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Abstract

There is a growing interest in alternative explanations to the
dual-system account of how people learn category structures
varying in their optimal decision bounds (unidimensional and
information-integration structures). Recognition memory per-
formance and hippocampal activation patterns in these tasks
are two interesting findings, which have not been formally ex-
plained. Here, we carry out a formal simulation with SUS-
TAIN (Love, Medin, & Gureckis, [2004), an adaptive model
of category learning, which had great success in accounting
for recognition memory performance and fMRI activity pat-
terns. We show, for the first time, that a formal single-system
model of category learning can accommodate recognition per-
formance after learning and is consistent with fMRI data ob-
tained while participants learned these structures.
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model; SUSTAIN

Introduction

One commonly used pair of category structures in categoriza-
tion research are the unidimensional (UD) and information-
integration (II) category structures. UD and II structures
were initially used for trying to separate the perceptual pro-
cesses encoding the visual information from the decision pro-
cesses assigning a category response to the perceptual ef-
fects (Ashby & Gott, [1988). Figure [I] shows how stimuli
varying in size and brightness are distributed within these two
category structures on either side of the boundaries. UD cat-
egory structures have a either vertical or horizontal decision
bound: if the square is darker or larger than the set threshold,
then it is category A, otherwise it is category B. Figure [TA
and [TB shows that this optimal decision bound is parallel to
one of the dimensional axes in the physical stimuli space. II
structures are defined by diagonal optimal decision bounds.
Figure[IIC and[I]D shows that II decision bounds follow a lin-
ear function, where the gradient is neither zero, nor infinite.
Many experiments utilised these structures (e.g. (Carpen-
ter, Wills, Benattayallah, & Milton, 2016; |Donkin, Newell,
Kalish, Dunn, & Nosofsky, 2015 [Nomura et al.l [2007;
Le Pelley, Newell, & Nosofskyl[2019) and many initial empir-
ical results were taken as evidence for COVIS (COmpetition
between Verbal and Implicit Systems |Ashby, Paul, & Mad-
dox| 2011) — one formalization of a dual-system theory

of categorization. Traditionally, dual-system theories have
two distinct architectures using functionally different mecha-
nisms. In COVIS, the explicit system uses rules that can be
easily verbalized, while the implicit system maps perceptual
input onto category responses. Accuracy in UD and II cate-
gory structures, according to COVIS, depends on which sys-
tem is engaged in solving the task. COVIS predicts that the
explicit system will implement rules to optimally solve UD
tasks, whereas the implicit system will take charge if sim-
ple rules are inadequate and implements (in this case) multi-
dimensional strategies to combine information from the two
dimensions of II tasks.

However, results from multiple labs pointed out flaws
in the experimental designs in COVIS-inspired experi-
ments (Newell, Moore, Wills, & Milton, 2013) with poten-
tial alternative explanations (Le Pelley et al., [2019; |Donkin
et al.l |2015) or problems with the decision-bound analyses
applied (Edmunds, Milton, & Wills|, 2018}, [Edmunds, Wills,
& Milton, |[2019)). In turn, some of these alternative-to-COVIS
explanations have been critiqued (Ashby, Smith, & Rosedahl,
2019). The debate continues.

The current paper further examines some of the alternative-
to-COVIS explanations of how people classifiy II and UD
structures. Specifically, the way COVIS explains how peo-
ple should optimally learn II structures was also questioned
by (Carpenter et al.| (2016) and |[Edmunds, Wills, and Milton
(2016)), who provided direct evidence for an involvement of
similar processes in both II and UD problems.

Carpenter et al.|(2016) found that the medial temporal lobe
(MTL) and specifically the hippocampus (HPC) were more
active when people were learning about II structures com-
pared to when they were learning about UD structures. This
result contradicts to predictions of COVIS as it is currently
formalized, which posits less activation for II than UD. CO-
VIS states that the explicit system is mapped to neurobiolog-
ical substrates such as the MTL (HPC) and predominantly
the prefrontal cortex, while the implicit system is mapeed to
areas such as the supplementary motor areas and substantia
nigra (Ashby & Valentin, 2017). According to COVIS, HPC
and the prefrontal cortex is exclusively involved in the explicit



system, which is responsible for the optimal learning of UD
structures. In other words, the way the two architectures are
specified in COVIS are inconsistent with the differences in
activations observed in HPC. HPC has also been long identi-
fied as crucial for memory (O’Reilly & Rudyl 2001} [Schlicht-
ing & Preston, 2015)). and thought to be essential for explicit
memory. This suggest that people should have better recogni-
tion performance after learning II structures than in UD struc-
tures.

Given |Carpenter et al| (2016)’s observation of greater
HPC activity in II than in UD structures, one can further
predict, contrary to COVIS, that there will be better post-
recognition memory for exemplars in II than in UD struc-
tures. |[Edmunds et al.| (2016)) directly confirmed this predic-
tion. They found better recognition memory after learning
II than UD structures, essentially supplementing the neural
data. While the differences in recognition performance are
rather small, it is statistically present in a between-groups
comparison (Edmunds & Wills, |2016). A more extensive
investigation on recognition memory in UD and II prob-
lems also found that participants who reported using com-
plex multidimensional rules showed better recognition per-
formance (Edmunds, 2017]).

Building on these findings, we further supplement behav-
ioral and neural data with evidence from computational mod-
eling. Here, we provide a formal single-system explanation
of the results of both |Carpenter et al.| (2016) and [Edmunds
et al.{(2016). We do so by using SUSTAIN (Supervised and
Unsupervised STratified Adaptive Incremental Network|Love
et al.l [2004).

SUSTAIN is one model in a single-system approach to
modeling categorization, and is able to accommodate a wide
range of behavioral and neural phenomena (e.g. [Love et
al., 2004} |Gureckis & Love, [2004; |Davis, Love, & Pre-
ston, 2012). This breadth is particularly admirable, because
modelers tend to focus on a small subset of effects (Wills,
O’Connell, Edmunds, & Inkster, [2017).

There are two reasons for using SUSTAIN. First, SUS-
TAIN can accommodate recognition memory performance in
multiple tasks (Love & Gureckis| 2007} [Davis et al.l 2012
Mack, Love, & Preston, 2018). Second, SUSTAIN’s concept-
forming and -altering mechanism, adaptive clustering, has
been mapped to HPC and MTL functions and activations.

Cluster-specific model components in SUSTAIN have been
directly connected to strong HPC activations present in early
learning and low HPC functions in amnesic patients in a dot-
pattern classification task (for a more exhaustive review, see
Love & Gureckis, 2007). SUSTAIN views the hippocam-
pus as the constructor and editor of clusters — binding infor-
mation together into category representations, and views the
MTL familiarity signals as indicators of cluster re-activations.
These views have been reinforced by connecting computa-
tional modeling to neural activity patterns. For example,
during rule-plus-exception learning, SUSTAIN makes spe-
cific predictions about item recognition, which has been di-

rectly and consistently mapped to MTL activations (Davis et
al., 2012). Furthermore, SUSTAIN’s cluster-updating mech-
anism parallels HPC activity in response to changing task de-
mands. SUSTAIN accommodates behavioral responses and
HPC activity in subsequent learning tasks where the stimuli
remain perceptually the same, but irrelevant features in the
first task become essential in the new categorization prob-
lem (Mack, Love, & Prestonl [2016). SUSTAIN is well
matched with how the HPC binds together information into
meaningful category representations and updates the stored
representations to match with goal-oriented changes in task-
demands (for a complete review, see|Mack et al., [2018)).

More difficult tasks require SUSTAIN to bind (and store)
larger sets of information into clusters than simpler tasks
do (Love et al.l |2004). This process results in higher num-
ber of clusters being recruited, which has been previously
mapped to increased HPC activity and improved recogni-
tion accuracy (Love & Gureckis, 2007). SUSTAIN therefore
predicts better recognition performance in tasks that require
higher number of clusters. In this paper, we intend to test
these predictions in relation to UD and II category structures
by formally fitting SUSTAIN to the categorization accuracy
data of Edmunds et al.| (2016)). Furthermore, we will com-
pare its recognition performance to human recognition per-
formance from [Edmunds et al.| (2016) and evaluate whether
the cluster-recruitment process is consistent with increased
HPC activity in II problems compared to UD problems ob-
served in Carpenter et al.|(2016).
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Figure 1: Representations of the category structures used
in Edmunds et al. (2016). UD = unidimensional; II =
information-integration; +/- = vertical/horizontal for UD and
positive/negative for II.

We refer the reader to [Love et al.| (2004) for the full de-



scription of the model’s architecture and [Love and Gureckis
(2007) for the full description of the supplementing architec-
ture capturing recognition memory.

Briefly, SUSTAIN is an adaptive clustering model, which
proposes that clusters underlie category representations (Love
et al.,[2004). Clusters, from SUSTAIN’s perspective, are sin-
gle coordinates in the representation space. These coordi-
nates are internal representations that connect to categories.
SUSTAIN starts with one cluster, centered on the first in-
put representation it encounters by default. When SUSTAIN
encounters a stimulus, it computes similarity from all stored
cluster representations in the psychological space. First, the
distance is calculated for each dimension, then differentially
weighted in the cluster activation function by attentional tun-
ings. So similarity on dimensions with higher attentional tun-
ings will be more impactful on which cluster is activated. The
winning cluster will be the one with the highest activation.
After this algorithm, clusters are laterally inhibited by each
others’ activations. Laterally inhibited activations are consid-
ered to reflect the models’ overall familiarity with the current
stimulus. The sum of these activations, Recognition score R,
indexes this stimulus-specific familiarity. Lateral inhibition
then ends in a winner-takes-all fashion — non-winning clus-
ters’ activations are muted for calculating further response
probabilities.

Activations after lateral inhibition spread to the category
output units by weighted connections. The activations of
each output units are turned into response probabilities. If the
model made the correct response, then the winning cluster’s
position is adjusted by moving it closer to the current input
representation. In the event of a prediction error (an incorrect
response) a new cluster centered on the current input repre-
sentation is recruited and becomes the winning cluster. Con-
nection weights from cluster units to the category output units
are updated according to the one-layer delta learning rule
(Widrow & Hoff, [1960). After both correct and erroneous re-
sponses, the winning cluster updates SUSTAIN’s attentional
tuning. Attentional tuning of each dimension maximizes its
impact on the recruited clusters. SUSTAIN prefers simple so-
lutions, and only starts recruiting clusters in response to pre-
diction errors. This means that more difficult tasks will cause
SUSTAIN to densely populate the psychological space with
clusters.

Simulation of Edmunds et al. (2016)

In the following, we present a formal simulation with the
SUSTAIN model accommodating human categorization ac-
curacy in II and UD structures. In addition, we show how
the model captures categorization accuracy and predicts bet-
ter recognition memory following the II problems compared
to the UD problems (Edmunds et al., 2016). This dif-
ference should be based on more clusters recruited for II,
which leads to the prediction of higher hippocampal activa-
tion while learning the II structures compared to UD struc-
tures (Carpenter et al. 2016). We do so by fitting SUS-

TAIN to an abstract design of [Edmunds et al.| (2016). We
decided on [Edmunds et al.| (2016), because this allowed us
to present the model with a close approximation of the con-
ditions present where the authors observed better recognition
performance in II.

Edmunds et al.|(2016) used 36 grey squares that varied in
brightness and siz There were four conditions. UD struc-
tures included both vertical and horizontal category bound-
aries, shown on Figure [T]A and Figure [IB respectively. II
structures involved diagonal category boundaries with both
positive and negative gradients, shown on Figure[T|C and Fig-
ure[TD respectively.

Each condition consisted of three phases. First, the catego-
rization training phase included 360 supervised training trials
in blocks of 120. Each simulated participant received 24 stim-
uli randomly picked from the 36 for their simulation. Those
24 stimuli were shown 5 times in each of the 3 blocks. This
was followed by an OLD/NEW recognition phase. This phase
consisted of 3 blocks of all 36 stimuli. The last phase was a
categorization test phase. This phase was similarly made up
of 3 blocks of all 36 items. For a more detailed description of
experimental procedure, see [ Edmunds et al.|(2016).

Simulation

Our implementation of SUSTAIN is available in the R pack-
age catlearn (Wills et al., [2020). First, we wanted to find the
one best fitting parameter set for the model across all four
categorization problems. SUSTAIN therefore encountered
all four problems at the same time as a single participant -
SUSTAIN completed each problem once with the same set
of parameters. SUSTAIN was reset between each problem.
SUSTAIN’s parameters were then adjusted to minimise the
sum of squared errors (SSE). SSE was calculated between the
mean group-level accuracy of humans in the categorization
test phase (as reported in Edmunds et al. (2006) and shown in
Table [2)) and the mean accuracy of SUSTAIN during the cat-
egorization test phase. We used the group-level data, because
it captures the ordinal difference associated with these tasks:
participants show higher accuracy for UD than II. The trial or-
der was randomised on each iteration. The model was fitted
with a differential evolutionary algorithm, as implemented
in the DEoptim package (Mullen, Ardia, Gil, Windover, &
Cline, 2011). The algorithm iterated 1000 times to find the
best fitting parameters. The speed of crossover was set to
¢ = 0.5, which gave larger weights to successful mutations.
The top 30% best solutions were copied to the new iteration
and was used in the new mutated population. These settings
helped to find the single overall best set of parameters for all
category structures across different trial orders. The best fit-
ting parameters are presented in Table [T} After finding the
best set of parameter, we simulated 1000 different trial orders
with SUSTAIN.

'In our simulations, these values were put in a range [0, 1] within
each dimension. The values as specified by their respective coordi-
nates are available in the supplementary material



Table 1: Best fitting parameters for SUSTAIN rounded to the
4™ decimal place.

Parameters Best Fitting
Attentional focus (r) 4.1301
Lateral inhibition (J3) 8.3273
Decision consistency (d) 1.9883
Learning rate (1) 0.0626

Categorization Test Phase Accuracy SUSTAIN’s catego-
rization performance is qualitatively similar to what we ob-
served from humans — II structures are harder to learn than
UD in [Edmunds et al.| (2016). This difference in accuracy
is a reliable difference in SUSTAIN’s performance, BF =
1.88 x 10776, SUSTAIN matches human-level categorization
test performance with a mean difference of 0.014, see Table[2]

Table 2: Categorization accuracy in SUSTAIN and humans.
Standard deviations are in parenthesis.

Category Structures ~ SUSTAIN Human
I 0.78 (0.027) 0.78 (0.11)
UD 0.85(0.026) 0.87 (0.07)

Cluster Recruitment and Attentional Tuning The mean
number of clusters recruited were M;; = 5.59, SD;; = 1.20 for
Il and M,,; = 3.01, SD,; = 1.18 for UD. SUSTAIN solves II
with a minimum of 4 clusters and a maximum of 12 clusters.
SUSTAIN solves UD with a minimum of 2 and a maximum
of 12 clusters. Example clusters populating the psychological
space are shown in Figure[2]

The mean, and variation, in the number of clusters is the
consequence of how trial-order interacts with the following
mechanisms: similarity, attention and error-driven cluster re-
cruitment. Simple problems on average result in fewer clus-
ters, while harder problems require the recruitment of more
clusters. This is attenuated by differentially weighing in rele-
vant information from each dimension — by attentional tun-
ing of perceptual inputs. Each dimension has its own atten-
tional tuning, A. For example, A is higher for relevant di-
mensions in UD structures, but remains comparable across
dimensions in II, see Table[3]

Table 3: Mean A values for each dimension across all cat-
egory structures. UD = unidimensional; II = information-
integration; +/- = vertical/horizontal for UD and posi-
tive/negative for II. Standard deviations are in parenthesis.

Conditions Ax Ay
I+ 13.52 (0.81) 13.46(0.78)
- 13.47 (0.78)  13.51 (0.81)
UD+ 13.38 (1.48)  7.80 (1.41)
UD- 7.80(1.41)  13.39(1.48)
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Figure 2: Example clusters recruited by SUSTAIN for three
simulations across conditions. The juxtaposed black lines
are the optimal decision bounds. UD = unidimensional; Il =
information-integration; +/- = vertical/horizontal for UD and
positive/negative for II.

If SUSTAIN tries to incorporate the irrelevant dimension
in UD by attending to both dimensions equally, the only way
SUSTAIN can eventually solve the task is to recruit more
clusters. Similarly, if SUSTAIN only attends to a single di-
mension in I, it will need to recruit large number of clusters
to solve the task. This will also result in misclassification
during the categorization test phase. Figure [3]shows how the
36 stimuli are captured by different clusters (indicated by the
dots” color) during the categorization test phase. Figure [3]
second row gives an example when clusters from one side of
the optimal decision bound captures stimuli from the other
side of the decision bound. This is due to a single dimen-
sion weighting in more in cluster activations than the other
dimension.

Overall, SUSTAIN requires higher numbers of clusters to
solve II due to its difficulty. This will result in clusters more
perfectly matching training items, so the matching clusters
will dominate the activation function. From the model’s point
of view, the HPC is specifically responsible for encoding new
clusters after surprising events (Love & Gureckis, [2007)). We
see higher HPC activations in II, because the category struc-
ture requires more representations to be encoded by the HPC.
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Figure 3: Example physical stimuli space for a single simula-
tion during the categorization phase. Each color is a different
cluster SUSTAIN recruited during learning. The dots with
same colors are captured by the same cluster. The juxtaposed
black lines are the optimal decision bounds. UD = unidimen-
sional; II = information-integration; +/- = vertical/horizontal
for UD and positive/negative for II.

HPC activations have been shown to positively relate to clus-
ter activations, updates and recruitments in SUSTAIN (Mack
et al.,|2016,|2018)). Therefore, SUSTAIN’s prediction for the
difference in HPC activity between UD and II problems is
found to be consistent with (Carpenter et al.| (2016)).

Table 4: Mean recognition scores and d’ for each category
structure, rounded to three decimal places. Standard devia-
tions are in parenthesis.

SUSTAINd’” Human &’
1II 0.040 (0.056) 0.01 (0.02)
UD -0.016(0.135) 0.00(0.01)

Recognition To get an approximate d’ measure from R,
Recognition Score, we applied Equation A11 from Love and
Gureckis| (2007) to turn stimulus-specific R values during the
categorization test phase into choice probabilities: P(old) =
R/ (R+k) where k is a response threshold parameter. We cal-
culated the mean probability of a hit (P(H) = P(old | item)
and false alarm P(F) = P(old | itemy,,) for each simulated
participant. We continued to determine d’ for each participant
using the z-transformed P(H) and P(F). Then we calculated
group-level averages. This algorithm (including the group-
level d’ calculations) were fitted against human performance
in the recognition phase as indexed by d’. Similarly, we used
DEoptim and reitereted the paramater search 50 times. More
details are included in the code available in the supplementary
material.

We found that the best-fitting parameter k was 0.571. This
parameter will not change the ordinal pattern of the recogni-
tion performance (/I > UD) SUSTAIN shows given the sim-
ulated categorization test data, but simply brings the values
closer to the human data.

Table {4{ shows the performance of humans and SUSTAIN.
A comparison of d’ between SUSTAIN and human data
yields a mean difference of 0.023. The model predicts better
recognition performance after learning II than UD structures,
consistent with|[Edmunds et al.|(2016)). This is a realiable dif-
ference in the simulated data, BF = 7.06 x 1057, This differ-
ence of d’ between SUSTAIN’s recognition performance in I
and UD results from the difference in the number of recruited
clusters between the two structures.

Recognition in SUSTAIN is based on similarity-driven
cluster activation and lateral inhibition. Where SUSTAIN re-
cruits a large number of clusters, these clusters will gener-
ally be closer to the stimulus representations presented in the
recognition memory test. This means that the stored repre-
sentions will match better to the model’s previous experience
in II than in UD problems. The more densely populated the
psychological space with clusters, the more clusters neigh-
bouring the input representation will activate. These activa-
tions then compete and will diminish as a result of lateral in-
hibition. The better recognition memory performance in II
results from the higher sum of activations in regions neigh-
bouring the input representations.

This benefit parallels HPC activation patterns. Better
recognition memory performance follows not just from the
modeling perspective, but also from a neural point-of-view.
Love and Gureckis| (2007) predicted this relationship, where
higher number of clusters mirror higher levels of HPC in-
volvement. This prediction strongly aligns with (Carpenter
et al.| (2016), who observed higher HPC involvement in the II
compared to UD task, and our simulation, where SUSTAIN
recruits more clusters for the II task.

Discussion

We have presented a formal account of empirical results
(Edmunds et al) 2016; (Carpenter et al., 2016) concern-
ing the acquisition of unidimensional (UD) and information-
integration (II) category structures. In so doing, we have
shown - for the first time - that both the behavioral and neu-
roimaging data obtained in these tasks can be accomodated by
a single-system model, SUSTAIN. The increased number of
clusters recruited by SUSTAIN for the II structure served as
a base for better recognition memory performance, and larger
HPC activation, than in the UD structure. According to SUS-
TAIN, this is because the differing task demands of the two
structures requires a larger amount of information to be en-
coded in the HPC for II structures.

Previously, |Davis et al.| (2012) speculated that tasks like
the II category learning were not suitable to model with SUS-
TAIN. This sentiment was based on the idea that II category
learning is a procedural learning task (Nomura et al., 2007) —



and hence characterized by mechanisms not specified within
SUSTAIN. However, procedural accounts of II problems are
based on a range of experiments that received considerable
scrutiny, and which turn out to have alternative explanations.

While the findings reported here are preliminary, they pro-
vide a sufficient explanation for a range of findings related the
UD and II structures in the form of a fully specified formal
computational model — SUSTAIN. Nonetheless, our current
simulation might be considered unconstrained, because we
did not pursue quantiative fit per se. Instead we choose to fo-
cus on whether SUSTAIN could accomodate the UD/II differ-
ences in performance during the categorization test. We then
investigated the predictions SUSTAIN made on that basis re-
lating to the subsequent recognition task, and the differences
in MTL/HPC activations across UD and II. One promising
follow-up would be to explore individual differences in HPC
activations and categorization accuracy via fitting SUSTAIN
to subject-level results. This would allow a direct mapping
between cluster recruitment and HPC activations. A caveat
with this approach is SUSTAIN’s sensitivity to trial-order ef-
fects.

The only formal model — before SUSTAIN — that has
been argued to accomodate the classification of both UD and
II structures was COVIS. COVIS posited a procedural ac-
count of how people learn II structures. COVIS solves II
with a procedural learning mechanism conceptualized as a
three-layer network: the first layer calculates the exponent
of the distance between activated input units and and sen-
sory units; the second layer attenuates these similarities by
weighted connections between sensory units and striatal units
before spreading to the striatal units; in the third layer, a de-
cision rule responds with the most activated striatal unit; and
then the weights are updated. It is a distributed-representation
connectionist network, where input node activations are sup-
plied by a distance between sensory unit coordinates and in-
put representation in the psychological space. COVIS solves
UD by a different, rule-based system, which establishes a de-
cision bound dominating responding. Therefore, at limit CO-
VIS predicts no recognition memory for either category struc-
tures. This still doesn’t allow better recognition in II than UD.
One approach would be to create an architecture that converts
similarity derived from sensory input and weighted connec-
tions to activations of memory traces. A similar approach has
been used to describe recognition by multiple-trace memory
models (Hintzman| [1986)), but this can require the assumption
that both rule-based and procedural systems are able to access
the representation space where these values are stored.

Conclusion

We formally show that a single-system adaptive cluster-
ing model, SUSTAIN, can accommodate categorization and
recognition performance in two frequently used category
structures, information-integration and unidimensional. The
behavior of the model is also consistent with MTL and HPC
activity involved in learning these structures. Our simulation

not only provides a formal account of how people learn these
structures, but also contributes to the literature bridging for-
mal models of category learning, behavior and the brain.

Open Science Statement

All simulation code is available in the Open Sciences Frame-
work athhttps://osf.i0/jc9xs/.
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