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Abstract—By monitoring crime incidence with quantitative

techniques, many studies have shown that it is possible to improve

decision making through pattern recognition and prediction. In

a smart city scenario, such approaches can be used to compose

analytical background to improve resource allocation. This work

presents a novel framework to improve patrol planning that

precisely provides places and times that are likely to be more

dangerous than short-term average using a portfolio of machine

learning algorithms. Our approach follows an algorithm-as-a-

service architecture (AaaS), providing insights to existing public

safety systems and platforms. The service comprises the broader

ROTA framework, a robust public safety platform devised for

the ongoing smart cities initiative of Natal, Brazil. Results

of an experimental evaluation provided insights about spatial

granularity effects on the performance of the estimators adopted.

Furthermore, an evaluation on algorithm selection demonstrates

its outcomes on the hotspot detection task.

Keywords—crime prediction, machine learning, patrol plan-

ning.

I. INTRODUCTION

Data is the core material of artificial intelligence, and is
there a social organism that produces more data than cities?
In such context, smart cities arises from technological ubiq-
uity through information gathering infrastructures to acquire
knowledge of their own complex organization. As Caragliu et
al. [1] state, a city becomes smart when it applies human and
social capital together with Information and Communications
Technology (ICT) sustainable growth to wisely manage urban
and natural resources, through participatory governance. This
culture makes the government think in an innovative way,
opening itself to technological and scientific trends. Concern-
ing public safety, previous studies have shown that criminal
rates can be explained quantitatively by analytical efforts to
measure aggregations and can increase the effectiveness of
policing [2]–[4]. A strong body of research focuses on place-
centric approaches to advise hotspot patrolling as a crucial
pillar in the implementation of predictive policing [5]–[7].

In fact, some cities are applying predictive policing for
smart city initiatives. For instance, the IEEE Smart City Initia-
tive 1 of Natal (in Brazil) is deploying a full-fledged platform,
named ROTA [8]–[10], that aims to improve public safety

1https://smartcities.ieee.org/affiliated-cities.html

by integrating several information systems from different law
enforcement agencies. ROTA provides a set of mobile appli-
cations that enhance information sharing aiming at providing
actionable, timely intelligence, as well as to support police
operations. Although the platform provides concrete benefits,
ROTA does not support structured approaches to predict
criminal activities and preferable places to patrol. Predicting
hotspots of criminal activities allows police departments to
deploy their task forces where and when they are most needed,
patrolling certain geographical areas in certain times of the day
where specific crime categories are most probable, proactively
fighting crime in a data-driven manner.

In this paper we propose a predictive framework for hotspot
detection that considers spatial, temporal and categorical con-
figurations of crime to precisely provide places and times
that are likely to be more dangerous than short-term average,
using a portfolio of machine learning algorithms. We have
implemented it for Natal and assessed the performance of
the models using different spatial granularity levels. For prac-
tical purposes, this framework is implemented as a service,
following the algorithm-as-a-service (AaaS) architecture. The
framework is able to handle multiple data sources, offers
multiple options of spatial granularity and feature engineering,
and implements machine learning algorithm selection. The
outcome of the framework provides an useful artifact for patrol
planning, called program card (i.e. a list containing priority
locations that police vehicles must patrol).

The main contributions of this work are summarized below:

1) A carefully designed crime prediction framework for
smarter public safety planning that considers multiple
data sources, spatial configuration, feature engineering
and machine learning algorithm selection.

2) An improvement in the analytical module of ROTA
platform to support hotspot detection for patrol planning
scheduling tasks.

3) A discussion about the need of spatial configuration
experiments to improve hotspot detection accuracy.

This paper is organized as follows. Section II describes the
problem tackled in the smart city initiative of Natal. Section
III provides a background on the predictive policing literature.



TABLE I
USE OF PREDICTIVE TECHNOLOGIES FOR CRIME ANALYSIS AND PREDICTION

Problems Predictive Analytics Approaches

Identify areas at increased risk using historical crime data Hotspot identification models [11], Crime Incidents Predic-
tion [12], Spatiotemporal analysis methods [5], [13]

Using a range of additional data (911 records, economics...) Classification, and clustering models [14]

Accounting for increased risk from a recent crime Near-repeat modeling: increased risk in areas immediately
surrounding a recent crime [15]

Determine when areas will be at most risk of crime Spatiotemporal analysis methods [5], [13]

Identify geographic features that increase the risk of crime Risk-terrain analysis [6], [16]

Section IV presents the proposed framework. Section V eval-
uates the performance of the prediction algorithms adopted.
Finally, Section VI concludes and discusses future work.

II. THE SMART CITY INITIATIVE IN NATAL

Natal, a city of Northeastern Brazil, has joined the IEEE
Smart City initiative as an affiliated city. This initiative aims
to transform Natal into a smart city through the development
of systems and applications to bolster the use of IT as means
of contributing to improve the life quality of its citizens. Many
actions have been implemented [8], [9], [17]–[19].

For instance, one of the solutions developed under the
Natal Smart City initiative is ROTA [8], [9], a smart city
platform aimed to improve public safety by collecting, inte-
grating, analyzing, and sharing information about occurrences
and patrol vehicles. ROTA provides some modules such as:
Patrol Supervisor Module (ROTA-PSM) [8] and Patrol Vehicle
Module (ROTA-PVM) [9]. ROTA-PSM is a mobile application
used by patrol supervisors to display the real-time position of
all patrol vehicles and occurrences. ROTA-PVM is an Android
mobile application deployed in the patrol vehicles. The main
purpose of ROTA-PVM is to support patrol in its operations,
thus making occurrence handling easier and faster.

By adopting ROTA-PVM, the occurrence handling flow
no longer requires using radio communication, except when
strictly necessary. When an occurrence is registered, a noti-
fication appears on the screen of the patrol vehicle’s tablet.
Upon confirming that the received notification was seen, the
policeman is provided with all relevant data regarding the
occurrence, such as location, type, suspect’s characteristics,
and the transcription of the call made by the citizen. Dur-
ing the operation, the patrol officer can notify any change
regarding the occurrence, e.g., his/her arrival on scene, the
need of an additional displacement, finishing occurrence, and
occurrence reports. Another functionalities of the ROTA-PVM
is the program card. A program card is a practical policing
methodology used by Police to distribute staff in a given area.
It consists of a list containing predefined locations (haven,
ambush, and crime-prone areas), patrol teams, route plan and
staying time at which each police vehicle must patrol as shown
in Figure 1. Hence, Patrol officers use patrol vehicles equipped

Fig. 1. Program Card in the ROTA-PVM mobile application.

with ROTA-PVM to patrol the assigned beats defined by the
program card.

Despite the existence of ROTA-PVM, program card elab-
oration still made manually, i.e., there is no tool to support
the detection of spatial and temporal patterns of criminal
activity. Patrol supervisors need to use their knowledge to
define the program card for each patrol team that is under
their supervision. Hence, detecting hotspots are essential for
the definition of the program card. In a previous work [10],
we exploit how a web application dashboard would help patrol
supervisors in such task, by visualizing criminal incidence
estimative to each police district.

Our proposed framework (see Section IV) builds upon
this work adding several advantages in terms of prediction’s
architecture and performance improvement. First, we modeled
a component to create and manage the spatial layer of the anal-
ysis. Then, a component to extract domain-specific features
from the raw time series is included. Another upgrade is the
algorithm selection component, that now consider a Portfolio
of tuned algorithms. For instance, we tested different spatial
discretization configuration reducing the size of the area for
the predictions (improving in hotspots’ spatial precision). Ad-
ditionally, we encapsulate the prediction architecture in a web
service manner to generalize implementation for other cities
or application contexts. Finally, models performance were
improved by tackling the classification problem of hotspot
detection rather than crime incidence prediction.



III. BACKGROUND

A. Predictive Policing and Hotspot Detection

As an established concept, predictive policing is well stated
by Perry et al. as ”the application of analytical techniques
(particularly quantitative) to identify likely targets for police
intervention and prevent crime or solve past crimes by making
statistical predictions” [6]. From the point of view of smart
city, the practical use of predictive policing can affect directly
at least two and, indirectly, more two out of the 8 cluster
factors defined by the Chourabi’s framework [20] to rank smart
cities. For instance, Management and Organization is changed
in terms that resource allocation and decision making is
beneficed with crime incidence estimative for different regions
of the city (patrol planning, for instance). The Technology skill
is directly improved because predictive policing provoke to
analyst’ research to become a software product and changes IT
and statistical cultural issues for decision-making. Indirectly,
People and Communities benefits with crime reduction [2]–
[4] and Governance gains when such strategies provide data-
exchange and service integration between tactical and oper-
ational agents [6]. Table I summarizes related work in this
area.

A vast body of research implements predictive policing
through hotspot analysis [4]. A hotspot is a spatial entity
with high criminal incidence and can be physically represented
in many ways. Some authors prefer to represent such zones
analogically (for instance, through heatmaps), with Kernel
Density Estimation techniques [11], [13] or through Risk
Terrain Analysis, including geographical and demographical
variables to represent dangerous areas [6], [16]. Others prefer
to represent hotspots spatially as a discrete cell in a grid.
Although several works uses rectangular grid, Ziehr [12]
proposed a K-Means based convex hulls polygonal collections
called KGrid [12], adjusted with occurrences coordinates,
which is illustrated in Fig. 2 and will further be used in this
work. Besides, it’s possible to use the police districts or the
boroughs as the spatial grid. The grids are relevant to evince
hotspots for patrol planners. When implementing them, query
the police department for their preference would determine
the success of the hotspot detection tool. However, when it
is asked for smaller units, as recommended by criminologists
[4], artificial grids just as KGrid is more appropriate because
K is a free parameter to manipulate lean and precise hotspots.

In temporal domain of granularity, Maciejewski et al. [21]
describes their procedure for daily aggregation and Malik et
al. [13] used weekly data to conduct their analysis, showing
that their model gives better overall prediction results when
aggregated over longer time intervals. As for spatial config-
uration, time window is another parameter to be assessed in
a practical way, consulting the police department to the best
usage. However, these authors are advocating an average of
at least ten crime records per time step in a sub-region in
order to avoid having sparse regions with few data. While a
spatial resolution level that is too fine (smaller spots) may
lead to sparse data input in many regions, a scale that is too

Fig. 2. KGrid of 50 cells

coarse can overgeneralize the data and reducing the value and
specificity of the prediction results [13].

Aiming to estimate future hotspots using past sequential
records, it needs to be modeled as a time series problem, which
holds some challenging specificities. According to Langkvist
et al. [22], time series data has a number of characteristics that
make it different from other types of data. He explicits that it
contains (i) high dimensionality and noise, (ii) uncertainty of
data amount significance, (iii) explicit time dependency and
(iv) non-stationarity (mean and variance changes over time).
However, this difficulties may be suppressed in some cases
with a structured modeling process of feature engineering. As
time is an explicit dependency for such problems, features
needs to be extracted from past observations, these may
be called autoregressive terms. Classical time series analysis
frameworks, such as Box and Jenkins approach [23], suggest
to take autocorrelation function (ACF) results to track how
many autoregressive features would be used. However, past
observations are not the only features to be used in time series
problems, and often moving averages are brought to the feature
union to improve learning. Besides, another sources of features
are welcome to improve model effectiveness when temporally
variant and some researches include it in their crime hotspot
prediction approach, using demographic [7], urban features
[24] or even Twitter data collection [11].

In terms of machine learning, hotspot detection and predic-
tion is applicable for both regression or classification tasks,
depending on the target label setting provided. As crime inci-
dence is a quantity, regression algorithms are more appropriate
when it is preferable to predict how many occurrences will
happen in the next time step. A body of researches tackle
suck task [10], [12], [13], but it is also relatively hard to be
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Fig. 3. Prediction framework architecture composed by processing components, data and models stored on disk and a interface for output. The components
by red represent data preparation, by blue are related to the prediction and by green the interface between prediction and output.

modeled because time series ”peaks” are as rare as desirable
to be predicted. Another strategy is to aggregate incidence
ranges in classes to reduce the class unbalance, the cold and
hotspot modeling suggested in Bogomolov et al. [7] and Yu et
al. [5] were adapted to be used in the implementation described
in Section V. As a consequence of that, less classes tend to
simplify the problem in order to achieve better prediction,
considering their distribution. The framework presented in the
next section is not locked on a single machine learning task
and it will be parametrized in its components depending on
implementation issues.

IV. PREDICTION FRAMEWORK

A. General Description

In this section we present the architecture of the proposed
framework composing a plethora of functionalities related to
hotspot detection. It is depicted in Fig. 3 and presented as a set
of modular components connected by web service technology.
This allows to maintain a clear separation of concerns between
police department systems and the framework operation.

1) Data Sources: as input, the proposed framework receives
not only crime endogenous data sources (data directly associ-
ated with crime) such as crime incidence levels, but exogenous
sources, e.g. demographic [7], urban [24] and social media
[11]. In fact, exogenous sources (data not directly related to
crime) can be quite heterogeneous in their composition. For
instance, demographics may be available to specific regions
of the city or for the entire city, i.e. not indexed spatially.
Similarly, it could be temporally indexed or not, for example
districts’ area and other spatial features [24]. Succinctly, it’s
possible to classify data sources concerning to these three main
aspects.

• Nature: endogenous or exogenous.
• Spatial variability: variant or constant.
• Temporal variability: variant or constant.

2) Grid: regard the function of processing the city’s spatial
discrete distribution and aggregating data sources into Time
Series and Historical Profile. It has to instantiate the spatial
collection of objects (spots) following a discretization strategy
that could be artificial (requiring a free parameter to adapt the
size), such as rectangular grid or KGrid, or demographic as
police’s districts or boroughs.

3) Time Series: are one of the outputs of Grid, com-
posing a series of temporal dependent variables, such as
crime incidence level, for each spot. They should have a
sample frequency of aggregation (time granularity level as
daily, weekly, etc) and support filtering by a time window
or an specific category (e.g. crime category for endogenous
variables). In fact, exogenous sources that are temporally
variable would introduce additional relevance when included
to the predictions.

4) Historical Profile: is the other output of the Grid. It
aggregates not only the other temporally constant sources, but
data that provide extra detail would collaborate to decision-
making, composing a profile for the spots. For instance, top
3 risky streets or 3 unsafe times of the day for each spot that
historically aggregate higher criminal incidence should enrich
the knowledge provided by the prediction.

5) Ingestion: traduces the domain problem (time series
prediction) to a generic machine learning one. It is responsible
to start the predictions by extracting and transforming features.
As discussed in Section III, autoregressives, seasonals and
trends are alternatives to extract features from Time Series
and for this a important parameter is the number of lags
(quantity of previous steps) considered. Empirical studies [12],
[13] have shown that time series transformations, such as log
or normalization, or even feature selection does impact on
performance and should be made in this component and every
feature engineering operations should be encapsulated here.

6) Estimators: are the wrappers for the machine learning
algorithms. As every algorithm has its own parameters to be



tuned for each instance of Time Series in order to improve per-
formance, a tuning strategy must consider the computational
budget available to train instances. Exhaustive searches in the
parameter space sometimes are not scalable when the number
of series becomes too large, and randomized search would be
more flexible testing less combinations. Also, Cross-validation
is recommended to reduce overfitting when tuning them.

7) Portfolio: stores a limited set of tuned machine learning
Estimators. This component allows less algorithms to be
tuned, considering the hypothesis that if an algorithm has
a good performance in a problem, it may be also useful in
another problem. Although crime behaves differently among
regions, there is a trade-off between slightly variations on
performance and computational budget to train it all. However,
in case training all algorithms for all instances is practicable,
a complete Portfolio would be fitted. Besides, there is a clear
necessity to retrain the algorithms past some time, mainly
because more data will be available and crime would change
its behavior, even considering the fact that hotspot patrolling
will directly disturb it. This retraining concern should be
attached by the Portfolio, requiring to tune Estimators again.

8) Algorithm Selector: complies the function of selecting
from Portfolio a performatic algorithm for a given instance,
increasing the overall prediction performance by mapping a
tuned algorithm to a problem instance. If all instances have all
algorithms tuned for them (complete Portfolio), it’s preferable
to directly choose the best one. If it’s impracticable, one should
extract features from the instances and train a classifier to
predict what is the best algorithm for it. Kotthoff [25] reviewed
many strategies to do so.

9) Prediction Handler: works as the web service controller,
requesting for the prediction given all the Time Series available
using the map predefined by the Algorithm Selector. Also,
it is responsible to update predictions after the time step
referred to the prediction, keeping answering which spots will
be classified as hot.

10) Program Card: organizes the output of the service
by indexing detected hotspots with the Historical Profile of
them. It operates as the view of the web service and should
be structured in a GeoJSON format to handle not only the
hotspots properties, but its geometry.

V. EVALUATION

A. Design and Implementation
We have implemented the proposed framework with the

Natal’s crime dataset, provided by a partnership between
SmartMetropolis research project and Public Safety Secretariat
of the State of Rio Grande do Norte in Brazil. It aggregates
a large set of criminal occurrences registered by police from
2006 to 2016, briefly represented by tuples of occurrence’s
hcategory, latitude, longitude, timestampi which correspond
to the endogenous source of data. The dataset used in the
experiments contains sensitive information, and therefore only
its metadata can be discussed. Also, we are using exogenous
sources of city’s features, such as streets geometries, schools
and public squares points, all spatially variant and temporally

TABLE II
PARAMETERS CONFIGURATION OF THE FRAMEWORK COMPONENTS

Component Aspect

Data Source Endogenous Crime records
Exogenous Streets, schools, public squares

Grid Strategy KGrid
Size(s) 10, 30, 50, 70, 90, 110, 130

Time Series
Frequency Week

Filters Time: 2013-01⇠2016-06
Categories: all

Historical Profile

Days of the week 3
Hour intervals 3
Dangerous streets 4
# Schools -
# Public squares -

Ingestion Autoregressives 5 lags
Trends 5 lags

Estimators
Algorithms Random Forest, MLP, KNN
Task Classification
Tuning Grid search (5-Fold CV)

Portfolio Size Complete Portfolio
Retrain period 4 months

Algorithm Selector Feature instances None (complete Portfolio)

constant. The data sources are the starting point to design the
rest of the implementation and they were wrangled with the
help of pandas python library [26]. In order to summarize all
the parameters considered for each component, we refer to
Table II.

Concerning the Grid, we choose to fit it artificially with
KGrid in order to evaluate prediction performance for smaller
sizes of hotspot. The KGrid were built by clustering crime
points (latitude and longitude properties), forming a collection
of convex hull polygons as discussed previously [12]. To
evaluate its variations on Estimators performance, we tested K
with 10, 30, 50, 90, 110 and 130 cells (or spots). After Grid
creation, Time Series were fitted to it using the endogenous
features available, weekly aggregated and filtered for a time
window of three years and a half of records. Using the
exogenous sources of data mixed with the endogenous, the
Historical Profile were built representing the top 3 threatening
days of the week and hour intervals that helps to narrow patrol
schedules temporally. In terms of spatial binds of the hotspots,
it is calculated the most dangerous streets through spatial join
operations between streets geometries and crime points. These
risky streets were also considered to be indexed as a geometric
property of the output of the service.

Besides mandatory autoregressive features in time series
context, the Ingestion implementation also extracts trends
considered for a lag window of 5 past observation. We used
the statsmodels python library [27] to extract both seasonal
and trend components. The trend was extracted by considering
a moving average with the window corresponding to the
period of the time series, in weekly time steps, it begins to



Fig. 4. Classes distribution along different KGrid of yb.

repeat it self past a year, or 52 points, producing a smoothed
version of the original time series. Considering 5 lags for
autoregressives and 5 for trends, all features were normalized
to avoid further problems in the estimation algorithms. The
Portfolio of Estimators is composed by three implementation
of scikit-learn [28] broadly used machine learning algorithms:
(i) Random Forest [29] (ii) MultiLayer Perceptron (MLP) [30]
and (iii) K Nearest Neighbors (KNN) [31] tuned specifically
for each spot with 5-Fold Cross validation. As there are only
three tuned estimators for each spot, we preferred to compose
a complete Portfolio and let Algorithm Selector selects the best
model considering its CV accuracy score (true positives plus
true negatives rates). As discussed in Section III, regression
and classification tasks are attainable for these series. However,
we consider the Estimators objective to classify a Grid cell
as cold or hotspot adapting Yu et al. [5] strategy through a
binary classification task defined in Equation 1. Time series
are composed by quantity of crimes per week and to traduce
this to binary classes, we simply consider a hotspot (yb = 1) if
the current quantity of crimes is greater than the average of the
last four observations, similar to a moving average threshold,
else it is a coldspot (yb = 0). Considering this definition, Fig.
4 shows class distribution for different grid configurations on
the crime dataset.

yb(t) =

(
1 if y(t) >

P4
1 y(t�i)

4
0 else

(1)

After the Algorithm Selector component maps one of the
Estimators from the complete Portfolio to an instance of
Grid cell, the Prediction Handler is instantiated. It is the
controller interface of the service to capture which are the
ones considered hotspot for next time interval and passing
their identifier keys to the Program Card to finally request
Historical Profile for each region associated with such key.
These two last components update the request every week and
make it available to be pulled by an application, for instance,
the ROTA-Analytics dashboard presented in a previous work
[10].

B. Estimators Performance

The previous described implementation is then evaluated
experimenting the Grid changes in order to find better con-

Fig. 5. A snippet of a single hotspot profile in Program-Card.

figurations of hotspots to be patrolled in terms of Estimators
performance. Seven trials were conducted and Fig. 6 illus-
trates CV accuracy distribution on the hotspots detection task
designed before. Note that accuracy is growing along with
grid size, but it stabilizes. This is specially good for the police
departments, because with more cells, the prediction will have
more spatial precision and incisiveness for patrolling. A reason
for the improvement would be explained by the micro-level
variations in crime that this neighbors preserves. In a scenario
of less and bigger hotspots, the overlap between different
types of crime may impact noisily to the prediction. Ariel and
Partridge have argued that unit of analysis should be as small
as possible, considering what they call ”law of concentration
of crime in place and time”: half of calls for service to police
occurs in less than 5% of places and also are concentrated
in certain times of the day, days of week and months of the
year [4]. However, the overall performance starts to decrease in
K=130, possible due to sparseness of data discussed in Section
III.

In terms of algorithm performance, it is possible to infer
that MLP and Random Forest are competing in overall per-
formance. However, the eligible ones preferred by Algorithm
Selector are illustrated in Fig. 7. It is clear that for all
configurations on Natal’s dataset the MLP classifier were
preferred, but Random Forest does has a share of instances



Fig. 6. 5-Fold CV accuracy performance for Random Forest (RF), MLP and KNN classifiers in seven configurations of KGrid.

Fig. 7. Algorithm Selector histograms of estimators preferences in seven configurations of KGrid.

to be the predictor, mainly for K=30, followed by KNN
with lower participation. Considering the Algorithm Selector
effects, Fig. 8 illustrates a visual intuition perspective that
the selection effects median was improved approximately
10%. This emphasizes that algorithm selection is crucial to
achieve improvements in performance and should be indexed
in the predictive policing framework. For the best configura-
tion (K=70), the median performance reaches almost 80% of
accuracy and for some instances reaches 90%.

VI. CONCLUSION

In this work we formulate a novel framework towards crime
prevention and helps smart cities to support automated patrol
planning. To ensure practical use, we have adopted a web
service architecture as a way to integrate with public safety
systems and platforms, as ROTA one. While it is a conceptual
description of the framework, we have implemented an in-
stance as guideline to practitioners. It was possible to describe
examples of the component’s importance and what kind of
parameters should be considered to evaluate the quality of the
results. One highlighted parameter in the evaluation is spatial
granularity. Our implementation shows that for fine grained
grid, i.e. higher K, machine learning models are more suitable.
As a consequence, police departments would use them as a
precise tool to distribute patrolling in this micro region with
the help of descriptive statistics as a profile with its hourly
and daily patterns. Additionally, other advantage noted by
our framework is that hotspots are generated for each new
time window step (weekly in our implementation) and new
areas prone to crime are detected over time, considering short-
term crime behavior, avoiding vicious patrol in certain places.
The framework is attached to ROTA architecture in order to
improve Natal, a promising smart city initiative.

VII. ACKNOWLEDGEMENT

This work is supported by the SmartMetropolis Project2.
Nelio Cacho is supported in part by CAPES - Brazil
(88881.119424/2016-01).

REFERENCES

[1] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart cities in europe,”
Journal of urban technology, vol. 18, no. 2, pp. 65–82, 2011.

[2] A. A. Braga, A. V. Papachristos, and D. M. Hureau, “The effects of
hot spots policing on crime: An updated systematic review and meta-
analysis,” Justice quarterly, vol. 31, no. 4, pp. 633–663, 2014.

[3] B. L. Benson, D. W. Rasmussen, and I. Kim, “Deterrence and public
policy: Trade-offs in the allocation of police resources,” International
Review of Law and Economics, vol. 18, no. 1, pp. 77–100, 1998.

[4] B. Ariel and H. Partridge, “Predictable policing: Measuring the crime
control benefits of hotspots policing at bus stops,” Journal of Quantita-
tive Criminology, vol. 33, no. 4, pp. 809–833, 2017.

[5] C.-H. Yu, M. W. Ward, M. Morabito, and W. Ding, “Crime forecasting
using data mining techniques,” in 11th International Conference on Data
Mining Workshops (ICDMW), 2011. IEEE, 2011, pp. 779–786.

[6] W. L. Perry, B. McInnis, C. C. Price, S. C. Smith, and J. S. Hollywood,
“Predictive policing: The role of crime forecasting in law enforcement
operations,” 2013.

[7] A. Bogomolov, B. Lepri, J. Staiano, N. Oliver, F. Pianesi, and A. Pent-
land, “Once upon a crime: towards crime prediction from demographics
and mobile data,” in Proceedings of the 16th international conference
on multimodal interaction. ACM, 2014, pp. 427–434.

[8] J. Coelho, N. Cacho, F. Lopes, E. Loiola, T. Tayrony, T. Andrade,
M. Mendonça, M. Oliveira, D. Estaregue, and B. Moura, “Rota: A smart
city platform to improve public safety,” in New Advances in Information
Systems and Technologies. Springer, 2016, pp. 787–796.

[9] M. Mendonça, B. Moreira, J. Coelho, N. Cacho, F. Lopes, E. Cavalcante,
A. Araujo Jr, J. L. Ribeiro, E. Loiola, D. Estaregue et al., “Improving
public safety at fingertips: A smart city experience,” in International
Smart Cities Conference (ISC2), 2016. IEEE, 2016.

[10] A. Araujo Jr, N. Cacho, A. C. Thome, A. Medeiros, and J. Borges,
“A predictive policing application to support patrol planning in smart
cities,” in International Smart Cities Conference (ISC2), 2017. IEEE,
2017.

[11] M. S. Gerber, “Predicting crime using twitter and kernel density esti-
mation,” Decision Support Systems, vol. 61, pp. 115–125, 2014.

2http://smartmetropolis.imd.ufrn.br

http://smartmetropolis.imd.ufrn.br


Fig. 8. 5-Fold CV accuracy for the estimators provided by Algorithm Selector

[12] D. Ziehr, “Leveraging Spatio-Temporal Features for Improving Pre-
dictive Policing,” Master’s thesis, Karlsruhe Intitute of Technology,
Germany, 2017.

[13] A. Malik, R. Maciejewski, S. Towers, S. McCullough, and D. S. Ebert,
“Proactive spatiotemporal resource allocation and predictive visual ana-
lytics for community policing and law enforcement,” IEEE transactions
on visualization and computer graphics, vol. 20, no. 12, pp. 1863–1872,
2014.

[14] S. V. Nath, “Crime pattern detection using data mining,” in 2006
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology Workshops, Dec 2006, pp. 41–44.

[15] G. O. Mohler, M. B. Short, P. J. Brantingham, F. P. Schoenberg, and
G. E. Tita, “Self-exciting point process modeling of crime,” Journal of
the American Statistical Association, vol. 106, no. 493, pp. 100–108,
2011.

[16] L. W. Kennedy, J. M. Caplan, and E. Piza, “Risk clusters, hotspots, and
spatial intelligence: risk terrain modeling as an algorithm for police
resource allocation strategies,” Journal of Quantitative Criminology,
vol. 27, no. 3, pp. 339–362, 2011.

[17] N. Cacho, F. Lopes, E. Cavalcante, and I. Santos, “A smart city initiative:
The case of natal,” in International Smart Cities Conference (ISC2),
2016. IEEE, 2016, pp. 1–7.

[18] A. Cacho, M. Figueredo, A. Cassio, M. V. Araujo, L. Mendes, J. Lucas,
H. Farias, J. Coelho, N. Cacho, and C. Prolo, “Social smart destination:
a platform to analyze user generated content in smart tourism desti-
nations,” in New Advances in Information Systems and Technologies.
Springer, 2016, pp. 817–826.

[19] A. Souza, J. Pereira, J. Oliveira, C. Trindade, E. Cavalcante, N. Cacho,
T. Batista, and F. Lopes, “A data integration approach for smart cities:
The case of natal,” in International Smart Cities Conference (ISC2),
2017. IEEE, 2017.

[20] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon,
T. A. Pardo, and H. J. Scholl, “Understanding smart cities: An integrative
framework,” in 45th Hawaii International Conference on System Science
(HICSS), 2012. IEEE, 2012, pp. 2289–2297.

[21] R. Maciejewski, R. Hafen, S. Rudolph, S. G. Larew, M. A. Mitchell,
W. S. Cleveland, and D. S. Ebert, “Forecasting hotspots—a predictive
analytics approach,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 4, pp. 440–453, 2011.

[22] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised
feature learning and deep learning for time-series modeling,” Pattern
Recognition Letters, vol. 42, pp. 11–24, 2014.

[23] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[24] J. Borges, D. Ziehr, M. Beigl, N. Cacho, A. Martins, S. Sudrich, S. Abt,
P. Frey, T. Knapp, M. Etter, and J. Popp, “Feature engineering for crime
hotspot detection,” in Conference on Smart City Innovations (SCI), 2017
International. IEEE, 2017.

[25] L. Kotthoff, “Algorithm selection for combinatorial search problems: A
survey,” in Data Mining and Constraint Programming. Springer, 2016,
pp. 149–190.

[26] W. McKinney, “pandas: a foundational python library for data analysis
and statistics.”

[27] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical
modeling with python,” in 9th Python in Science Conference, 2010.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[29] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[30] S. Haykin, “A comprehensive foundation,” Neural networks, vol. 2, no.
2004, p. 41, 2004.

[31] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

View publication statsView publication statsView publication stats

https://www.researchgate.net/publication/330854092
https://www.researchgate.net/publication/330854092

