 Surface Reflectance Homogenisation 

The homogenisation procedure follows these steps: 

(1) Resample uncalibrated aerial images to the reference image resolution and grid. 

(2) With the output from step (1), calculate sliding window estimates of 𝑀 and 𝐶 for 

each pixel of each band of the reference image using Equation (9).  This forms 

two multi-band rasters M and C at the reference grid and resolution. 

(3) Resample M and C rasters to the aerial image resolution and grid. 

(4) Calculate estimated surface reflectance for each pixel of each band of the 

uncalibrated aerial image, using Equation (5). 

 

The choice of resampling algorithms in steps 1 and 3 of the procedure are important, 

especially when there is a large difference in the spatial resolution of the aerial and reference 

images.  Optical imaging systems are linear and thus subject to the superposition principle, 

which manifests as spectral mixing (Akhmanov and Nikitin 1997).  Averaging the 

uncalibrated image over each reference pixel area is recommended when downsampling in 

step 1.  This will approximate the spectral mixing that occurs in the larger reference image 

pixels.   

 

It is necessary to produce smooth M and C rasters in step 3 to approximate slowly 

varying atmospheric and BRDF effects and to avoid discontinuities in the final image(s).  Of 

the standard interpolation algorithms, cubic spline interpolation, with its constraints of 

continuity of the first and second derivatives, best satisfies this requirement (Hou and 

Andrews 1978).  The Geospatial Data Abstraction Library (GDAL) (GDAL Development 

Team 2014) was used for implementing the resampling.   
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Since adjacent aerial images are calibrated to match the same reference image, 

overlapping image areas are similar.   Blocks of aerial surface reflectance images generated 

with the procedure outlined above can generally be mosaicked without the need for additional 

colour balancing or normalisation procedures to reduce seam lines.  Due to the disparity 

between reference and aerial image resolutions, there may be situations (such as uneven, 

shadowed terrain) where fine scale differences between adjacent images produce slight seam 

lines.  In these situations, one could use a feathering procedure to blend overlapping areas.  In 

the case study however, we did not find this to be necessary.  

  

2.5 Study Site, Data Collection and Preparation 

The surface reflectance homogenisation method proposed in this paper was tested in a 96 km 

 107 km area (Figure 1) in the Little Karoo in South Africa.  This particular study site was 

chosen as the calibration work forms part of a larger vegetation mapping study being done in 

the area.   

 

The Chief Directorate: National Geo-spatial Information (NGI), a component of the 

South African Department of Rural Development and Land Reform, acquires and supplies 

national coverage aerial imagery.  VHR multispectral 0.5 m pixel-1 imagery of the study area 

was obtained from the NGI archive. The imagery was captured with a multispectral 

Intergraph DMC with red, green, blue and near-infrared (NIR) channels. 
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Figure 1. Study area orientation map 

 

The RSRs of the DMC and MODIS sensors are shown in Figure 2.  The peaks overlap 

well between the sensors in the red, green and blue bands, while the DMC NIR band is wider 

than that of MODIS.   

 

 
Figure 2. DMC’s and MODIS’s RSR 
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The study site is covered by 2228 images captured during four separate aerial 

campaigns on multiple days from 22 January 2010 to 8 February 2010.  The inclusion of a 

large set of imagery acquired over multiple days allows an investigation into the robustness 

of the method to temporal variation (and the consequent BRDF and atmospheric variations).  

There is an average sidelap of 25% between images in adjacent flight lines and an average 

forward overlap of 60% between consecutive images in the same flight line.  The images 

were captured close to nadir, with a maximum tilt of 5.0°, at a height of 5000 m above 

ground.  The DMC has a 69.3° cross track and 42.0° along track field of view (FOV).  NGI 

campaigns are conducted on clear days such that images are free of clouds, cloud-shadows, 

smoke and excessive haze.  Flight times are chosen to achieve a solar altitude of at least 30.0° 

in order to minimise shadowing.  The mean aerosol optical depth (AOD) over the campaign 

days was 0.02 (the AOD provided by the MODIS MOD04 product was used for this 

calculation).  

 

The raw aerial imagery was corrected for lens distortion, band spatial alignment, 

sensor non-linearity and dark current effects using the Intergraph Z/I Post-Processing 

Software (PPS).  The PPS corrected imagery has a linear radiance response (as required by 

Equation (1)), with zero offset (i.e. 𝑐1 = 0).  This corrected imagery was orthorectified using 

existing aerotriangulation data supplied by NGI and a 5 m resolution digital elevation model 

(DEM) (Van Niekerk 2014).   

 

A MODIS MCD43A4 NBAR product for the period from 25 January 2010 to 9 

February 2010 was selected as a reference for the homogenisation.  This product has a 500 m 

resolution and contains NBAR data composited from the best values over a 16 day period.  

The MODIS NBAR data has been processed with atmospheric and BRDF correction 
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procedures (Strahler and Muller 1999) and is recognised as a reliable reference source for 

cross calibration (Gao et al. 2013; Li, Yang, and Wang 2012; Jiang and Li 2009; Liu et al. 

2004).  The NBAR data accuracy has been verified in a number of studies and is accurate to 

‘well less than 5% albedo at the majority of the validation sites’ (MODIS Land Team 2014).  

MODIS was also selected as it has similar spectral bands to the Intergraph DMC.  Bands 4, 1, 

3 and 2 from the MODIS sensor were used to correspond to the red, green, blue and NIR 

bands from the DMC sensor respectively.  While Landsat surface reflectance (Schmidt et al. 

2012) could be a useful source of reference data due to its relatively high spatial resolution of 

30 m, no cloud-free Landsat imagery concurrent (or near-concurrent) to the aerial imagery 

was available for testing in the case study.   

 

The PPS processed imagery has zero offset, so the parameter 𝑐1 from Equation (7) 

was zero and the atmospheric reflectance, 𝜌a, was small as the surveys were conducted on 

clear days, meaning that C was small.  For the purposes of the case study, C was ignored and 

only the gain, M, was estimated.   With only one parameter to estimate, a sliding window of 

one pixel was used to achieve the best possible spatial resolution in the M raster.  The gain-

only simplification is given support by the results of Collings et al. (2011) who found the 

gain term in their linear model to carry the majority of the corrective effect.  Nevertheless, it 

must be acknowledged that this is an initial approach and subsequent studies should be 

conducted to investigate the effects of including C.  The blue channel in particular could 

benefit from the inclusion of the offset (C) term due to its haze sensitivity.  

 

2.6 Linearity of Band Averaged Values  

In formulating the method in Section 2.1, it was assumed that the effect of sensor RSR on 



20 

 

 

 

measured surface reflectance is locally linear and can be incorporated in the model of 

Equation (5).  To investigate the validity of this assumption, MODIS and DMC band 

averaged values were simulated for typical surface reflectance spectra and statistically 

compared.  Twenty surface reflectance spectra were selected from the ‘soil’, ‘vegetation’, 

‘water’ and ‘man-made’ classes in the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) spectral library (Baldridge et al. 2009) to represent 

commonly encountered land covers.  Band averaged values were then simulated for these 

representative spectra using Equation (13), with the MODIS and DMC RSRs as shown in 

Figure 2. 

 

2.7 Accuracy Assessment 

Given that the DMC imagery was acquired in 2010, it was not possible to assess the accuracy 

of the reflectance retrieval method using ground-based spectral measures. Alternative 

methods for evaluating the results were consequently needed.  First, the DMC DN and 

calibrated surface reflectance images were stitched into mosaics and the mosaics were 

visually compared to determine if discontinuities between adjacent images were reduced and 

to what extent the radiometric variations were corrected.  Second, the DMC homogenised 

mosaic was resampled to the MODIS grid and resolution, and statistically compared to the 

MODIS reference image. Last, we quantitatively compared the DMC homogenised mosaic to 

a SPOT 5 scene, and the SPOT 5 scene to the MODIS reference image.   

 

The 10 m resolution SPOT 5 level 1A image, acquired on 21 January 2010, covers 

portions of all four aerial campaigns as shown in Figure 3.  The image was orthorectified 

using a 5 m resolution DEM (Van Niekerk 2014).  The SPOT 5 DN image was converted to 
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surface reflectance using the ATCOR 3 method (Richter 1997).  While the ATCOR 3 

correction did not include explicit BRDF correction, SPOT 5 is subject to substantially lower 

BRDF effects than the aerial imagery due to its narrow FOV .  Since the SPOT 5 sensor does 

not have a blue band, it was omitted from this comparison.  The SPOT 5 resolution of 10 m 

allows the homogenised surface reflectance result to be checked at a resolution significantly 

closer to the aerial resolution than the reference MODIS resolution.  This provides a useful 

check of the effect of approximating BRDF and atmospheric variations at the coarse scale of 

the reference image.  While the MODIS comparison checks the DMC surface reflectance 

against the reference it was fitted to, the SPOT 5 comparison uses an independent and 

‘unseen’ source.   

 

To establish the relative accuracy of the corrected SPOT 5 scene, it was downsampled 

(by averaging) to the MODIS resolution and grid and statistically compared to the MODIS 

reference image using Equation (14).   

(𝑥, 𝑦) = |𝐼CMP(𝑥, 𝑦) − 𝐼SPOT(𝑥, 𝑦)| (14) 

where 𝐼CMP is the MODIS image, 𝐼SPOT is the SPOT 5 image, (𝑥, 𝑦) are the pixel co-

ordinates and 𝐸 is the difference image.   Mean absolute difference (MAD) and root mean 

square (RMS) statistics were found to establish a benchmark against which similar statistics 

for DMC homogenised mosaic could be compared.  

 

The DMC homogenised mosaic was then downsampled (by averaging) to the SPOT 5 

resolution and grid, and statistically compared to the SPOT 5 surface reflectance image using 

Equation (14) with  𝐼CMP as the DMC mosaic in this instance.  
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The image resulting from the differencing process was used to identify spatial patterns 

in the discrepancies between the corrected SPOT 5 image and DMC mosaic.  MAD and RMS 

statistics were found for the image to allow comparison with the results of similar studies.  In 

addition to the statistical evaluation, individual spectra from homogenous surfaces in the 

SPOT 5 surface reflectance image, and DMC homogenised and DN mosaics were compared.   

 

  The impact of the sliding window size was investigated by repeating the comparison 

between the SPOT 5 image and homogenised DMC mosaic with increasing sliding window 

sizes.  A sub-section of the full study area, as shown in Figure 3, was used for the sliding 

window size investigation, to expedite computation times. 

 

 
Figure 3. SPOT 5 scene and mosaic extents 
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3 Results and Discussion 

3.1 Band Averaged Relationships 

The simulated band averaged reflectance relationship for typical surface reflectances between 

the two sensors is shown in Figure 4 with coefficient of determination (𝑅2) values.  The 

correlation between the DMC and MODIS simulated band averaged values (Figure 4) is 

surprisingly strong and supports the incorporation of the band averaging effect into the linear 

reflectance model of Equation (5).  Similar linear relationships between different sensors for 

real world surface reflectances are reported in Gao et al. (2013) and Jiang and Li (2009).  As 

the proposed method only requires the relationship to be locally linear, the variety of land 

covers simulated here is unlikely to be present inside the sliding window used to estimate the 

model parameters.  For a small sliding window, the correlation of the band averaged values 

will consequently be stronger than what is shown in Figure 4.  The NIR channel has the 

lowest 𝑅2, likely due to the relatively larger dissimilarity between MODIS and DMC RSRs, 

as evidenced in Figure 2.  One can consequently expect higher surface reflectance errors in 

this channel compared to the others.  
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Figure 4. DMC versus MODIS simulated band averaged relationship for typical surface 

reflectances ((a) NIR, (b) red, (c) green and (d) blue bands) 

 

3.2 Mosaicking 

Figure 5 shows a RGB (red, green and blue) mosaic of DMC DN images (bordered in red), 

against a background of the MODIS reference image.  Seam lines between adjacent DMC 

images and radiometric variations over the set of images are clearly visible.  
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Figure 5.  Uncalibrated mosaic on MODIS reference image background 

 

Each DMC image was converted to surface reflectance using the proposed procedure. 

A RGB mosaic of the corrected images is shown in Figure 6, bordered in red, against a 

background of the MODIS reference image.  No seam lines or radiometric anomalies (e.g. 

hot spots) are apparent at this scale, and the corrected images match the reflectance of the 

MODIS reference image. 

 



26 

 

 

 

 

Figure 6.  Homogenised mosaic on MODIS reference image background 

 

Figure 7 (a) shows a close-up section of the DMC DN mosaic where a hot spot (i.e. a 

BRDF effect where sunlight is strongly reflected back into the camera) and seam lines 

between adjacent images are visible.  Figure 7 (b) demonstrates the successful removal of the 

hot spot and seam lines after correction with the surface reflectance extraction method. 
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Figure 7.  Reduction of hot spot and seam lines, with (a) showing raw DN images including 

hot spot and seam lines and (b) the corrected surface reflectance image 

 

3.3 MODIS Statistical Comparison 

Figure 8 shows scatter plots of the DMC DN and MODIS surface reflectance values with R2 

coefficients indicating correlation strength.  Figure 9 shows similar scatter plots for the DMC 

and MODIS surface reflectance values.  Differences in the MODIS and DMC surface 

reflectance values at MODIS resolution are in part due to the use of the cubic spline 

interpolation to upsample the M and C rasters from the MODIS to DMC resolution.  The 

spline interpolation is non-invertible (i.e. downsampling the upsampled rasters does not 

produce the original M and C rasters, but successively smooths the data at each application).  

As indicated by Figure 8 and Figure 9, the correlation of the DMC and MODIS values is 

significantly improved when using the homogenised DMC surface reflectance rather than DN 

values.  This improvement in correlation is not unexpected, as Figure 9 is effectively 

comparing calibrated values to the values that were used for calibration.  Nevertheless, this 

comparison serves as a general check on the validity of the method and as an indication of the 

effect of spline interpolation between the disparate MODIS and DMC resolutions.  MAD, 
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RMS and coefficient of determination statistics are given for the DMC and MODIS surface 

reflectance values in Table 1.  Reflectance differences are the greatest in the NIR band, most 

likely due to the dissimilar MODIS and DMC RSRs in this band (Figure 2).  This 

demonstrates the importance of using a reference image from a sensor with similar RSRs to 

those of the target imagery. 

 

Figure 8.  DMC DN values and MODIS surface reflectance correlation for the (a) NIR, (b) 

red, (c) green and (d) blue bands 
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Figure 9.  DMC homogenised mosaic and MODIS surface reflectance correlation for the (a) 

NIR, (b) red, (c) green and (d) blue bands 

 

Table 1.  Statistical comparison between MODIS and DMC surface reflectance images 

 

Band 
Mean absolute 
difference (%) 

RMS (%) R2 

Near-infrared 1.70 2.50 0.91 

Red 1.18 1.75 0.95 

Green 0.79 1.16 0.96 

Blue 0.48 0.69 0.96 

All 1.04 1.67 0.94 

 

3.4 SPOT 5 Statistical Comparison 

An indication of magnitude of discrepancies in the SPOT 5 image is shown in Table 2, which 

shows the statistics for the difference between the SPOT 5 and MODIS images. The 

relatively low mean overall absolute reflectance difference of 3.35% between the SPOT 5 and 

MODIS values is consequently a good indication that the SPOT 5 surface reflectance 
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extraction is effective.  Note that the completeness of the SPOT 5 comparisons are limited by 

the missing blue band and partial coverage of the study area, as shown in Figure 3.   

 

Statistics for the reflectance difference between the corrected SPOT 5 image and the 

DMC homogenised mosaic are shown in Table 3.  Not all of the reflectance differences can 

be attributed to errors in the homogenised DMC surface reflectances.  Spatial misalignment 

of pixels due to orthorectification differences and BRDF errors in the SPOT 5 surface 

reflectances also contribute to the recorded differences.  Despite this uncertainty due to the 

contribution of other error sources, these reflectance differences compare well to figures 

reported by other aerial image correction methods.  Collings et al. (2011) achieved RMS 

reflectance errors of 1.37%–12.30% measured on placed targets of known reflectance for 

their aerial mosaic correction technique, and in the aerotriangulation approach of López et al. 

(2011), mean absolute reflectance differences of approximately 3.30%–5.00% were obtained 

on field measured test sites distributed throughout their study area.  Similarly to the MODIS 

comparison, the largest reflectance differences occur in the NIR band.  Again, this is likely 

due to dissimilarities in the RSRs of MODIS, DMC and SPOT 5 sensor NIR bands (see 

Figure 2 and Figure 11).   

 

Scatter plots of DMC DN and SPOT 5 surface reflectance values are shown in Figure 

12, and DMC surface reflectance and SPOT 5 surface reflectance values are shown in Figure 

13, with R2 coefficients indicating correlation strength.  The R2 values show a moderately 

strong correlation of 0.84 averaged over the bands.  The lack of perfect correlation is due to, 

among other error sources, the effect of small scale land cover heterogeneity and differing 

SPOT 5 and DMC RSRs.  The SPOT 5-MODIS scatter plots in Figure 14 show similar 

deviations from the one-to-one line as those for SPOT 5-DMC in Figure 13, especially for 
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NIR.  This suggests that the SPOT 5 image must be contributing, at least in part, to the SPOT 

5-DMC differences. The effect of dissimilar SPOT 5, DMC and MODIS NIR RSRs is again 

evidenced in Figure 13 and Figure 14 as the marked deviations of the NIR scatters from the 

identity lines.  Despite these disparities, the homogenisation of DMC surface reflectance 

provides a substantial improvement in correlation between the DMC and SPOT 5 values.   

 

The effect of increasing the sliding window size on the reflectance difference between 

the SPOT 5 and DMC homogenised sub-sections is shown in Figure 15 (points are labelled 

with their corresponding window dimensions).  The general characteristic is for the MAD to 

increase with sliding window size, suggesting that there is not an overfitting problem for 

small window sizes.   The approximation of radiometric transfer and viewing geometry 

effects as locally linear relationships (Equations (5) and (12)) will be more precise for smaller 

sliding windows.  As the sliding window size increases, the effective resolution of the 

radiometric homogenisation decreases, which likely results in the increasing MAD.  This 

result supports the choice of a one pixel sliding window for the case study.   

 

Comparisons of diagnostic SPOT 5 and DMC spectra are shown in Figure 16.  These 

spectra were manually selected from single pixels in homogenous areas.  There is a marked 

improvement in the similarity of the DMC and SPOT 5 surface reflectance values after 

homogenisation for these critical cases.  The MAD and RMS difference of the SPOT 5 and 

DMC diagnostic reflectance spectra are 4.52% and 5.70% respectively.  While not 

representative of wider variation, these values are similar to the ones produced by the 

statistical image analysis (see Table 3).  
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False colour CIR (colour-infrared) renderings of the DMC, SPOT 5 and difference 

images are shown in Figure 10.  The contrast stretched difference image shows that most 

discrepancies occur in the rugged mountainous areas that extend west to east in the northern 

section of the scene and in densely vegetated areas along river banks in the southern section 

of the scene.  No shadow or terrain correction was performed on the SPOT 5 image.  Shadow 

variations occurring in the DMC images below the scale of the reference resolution are not 

accounted for by the proposed method.  Disparities in the mountainous areas are mainly due 

to differing, uncorrected shadow effects likely caused by variations in the time of day when 

the images were captured (the aerial images were captured throughout the day, while the 

SPOT 5 image was captured at 10:29).  A particularly bright area is noticeable in the upper 

right corner of the difference image.  This corresponds to an area of bare ground that is bright 

in both the DMC and MODIS images and likely corresponds to a BRDF correction failure.  It 

is not possible to say if this failure occurs in the SPOT 5 and/or DMC corrections.  The 

differences in the densely vegetated and cultivated areas are attributed to the differences in 

the MODIS, DMC and SPOT 5 sensor NIR RSRs being amplified by the known high NIR 

reflectivity of vegetation.  Abrupt changes in BRDF may occur between adjacent fields in 

cultivated areas along the major rivers.  As discussed in Section 2.2, these changes may not 

be captured at the MODIS resolution and could also be contributing to the NIR differences in 

these regions.   
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Figure 10.  DMC and SPOT 5 surface reflectance comparison with (a) DMC homogenised 

mosaic masked to SPOT 5 extent; (b) SPOT 5 surface reflectance image; and (c) contrast 

stretched absolute difference image 
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Figure 11.  DMC and SPOT 5 RSRs 

 

 
Figure 12.  DMC DN mosaic and SPOT 5 surface reflectance correlation for the (a) NIR, (b) 

red and (c) green bands 

 

 
Figure 13.  DMC homogenised mosaic and SPOT 5 surface reflectance correlation for the (a) 

NIR, (b) red and (c) green bands 
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Figure 14.  MODIS and SPOT 5 surface reflectance correlation for the (a) NIR, (b) red and 

(c) green bands 

 

Table 2.  Statistical comparison between SPOT 5 and MODIS surface reflectance images 

Band 
Mean absolute 
difference (%) 

RMS (%) R2 

Near-infrared 4.81 5.79 0.86 

Red 2.83 3.55 0.88 

Green 2.40 2.91 0.87 

All 3.35 4.27 0.87 

 

Table 3.  Statistical comparison between SPOT 5 and DMC surface reflectance images 

Band 
Mean absolute 
difference (%) 

RMS (%) R2 

Near-infrared 4.00 5.66 0.80 

Red 3.11 4.27 0.86 

Green 3.19 3.86 0.85 

All 3.43 4.66 0.84 
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Figure 15.  Effect of sliding window size on SPOT 5 comparison 

 

 
Figure 16.  Comparison of DMC and SPOT 5 spectra for (a) water, (b) bright sand, (c) bare 

ground, (d) vegetation type 1 and (e) vegetation type 2 surfaces 

 

4 Conclusions 

This study proposes a method of homogenising surface reflectance in aerial imagery by 

calibrating to a coarse-resolution, concurrent and collocated satellite image that has already 

been corrected for atmospheric and BRDF effects.  It is shown that a spatially varying linear 

model can be used to approximate the relationship between the DN measured by the aerial 

sensor and the surface reflectance of the satellite image.  The parameters of the model are 

estimated for each satellite pixel location using least squares regression inside a small sliding 



37 

 

 

 

window.  The method is limited by the low resolution of the satellite reference image.  The 

effects of viewing geometry and land cover variations below the scale of a reference pixel are 

averaged out.  Only gradual BRDF and atmospheric variations that can be captured by the 

coarser resolution of the reference image are compensated for.     

 

The proposed surface reflectance homogenisation method was applied to 2228 

Intergraph DMC images covering an area 96 km  107 km in size, omitting the offset 

parameter, C, from the model.  A MODIS MCD43A4 NBAR product was used as the surface 

reflectance reference.  The DMC homogenised mosaic was free of visible seam lines and hot 

spots and matched the MODIS reference well.  The DMC homogenised mosaic was also 

compared to a concurrent SPOT 5 image in order to establish the method’s efficacy at a 

spatial resolution closer to that of the DMC source resolution than the MODIS reference.  

The SPOT 5 image was corrected for atmospheric effects and converted to surface 

reflectance using the ATCOR 3 method.  The mean R2 value and the mean absolute 

reflectance difference between the DMC mosaic and SPOT 5 image were 0.84 and 3.43% 

respectively.  Despite the limitations and approximations inherent in the method, these 

statistics are considered supportive of the method’s efficacy and are similar to figures 

reported by Collings et al. (2011) and López et al. (2011) for related correction techniques.  

While the method was evaluated on aerial imagery, it is not limited to this type of data and 

could be applied to any multi-spectral VHR imagery, including satellite and unmanned aerial 

vehicle (UAV) imagery. 

 

The proposed technique does not require explicit BRDF and atmospheric correction; 

and mosaic normalisation techniques to reduce seam lines are not necessary.  The spatially 

varying linear model allows for flexibility in the BRDF characteristics that can be corrected 
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for.  The method accuracy is limited by the accuracy of the reference surface’s reflectance i.e. 

the accuracy of the homogenised images can at best be that of the MODIS reference.  The 

method is also limited by the need for a reference image concurrent and spectrally similar to 

the aerial imagery.  Such an image may not always be obtainable.  The MODIS and DMC 

RSRs are quite different in the near-infrared region of the spectrum (see Figure 2).  The 

surface reflectance homogenisation method approximates the effect of different sensor 

spectral responses with a linear relationship that is contained by the model of Equation (5).  

This approximation was supported by a simulation of MODIS and DMC measurements for 

typical land cover spectra.  The relatively higher (4%) NIR reflectance difference between the 

DMC mosaic and the SPOT 5 values, and discrepancies in vegetated areas, are likely due to 

the more exaggerated differences in NIR RSRs between the MODIS, DMC and SPOT 

sensors.  

 

While the results of the surface reflectance homogenisation technique were 

surprisingly good given the simplicity of the method, some aspects warrant further 

investigation.  The effects of including the offset parameter, C should be investigated.  The 

offset parameter may improve homogenised results where atmospheric effects like haze are 

relatively severe.  Local terrain effects are poorly represented at the MODIS resolution.  

Landsat surface reflectance offers a higher resolution alternative but has the drawback of no 

BRDF correction (Schmidt et al. 2012).  It could nevertheless be a useful homogenisation 

reference, as it will exhibit less BRDF variation than low altitude aerial imagery due to its 

narrower FOV.   The MISR instrument is also a promising alternative to MODIS.  MISR 

RSRs are a better match to those of the Intergraph DMC than the MODIS bands, and it is 

possible to obtain 275 m reflectance products using MISR-HR (Verstraete et al. 2012).  The 

MISR instrument captures data at nine different angles, which allows a more accurate 
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modelling of the BRDF compared to the kernel-based approach followed in the calibration of 

the MODIS data (Strahler and Muller 1999).   It would be informative to test the performance 

of the method with Landsat and MISR surface reflectance reference images.   
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