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Abstract—Forecasting when and where crimes are more likely
to occur based on years of historical record analysis is becoming a
task which is increasingly helping cities’ safety departments with
capacity planning, goal setting, and anomaly detection. Crime is
a geographically concentrated phenomena and varies in intensity
and category over time. Despite its importance, there are serious
challenges associated with producing reliable forecasts such as
sub-regions with sparse crime incident information. In this work,
we address these challenges proposing a crime prediction model
which leverages features extracted from time series patterns
of criminal records based on spatial dependencies. Our results
benchmarked against the state of the art and evaluated on
two real world datasets, one from San Francisco, US, and
another from Natal, Brazil, show how crime forecasting can be
enhanced by leveraging Spatio-Temporal dependencies improving
our understanding of such models.

I. INTRODUCTION

The concept of Smart City as a means to enhance the life
quality of citizen has been gaining increasing importance not
only for researchers but also in the agendas of policy makers.
Smart cities are being piloted in the biggest cities of developed
countries, such as San Francisco in the US [1], to smaller cities
in developing countries such as in Natal, Brazil [2]. Smart
Cities strategies are aimed at improving citizens’ quality of
life, coping existing challenges with increasing technological
possibilities. The concept is linked to various applications
from increasing citizen engagement in public policies [3],
monitoring and reducing pollution [4] to enhancing public
safety and city services [5] such as with “Predictive Policing”,
supporting police e.g. with patrol planning to make better use
of limited resources . This paper focus on the latter.

Predictive Policing is “the application of analytical tech-
niques, particularly quantitative techniques, to identify promis-
ing targets for police intervention and prevent or solve crime”
[6]. A particular important task of Predictive Policing is fore-
casting criminal activities pro-actively (Crime Forecasting),
i.e., predicting when and where crimes are mostly likely
to occur based on analysis of historical data. Crime Fore-
casting however, is just that: predictions. Actual decreases
in crime require taking action based on such predictions.
Predictive Policing is part of an end-to-end process involving

data analysts, developers and law enforcement agencies. For
instance, the IEEE Smart City Initiative of Natal [2], a city
of Northeastern Brazil, aims to transform Natal into a smart
city through the development of systems and applications to
bolster the use of IT as means of contributing to improve
the life quality of its citizens. Regarding public safety, the
initiative has developed the ROTA platform, a smart city
platform aimed to improve public safety by integrating several
information systems from different law enforcement agencies
[5]. The platform delivers predictions based on historical
data and actual trends, which can be further used for patrol
planning supporting police operations. Designing intervention
programs, combined with solid predictive analytics, can go a
long way toward ensuring that predicted crime risks do not
become real crimes, thus avoiding them - and Natal is just a
living example of that. Predictive Policing thus depicts the shift
from reactive policing, based on “good sense and experience”
to pro-active policing, based on data analysis and automatized
crime trend detection.

Based on the concept of Predictive Policing, this paper pro-
poses a crime forecasting approach based on machine learning
evaluated on years of historical records from two major smart
cities: San Francisco (US) and Natal (Brazil). In section III,
this paper proposes a pipeline of preprocessing steps in order
to prepare the data for usage by machine learning regression
models focusing on the application of crime forecasting such
as the spatial and temporal discretization. In section IV, we
propose to engineer features extracted from time series signals
in order to extract patterns from crime records that can be
used for time series pattern recognition, which we in turn
leverage in our crime forecasting approach in section V.
In the evaluation section VI, we benchmark our proposed
approach against a related competitor and discuss advantages
and disadvantages of our proposed method. We additionally
evaluate and discuss the impact of different parametrization
factors (e.g. the spatial and the temporal resolution) of our
proposed approach on the crime forecast performance. Section
VII then concludes this paper with section VIII focusing on
future and on-going work.978-1-5386-5959-5/18/$31.00 c©2018 IEEE



II. RELATED WORK

In our focus are work related to analyzing crimes that
occurred at a certain point in time at a certain place and
estimate the probability of criminal activity in the future.
One intuitive approach to reduce the complexity is to break
down the eligible area into smaller sub-regions and treat
them as atomic units. That approach takes away the spatial
component and time series analysis can be performed directly
on the data of the different sub-regions [7], [8], [9]. Some
related work such as the one from Brown and Oxford
[8] leverages time series with socio-economic factors – such
as unemployment rates, alcohol sales and the percentage of
teenagers and young adults that are living in that neighborhood
– into consideration.

A related work being evaluated in this paper is the one
from Malik et al. [7]. It is concerned with developing a
framework that provides decision makers with a proactive and
predictive environment based on visual analysis to assist an
effective resource allocation process. They propose dividing
the urban space into sub-divisons where they perform crime
forecasts and underline the importance of tuning the geospatial
resolution. They then apply a seasonal-trend decomposition
technique based on locally weighted regression (STL) [10]
to decompose the time series in their various components [7].
Adelson et al. [5] focus on leveraging crime forecasting
based on regression techniques for patrol planning optimiza-
tion, i.e., helping police patrol supervisors to elaborate a patrol
planning on deciding when and which area police vehicle must
patrol.

A related approach to Crime Forecasting is the Crime
Hotspot Detection, the detection of sub-regions that are likely
to present high criminal activities. Borges et al. [11]
e.g. approaches a similar problem with classification rather
than with regression techniques. Likewise, they are dividing
the urban space into sub-regions and then they are extracting
features out of the time series and the urban space (urban
features) to classify whether the sub-regions are criminal
hotspots.

III. DATA PREPARATION

We employ a series of steps necessary to preprocess and
to spatially discretize the data prior to being consumed by
our crime forecasting model. In this section, we discuss the
problem of dividing the continuous geo-space into smaller sub-
regions, where crime forecasting is subsequently applied to.
We subsequently describe the steps necessary to transform the
criminal records into meaningful temporal data (time series)
for forecasting.

A. Spatial Discretization

One real world requirement for the deployment of a crime
prediction model is forecasting crimes over space and time [9].
This is a non-trivial task since the discretization of continu-
ously distributed crimes over time and space has tremendous
effects on the results and capabilities of the model. For the
time dimension this is done by calculating a time series with

a fixed, discrete frequency (e.g. daily, weekly, monthly) and
an aggregation function (e.g. the sum of incidents). This is
straightforward and well adopted in the literature.

To split continuous urban space into sub-divisions, one
approach is to divide the relevant region into rectangles (grids)
of the same size. This is the most adopted method in the
literature [7], [8], [12]. A rectangular equisized grid is easy
to calculate, to understand and draws the attention towards
the application that uses the data (e.g. geo-spatial analysis
or prediction). However, spatial data is most of the times
not uniformly geographically distributed. Crimes for example
are usually highly concentrated in the inner city and certain
neighborhoods. Equisized grid cells do not account for that
what can result in inaccuracies and wrong impressions of the
data distribution.

Another approach is to make use man-made spatial dis-
cretization like police districts or census blocks where they
exist. Police districts for example tend to get smaller in
the inner city and grow in the outer regions. Nevertheless,
information about police districts is not always easy to be
obtained and tend not be data-driven, i.e., shaped in form and
size by the distribution of incidents over space.

kGrid Algorithm for Spatial Discretization: we propose
making use of the inherent data distribution over space and
cluster regions based on their density of incidents by lever-
aging a soft variation of the k-Means clustering algorithm.
The idea is to spatially cluster the incidents and leverage the
resulting cluster’s convex hulls as the grid definition, where
the parameter k reflects the desired number (resolution) of
grids. While for many clustering applications the parameter k
is bothersome and not intuitive in this case it is a useful and
easy to understand variable to control the resolution of the
grid.

Figure 1 show that the clustered grid reflects the topology
and crime distribution in a very useful manner. The parameter
could be for example set to the number of available patrol
vehicles or police units available per shift. Since it is a
data oriented approach it is also possible to use different
grids for different task forces depending on the category of
crime. Usually, crime forecasting models are deployed for
issuing forecasts for each grid individually, learning patterns
and peculiarities of crime incidents in dependence of the
discretization of the space.

B. Time Series Decomposition

We construct a raw time series signal out of our criminal
records by taking the number of incidents (for a sub-region)
over a time interval (e.g., by day, week, month). We then
apply a Seasonal Trend Decomposition by Loess (STL) [10]
for deconstructing the raw time series into several components,
each representing one of the underlying categories of patterns,
namely the derivative time series Trend(T ) and Season(S)
(plus the Remainder(R)). The trend component at time
reflects the long-term progression of the series when there is
a persistent increasing or decreasing direction in the data. The
seasonal component reflects seasonality when a time series is



Fig. 1: Different approaches for spatial discretization of San Francisco’s crime incidents. From the left to the right: (a) Minimal
Bounding Rectangle including every incident of the dataset; (b) the ten Police Districts of San Francisco; (c) a naive rectangular
grid with 16 cells; (d) the result of the kGrid (kMeans Grid) algorithm with 16 cells.

influenced by seasonal factors. The remainder expresses the
left-over noise within the data. Hence, a time series (Y ) at
time t using an additive model as the STL suggests can be
thought of as:

Yt = Tt + St +Rt (1)

The result is the split of the input time series of crime
records into the two derivatives Trend and Season, from which
Time Series Features (IV) are also extracted. We refer to [10]
for details about the STL functioning.

IV. TIME SERIES FEATURES (TSF)

One contribution of this work is to examine the importance
of different time series features for the prediction of crimes. In
this section it will be explained which features are extracted
as well as the methodology of obtaining them. The underlying
time series of this work is the number of crime incidents for
a given time interval (time step: e.g. weekly) and geographic
region (cf. III-B).

Definition 4.1 (Time Series Feature (TSF)): A Time Series
Feature (TSF) is a function that takes the past n_feat
observations of a time series and maps it on a single, numeric
value.

Our feature extraction mainly utilizes the python package
tsfresh [13] that automatizes such time series feature
extraction. The list of features that are extracted can be
complemented by user defined functions. For the following
definitions the underlying time series is denoted as yt at time
t. The span that is used to calculate the features is denoted as
n_feat.

TSF 1 (Absolute Energy): The Absolute Energy of the time
series y is defined as the sum over the squared values:

E =
∑

t=1,...,n_feat

y2t (2)

TSF 2 (Mean Change): The Mean Change returns the
average differences between subsequent time series values and
is defined as

1

n_feat

∑
t=1,...,n_feat−1

yt+1 − yt (3)

TSF 3 (Mean Absolute Change): The Mean Absolute
Change returns the average absolute difference between sub-
sequent time series values yt and yt+1 and is defined as

1

n_feat

∑
t=1,...,n_feat−1

|yt+1 − yt| (4)

TSF 4 (Augmented Dickey-Fuller): The Augmented Dickey-
Fuller is a hypothesis test which checks whether a unit root is
present in a time series sample. This feature calculator returns
the value of the respective test statistic.

TSF 5 (Index Mass Quantile): The Index Mass Quantile is
defined as the relative index i where q% of the mass of the
time series y lay left of i. For example for q = 50% this feature
will return the mass center of the time series. The mass of the
time series is defined as the cumulative sum. The values that
is used are yt−n_feat to yt

TSF 6 (Cross Power Spectral Density): This feature calcu-
lator estimates the cross power spectral density of the time
series x at different frequencies. To do so, first the time series
is shifted from the time domain to the frequency domain. The
feature calculators returns the power spectrum of the different
frequencies.

TSF 7 (Standard Deviation): Returns the standard deviation
of time series x.

TSF 8 (Time Reversal Asymmetry Statistic): This function
calculates the value of

1

n_feat− 2lag

n_feat−2lag∑
i=0

y2i+2·lag ·yi+lag−yi+lag ·y2i (5)

which is E[L2(Y )2·L(Y )−L(Y )·Y 2] where E is the mean and
L is the lag operator. It was proposed in [14] as a promising
feature to extract from time series.

TSF 9 (Continuous Wavelet Transformation Coefficients):
Calculates a Continuous wavelet transform for the Ricker
wavelet, also known as the “Mexican hat wavelet” which is
defined by

2√
3aπ

1
4

(1− y2

a2
) exp(− y2

2a2
) (6)

where a is the width parameter of the wavelet function.
In total, we leverage over 100 Time Series Features, listing

above just the most important ones with impact on our model.



We further refer to [13] for a detailed overview of all leveraged
features.

Another basic category of time features are the lag func-
tions.

Definition 4.2 (Lag (TSF-LAG(n)): Simple lag function
that shifts the time series by n steps so that

TSF-LAG(n) = yt−n (7)

Lagged features represent the raw time signals at a certain
time step t.

V. CRIME FORECASTING MODEL

We pose the crime forecasting problem as a multivariate re-
gression problem, where the independent variables are derived
from our proposed Time Series Features (TSFs).

In this section, we tap the task of selecting the right machine
learning regression model for our task at hand (V-A). We
then discuss how to minimize the complexity of the model
by taking only important features and eliminating correlated
ones in sec. V-B. We finally describe our whole crime forecast
process in sec. V-C.

A. Regression Model Selection

We leverage 3 well adopted regression models for this task,
namely: Support Vector Regression (SVR), Multi Layer Per-
ceptron Regression (MLPR) and Random Forest Regression
(RFR). Every model has a different mathematical base and
brings certain advantages and disadvantages with it. Especially
the possibility to access the feature importance is of high
interest for this work.

In order to enable a fair comparison between the 3 regres-
sion models, we benchmark them by fitting each model with
training data consisting of three years (156 weeks) of crime
records and testing it on a subsequent year (52 weeks) for
a pre-selected region of San Franscisco. To make the testing
results more robust, cross validation for time series is applied.
While classical cross validation assumes the independence and
identically distribution of samples between each other, time
series cross validation has to account for the autocorrelation
of the time series data. The most important difference is that
successive training sets are supersets of those that came before
them. Table below shows the performance of the regression
models for 3 for the Mean Square Error (MSE). We set the
spatial resolution fixed and performed a Grid Search on the
parameters of all 3 algorithms to minimize the error function
(the MSE).

Measure / Model SVR MLPR RFR

MSE 961.326 1718.571 897.149

TABLE I: Model Selection: performance of 3 regression
algorithms for the task of crime forecast

The Random Forest Regressor (RFR) outperformed both the
SVR and MLPR in our tests scenario and will be used as the

main regression algorithm underlying our crime forecasting
method.

B. Recursive Feature Elimination (RFE)

After extracting the multiplicity of TSFs (see def. 4.1),
we prune (eliminate) features with lower importance which
have no impact on the regression model. The importance of
a feature is computed as the (normalized) total reduction of
the criterion brought by that feature, also known as the Gini
importance [15]. The features with the lowest importance are
recursively pruned until the desired number of features is
reached. This external parameter will later be optimized to
find the best number of features that should remain. Another
reason for the deployment of RFE is its robustness against
highly correlated features. In their work Gregorutti et
al. [16] examined the problem of feature selection with
the Random Forest algorithm in high-dimensional regression
settings. Especially for highly correlated features - such as
temporal ones (TSFs) - they recommend the use of RFE for
feature selection [16].

C. Crime Forecasting Process

After describing the individual parts of the Crime Forecast-
ing Model, they will now be put together and considered in a
broader context. The Crime Prediction Process describes the
steps necessary to obtain meaningful crime predictions (see
figure 2). We now list the steps involved in our geospatial
prediction methodology:

1) Dividing geospace into sub-regions: discretize the
geospace in grids where to forecast crimes individually

2) Generating the time series signal: apply Season Trend
Decomposition (STL) and calculate Time Series Fea-
tures (TSFs) based on the crime incident records from
each sub-region.

3) Regressor Fitting: train (fit) a Random Forest Regressor
for each grid based on a subset of TSFs using recursive
feature elimination (RFE).

4) Forecasting: The time series features generated for each
spatial unit (grid) is then fed through the RFR process
where a forecast is generated for the next N time steps
(weekly). This process is repeated for all region sub-
divisions (grids) and prediction maps are finally obtained
for the next N time steps.

The parameters of the model are summarized in table II. A
particular parameter of impact is the spatial resolution, i.e., the
number of grids (sub-regions) to be generated (parameter k of
kGrid). A high value for k may result in a grid resolution that
is too fine, generating a zero count vs. time step signal that
has no predictive statistical value. On the other side, a grid
resolution that is too coarse (small k) may introduce variance
and noise in the input signal, thereby over-generalizing the
data. As denoted by Malik et al. [7] an average input
size of 10 samples per time step provides enough samples
for extracting meaningful patterns from time series as rule of
thumb. W.r.t category and frequency (cf. Table II), this paper
focuses on violent felonies with a weekly forecast prediction



Fig. 2: Summary of proposed Crime Forecasting Model

horizon and weekly time steps. Lower time steps (e.g. daily)
turned out not to be practical in our experiments, generating
many sparse grids with less than 10 samples per time step
even for lower k values.

We vary the amount of data we use to train the regressor
model (RFR) between 156 - 280 weeks and choose to keep
between 3 - 60 time series features depending on other
parameters setting. We then optimize the overall parameter
selection through Grid Search [17] finding the best set of
parameters for our task at hand.

We must note however, that our method assumes spatial
independency of observations, i.e., for each sub-region we
train and apply a model only trained with data from that sub-
region without considering patterns from neighboured regions.
It is however expected the activity on one criminal area can
affect another. We plan to research and address such effects
in future work (cf. sec. VIII).

VI. EVALUATION

We evaluate our approach on two datasets. One from San
Francisco (US) with 12 years (2003-2015) of crime records
and on one from Natal (Brazil) with 10 years (2006-2016) of
crime records. We focus on violent felonies in both datasets
instead of all crime categories in general. We evaluate and
discuss the impact of several parameters of our proposed crime
forecasting based on consistent evaluation metrics.

A. Evaluation Metrics

The main evaluation metrics used in this work is the Mean
Squared Error (MSE) defined as average squared deviation
between observation and forecast, given by:

MSE(y, ŷ) =
1

n

n∑
t=1

(yt − ŷt)2 (8)

And the Mean Absolute Percentage Error (MAPE), defined as
average absolute deviation between observation and forecast
normalized by the observation, given by:

MAPE(y, ŷ) =
100

n

n∑
t=1

|yt − ŷt
yt
| (9)

Whereby y stands for the observed time series of length n
and ŷ stands for the forecasted values.

MAPE is well suited for our purposes due to the fact that
it does not consider absolute but rather relative values, being
suitable for means of comparison without revealing absolute
information on the underlying data.

B. Forecast Performance

In order to compare the performance of our approach to
the state-of-the-art, we developed and implemented the crime
forecasting approach proposed by Malik et al. [7] to
serve as a baseline. We parametrized the baseline to minimize
forecasting error functions described previously through Grid
Search. We train both models on 4 years of crime incident
records and test it on 2 years of crime records from both cities:
San Francisco and Natal. We focus on weekly predictions and
discretize the geospace into 22 grids, since these parameters
delivered the best performance as later discussed.

Fig. 3: Prediction results for the city of San Francisco.
Especially the sparse grids in the western part of the city have
shown strong improvements.

The results in figure 3 show that our model outperforms the
baseline in every single cell. This is true throughout the whole
city. It can also be seen that the most perceptible improvement
happens in the western part of the city, where less criminal
activity takes place, leading to sparse time series signals.



Name Description Value

category Specifies the Crime Group Category to be forecasted. Violent Felonies, etc. -
frequency Temporal frequency of the time series. weekly
k Determines number of cells for the kGrid algorithm
n_feat Span used for TSF Extraction. Also indirectly determines the number

of TSFs that are generated and passed to the RFE algorithm
n_feat_select Number of features that are selected by the RFE algorithm. 3,...,60
n_train Number of periods used to fit the model. 156,...,280
n_test Number of periods used to test the model. 56,104

TABLE II: Parameters of the Crime Prediction Model with a short description. Value column shows exemplary parameter
choices or the range we used throughout evaluation (in weeks if numeric).

That means our model especially outperforms the baseline for
sparse data.

The next generalization step is to test our model on a second
data set - the one from Natal, Brazil. As there are few data
available for Natal compared to San Francisco, we performed
a second Grid Search for optimize our model according the
best parameters minimizing error functions. The results are
shown in figure 4 and support in general the findings from San
Francisco. Although for Natal there are more regions which
don’t improve or even get worse results for our model when
compared to the baseline.

Fig. 4: Prediction results for the city of Natal on a grid of 22
cells. Improvement compared to the baseline, especially in the
north of the city.

In order to prove that our results are statistically better
(significant) we perform a Kolmogorov-Smirnov-Test (KS-
Test) comparing our results for every grid against the baseline.
With the KS-Test it is possible to compare two samples and
determine if they are from the same distribution. This would
be one way to statistically proof that our model performs
better. The null hypothesize is that the underlying distributions
are identical. With a p-value of 0.035 we can reject the
null hypothesizes for violent felonies in San Francisco for
α = 0.05. That means our model is statistically significant
better than the baseline for this crime category. We would like
to note that for some crime categories not further investigated

in this work the null hypothesis could not be rejected. That,
in turn, does not mean that the underlying distributions are
the same. But it is an important limitation of this evaluation’s
results and show necessity of future work on the predicability
of different crime categories and the generalisation of such
forecasting models across different crime categories.

C. Varying the Spatial Resolution

As discussed previously, the choice of the spatial resolution
has a great impact on the Crime Forecasting task. It determines
the geographical resolution of the prediction and also influence
the quality of the prediction within each grid. Those quality
aspects are opposing each other. In this section, we will
analyze the quality and behavior of our model for varying the
parameter k of the kGrid algorithm. A qualitative approach
is to plot the different grid sizes and compare their results
visually. This gives a very good impression on how the grid
evolves with growing k and how our model behaves compared
to the baseline.

Figure 5 shows for different k how the resulting forecasting
results evolves for the city of San Francisco. The higher the
k becomes, the more differentiated the results are. While
for small k the differences of the results are smaller, the
differences for higher k become observable. This shows how
our algorithm perform extremely well when compared to the
baseline on higher spatial resolutions.

D. Time Span for Feature Calculation

The Time Series Features (see def. 4.1) are defined as
functions that maps the past part of a time series on a
numeric value. The length of this span is determined by
the model’s parameter n_feat (cf. tab. II). The higher this
parameter is the more information about the crime history can
be incorporated. On the other hand short term changes might
be missed if the parameter is too large. We evaluated the time
span on a grid of 22 cells and for the violent felonies of San
Francisco, by varying the time span from 1 to 4 years. Our
results suggest that shorter spans are generally better suited
than longer spans and we keep one year time span as default
for our parameter n_feat.

E. Number of Features

Another interesting question is how many TSFs should
be selected in the RFE step. The RFE algorithm (see
sec. V-B) eliminates features until the the external number



Fig. 5: Prediction results for violent felonies in San Francisco
with different grid sizes. It can be seen how our proposed ap-
proach outperforms the baseline in all tested cases, especially
for higher spatial resolutions.

n_feat_select (cf. table II) is left. Intuition suggests that
the more features we are taking into consideration the more in-
formation is passed to the model and thus the quality improves.
Contrarily to this intuition it can be shown that taking too
many features into consideration can impair the results. The
high dimensionality adds complexity and noise to the model.
In high dimensional space, patterns and characteristics of data
can blur away. To have a deeper look into the behavior of our
model for different numbers of TSFs, a series of prediction
runs with varying number of features to select is conducted.

In our experiment settings, our model outperformed the
baseline independently of the number of features that have
been selected on the San Francisco dataset, by varying the
number of features from 10 to 60. However, our empirical
observation suggests that sparse grids tend to have better
results with less features (around 10).

F. Feature Importance

To evaluate the importance of individual TSF over a whole
grid we are proposing the Feature Cell Count Ratio (FCCR):

Definition 6.1 (Feature Cell Count Ratio (FCCR)): The
Feature Cell Count Ratio (FCCR) is expressing the importance
of an individual Time Series Feature (TSF) over a grid. It is
calculated as the number of occurrences in different cells over

the grid. That means every time TSF f is not eliminated by
the RFE algorithm (see sec. V-B) the feature cell count |f | of
f is increased by one. After that the count is normalized by
the number of cells in the corresponding grid. If k denotes as
the number of cells in the grid, the FCCR is defined as:

FCCR(f) =
|f |
k

(10)

That means FCCR(f) = 1 if f is present in every cell of the
grid and decreases until FCCR(fi) = 0 if f is not present in
any cell.

We then evaluate the feature importance for both cities for
violent felonies with parameter k = 22. The most important
(respectively most selected) feature is the seasonal component
lagged by one year [TSF-LAG(53)]. Another interesting pe-
culiarity is that both configurations have the Absolute Energy
calculated on the Time Series Signal and on the Trend Signal.
That points out that the movement over the past period is well
suited to predict future outcomes. To summarize this section
it can be said that the intersection of TSF-sets for the different
cities is surprisingly large. These few TSF (compared to the
number of TSF that are extracted) are dominating the top
selected features. This is a valuable finding for future work
on this topic.

San Francisco
Category Basis Description FCCR

TSF-LAG(53) Seasonal Shifted by 53 weeks (1 year) 1.000
TSF-LAG(1) Seasonal Shifted by 1 week 0.636
TSF Crimes Absolute Energy 0.318
TSF Seasonal Cross Power Spectral Density 0.273
TSF Trend Absolute Energy 0.273
TSF-LAG(1) Crimes Shifted by 1 week 0.273
TSF-LAG(53) Crimes Shifted by 53 weeks (1 year) 0.273
TSF-LAG(14) Seasonal Shifted by 14 weeks 0.136
TSF Seasonal Cross Power Spectral Density 0.136
TSF Seasonal TRAS1, Lag 1 0.136

Natal
Category Basis Description FCCR

TSF-LAG(1) Seasonal Shifted by 1 week 0.882
TSF Seasonal Cross Power Spectral Density 0.765
TSF Seasonal Mean Change 0.647
TSF Trend TRAS, Lag 1 0.647
TSF Trend Absolute Energy 0.529
TSF Trend Mean Change 0.471
TSF-LAG(53) Trend Shifted by 53 weeks (1 year) 0.412
TSF Crimes Absolute Energy 0.412
TSF Trend TRAS, Lag 3 0.235
TSF Seasonal Cross Power Spectral Density 0.176

TABLE III: The table shows the FCCR (cf. def. 6.1) of the
most important TSFs.

VII. CONCLUSION

In this paper, we proposed a machine learning based
framework for the task of crime forecasting. A particular
contribution of this paper lies of the demonstration of features
which can be extracted from time series signals leveraged
by machine learning models for this task. We have shown



that some time series features such as the Absolute Energy
or the Cross Power Spectral Density are particularly relevant,
independent of the dataset (City) being explored.

We additionally delivered insights on how to preprocess
such datasets for optimal consumption by machine learning
models based on time series decomposition, feature impor-
tance and elimination and on evaluating the parametrization
of the spatial and temporal discretization on the forecasting
performance.

We evaluated our proposed approach on datasets containing
over 10 years of criminal records from 2 cities: San Francisco,
US and Natal, Brazil – benchmarking our proposed approach
to the state of the art. Our results show that our approach not
only outperforms the evaluated competitor for this task but
is also less sensitive to spatio-temporal resolution performing
particularly well in sparse areas – i.e., regions of the space
with sparse incident information over time.

We believe to make a significant contribution to Predictive
Policing initiatives, such as helping law enforcement agencies
to make better usage of limited resources such as with better
patrol planning based on the most likely predicted criminal
areas with our approach.

VIII. FUTURE WORK

One limitation of crime forecasting approaches in related
work (e.g. [7]) and the one proposed by this paper regards the
assumption of spatial independence of observations: for each
geographical sub-region (grid) a crime forecasting model is
independently trained and applied to that area. It is however
expected the activity on one criminal area can affect another.
This is a common phenomenon in geographic data and it can
be interpreted as direct demonstration of Tobler’s First Law
of Geography: “everything is related to everything else, but
near things are more related than distant things” [18]. It is
still a open research question how general such models can be
with respect to geographic regions, i.e., trained with data from
one region and applied to another. And how to leverage infor-
mation of another regions to account for spatial correlation.
It is also not known how such models generalize to different
crime categories. Additionally, regression techniques require
the independence of observations; however, some features
might show spatial auto-correlation (i.e., spatial dependency).
In practice, spatial auto-correlation is the tendency of nearby
observations to be correlated to one another. And this can be
tested with spatial correlation tests. We plan to address such
questions in near future work.

1Time Reversal Asymmetry Statistic
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