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Abstract. The inverted generational distance (IGD) is a metric for as-
sessing the quality of approximations to the Pareto front obtained by
multi-objective optimization algorithms. The IGD has become the most
commonly used metric in the context of many-objective problems, i.e.,
those with more than three objectives. The averaged Hausdorff distance
and IGD+ are variants of the IGD proposed in order to overcome its
major drawbacks. In particular, the IGD is not Pareto compliant and its
conclusions may strongly change depending on the size of the reference
front. It is also well-known that different metrics assign more importance
to various desired features of approximation fronts, and thus, they may
disagree when ranking them. However, the precise behavior of the IGD
variants is not well-understood yet. In particular, IGD+, the only IGD
variant that is weakly Pareto-compliant, has received significantly less at-
tention. This paper presents an empirical analysis of the IGD variants.
Our experiments evaluate how these metrics are affected by the most
important factors that intuitively describe the quality of approximation
fronts, namely, spread, distribution and convergence. The results pre-
sented here already reveal interesting insights. For example, we conclude
that, in order to achieve small IGD or IGD+ values, the approximation
front size should match the reference front size.

Keywords: multi-objective optimization, performance assessment, inverted gen-
erational distance

1 Introduction

Due to the conflicting nature of the multiple objectives to be optimized in a
single run, the goal of an EMO algorithm is to find a set of high-quality, trade-
off solutions, rather than a single one. Such solution sets are approximations
to the Pareto-optimal front. Pareto-optimality only provides a partial ranking
between such approximation fronts. Thus, their relative quality is typically eval-
uated with the aid of quality metrics, also known as quality indicators [14], which



provide a complete ranking. Many quality metrics have been proposed in the lit-
erature [9, 11–14], and multiple quality metrics are often used simultaneously,
because each metric assigns different importance to various desirable features of
approximation fronts, such as convergence, spread and distribution. These differ-
ences between metrics may lead to “disagreements”, when each metric chooses
different approximation fronts as the best ones. Empirical studies have shown
that the degree of disagreement strongly depends on features of the approxi-
mation fronts, such as convexity, and on the correlation between objectives and
their number [10]. Understanding the properties of these metrics is critical for
correctly selecting which metrics to use and interpreting their outcome.

One of the most desirable properties of a quality metric is Pareto compliance.
A quality metric is Pareto-compliant if, and only if, the ranking it establishes
over approximation fronts does not contradict Pareto optimality [14]. In other
words, it cannot happen that the metric ranks one front better than another
while the latter would always be preferred according only to Pareto optimality.
The use of a non-Pareto-compliant metric to evaluate algorithms that attempt
to approximate the Pareto front may lead an analyst to prefer an algorithm
that returns approximation fronts that are strictly worse in terms of Pareto
optimality.

Three widely-used unary quality metrics are the hypervolume (IH [13]), the
(additive or multiplicative) epsilon (I1ε [14]) and the inverted generational dis-
tance (IGD [4]). Both IH and I1ε are Pareto-compliant [14],4 whereas the IGD
is not [9]. Despite this drawback, the IGD has become widely adopted in EMO
studies of many-objective optimization problems, i.e., problems with more than
three objectives. A possible explanation is that the IGD is cheaper to compute
than IH , since the computational cost of IH grows exponentially with the num-
ber of objectives [1]. Moreover, it is commonly assumed that both IGD and IH
are able to measure the desired features of approximation sets, that is, conver-
gence, spread and distribution. However, recent empirical studies have shown
that the disagreement between IH and IGD increases with the number of ob-
jectives [2,10]. Thus, understanding what is exactly being measured by the IGD
under various scenarios is of critical importance.

Alternative versions of the IGD have been proposed in recent years [9, 11]
with hopes of addressing its potential drawbacks. In addition to its lack of Pareto-
compliance, the IGD is not strictly a distance since under some conditions it does
not satisfy the triangle inequality among approximation fronts [11]. Moreover,
the IGD may evaluate two approximation fronts as almost equal if the main
difference between the two is that one of them contains a very poor objective
vector (an outlier). Another potential drawback of the IGD is that its value
is quite sensitive to changes in the size of the reference front, that is, a finer-
grained reference front may significantly alter conclusions previously obtained
with a smaller reference front, even if both reference fronts only present optimal
solutions. The averaged Hausdorff distance (∆p [11]) is a variant of IGD that
attempts to alleviate some of these drawbacks, except for the lack of Pareto-
compliance. More recently, the IGD+ has been proposed as a Pareto-compliant

4 To be more precise, the ε-metric is only weakly Pareto-compliant, but we do not make
a distinction between weakly and non-weakly Pareto-compliance in the remainder
of this paper.



variant of IGD [9], being very similar to the IGD and being as robust as ∆p

to different sizes of reference fronts. The properties of the IGD+ are still poorly
understood and so far no investigation has been conducted about the behavior
of the IGD+ with respect to convergence, spread, and distribution.

In this work, we conduct an empirical investigation specifically targeting
IGD and its Pareto-compliant variant IGD+. Concretely, we generalize an ex-
isting bi-objective benchmarking problem [7] for any number of objectives and
we consider scenarios with up to ten objectives. Then, we design a series of ex-
periments where approximation fronts are evolved for increasing convergence,
spread, or distribution, and evaluate how the selected metrics respond to these
changes. Effectively, our experiments isolate the effects of convergence, spread,
and distribution. Furthermore, we design two experiments that simulate practical
scenarios that EMO algorithms may run into, namely, when the approximation
font has converged to the central region of the Pareto front and when the ap-
proximation front has achieved a good convergence and maximum spread but
its distribution is poor.

Our results show that the IGD and IGD+ behave exactly the same for all the
practical purposes considered in this work. In addition, the factors that affect
one variant affect the other in the same degree. For instance, we observe that the
most important feature to ensure low IGD values is to have an approximation
front that matches the size of the reference front adopted. Knowledge of this
feature is critical as the default practice in the performance assessment of EMO
algorithms is to use very large reference fronts, and here we demonstrate that
in this circumstance the IGD and IGD+ values may start worsening even if
the spread of the approximation front is improving without worsening any other
desirable feature. Another important insight concerns the effect of the parameter
meant to regulate the importance of outliers. We observed that a setting often
used in the literature leads to a constant IGD value despite changes in the
distribution of the approximation front.

The remainder of this work is structured as follows. In Section 2, we briefly
review the most relevant conceptual definitions related to the performance as-
sessment of EMO algorithms, highlighting the desirable features of approxima-
tion fronts that we use as factors in our empirical investigation. Next, Section 3
presents an overview of IGD variants and explains why we focus on IGD and
IGD+. Section 4 details our experimental setup, and Section 5 reports the em-
pirical investigation we conduct. Finally, Section 6 presents our conclusions and
discussion of future work.

2 Performance assessment of EMO algorithms

In multi-objective optimization (MO), the goal is to simultaneously optimize
M objective functions.5 Therefore, the image of each potential solution is an
objective vector with M components. The conflicting nature of objectives typi-
cally prevents the existence of a single, globally optimal solution that optimizes
all objectives at once. In the absence of preference information regarding the

5 In the following we assume maximization, without loss of generality.



importance of each objective, solutions are often compared in terms of Pareto-
optimality, where a solution with objective vector a is said to dominate another
solution with objective vector b iff ai ≥ bi, ∀i = 1, . . . ,M and ∃j aj > bj .
Two objective vectors are mutually nondominated if none of them dominates
the other. The goal then becomes to find the set of Pareto-optimal solutions,
that is, those solutions that are not dominated by any other feasible solutions;
or rather the image of this set in the objective space, the Pareto front.

Since finding the Pareto front is often intractable, EMO algorithms attempt
to find a high-quality approximation of it, namely, an approximation front com-
posed of mutually nondominated objective vectors. Hence, the performance as-
sessment of EMO algorithms requires the evaluation of the relative quality of
approximation fronts. Although Pareto-optimality may sometimes be enough to
conclude that one approximation front is better than another, the most common
case is that fronts are mutually incomparable. Nonetheless, there are features
that, in addition to Pareto-optimality, are desirable in high-quality approxima-
tions [10]:

1. Convergence refers to the (near-)optimality of individual solutions. A front
is said to have converged if all of its solutions are Pareto-optimal.

2. Spread refers to the extent of the front, more specifically to the distance
between the extreme solutions of a front.

3. Distribution refers to the evenness of the front, more specifically to the
uniformity of the distances between pairs of adjacent solutions.

Instead of directly measuring each individual feature, quality metrics can be
found in the literature that attempt to evaluate all features at once [9, 11–14].
However, each metric assigns a different importance to each feature and behaves
differently depending on the characteristics of the problem and the particular
fronts being evaluated, thus it is common that multiple metrics are used for
performance assessment. In particular, experiments have shown [10] that the
IGD and the IH consistently disagree in typical scenarios arising in many (more
than three) objective problems. Hence, understanding the behavior of quality
metrics under various scenarios is crucial for performance assessment. While the
IH and, to some extent, the IGD are fairly well understood nowadays, newer
variants such as IGD+ have received little attention.

3 The inverted generation distance and its variants

The predecessor of the IGD , the generational distance (GD [12]), was
proposed nearly two decades ago. The GD is defined as the distance between
each objective vector a in a given approximation front A and the closest objective
vector r in a reference front R, which is either the actual Pareto front or a very
good approximation to it, averaged over the size of A. Formally,

GD(A,R) =
1

|A|

(∑
a∈A

min
r∈R

d(a, r)p

)1/p

, d(a, r) =

√√√√ M∑
k=1

(ak − rk)2 (1)

A value of p = 2 was used in the original proposal, but this choice was later
superseeded by p = 1 for simplicity of interpretation and computation. With



p = 1, the GD becomes an average of the Euclidean distances between each
objective vector in A and its closest objective vector in R. The GD metric is
fast to compute and correlates with convergence to the reference set. However,
the GD is not Pareto-compliant [14] and it is also sensitive to the size of the
approximation front A. Thus, large approximation fronts of poor quality may be
ranked highly by GD .

The inverted generational distance (IGD [4]) was proposed as an im-
provement over the GD based on the very simple idea of reversing the order of
the fronts considered as input by the GD , i.e., IGD(A,R) = GD(R,A). In other
words, the IGD equals the GD metric but computing the distance between each
objective vector in the reference front and its closest objective vector in the
approximation front, averaged over the size of the reference front. Parameter p
plays a similar role as in the GD and often defaults to p = 1. The IGD is not
sensitive to the size of the approximation fronts and it provides a ranking that
intuitively matches more closely the desirable convergence, spread and distri-
bution. Since it is also computationally fast to compute, IGD soon became the
most widely used metric to assess many-objective EMO algorithms. Nonetheless,
the IGD has been shown recently to lack Pareto-compliance [9].

The averaged Hausdorff distance (∆p [11]) was proposed as an attempt
to address three potential drawbacks of the IGD . First, despite being charac-
terized as a distance metric, the IGD sometimes violates the triangle inequality
property. Second, the size of the reference front has a significant effect on the
IGD values, to the point that adding additional solutions to the current refer-
ence set may change the relative ranking of approximation fronts. Third, if the
main difference between two approximation fronts is that one contains a clearly
poorer objective vector, the IGD may still regard both fronts as roughly equal,
in other words, the IGD is often lenient about outliers. To overcome the first
and third drawbacks, ∆p is defined as an averaged Hausdorff distance metric,
regulated by the numerical parameter p. In particular, larger values of p mean
stronger penalties for outliers and fewer triangle inequality violations. Concern-
ing the second drawback, ∆p uses an alternative version of IGD (IGDp), where
the denominator is also affected by the parameter p. The formal definition of ∆p

is given below:

∆p(A,R) = max (IGDp(A,R), IGDp(R,A)) (2)

IGDp(A,R) =

(
1

|R|
∑
r∈R

min
a∈A

d(r, a)p

)1/p

(3)

Finally, the modified inverted generational distance (IGD+ [9]) pro-
poses the following modification of the distance function of the original IGD .
For objective vectors that are dominated by the reference front, the traditional
Euclidean distance is adopted. However, for objective vectors that are nondom-
inated w.r.t. to the reference front, only the dominated objective vector compo-
nents are used for computing the distance. Formally, given a problem where all
M objectives must be maximized, the distance function d in Eq. (3) is replaced



by:

d+(r, a) =

√√√√ M∑
k=1

(max{rk − ak, 0})2 (4)

This modification is enough to make IGD+ weakly Pareto compliant, similarly
to I1ε . In addition, the definition of IGD+ includes the denominator |R| under
the exponent 1/p, as in the IGDp definition proposed for the ∆p (Eq. 3).

Nowadays, the IGD has effectively superseeded GD , however, ∆p has not
gained the attention of the community as a widely used performance assessment
metric. A possible explanation is that ∆p still lacks Pareto-compliance and the
drawbacks addressed by ∆p only arise in unusual scenarios, such as for very

small reference fronts [11]. On the other hand, IGD+ is a small modification of
IGD that adds Pareto-compliance, thus IGD+ seems a more likely candidate to
superseed IGD . Yet, there is little understanding so far about the behavior of
IGD+ [8], with current investigations focused on its Pareto-compliance. In the
remainder of this paper, we experimentally compare the behavior of IGD and
IGD+ under various scenarios.

4 Experimental setup

In the following, we conduct a series of experiments in order to understand
how IGD and IGD+ react to various desirable features of approximation fronts.
A first set of experiments is designed to evaluate each feature in isolation. In
addition, we design experiments that simulate common scenarios in the context
of EMO, where features are not isolated.

Benchmark problem. As a starting point, we consider the bi-objective opti-
mization problem designed by Ishibushi et al. [7] that presents a linear-shaped
Pareto front (Fig. 1, left). Generalized to any number of objectives M (Fig. 1,

right), we have that a solution s is optimal if
∑M
i=1 fi(s) = 10, where fi(s) is

the i-th objective value of solution s. In this work, we study M ∈ {2, 3, 5, 10}.
Reference fronts. Since generating optimal solutions is trivial, we produce

reference fronts of different resolution by using different front sizes. In the
case of M ∈ {2, 3}, each reference front R〈M,d〉 is created using a uniform
weight vector generation method, parameterized by the number of divisions
d, and its size equals

(
M−1+d

d

)
. In the case of M ∈ {5, 10}, a uniform distri-

bution of weights generates fronts with many more solutions on the extremes
of the objective space than in the center. Instead, we adopt the two-layer
approach proposed by [5]. In more detail, for a given d value, we generate a
uniform set of bd/2c weights on the extremes of the objective space where
are least one objective function is equal to zero (the outer layer), and a uni-
form set of d− bd/2c weights in the center of the objective space (the inner
layer).We consider three different d values, representing small, moderate and
large reference fronts, for each value of M , as shown in Table 1.

Approximation fronts. In general, we generate approximation fronts using
the same method explained above for reference fronts, that is, according to
the number of objectives M and a parameter d (Table 1).



Fig. 1. Linear-shaped maximization problem suggested by [7]. Black dots represent
approximation front solutions, whereas white circles represent reference front solutions
created with M = 2, d = 3 (left) and M = 3, d = 5 (right).

Table 1. Size of the generated reference front (|R|) for each number of objectives (M)
and value of parameter d. We use the same method to generate approximation fronts.

M d |R|
2 3 4

19 20
99 100

M d |R|
3 6 28

13 105
19 210

M d |R|
5 5 50

8 140
13 540

M d |R|
10 4 110

5 275
7 935

Effect of p. As explained earlier, most of the literature only considers p = 1
while some works use p = 2. To understand how different values of p affect
the behavior of the quality metrics, we consider p ∈ {1, 2, 3}.

Seeds for random number generation. When sampling is adopted, we re-
peat each experiment 25 times with a common set of random seeds in order
to reduce variance between experiments.

5 Empirical assessment of IGD and IGD+

5.1 Desirable features of approximation fronts

We first explain how we designed experiments to evaluate one desirable feature
of approximation fronts at a time. After that, we discuss our conclusions from
these experiments.

Convergence. To evaluate convergence, we consider approximation fronts that
are obtained by translating a reference front until it intersects with the axes.
These approximation fronts are then iteratively “evolved” using a linear inter-
polation for each pair 〈a′, r′〉, where a′ is the solution from the approximation



Fig. 2. Illustration of the experiments where convergence is isolated. Left: approxi-
mation front in its initial state after translation. Right: approximation front after 50
iterations of linear interpolation. All intermediate states present the same spread and
distribution.

Fig. 3. Illustration of the experiments where spread is isolated. Approximation front
with a spread of 6 (left) and after 100 iterations of evolution, with a spread of 10 (right).
All iterations present the same distribution and convergence.

front obtained by translating reference front solution r′. To measure how far the
approximation front is from the reference front at a given iteration, we compute
the Euclidean distance for the pair 〈a′, r′〉. Each iteration reduces this distance
by the same value until it becomes zero, and the step value is calculated in order
to perform 100 iterations. Figure 2 illustrates a translated front before being
evolved (left) and at a later iteration (right).

Spread. We evaluate spread by initially selecting the desired distance along a
single objective between the extreme solutions. Next, we multiply this distance
by the uniform weight set obtained for the given M and d, and translate this
front so that its solutions become optimal. By increasing the distance between
the extreme solutions, we are able to iteratively generate approximation fronts
with increasing spread but the same convergence (since all solutions are optimal)
and distribution (since solutions are equally distributed between the extremes).
Figure 3 illustrates an approximation front for M = 2 with spread of 6 (left)
and with a spread of 10 (right).



Fig. 4. Illustration of the experiments where distribution is isolated. Left: approxima-
tion front with maximum spread and inner layer solutions sampled around the center
of the objective space with a Gaussian distribution. Right: intermediate stage of the
evolutionary process, where each solution is getting closer to its point of destination.

Distribution. To isolate distribution, we generate approximation fronts in two
steps. First, we copy the outer layer (those objective vectors that have at least
one zero component) from the reference front of the same size. Next, we sample
ninner Pareto-optimal solutions by sampling coordinates using a Gaussian distri-
bution around the center of the Pareto front, where ninner = n− nouter, n is the
size of the corresponding reference front, and nouter is the amount of solutions
in the outer layer. To sample solutions that are concentrated around the center
of the objective space, we use the algorithm provided in the supplementary ma-
terial [3]. Figure 4 (left) illustrates a front generated with this method. Once a
front is sampled, we evolve it towards an even distribution. More precisely, we
first associate each approximation front solution ar with the point r that is clos-
est to it (in terms of Euclidean distance) in the reference front of the same size.
Next, at each iteration, we use linear interpolation to translate each ar towards
its corresponding r, so that the resulting approximation front is more evenly
distributed than the previous one. Figure 4 (right) illustrates an intermediary
stage of evolution of the front depicted in Figure 4 (left). Since only solutions
from the inner layer are sampled, only those solutions are translated at each
intermediary stage. In addition, both convergence and spread remain constant,
as all solutions are always optimal and the extreme solutions do not change. To
compute how far a front is from a perfect distribution at a given iteration, we
define an entropy-like metric defined as e(A,R) = 1

|R|
∑
r∈R d(ar, r). The differ-

ence between this e metric and the IGD with p = 1 is that e does not allow
a reference front solution to be associated with multiple approximation front
solutions. Effectively, this metric can be seen as a simplification of the root mean
square error, an average of how far each solution ai is from where it should be.

We next discuss the most important, high-level insights we observe in the
results produced.

Effect of front sizes. In the case of varying spread and distribution, we observe
that, whichever M considered, the best IGD and IGD+ values are obtained when
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Fig. 5. Effect on IGD (left) and IGD+ (right) of various approximation front sizes for
increasing spread. Reference front is generated with settings M = 5, d = 8. Approxima-
tion fronts are generated with settings M = 5 and d ∈ {5, 8, 13}. Notice that, despite
different in ranges, the shapes of the curves for both IGD and IGD+ are similar.

the approximation front size matches the reference front size. That is, the IGD
metrics will rank an approximation front of the same size as the reference front
better than a larger or smaller front, and the difference will increase with higher
spread. This result is specially counter-intuitive in the case of fronts larger than
the reference front, as one would expect that, everything else being equal, larger
approximation fronts are to be preferred. This is illustrated in Figure 5, depicting
the response of IGD and IGD+ when M = 5, in dependence of different spread
values (x-axis) and different approximation set sizes (d ∈ {5, 8, 13}), using a
fixed reference set size (d = 8). Both IGD and IGD+ metrics assign the best
quality to the largest size approximation front when spread is small. However,
when the spread of the front gets close to the maximum tested, only the quality
of the front with the same size as the given reference front (d = 8) continues
to improve until the minimal possible IGD value is obtained. For the largest
approximation front size (d = 13), the quality according to IGD and IGD+ even
worsens again, despite neither the convergence or distribution are actually worse.

Similarity between IGD and IGD+ results. The main difference between
IGD and IGD+ is that only components of objective vectors dominated by the
reference front contribute to the computation of the distance. This means that,
as observed, the IGD and IGD+ produce equal results for approximation fronts
that are dominated by the reference front, however, one would expect strong
differences when the approximation front is mostly nondominated with respect
to the reference front, as is the case in most of our experiments. Our experiments
show that, under the same conditions, the IGD and IGD+ differ in range but
their behavior with respect to changes in convergence, spread and distribution is
very similar. This is observed by comparing the shapes of the curves correspond-
ing to IGD and IGD+ in most of our plots, for example, in Figure 5. The only
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Fig. 6. Illustration of the effects of p. Distribution analysis of IGD (left) and
IGD+ (right) for M = 10, with an approximation front generated with d = 5 and
a reference front generated with d = 7.

exception that we observed concerns changes in distribution when M ∈ {5, 10}
and the sizes of the approximation and reference fronts are not equal. Figure 6
depicts such a situation, where the shape of the curves when p ≥ 2 is much
smoother for IGD than for IGD+.

Effect of p. Under the conditions tested in this work, the only observable effect
of p is changing the ranges of the IGD variants. However, it is interesting to
notice that, while the range of the IGD decreases with larger p, the opposite is
observed for the IGD+. This effect is shown in Figure 6. Another important effect
that is also depicted in this figure concerns the IGD metric only. In particular,
a value of p = 2, as sometimes used in the literature, makes the IGD insensitive
to changes in distribution. This is a potentially dangerous limitation, and we
observe that this effect becomes ever stronger with the increase in reference
front sizes.

Particularities of many-objective problems. The convergence analysis when
M = 10 differs from the overall patterns we have so far discussed, as in this case
having larger approximation fronts is indeed a winning strategy. More precisely,
when the reference fronts created with d = 4 or d = 5 are used, the approxi-
mation front created with d = 7 is either the best-performing according to both
metrics, or at least very competitive. This situation is illustrated in Figure 7
for the IGD+ (the same is observed for the IGD), and may be due to the ratio
between solutions in the inner and outer layers. Concretely, when d ∈ {5, 7},
the number of solutions in the inner layer is far greater than the number in
the outer layer, whereas for d = 4 this ratio equals one. Another hypothesis is
that the IGD values become better as long as the approximation front does not
have more points in the outer layer than the reference front. Understanding this
behavior will require further analysis.
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Fig. 7. Illustration of the particularities of many-objective optimization. IGD+ con-
vergence analysis indicate that, when M = 10, having larger approximation sets lead
to better results. This effect is observed both when the reference front is created with
d = 4 (left) and d = 5 (right).

5.2 Practical EMO scenarios

In addition to the experiments above, where we analyzed in isolation the desir-
able features of approximation fronts, we now design experiments that resemble
the evolution of approximation fronts by an EMO algorithm. The first exper-
iment simulates the scenario where an EMO algorithm may converge to the
optimal front with maximum spread, but still needs to further improve the dis-
tribution of its approximation front. The second experiment simulates a scenario
where an EMO algorithm reaches the optimal front but lacks both spread and
distribution.

Distribution. In this scenario, the approximation front already has maximum
spread and has converged (all of its solutions are Pareto-optimal), but still needs
to improve distribution. This happens in practice when high-quality solutions
can be found by decomposing the problem into single objective ones. This is
the case when using scalarization-based local search to tackle the bi-objective
permutation flowshop problem [6]. It may also happen when the EMO algo-
rithm internally uses a quality metric that favors spread over distribution. We
generate approximation fronts for this scenario by copying solutions from the
corresponding reference front and then applying a small, random uniform per-
turbation to each non-extreme solution (inner layer solutions). Figure 8 (left)
illustrates a front generated in this fashion when M = 3 and d = 5. We then
simulate the evolution of the approximation front by translating the approxima-
tion front solutions towards their original position in the reference front by linear
interpolation. The entropy-like metric e defined in the previous section is used
here to measure the perturbation level of the intermediate fronts. Figure 9 (left)
shows results for this scenario, where it can be seen that both IGD variants are



Fig. 8. Illustration of experiments where (left) inner layer solutions have been subject
to a perturbation, and; (right) front has converged to the center of the objective space.
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Fig. 9. Results for practical EMO scenarios. Left (M = 2): selected IGD variants are
robust to perturbations in distribution for a small approximation set (d = 3) and a large
reference set (d = 99). Right (M = 10): intermediate size approximation front (d = 5)
gets worse IGD+ values when trying to approximate a larger size reference front (d = 7),
even though its distribution is improving.

barely affected by this kind of perturbation. When investigating the reason for
such robustness, it becomes clear that this kind of perturbation introduces very
little entropy to the approximation front, as evidenced in the x-axis of the plot
depicted in Fig. 9 (left).

Distribution and spread. In this scenario, the algorithm has converged to the
center of the objective space, lacking both spread and distribution. This scenario
happens often in practice, whenever (i) the algorithm does not preserve extreme
solutions, (ii) extreme solutions are hard to find, or (iii) the algorithm focuses



on converging to the Pareto front first, and spreading later. To simulate this
scenario, we produce fronts using the same solution sampling used in the previous
section to generate fronts with uneven distribution. We also use the entropy-like
metric presented earlier to assess how far the front is from perfect distribution.
The main difference with respect to those experiments is that, in this case, we
do not generate an outer layer that maximizes the spread, but instead we sample
additional objective vectors that are likely to be concentrated in the inner layer.
Figure 8 (right) illustrates a front generated using this method. Results for this
scenario confirm what was observed in the previous set of experiments, where the
most important factor was matching the size of the approximation front with the
size of the reference front. In fact, the striking similarity between Fig. 6 (right)
and Fig. 9 (right) indicates that the outer layer kept to ensure maximum spread
from the previous experiment did not play a relevant part in the response from
the IGD metrics. This is an important finding, since it could explain the strong
disagreements between the IGD and the IH , that is, fronts with very good spread
at the cost of distribution will be favored by IH whereas IGD will likely do the
opposite.

6 Conclusions

In this work, we have conducted a preliminary empirical investigation on
the properties of two relevant quality metrics, namely the inverted genera-
tional distance (IGD [4]) and a variant that has been proven weakly Pareto-
compliant (IGD+ [9]). In particular, the IGD is perhaps the most adopted per-
formance metric in the context of many-objective optimization due to its low
computational cost and its ability to assess several desirable features of approxi-
mation fronts, namely, convergence, spread, and distribution. By contrast, IGD+

is a recent variant that needs further investigation, a task we undertook in this
work.

In order to analyze the behavior of the selected metrics, we designed a series
of experiments that either (i) isolated the desirable features of approximation
fronts, or (ii) simulated real-world situations often faced by EMO algorithms.
Perhaps the most important insight is the observation that, under some circum-
stances, the value of IGD or IGD+ may become worse if the size of the approx-
imation front grows beyond the size of the reference front, even if convergence,
spread and distribution remain equal. In addition, we have shown that, for the
scenarios tested in this work, the selected metrics have a similar behavior. The
only exception to this pattern concerns IGD , which we have shown to be unable
to detect poor distribution depending on the value of the parameter p, which
is sometimes not specified in the literature. Finally, another important obser-
vation concerns a possible explanation for the previously reported disagreement
between IH and IGD . We have shown that, under some circumstances, outer
layer solutions have little impact on the value of the IGD .

Our investigation opens a number of possibilities for future analysis of qual-
ity metrics. The first and most straightforward step is to deepen the analysis of
IGD variants, both by considering more variants (namely ∆p) and more exam-
ples of problems with different geometries. A second step is to design yet more
elaborate experiments to simulate other real EMO scenarios, besides the obvious



approach of assessing actual EMO algorithms in practice. Finally, it is impera-
tive that these results be related to other metrics, specifically the hypervolume
(IH) and epsilon (I1ε ) metrics, helping the community further understand their
disagreements.
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