
Keywords
linear logic, blockchain, types, Curry-Howard

ABSTRACT
We present an interpretation of classical linear logic
in terms of operations on the blockchain.

Linear types can change the blockchain!

L.G. Meredith
CSO, Synereo
greg@synereo.com

1. BACKGROUND AND MOTIVATION
Anyone who understands the current economic, socio-
logical, and technological situation is likely to be very
excited by what the blockchain technology promises.
Anyone who has actually had to work with the blockchain
in real situations with mission-critical exchanges on
the line is very likely to be motivated to find a more
scalable and reliable architecture for the blockchain.
This paper takes a few key steps towards finding a way
to explain and test a hypothesis that linear proofs pro-
vide the basis for a much more scalable architecture
for the blockchain. For background on what is meant
here by linear proofs, [5] interprets them in terms of
games, while [3] interprets them in terms of traditional
computational calculi like the lambda calculus.

A linear proof is a formal structure representing a
proof of a formula in linear logic [6]. The Curry-
Howard isomorphism [13] tells us that formulae are
types (as in data types in a programming language),
and that proofs are programs. This is a very broad
and deep idea. In the 90’s, for example, Abramsky ex-
tended it to proofs as processes [4], which Wadler was
only very recently able to realize as a correspondence
between linear proofs and π-calculus processes [14].
In this context it means that linear proofs provide a
representation of both data (blocks) and program (ex-
ecutable transactions) that gives several advantages
over the current choices made by the blockchain.

The blockchain is a great example of data that is also
program; it’s a giant ledger spread out over the In-
ternet, that’s made of a bunch of distributed, but
interacting servers [11]. To become more scalable,

and reliable, both ledger and servers will need certain
characteristics of data/program that have to do with
a property called compositionality. Scalability is al-
ways all about being able to build composite systems
from components. For example, if we can prove that
sections of the blockchain can be safely isolated from
other sections, for example, if all blocks necessary to
prove that Alice has sufficient funds to send M btc
to Betty, can be isolated from the blocks necessary to
prove that Alfred has sufficient funds to send N btc to
Bob, then Alice and Betty, and Alfred and Bob can
safely work with projections of the blockchain, and
thus complete their transactions, not only in isolation
of each other, but without the onerous need to sync
the entire blockchain.

One analogy is the use of separation logic (a child of
linear logic) [12] to prove things about the structure
of the heap which can, in turn, be used to guarantee
that two threads can operate at the same time safely.
The blockchain is like the heap. The Alice - Betty and
Alfred - Bob transactions are like the two threads. A
proof that the heap is of the form H1 ⊗ H2 together
with a proof that T1 : H1 → H ′1, T2 : H2 → H ′2
constitutes a proof that T1 ⊗ T2 (thread T1 running
concurrently with T2) operate effectively in isolation
and thus safely. Likewise, a proof that the blockchain
is of the form B1⊗B2 (none of the transactions in B1

connect to addresses in B2 and vice versa), together
with a proof that AliceBetty : B1 → B′1 (this txn uses
only addresses in B1), and AlfredBob : B2 → B′2 (this
txn uses only addresses in B2) constitutes a proof that
AliceBetty ⊗ AlfredBob can operate with isolated pro-
jections of the blockchain.

If the blockchain is built using the primitives of linear
logic, it becomes easier and easier to construct these
proofs, but also to construct the blockchain, itself, in
terms of smaller blockchains.

2. INTERPRETING LINEAR PROOFS
AS OPERATIONS ON THE BLOCKCHAIN

Here’s the most basic interpretation.

` 1blkchnaddr : A⊗ . . .⊗A︸ ︷︷ ︸
M

is a statement that there areM A’s available at the ad-
dress, 1blkchnaddr. A’s can be any resource, BTC’s,
AMP’s, DogeCoin, etc.

` txn : A⊗ . . .⊗A︸ ︷︷ ︸
M

(B ⊗ . . .⊗B︸ ︷︷ ︸
N

is a statement that txn will generate N B’s if provided
M A’s.

Terminologically, we say that 1blkchnaddr is a witness
or a proof of A⊗ . . .⊗A, and similarly, that txn is a
witness or proof of A⊗ . . .⊗A(B⊗ . . .⊗B. Given
two such proofs we can use the cut rule of linear logic
to produce a proof

` txn(1blkchnaddr) : B ⊗ . . .⊗B

where txn(1blkchnaddr) is a new address in the blockchain
constructed from the information in txn together with
1blkchnaddr. This should look remarkably like func-
tion application, because it is.

Notice that now we can see, recursively, what a proof
of a statement like ` 1blkchnaddr : A⊗ . . .⊗A looks
like. In most cases it will be a proof made from a pre-
vious application of the cut rule. This tree of cuts will
trace all the way back to some genesis block – which
is the only other way to have a proof of a statement
like ` 1blkchnaddr : A⊗ . . .⊗A.

Now, where does the return address associated with
txn(1blkchnaddr) come from? To see this we have to
look into the mechanics of ((called linear implication
or, more affectionately, lollipop).

A(B = A⊥ `B

Linear implication is decomposed much like classical
implication in terms of a negation (A⊥) and a disjunc-
tive connective (A ` B). It is literally an expression
capturing the sentiment we need A to get B, or B
comes with a cost of A. The use of a proof rule for
these kinds of links looks like

` Γ, 1blkchnaddr : A⊥, 2blkchnaddr : B

` Γ, 1blkchnaddr ` 2blkchnaddr : A⊥ `B

where we snuck in the rest of the blockchain as Γ. As
we saw above, A⊥ `B = A(B; so, we can write

` Γ, 1blkchnaddr : A⊥, 2blkchnaddr : B

` Γ, 1blkchnaddr (2blkchnaddr : A(B

Now we see that forming a txn comes with the require-
ment to provide an address where A’s will be sent and
an address where B’s will be received. To complete
the picture, applying the cut rule will create the txn
that links an address, say 3blkchnaddr with an A in
it, to 1blkchnaddr, resulting in ` Γ, 2blkchnaddr : B.
Expanding on these intuitions, we can see that the
rules of classical linear logic correspond exactly to a
specification of operations on the blockchain.

2.1 Linear Sequents
In more detail, a proof rule in linear logic is usually
written in terms of a transformation,

S1, S2, . . . , SN

S

taking sequents S1, . . . , SN to a sequent S, where a
sequent is of the form

` Γ, t1 : A1, . . . , tN : AN

A sequent is really just a statement about what is
distributed where in an instance of the blockchain.

• t1, . . . , tN are either addresses or programs that
take addresses as input; they constitute the ”fo-
cus” of the proof rule, or where the action is
going to happen.

• A1, . . . , AN are (types built from) the different
types of coin

• Γ is the rest of the blockchain – it is necessary to
establish the distribution of resources we see at
t1, . . . , tN , but it’s not the focus of the operation
of the proof rule.

Putting it all together, a proof rule of the form

S1

S2

is then a statement about how the blockchain in state
S1 goes to a blockchain in state S2. If you think about
it, that’s just what we need to reason about transac-
tions. In a transaction where Alice sends Betty N
coin, we can think of the transaction as a rule that
takes a blockchain in a state where Alice has N btc to
a blockchain in a state where Betty has N btc.

2.2 The Multiplicatives
Linear logic, however, allows to build bigger blockchains
from smaller ones, and manages the dependency and
information flow so that everything remains consis-
tent. Here’s an example. The proof rule for the tensor
A⊗B looks like this

` Γ, t : A,` ∆, u : B

` Γ,∆, t⊗ u : A⊗B

It says that if you have one blockchain, ` Γ, t : A,
and another completely independent blockchain, with
a totally separate address space, ` ∆, u : B, then you
can make a new one

` Γ,∆, t⊗ u : A⊗B

in which you just combine all the data of assignments
of addresses to resources inG andH in one big blockchain,
G,H, and you can make a kind of composite address
(or program), t ⊗ u, at which can be found the com-
bined A⊗B resource.

Now, comparison of the par (A`B) rule, which es-
tablishes transaction links, is even more illuminating.

` Γ, t : A, u : B

` Γ, t` u : A`B

This rule insists that the transaction link, t ` u, is
made in the same piece of the blockchain, Γ.

The piece of the puzzle that interprets commitment
to and execution of transactions is the cut rule. If
1blkchnaddr (2blkchnaddr is a transaction waiting
to happen, so to speak, txn(3blkchnaddr, 1blkchnaddr−
o2blkchnaddr) is the commitment to carry out the txn
against the blockchain. Likewise, cut-elimination, also

called proof-normalization, which corresponds to com-
putation, via Curry-Howard, constitutes the execution
of the transaction on the blockchain that results in
the assignment ` Γ, 2blkchnaddr : B after execution.
Someone familiar with functional programming might
interpret

txn(3blkchnaddr, 1blkchnaddr (2blkchnaddr)

as

apply(1blkchnaddr (2blkchnaddr, 3blkchnaddr)

making the correspondence to function application,
and the correspondence between proof normalization
and β-reduction explicit.

The fragment of linear logic that includes, A⊥, A⊗B,
A ` B, A (B, is called the multiplicative fragment
of linear logic, or MLL. It talks about the basics of
transactions, loading up addresses with resources and
establishing dependencies between addresses, essen-
tially recording transaction history. However, it does
so in a way that keeps track of how the blockchain it-
self is segmented. This allows us to determine things
like how much of the blockchain do i have to see in
order to safely conduct this transaction, or can i con-
duct this transaction without needing visibility into
that region of the blockchain.

2.3 The Additives
Linear logic also enjoys another fragment, called the
additives. This aspect of the logic is all about condi-
tionals and contingencies, this or that, but not both.
The linear logic connective called ’with’, and denoted
A&B, collects options together into a menu for sub-
sequent selection by interaction with choices indicated
by the linear connective ’plus’, A+B. In symbols,

` Γ, t : A, u : B

` Γ, t& u : A&B

while

` Γ, t : A

` inl(t) : A+B

and

` Γ, u : B

` inr(u) : A+B

If during a more complex transaction t & u gets tied
to inl(t′), via txn(t& u, inl(t′)), then this will reduce
to a transaction of the form txn(t, t′). On the other
hand, txn(t & u, inr(u′)) will reduce to a transaction
of the form txn(u, u′).

2.4 The Exponentials
The fragment of linear logic that includes the mul-
tiplicative and additive connectives is called MALL.
The remaining connectives are called the exponentials,
?A, and !A. They denote copyable, non-conserved re-
sources. When we write ` Γ, t :!A, we are saying that
you can get as manyA’s from the address (or program)
t as you want. Thus, unlike currency, that address is
linked to a copyable resource like a document, or a
jpeg, or audio file, or ... that can be shared widely.
When we write ` Γ, t :?A, we are saying that you can
put as many A’s into the address (or program) t as
you want. You can think of it as a place to store A’s,
or discard them.

What’s critically important about the use of the ex-
ponentials is that they mark resources that ought not
to stay on the blockchain. They indicate content and
content types that can be better served by a different
kind of content delivery network. This is another im-
portant function in helping with a scalable blockchain
– use blockchain technology where it makes sense and
use other means where it doesn’t.

Taken all together, we have an interpretation of full
classical linear logic in terms of operations on the
blockchain.

3. CONCLUSIONS AND FUTURE WORK
We have developed a view of full classical linear logic
in terms of operations against the blockchain. The
view we have been developing not only extends to pro-
vide a meaningful interpretation of full classical lin-
ear logic to natural and intuitive operations on the
blockchain, it also extends and expands how we think
about the blockchain and what transactions on it are.
Additionally, it provides guarantees, mathematical cer-
tainties about the correctness of transactions struc-
tured and executed this way. In particular, notice
that we focused mostly on the connectives governing
A’s and B’s (the resources to be found at addresses
or programs). We didn’t really talk about the struc-
ture of t’s and u’s. These provide us with a simple
and intuitive syntax for transactions. Of equal impor-
tance, these transactions are typed programs. When
we write ` Γ, t : A, we are not only saying something
about the resources produced or manipulated by t, we
are saying something about how t can be used, and in
what blockchain context we can expect t to perform
correctly.

Understood this way, the blockchain interpretation

gives new meaning and perspective on some theorems
from the linear logic literature. In particular, it is well
established that there is a natural notion of execution
of t’s. That is, when thought of as programs, we know
how to run them. When they are well typed, that is,
if we have established ` t : A, then t is terminating.
That’s a theorem from [3]. What this means for the
blockchain is that proof terms and their linear con-
nectives provide a scripting language for transactions
that, on the one hand, provides termination for all well
typed scripts, and on the other is highly expressive.
Further, if it turns out that this scripting language
is not expressive enough, then there is a natural ex-
tension of proof terms via a correspondence between
linear proof terms and π-calculus processes that we
mentioned at the top of these notes.

proof term blockchain meaning
address address
t⊗ u isolated concurrent transactions
t` u interacting or linked concurrent transactions
t& u menu of transaction options

inl(t), inr(u) transaction option selection
!t copyable resource server
?t copyable resource storage

txn(t, u) joined transactions

This correspondence is not just useful for extending
a scripting language for blockchain transactions. It
turns out the π-calculus the premier formalism for
specifying, reasoning about, and executing protocols
in distributed systems [10] [9] [2] [1] [7] [8]. Since one
of the real values of the blockchain is the fact that it is
a distributed means to conduct transactions, the need
to tie this formalism to one for specifying protocols in
distributed systems is plain.

3.1 Proof-of-work
The glaring lacunae in this discussion is, of course, the
relationship to proof-of-work. Consider the following
example. Suppose C1 and C2 are blockchains both of
height N .

C1 = B1N ← B1N−1 ← . . .← B10

C2 = B2N ← B2N−1 ← . . .← B20

We can define

C1⊗C2 = (B1N⊗B2N)← (B1N−1⊗B2N−1)← . . .← (B10⊗B20)

Note that it is insufficient merely to guarantee for B⊗
B′ that all the transactions in B are isolated from the
transactions in B′. The counterexample is

C1 = Block{1AliceAddr 5btc−−→ 1AllanAddr}

← Block{1BobAddr 7btc−−→ 1BettyAddr}

C2 = Block{1BobAddr 7btc−−→ 1BettyAddr}

← Block{1AliceAddr 5btc−−→ 1AllanAddr}

Clearly B11 is isolated from B21, and B10 is isolated
from B20; but, B20 is not isolated from B11, and B10

is not isolated from B21. As a result, the spends in
the earlier blocks could impact the spends in the later
blocks.

Instead, the entire address space of C1 must be iso-
lated from C2. In this case the network of servers,
N1, that maintain C1 can be safely combined with the
network of servers, N2, that maintain C2, and we can
safely define the composite chain as above. The proof-
of-work protocol organizing N1 is completely separate
from that in N2. They do not interact. Yet, it is safe
to combine the chains using a glorified zip function.
In this example,

C1 = Block{1AliceAddr 5btc−−→ 1AllanAddr}

← Block{2BobAddr 7btc−−→ 2BettyAddr}

C2 = Block{1BobAddr 7btc−−→ 1BettyAddr}

← Block{2AliceAddr 5btc−−→ 2AllanAddr}

The address spaces of these chains are completely iso-
lated (often written addresses(C1)#addresses(C2)).
We are free to calculate

C1 ⊗ C2 = Block{1AliceAddr 5btc−−→ 1AllanAddr}

⊗Block{1BobAddr 7btc−−→ 1BettyAddr}

← Block{2BobAddr 7btc−−→ 2BettyAddr}

⊗Block{2AliceAddr 5btc−−→ 2AllanAddr}

= Block{1AliceAddr 5btc−−→ 1AllanAddr;

1BobAddr
7btc−−→ 1BettyAddr}

← Block{2BobAddr 7btc−−→ 2BettyAddr

; 2AliceAddr
5btc−−→ 2AllanAddr}

The ordering of transactions provided by the two in-
dependently executing proof-of-work protocols is com-
bined in a completely safe.

Note that there are at least two possible interpreta-

tions of C1 ∗ C2. One is that the requirement is to
verify that addresses(C1)#addresses(C2). Another
is to ensure this is the case by rewiring the transac-
tions. Under this latter interpretation even the coun-
terexample becomes safe

C1 ⊗ C2 = Block{1AliceAddr 5btc−−→ 1AllanAddr}

⊗Block{1BobAddr 7btc−−→ 1BettyAddr}

← Block{1BobAddr 7btc−−→ 01BettyAddr}

⊗Block{1AliceAddr 5btc−−→ 11AllanAddr}

= Block{01AliceAddr
5btc−−→ 01AllanAddr;

11BobAddr
7btc−−→ 11BettyAddr}

← Block{01BobAddr
7btc−−→ 01BettyAddr;

11AliceAddr
5btc−−→ 11AllanAddr}

There is much more to be said, but that must be left
to future work!

Acknowledgments. We would like to acknowledge
Vlad Zamfir for some thoughtful and stimulating con-
versation about the blockchain protocol.

4. REFERENCES
[1] Mart́ın Abadi, Bruno Blanchet, and Cédric

Fournet, Just fast keying in the pi calculus,
ACM Trans. Inf. Syst. Secur. 10 (2007), no. 3.

[2] Mart́ın Abadi, Ricardo Corin, and Cédric
Fournet, Computational secrecy by typing for the
pi calculus, Programming Languages and
Systems, 4th Asian Symposium, APLAS 2006,
Sydney, Australia, November 8-10, 2006,
Proceedings (Naoki Kobayashi, ed.), Lecture
Notes in Computer Science, vol. 4279, Springer,
2006, pp. 253–269.

[3] Samson Abramsky, Computational
interpretations of linear logic, Theor. Comput.
Sci. 111 (1993), no. 1&2, 3–57.

[4] , Proofs as processes, Theor. Comput.
Sci. 135 (1994), no. 1, 5–9.

[5] Samson Abramsky and Paul-André Melliès,
Concurrent games and full completeness, 14th
Annual IEEE Symposium on Logic in Computer
Science, Trento, Italy, July 2-5, 1999, IEEE
Computer Society, 1999, pp. 431–442.

[6] Jean-Yves Girard, Linear logic, Theor. Comput.
Sci. 50 (1987), 1–102.

[7] Andrew D. Gordon, Provable implementations
of security protocols, 21th IEEE Symposium on
Logic in Computer Science (LICS 2006), 12-15

August 2006, Seattle, WA, USA, Proceedings,
IEEE Computer Society, 2006, pp. 345–346.

[8] Steve Kremer and Mark Ryan, Analysis of an
electronic voting protocol in the applied pi
calculus, Programming Languages and Systems,
14th European Symposium on
Programming,ESOP 2005, Held as Part of the
Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings (Shmuel Sagiv,
ed.), Lecture Notes in Computer Science, vol.
3444, Springer, 2005, pp. 186–200.

[9] Robin Milner, Functions as processes,
Mathematical Structures in Computer Science 2
(1992), no. 2, 119–141.

[10] , The polyadic π-calculus: A tutorial,
Logic and Algebra of Specification
Springer-Verlag (1993).

[11] Satoshi Nakamoto, Bitcoin: A peer-to-peer
electronic cash system, Bitcoin.org (2008).

[12] John C. Reynolds, An overview of separation
logic, Verified Software: Theories, Tools,
Experiments, First IFIP TC 2/WG 2.3
Conference, VSTTE 2005, Zurich, Switzerland,
October 10-13, 2005, Revised Selected Papers
and Discussions (Bertrand Meyer and Jim
Woodcock, eds.), Lecture Notes in Computer
Science, vol. 4171, Springer, 2005, pp. 460–469.

[13] Morten Heine B. Sørensen and Pawel Urzyczyn,
Lectures on the curry-howard isomorphism,
1998.

[14] Philip Wadler, Propositions as sessions, J.
Funct. Program. 24 (2014), no. 2-3, 384–418.

5. APPENDIX: A TERMINATING SCRIPT-
ING LANGUAGE

In the main body of the paper we presented what
amounts to the high level intuitions. In this appendix
we present enough of the details that a reader skilled
in the art could implement the proposal to test it
for themselves. This presentation follows Abramksy’s
proof expressions from [3] very closely.

5.1 Syntax

p, q ::= (e1, . . . , em){t1; . . . ; tn} programs
e ::= satoshi | . . . | ampere currency units
| x address
| e ∗ e isolation
| e#e connection
| e(e obligation
| choose(x1, . . . , xn){p; q} menu
| inl(e) | inr(e) selection
| ?e | storage, disposal
| e@e contraction
| !(x1, . . . , xn){p} replication

t ::= txn(e1, e2) transaction

Discussion. e1 (e2 is really just convenient syntac-
tic sugar for e⊥1 #e2, where e⊥ is identity on addresses,
but changes the polarity of the type and otherwise op-
erates as

(e1 ∗ e2)⊥ = e⊥1 #e⊥2

(e1#e2)⊥ = e⊥1 ∗ e⊥2

5.1.1 Interpretation
Programs p and q represent blockchain states. For p =
(e1, . . . , em){t1; . . . ; tn}, the e’s represent resources
available on the blockchain p, while the t’s represent
transactions in progress. For example, if we write M ·
satoshi for satoshi ∗ . . . ∗ satoshi︸ ︷︷ ︸

M

, then

(1blkchnaddr){txn(1blkchnaddr,M · satoshi)}

represents the genesis block where 1blkchnaddr has
been assigned M satoshi’s. At the other end of the
spectrum,

(1blkchnaddr){txn(1blkchnaddr,)}

represents burning the assets sent to 1blkchnaddr.

At this level of abstraction modeled by the opera-
tional semantics in the next section, addresses are
more closely aligned with transaction inputs in blockchain
transactions. Thus, the genesis block is more accu-
rately represented as

(addr1 ∗ . . . ∗ addrM){
txn(addr1, satoshi);

. . . ;

txn(addrM , satoshi)

}

which for future reference we’ll write genesis. Simi-
larly, the second example is more accurately written
as

(addr1 ∗ . . . ∗ addrM){txn(addr1,); . . . ; txn(addrM ,)}

we’ll write as burn in the sequel.

5.2 Operational Semantics
In what follows we use the notational conventions:

• ~e is a list of e’s of length |~e|; likewise ~t is list of
t’s.

• txn(~e, ~e′) = txn(e1, e
′
1); . . . ; txn(en, e

′
n) assuming

|~e| = |~e′|
• we have operations, (−)l : Addr → Addr, (−)r :

Addr→ Addr such that given an address x, xl, xr

are distinct from x and each other; these opera-
tions extend uniquely to p, e, and t in the obvious
manner.

Transaction

txn(e1, x); txn(x, e2)→ txn(e1, e2)

Pair

txn(e1 ∗ e′1, e2#e′2)→ txn(e1, e2); txn(e′1, e
′
2)

Left
txn(choose(x, ~x){(e,~e){~t}; q}, inl(e′))

→ txn(e, e′); ~t; txn(~x,~e)

Right
txn(choose(x, ~x){p; (e,~e){~t}}, inr(e′))

→ txn(e, e′); ~t; txn(~x,~e)

Read
txn(!(~x){(e,~e){~t}}, ?e′)→ txn(e, e′); txn(~x,~e)

Dispose

txn(!(~x){p},)→ txn(~x,)

Copy
txn(!(~x){p}, e1@e2)

→ txn(~x, xl@xr); txn(!(~x){p}l, e1); txn(!(~x){p}r, e2)

5.2.1 Interpretation
The operational semantics should be viewed as the
specification of an abstract machine that needs no
other registers than the program itself. Let’s look at
an example in some detail.

Executing a transaction amounts to joining to expres-
sions, e1 and e2 in txn(e1, e2). Thus, to send I < M
satoshi to bddr1 ∗ . . .∗ bddrI , in the context of the gen-
esis block, first we have to turn the genesis block into
an expression.

choose(1spndaddr){genesis; burn}

Next, we form a spend expression bddr1∗ . . .∗bddrI (
addrI+1#addrM which will consume I satoshi from
the genesis block addresses addr1 through addrI , and
deposit them in addr1 through addrI .

Now, we can create a transaction that selects the gen-
esis block from the menu of blockchain states via

txn(

choose(1spndaddr){genesis; burn},
inl(bddr1 ∗ . . . ∗ bddrI (addrI+1#addrM)

)

Using the operational semantics we see that this re-
duces to

txn(

addr1 ∗ . . . ∗ addrM ,
bddr1 ∗ . . . ∗ bddrI (addrI+1#addrM

);

which then reduces to

txn(addr1, bddr1);

. . . ;

txn(addrI , bddrI);

txn(addrI+1, addrI+1);

. . . ;

txn(addrM , addrM);

txn(addr1, satoshi);

. . . ;

txn(addrM , satoshi);

which then reduces to

txn(bddr1, satoshi);

. . . ;

txn(bddrI , satoshi);

txn(addrI+1, satoshi);

. . . ;

txn(addrM , satoshi);

This can be seen as a ledger-like representation assign-
ing satoshi’s to addresses.

Now, the final piece of the puzzle is that that spend
transaction needs to be created in the context of a
blockchain state, which constitutes the resulting blockchain
state. In point of fact, this is a piece of context we
elided when we formed the transaction to focus on the
reduction. A more complete picture of the execution
looks like

(bddr1 ∗ . . . ∗ bddrI ∗ addrI+1 ∗ . . . ∗ addrM){
txn(

choose(1spndaddr){genesis; burn},
inl(bddr1 ∗ . . . ∗ bddrI (addrI+1#addrM)

)

}
→ ∗

(bddr1 ∗ . . . ∗ bddrI ∗ addrI+1 ∗ . . . ∗ addrM){
txn(bddr1, satoshi);

. . . ;

txn(bddrI , satoshi);

txn(addrI+1, satoshi);

. . . ;

txn(addrM , satoshi);

}

This brings us full circle. At the beginning of the
paper we explicitly recognized the blockchain as data
that is program. The reduction above provides an
explicit model of just this phenomenon. A blockchain
state, i.e. a representation of data, is a program. The
transition from one state to the next is the execution of
the program. Any state of the program actually allows
a “read back” to a ledger-like representation capturing
the distribution of resources to addresses.

5.3 Type assignment
In the main body of the paper we wrote proof rules
in terms of sequents. In point of fact, that formalism
amounts to a typing discipline on the scripting lan-
guage presented above. Here we present the details of
that typing discipline along with the basic result that
all well typed programs are terminating.

Axiom

` (x : A⊥, x : A){}

Tensor

` (t : A,Γ){ ~txn} ` (u : B,∆){ ~txn′}
` (t ∗ u : A⊗B,Γ,∆){ ~txn; ~txn′}

Par
` (t : A, u : B,Γ){ ~txn}
` (t#u : A`B,Γ){ ~txn}

With
` p ` q

p = (t : A,~t : ~G){ ~txn} q = (u : B, ~u : ~G){ ~txn′}
` (choose(~x : ~G){p}{q}) : A&B, ~x : ~G){}

Left
` (t : A,Γ){ ~txn}

` (inl(t) : A+B,Γ){ ~txn}

Right
` (u : B,Γ){ ~txn}

` (inr(u) : A+B,Γ){ ~txn}

Storage
` (t : A,Γ){ ~txn}
` (?t :?A,Γ){ ~txn}

Disposal
` (t : A,Γ){ ~txn}
` (:?A,Γ){ ~txn}

Contraction
` (t :?A, u :?A,Γ){ ~txn}
` (t@u :?A,Γ){ ~txn}

Replication
` p

p = (t : A,~t :? ~G,Γ){ ~txn}
` (!(~x){p} :!A, ~x :? ~G){}

Discussion. As is easily seen, this is merely a translit-
eration of Abramsky’s proof expressions from [3], and
as such the scripting language enjoys all the proper-
ties of proof expressions. In particular, theorem 7.18
pg 47 tells us that well typed programs terminate.

In a discussion of “smart contract” the types play a
specially important role. If programs in this language
consitute financial contracts, then the types provide

a means by which parties can probe the contracts for
properties above and beyond termination.

