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Abstract—The performance assessment of multi-objective
heuristic algorithms is one of the most significant contribu-
tions from the evolutionary optimization algorithms commu-
nity. By contrast, performance assessment in the context of
many-objective optimization is still a challenging, open research
field. Recent advances have demonstrated disagreements between
Pareto-compliant performance metrics, and indicated that refer-
ence fronts produced by benchmark generators of Pareto-optimal
fronts could be further improved. In this work, we investigate
these reference fronts with the help of multi-dimensional visual-
ization techniques and Pareto-monotonic archivers. Interestingly,
reference fronts produced by benchmark generators for DTLZ
and WFG continuous optimization problems show significant
issues, even when only three objectives are considered. Further-
more, given that input solution sets for five-objective problems
are not high-quality, archivers are unable to output reasonable
approximation fronts. We conclude that the performance assess-
ment of EMO algorithms needs to urgently address reference
front generation.

I. INTRODUCTION

Assessing the quality of approximation fronts produced
by heuristic optimization algorithms is a critical subject in
evolutionary multi-objective (EMO) research. Over the years,
a solid theoretical ground has been set with the proposal
of (i) Pareto-compliant performance indicators [1], intended
to measure the desirable properties of approximation fronts,
and; (ii) scalable, artificial benchmark problems for continuous
optimization [2], [3], designed to assess EMO algorithms in
the presence of different numbers of objectives and problem
characteristics deemed representative of real-world scenarios.

More recently, novel investigations in the context of many-
objective optimization have revealed that these approaches
may still require improvements. For instance, Pareto-compliant
performance measures have been shown to increasingly dis-
agree as a function of the number of objectives and problem
characteristics [4], [5]. Regarding artificial benchmark problem
sets, some DTLZ [2] and WFG [3] problems have been shown
to present issues when scaled to three or more objectives [3],
[5], [6]. Moreover, reference fronts produced by these bench-
mark generators have shown room for improvement [5], [7].

Altogether, the concerns regarding the performance assess-
ment of EMO algorithms in the context of many-objective
optimization pose a real challenge for the community. In more

detail, the most commonly adopted performance measures are
unary indicators that have been recast as binary, requiring
reference fronts for their computation. So far, these reference
fronts have been generated either by aggregating the output of
high-performing algorithms or by using benchmark generators
themselves. The latter option has been considered advanta-
geous over the former, as it is believed that these fronts are
an ideal representations of the true Pareto front. In fact, no
standard reference fronts for these problems were ever made
available, under the assumption that producing high-quality
fronts from the generators is a straightforward task.

In this work, we thoroughly investigate reference fronts pro-
duced by DTLZ and WFG problems for three and five objec-
tives. We start by randomly sampling increasingly large fronts
for selected problems and assess them visually with the help
of multi-dimensional visualization [8]. Interestingly, reference
fronts present significant issues even for three objectives.
For instance, since generators sample points from a surface,
fronts produced for multi-modal problems include dominated
solutions sometimes to a very large extent. In addition, their
distribution and spread are very poor for both benchmark sets,
and even fronts with 100, 000 optimal solutions are unable to
well approximate WFG problems. This is further worsened
when five objectives are considered, and no DTLZ or WFG
problem can be well approximated.

In the second part of this work, the reference fronts pro-
duced are filtered by Pareto-monotonic archivers. Our ratio-
nale is that large fronts would render measure computation
expensive, and thus we reduce the size of the randomly
sampled fronts using the multi-grid (MGA [9]) and the hyper-
volume (AAs [10]) archivers. The outcomes of the archivers
are once again assessed with the help of multi-dimensional
visualization. For the fronts that had been successfully ap-
proximated through random sampling, each archiver favors a
different distribution in its outcome. For the remaining fronts,
archivers are affected by the issues of the original input.

The insights observed in this work raise a significant con-
cern with the assessment of EMO algorithms in the context of
multi- and many-objective optimization. As discussed, Pareto-
compliant measures directly depend on the quality of the
reference fronts considered. Though good approximations can



be found for a handful of problems, our findings indicate that
reference front generation should be urgently addressed at the
risk of assessing EMO algorithms from a biased perspective.
This is even more important in many-objective optimization,
where the performance assessment theory is still maturing.

The remainder of this work is organized as follows. Sec-
tion II briefly reviews concepts, benchmark problems, and
approaches related to this work. Next, we detail in Section III
the experimental design we adopt in our assessment, and re-
spectively discuss results from random sampling and archiver
processing in Sections IV and V. Finally, we conclude and
discuss future work in Section VI.

II. BACKGROUND

In this section, we briefly review the most relevant concepts
required to understand the remainder of this work. Initially, we
discuss the importance of reference fronts and the desirable
properties they should present. Next, we review the origins
of artificial benchmark problems in the context of continuous
optimization and briefly summarize their properties. We also
review archivers as a means to reduce fronts in a Pareto-
compliant way, detailing the archivers we consider in this
work. Finally, we review multi-dimensional visualization ap-
proaches, describing the technique we apply in this work.

A. Performance Assessment

In the context of multi- and many-objective optimization,
reference fronts play a critical role due to their application to
measure computation. In more detail, the most desirable prop-
erty for performance measures in EMO assessment is Pareto-
compliance. If a measure I is Pareto-compliant and it favors
a given front A over another given front B, then we are
assured that A cannot be dominated by B. Thus far, three
performance measures have been proven Pareto-compliant,
namely the hypervolume, the ε-indicator family (additive and
multiplicative), and more recently the inverted generational
distance plus. Since their proposal, the first two have been
extensively adopted in the context of multi-objective optimiza-
tion, and the latter has been increasingly used in the context
of many-objective optimization.

Though the hypervolume indicator is originally unary, it
is most commonly employed recast as a binary indicator,
such as the ε-indicators and the inverted generational distance
plus. In more detail, binary indicators are computed in respect
to a reference front that should be a good approximation
of the actual Pareto front. A high-quality reference front is
thus critical to performance measures, and should present the
following desirable properties:
Convergence. Refers to the Pareto-optimality of the solutions.
A reference front should not contain dominated solutions. If
solutions in a reference front are produced by a benchmark
generator, they are already expected to be Pareto-optimal.
Conversely, reference fronts computed by aggregating outputs
from EMO algorithms cannot be guaranteed to be optimal.
Spread. Refers to the distance between extreme solutions.
Ideally, the optimal solution for each objective should be in-
cluded in reference fronts, as well as the points that are placed
along the edges of the surface that the problem represents.

problem separability modality bias geometry
DTLZ2 3 uni – concave
DTLZ4 3 uni polynomial concave
DTLZ7 3 uni, multi – disconnected
WFG1 3 uni polynomial convex, mixed
WFG2 – uni, multi – convex, disconnected
WFG4 3 multi – concave

TABLE I
SUMMARIZED DESCRIPTION OF BENCHMARK PROBLEMS CONSIDERED.

Distribution. Refers to the evenness in spacing between so-
lutions over the objective space. High-quality reference fronts
should not present gaps, missing out entire regions of the true
Pareto front.

Recent works have empirically demonstrated that even
Pareto-compliant metrics may value spread and distribution
differently as a function of problem characteristics and the
number of objectives considered [5]. Nonetheless, perfectly
spread and distributed reference fronts are generally regarded
ideal in EMO research.

B. Artificial Benchmark Problems
A priori knowledge of problem characteristics and optimal

solutions are desirable assets in the context of EMO. Since
problems that demand heuristic optimization are challenging
for exhaustive enumeration of optimal solutions (and hence
understanding problem characteristics), EMO researchers have
devised several artificial benchmark problem sets, specially
for continuous optimization. In particular, the DTLZ [2] and
WFG [3] sets are the most widely used in benchmarking,
mostly due to their scalability w.r.t. number of variables and
objectives. In common, these artificial problem sets comprise
distance- and position-related variables, which respectively
affect only convergence (distance) or spread and distribu-
tion (position). More importantly, this separation serves as a
backdoor to produce Pareto-optimal solutions. Specifically, if
distance-related variables are set to pre-specified values, sam-
pling position-related variables results in different solutions
expected to be Pareto-optimal.

Though scalable, a common issue with works that bench-
mark EMO algorithms using the DTLZ and WFG problem sets
is that researchers often employ them with the original number
of variables and ratio between distance- and position-related
variables proposed by their authors. This greatly hinders the
benefits of their configurable and scalable design. In fact,
over the years some of these problems were reported to
present issues as the number of objectives or variables are
increased [3], [5], [6]. For this reason, in this work we restrict
our analysis to DTLZ2, DTZL4, and DTLZ7, WFG1, WFG2,
and WFG4. Table I lists the most important properties from
each problem, where we remark that WFG4 is representative
of the remaining concave WFG problems (WFG5–9).

It is important to highlight that the multi-modality nature
of the functions that comprise DTLZ7 and WFG2 implicate
that their fronts are disconnected. This is shown in Figure 1,
provided in the original DTLZ paper [2] to illustrate the objec-
tive space of DTLZ7 with three objectives. In a minimization
problem like this, the Pareto-optimal solutions concentrate in
patches that correspond to the valleys of the functions. By
contrast, solutions in the hills of the surface are dominated by
the solutions in the valleys.



Fig. 1. Illustration of a multi-modal problem provided in [2], which presents
a disconnected Pareto front.

Among the problems we select, we remark that it is possible
to produce perfectly spread and distributed reference fronts for
DTLZ2 and DTLZ4 using exact approaches such as Das and
Dennis’ method for weight generation [11]. However, this is
not trivial for the remaining problems. More importantly, in
the context of many-objective optimization weight generation
itself is ongoing research, with different alternatives leading
to different compromises between spread and distribution.

C. Solution Archivers

Similar to solution populations in EMO algorithms, ref-
erence fronts must be limited in size but high-quality ap-
proximations of the actual Pareto front. For this reason, it is
possible to use the same archiving techniques proposed for
EMO populations in the context of reference front truncation.
Among the most important properties, archivers should present
is Pareto-monotonicity, meaning that the inclusion of novel
solutions in the archiver will not lead to deterioration. So
far, only two archivers have been proven to present this
property [12], namely the multi-grid (MGA [9]) and the
hypervolume (AAs [10]) archivers:
MGA uses the concept of box-dominance to discretize the
objective space into cell grids and compute solution density.
The grid is dinamically computed as a function of the extreme
solutions provided in the input front. Besides being Pareto-
monotonic, the MGA is the only archiver expected to scale
polynomially as the number of objectives is increased.
AAs evaluates solutions based on their contribution to the
hypervolume measure. Similarly to the MGA, the AAs is also
Pareto-monotonic and dynamic, with the reference point used
for hypervolume computation being a function of the extreme
solutions provided in the input front. In contrast to the MGA,
though, the computational cost of the AAs scales exponentially
with the increase in the number of objectives.

Though no work has graphically discussed the expected
shapes of fronts processed by MGA, for AAs we expect
that its behavior be similar to the hypervolume indicator.
In [4], authors discuss the effect of problem geometry and the
number of objectives on the preferences captured by different
performance measures. For the hypervolume, distribution is
favored over spread on convex problems, such as WFG1

and WFG2. Conversely, on concave problems like DTLZ2,
DTLZ4, and the WFG problems we represent with WFG4,
the hypervolume favors spread over distribution.

D. Multi-dimensional Visualization

Visualizing solution sets for multi- and many-objective
optimization problems is paramount for estimating location,
distribution, and shape of the fronts, among other impor-
tant characteristics. Several multi-dimensional visualization
techniques can be identified in the EMO and multi-criteria
decision making (MCDM) literature [13], [15]. Below, we
briefly describe four of the most relevant and/or recent:
Prosection uses projection and rotation to produce 3D repre-
sentations of sections from a 4D front [13]. It is able to capture
information about Pareto dominance between solutions, and
front shape and distribution. Although prosections can deal
with large approximation sets in small computational time,
this approach is currently only applicable to 4D fronts.
Sammon mapping projects the original data into a lower
dimensional space while trying to preserve inter-point dis-
tance [14]. This is achieved by modelling the error as a stress
function and employing an optimization method to iteratively
refine an initial projection (usually a principal component).
Though Sammon plots are able to preserve distribution, the
values of the original objectives cannot be indivually assessed
using this kind of representation.
Radial coordinate visualization (RadViz) maps m-
dimensional points into a two-dimensional, radial coordinate
plane. Objectives are modeled as dimensional anchors placed
along equidistant angles, and the location of a given point
represents the equilibrium between the strength of each
anchor [8]. The advantage of RadViz is its reproducible
anchor displacement, and that the distribution of a large set
of points is captured in an easy and scalable way. However,
RadViz does not preserve Pareto dominance relation between
points nor the geometry of the front being assessed.
PaletteViz decomposes a RadViz visualization into layers
that move progressively from front boundaries to its cen-
ter [16]. Points are colored to evidence their distance to the
boundaries, and stacked layers enable better understanding
of front structure and neighborhood information. Moreover,
stacking enables decision makers to navigate different trade-
off levels among the objectives. While being very effective as a
visualization tool, PaletteViz is yet not available as a software.

In the next section, we describe the experimental setup
we adopt in this work, where multi-dimensional visualization
helps us assess the quality of reference fronts produced from
benchmark generators for the problems discussed in this
section, before and after archive truncation.

III. EXPERIMENTAL SETUP

As discussed in the previous section, DTLZ and WFG are
configurable benchmark problems that provide Pareto-optimal
solution generators. In this section, we design an experimental
setup to evaluate the approximation fronts produced by these
generators before and after archiver truncation. The most
relevant details of the setup adopted are given below. Since
archivers can be computationally demanding, we also list



hardware specifications for the batch of experiments we run
on a computational cluster:

Problem setup. Following [7], each problem comprises 50
variables to be optimized. We adopt problem-specific parame-
ter settings and the ratio between position- and distance-related
variables proposed in the DTLZ and WFG papers, with the
adaptations discussed in [7] to meet problem constraints.
Reference front generation. For each problem selected, we
uniformly randomly sample n ∈ {1 000, 10 000, 100 000} so-
lutions. As discussed, this is done by setting distance-related
variables to pre-specified optimal values, and uniformly ran-
domly sampling values for the position-related variables within
their pre-defined domains. For each n, we adopt 10 different
seeds for random number generation, which are paired for
different front sizes. Reference fronts are produced both for
M = {3, 5} objectives, to assess the impact of the increase in
the number of objectives.
Archiver truncation. We adopt the MGA and AAs imple-
mentations respectively provided by [9] and [10]. Archivers
take as input a maximum output size, a given reference front,
and the seed used for its generation, in case a seed is required.
Truncated fronts present a maximum size n = 100 when
M = 3 and n = 1000 when M = 5, following [7].
Multi-dimensional visualization. We employ RadViz for its
simplicity of use, scalability, and availability as open source
software.We argue that, since our goal is to visualize Pareto-
optimal reference fronts in multi- and many-objective opti-
mization problems, not preserving Pareto dominance between
solutions is not an issue.
We adopt two different implementations of RadViz. In prelim-
inary experiments, we employed the implementation provided
in the Orange3 data mining suitefor interactive visualization.
The most relevant insights were selected to be provided as
plots in this paper and as supplementary material [17], and
are produced using the RadViz implementation provided in
the pandas Python data science programming library. Repro-
ducible notebooks for plotting are also provided as supple-
mentary material, along with the data produced [17].
Performance measure computation. To complement the vi-
sual analysis, we compute the unary hypervolume indicator of
the truncated reference fronts. As traditional in the literature,
we use [2.1]M as reference point, after normalizing values
to the [1, 2] interval. For all problems, we take the origin of
the axes as lower bound for normalization. Additionally, for
DTLZ problems we consider 1.1 as upper bound. However, the
upper bound for the M -th objective of DTLZ7 is 2.2M , given
the domain defined for this objective. Similarly, for WFG
problems upper bound for objective i figures 2.2i.
Hardware. Computationally demanding jobs are executed on
a cluster running CentOS 6.2. Each job runs on a single core
from a rack node containing 2 Intel Xeon E5-2680 v3 (12
cores each, 2.5GHz, 2x 16MB L2/L3 cache), with 2.4Gb RAM
available per job.

In the following sections, we discuss results obtained from
experiments before (Section IV) and after archiver trunca-
tion (Section V).

Fig. 2. Boxplots depicting reference front sizes (x axis) after dominance
filtering for increasing numbers of randomly sampled solutions. From top to
bottom: n ∈ {1 000, 10 000, 100 000}. Boxplots are grouped by problem (y
axis) and M (color).

IV. RANDOMLY SAMPLED REFERENCE FRONTS

We start our analysis with the assessment of the reference
fronts uniformly randomly sampled from the DTLZ and WFG
benchmarks. The most relevant insights observed in this analy-
sis can be grouped as M -dependent or not. We initially discuss
the most relevant M -independent insight, namely the effect of
dominance filtering. Next, we individually discuss the insights
observed for the different M considered in this work.

A. Dominance Filtering
A preliminary dominance filtering analysis revealed that

benchmark generators may provide solutions that are not
Pareto-optimal. Hence, we start our analysis with an assess-
ment of the percentage of solutions that get filtered out for the
problems selected, given as boxplots in Figure 2. From top
to bottom, boxplots depict filtered front sizes when reference
fronts are uniformly randomly sampled with increasing n. For
brevity, boxplots include only problems for which dominance
filtering had an impact, namely problems that present multi-
modality (WFG2 and DTLZ7) or bias (DTLZ4).

Results show that a large extent of the solutions randomly
sampled from benchmark generators for these problems are
in fact dominated. For multi-modal problems, this is rather
striking and reveals that solutions for which distance-related
parameters are set to optimal can still be dominated. As
discussed in Section II, this happens because sampling is
done along the whole multi-modal surface that comprises the



Fig. 3. RadViz plot of selected problems with three objectives and 50 variables for 100 000 randomly sampled points. Top, from left to right: DTLZ2,
DTLZ4, and DTLZ7. Bottom, from left to right: WFG1, WFG2, WFG4. For brevity, a single seed is depicted, representative of the remaining.

Fig. 4. RadViz plot of selected problems with five objectives and 50 variables for 100 000 randomly sampled points. Top, from left to right: DTLZ2, DTLZ4,
and DTLZ7. Bottom, from left to right: WFG1, WFG2, WFG4. For brevity, a single seed is depicted, representative of the remaining.

objective function, and hence points in hills are dominated
by points in valleys. For problems that present bias, solutions
tend to be sampled from the same region of the objective
space, increasing the chances of repeated solutions.It is also
important to remark that bias is present in WFG1 to a lesser
degree than in DTLZ4, and hence dominance filtering effects
are not as evident for the former.

B. Results for M = 3

RadViz plots of reference fronts sampled with n = 100 000
and M = 3 are given on Figure 3. For brevity, plots for
remaining sizes are given as supplementary material, since
they are unable to approximate well the actual Pareto fronts
for any of the problems considered. Figure 3 shows that
reference fronts for DTLZ problems (top row) are high-quality
approximations of the true Pareto fronts for DTLZ2 (left) and
DTLZ7 (right). As for DTLZ4 (center), solutions concentrate
on the biased edges, whereas a high-quality approximation
should look similar to the front found for DTLZ2.

Concerning WFG problems (bottom row), reference fronts
appear biased even if the original problems are not, missing
entire regions of the objective space. For instance, WFG1 (left)
and WFG4 (right) should resemble the front for DTLZ2, but
specially for WFG4 the sampled points present a very poor
spread. Concerning WFG2 (center), increasing the number of
sampled solutions from n = 1000 to n = 100 000 produces
fronts that find more solution pools, but an entire pool appears
to still be missing.

C. Results for M = 5

Figure 4 depicts results for fronts with n = 100 000
and M = 5. Once again, top row plots illustrate DTLZ
fronts (respectively DTLZ2, DTLZ4, and DTLZ7, from left
to right), whereas bottom row plots illustrate WFG fronts (re-
spectively WFG1, WFG2, and WFG4, from left to right). A
pentagon pattern is expected for DTLZ2, DTLZ4, WFG1, and
WFG4. Yet, none of the fronts produced for these problems
simultaneously present good spread and distribution.



Fig. 5. RadViz plot of selected problems with M = 3 and 50 variables, truncated using MGA of size 100. Top, from left to right: DTLZ2, DTLZ4, and
DTLZ7. Bottom, from left to right: WFG1, WFG2, WFG4. For brevity, a single seed is depicted.

Fig. 6. RadViz plot of selected problems with M = 3 and 50 variables, truncated using AAs of size 100. Top, from left to right: DTLZ2, DTLZ4, and
DTLZ7. Bottom, from left to right: WFG1, WFG2, WFG4. For brevity, a single seed is depicted.

Concerning multi-modal problems (DTLZ7 and WFG2), we
see quite different outcomes. For DTLZ7, RadViz limitations
do not allow us to investigate the center region of the solution
pools, but boundary regions indicate that distribution could
still be improved in the region that appears closer to objective
f5. For WFG2, distribution is even worse, but concentrates
around the edge formed between objectives f4 and f5. Finally,
DTLZ4 presents the same pattern observed previously, with
solutions concentrated on the biased edges.

D. Discussion
The assessment of the uniformly randomly sampled refer-

ence fronts revealed striking results. Besides the presence of
solutions that were not Pareto-optimal (sometimes to a very
large extent of the fronts produced), the spread and distribution
for some DTLZ and all WFG problems are very poor already
with three objectives. In fact, it is rather remarkable that such
results have not yet been reported. More importantly, they
reveal an urgent need for standardized reference fronts and
for a method for generating them without the spread and/or
distribution issues observed in this section.

Finally, we remark that results for n < 100 000 proved even
poorer than the results for n = 100 000. In this context, the

assessment we conduct in the next section on the effects of
archiver truncation becomes even more relevant, as providing
reference fronts with such a large number of solutions would
be impractical for several reasons.

V. ARCHIVER-TRUNCATED FRONTS

As previously discussed, too large reference sets would
greatly increase the overhead for performance measure com-
putation, specially in many-objective optimization. In this sec-
tion, we assess fronts truncated by MGA and AAs, grouping
insights by the number of objectives considered. Yet, we
remark that very often MGA was unable to process DTLZ4
fronts even with a week-long cutoff time. We conjecture that
this long processing times are a factor of the dynamically
adjusting grid, specially given solution concentration along the
biased edges discussed in the previous section.

A. Results for M = 3

Figures 5–6 respectively show M = 3 fronts truncated by
MGA and AAs with maximum capacity 100 when provided
100 000 uniformly randomly sampled solutions. In common,
results for DTLZ4, WFG1, and WFG4 change very little.
Regarding the remaining problems, MGA generally presents



Fig. 7. Boxplots depicting hypervolume values (x axis) achieved by truncated
reference fronts using different archivers (y axis). Left: M = 3; right: M = 5.

a better distribution than AAs. Indeed, the poor distribution
of the outputs from AAs is often striking, but is an expected
consequence of (i) the low-quality inputs provided, specially in
the case of DTLZ4 and WFG2, and; (ii) how the hypervolume
favors spread over distribution.

To complement the visual analysis, Figure 7 gives boxplots
of the hypervolumes achieved by the truncated reference
fronts (x-axis) using the different archivers (y-axis), grouped
by benchmark problem (rows) and M (columns). Concerning
the analysis for M = 3 problems (left-most column), the
hypervolumes for fronts truncated by AAs are always better
than for fronts truncated by MGA, though differences for the
concave DTLZ problems (DTLZ2 and DTLZ4) are negligible.
Finally, we highlight that the only problem for which the
hypervolumes are much smaller than expected is WFG4,
reflecting the issues with the input reference fronts.

Having the hypervolume favoring the AAs is an expected
result, but it confirms the need for multiple performance
indicators being taken into consideration when designing EMO
algorithms and components already for three objectives. In
more detail, from the distribution perspective the fronts trun-

cated by MGA are better than the fronts truncated by AAs;
yet, an analysis based solely on the hypervolume misses this.

B. Results for M = 5

Figures 8–9 respectively show M = 5 fronts truncated by
MGA and AAs with maximum capacity 1 000 when provided
100 000 randomly sampled solutions. This time, differences
are only observable for (i) DTLZ2, for which MGA favors the
central region w.r.t. AAs, and; (ii) DTLZ4, for which MGA
is unable to finish processing any n = 100 000 front. Overall,
RadViz allows us to see differences when they are striking,
but a more advanced approach such as PaletteViz would be
required for a deeper contrast between MGA and AAs.

Boxplots for M = 5 problems are given in the right-most
column of Figure 7. Note that the ranges of the hypervolumes
change as a function of M , but the patterns in both columns is
remarkably similar. The only differences concern (i) DTLZ4,
for which MGA is unable to process reference fronts, as
discussed, and; (ii) the convex WFG problems (WFG1 and
WFG2), for which the difference between archivers is now
also negligible. In a sense, the poor inputs provided to the
archivers renders the truncated fronts very similar, and so
future work should address this issue from the perspective of
better-produced reference fronts.

VI. CONCLUSION

Heuristic optimization algorithms directly depend on sound
theoretical and experimental performance assessment method-
ology. In the context of multi- and many-objective opti-
mization, the evolutionary multi-objective (EMO) community
has been instrumental to this end. Nonetheless, the recent
observations from many-objective optimization works indicate
that even contributions that were deemed mature must be
improved.

One such topic is Pareto-optimal reference front generation,
generally overlooked in EMO assessment as evidenced by
the absence of standard reference fronts in the community.
This work built on existing investigations that indicated that
Pareto-optimal reference fronts in the context of continuous
optimization present room for improvement. Leveraging multi-
dimensional visualization and solution archiving, we have
demonstrated that the underlying issues with randomly sam-
pled reference fronts from benchmark generators are even
more serious than anticipated. Concretely, the presence of
dominated solutions and poor spread and distribution are
observed even when a large number of solutions is produced
and already for three-objective problems.

Future work should urgently address these issues. Specif-
ically, artificial benchmark sets became popular precisely
for the possibility of Pareto-optimal reference fronts. More
importantly, binary Pareto-compliant measures can produce
absolutely biased conclusions if the reference fronts adopted
are not high-quality. Furthermore, methods produced for refer-
ence front generation should value the configurable nature of
benchmark sets, allowing to explore the effects of increasing
number of variables, the ratio between distance- and position-
related variables, and other eventual configurable parameters.



Fig. 8. RadViz plot of selected problems with M = 5 and 50 variables, truncated using MGA of size 100. Top, from left to right: DTLZ2, DTLZ4, and
DTLZ7. Bottom, from left to right: WFG1, WFG2, WFG4. For brevity, a single seed is depicted.

Fig. 9. RadViz plot of selected problems with M = 5 and 50 variables, truncated using AAs of size 100. Top, from left to right: DTLZ2, DTLZ4, and
DTLZ7. Bottom, from left to right: WFG1, WFG2, WFG4. For brevity, a single seed is depicted.
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[12] M. López-Ibàñez, J. Knowles, and M. Laumanns. “On Sequential Online
Archiving of Objective Vectors,” EMO, LNCS, v. 6576, pp. 44-60, 2011.
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