
High school timetabling at a federal educational
institute in Brazil

Lucas H. A. Dantas, Romerito C. Andrade
Instituto Federal de Educação, Ciência e

Tecnologia do Rio Grande do Norte (IFRN)
Natal, Brazil

{lucas.dantas,romerito.campos}@ifrn.edu.br

Leonardo C. T. Bezerra
Instituto Metrópole Digital (IMD)

Universidade Federal do Rio Grande do Norte (UFRN)
Natal, Brazil

leobezerra@imd.ufrn.br

Abstract—High school timetabling (HST) is a relevant problem
traditionally addressed by (meta)heuristic approaches. This work
addresses the HST in the context of the technical courses offered
at the Instituto Federal de Educação, Ciência e Tecnologia do
Rio Grande do Norte (IFRN). Part of the largest Brazilian
federal educational network, IFRN comprises 22 campi located
in 18 different cities, which makes an HST approach for IFRN
challenging, critical, and potentially seminal for other institutes
of the network. Our contributions are two-fold. First, we model
the HST problem at IFRN both as to mathematical formulation
and real-world instances, which we create from data gathered
at different campi. Second, we propose a greedy randomized
adaptive search procedure (GRASP) algorithm specific for this
scenario. To validate our contributions, we benchmark on the in-
stances we create (i) state-of-the-art, (ii) commercial, and (iii) the
proposed GRASP algorithms. Our approach produces feasible
solutions for more instances than the remaining algorithms, with
also competitive solution quality.

Index Terms—high school timetabling, metaheuristic, GRASP

I. INTRODUCTION

In education, timetabling problems involve allocating les-
son schedules from a school, university courses, or even
exams [1]. Generally, the goal of such problems is to schedule
a series of meetings, often within a week, obeying a set of
restrictions that involve resources, pedagogical aspects, and
personal preferences. The high school timetabling (HST) prob-
lem is a relevant example [2], in which time slots, teachers,
students, and classrooms must be assigned to a collection
of lessons, and none of the participants may be assigned
to more than one lesson simultaneously. Similarly to other
timetabling problems, the HST is NP-hard, meaning exact
algorithms are severely limited w.r.t. the instance sizes they can
solve in reasonable computational times [1]. As an alternative,
(meta)heuristic methods have shown relevant performance on
the HST [3], [4]. Yet, solutions proposed for one country may
not be straightforward to generalize. This is largely justified
by the variations in the educational systems from different
countries. As such, there is a striking difficulty in developing
collaborative HST research [5].

The goal of this work is to address the HST problem in
the context of the technical courses offered at the Instituto
Federal de Educação, Ciência e Tecnologia do Rio Grande

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior - Brasil (CAPES) – Finance Code 001

do Norte (IFRN). IFRN is part of the major Brazilian fed-
eral education network targeting (technical) high-school and
undergraduate studies. In total, the network comprises about
653 units and all 27 Brazilian federated units. IFRN, in
particular, comprises 22 campi in 18 different cities of the
state of Rio Grande do Norte. Every new school semester,
each campus needs to compose its timetable in compliance
with institutional and pedagogical requirements, which makes
an HST approach both challenging and critical. Furthermore,
given the expected similarities among IF campi across different
Brazilian federated units, addressing the HST problem at
IFRN is potentially seminal for a country-level solution to
be deployed over all units.

Our contributions are two-fold. First, we model the HST
problem requirements in the context of IFRN campi. Con-
cretely, we (i) list and justify hard and soft constraints, (ii) for-
mulate a mathematical model to account for the most relevant
constraints identified, and; (iii) produce real-world instances
from data collected from several campi. Though it exceeds
the scope of this work, the proposed mathematical formula-
tion can be used for research on mathematical programming
approaches. Regarding real-world instances, we use an inter-
nationally adopted description format (XHSTT [6]), which
allows us to benckmark state-of-the-art [7], [8] algorithms
on these instances. Unfortunately, preliminary experiments
demonstrated that existing algorithms are unable to solve some
of the proposed instances due to their characteristics.

To address this limitation, our second contribution is the
proposal and proof-of-concept validation of a metaheuristic
optimizer specific for the HST problem at IFRN. Our pro-
posed approach is a greedy randomized adaptive search pro-
cedure (GRASP) algorithm [9], a method that has repeatedly
demonstrated its efficacy in several NP-hard problem appli-
cations [10]. GRASP requires both a constructive procedure
and local search operators, which we propose and assess.
We validate our GRASP approach benchmarking it against
the state-of-the-art (meta)heuristics and also the commercial
solutions previously adopted by the given campus. Results
demonstrate that our approach is able to find feasible solutions
for more instances than the remaining algorithms. Though
state-of-the-art performance is not our goal, solutions devised
are competitive in quality with the solutions from the re-
maining algorithms. Furthermore, though devised for the HST
problem at IFRN, it is likely that the proposed algorithm

be applicable to the HST problem at campi from different
federated units, with appropriate adjustments.

The remainder of this work is structured as follows. Sec-
tion II briefly reviews theoretical background. In Section III,
we model the HST problem at IFRN. Our proposed GRASP
algorithm is detailed in Section IV, and validated in Section V.
We conclude and discuss future work in Section VI.

II. BACKGROUND

Timetabling problems are classified by theoretical computer
science as NP-hard [1]. This is also the case for the HST, and
as a result most approaches proposed for this problem are
(meta)heuristic. In this section, we first review metaheuristics
and their application to combinatorial optimization. Later,
we discuss educational timetabling problems and the HST,
reviewing its literature.

A. Metaheuristics and combinatorial optimization

For combinatorial optimization problems (COP) like
timetabling, solution enumeration or related methods thereof
are usually impracticable. Scalable approaches are usually ap-
proximate or heuristic. Problem-general heuristics are known
as metaheuristics [11], and can be broadly classified as con-
structive and/or refinement. Constructive methods iteratively
build solutions, and are often the fastest among metaheuristic
methods. By contrast, refinement algorithms focus on improv-
ing an incumbent solution, iteratively replacing its solution
components for alternative ones. It is often the case that
approaches combine constructive and refinement procedures,
given their complementary nature.

A locally-optimal solution found by a metaheuristic algo-
rithm may not be the global optimum for the given COP [9],
being dependent on the incumbent solution and neighborhood
operator adopted. A neighborhood operator is the change
pattern that produces novel solutions from an incumbent solu-
tion. Figure 1 illustrates a swap between lessons in neighbor
timetables. Given the existence of local optima, metaheuristic
approaches must be designed to effectively and efficiently ex-
plore the search space. The balance between search intensifica-
tion (exploitation) and diversification (exploration) is regulated
by (numerical) hyperparameters that must be configured.

B. Educational timetabling problems

Due to their frequent need to generate timetables, educa-
tional institutions are an important focus of works that address
scheduling problems. Next, we briefly describe timetabling
problem categories in education [1], [12].
School timetabling. Scheduling weekly lessons for all classes
at a school, avoiding conflicts between teachers and classes.
In these problems, idle times between lessons for students are
generally not acceptable.
Course timetabling. The weekly allocation of all lectures
in a set of university courses, minimizing overlaps between
classes with students in common. Idle times between lectures
for students are generally acceptable.
Examination timetabling. Scheduling exams for a set of
university courses, avoiding overlaps between exam times in
courses with students in common.

Fig. 1: Example of an event swap (ES) between weekdays [7].

Our work addresses the school scenario, known as the high
school timetabling (HST) problem. For the HST, meetings
are lessons on a subject, taught by a teacher to students
grouped as a class. Lessons are scheduled in time slots, and
idle slots between lessons are referred to as windows. In
Figure 1 (top), for instance, the timetable presented considers
a single class, and lessons scheduled for that class on Monday
cover Mathematics on the first three time slots and Geography
on the last two. The only idle time in the timetable given in
Figure 1 (top) is the last time slot for Friday, but it is not
considered a window for students as it is not situated between
lessons of that class.

One of the challenges in timetabling problems is distin-
guishing feasibility constraints from optimality criteria. The
former usually refers to institutional requirements that must
be obeyed. However, when all organizational, pedagogical,
and personal interests must be met in a mandatory manner,
problem complexity and the time necessary for its solution
increases. Alternatively, institutional and pedagogical require-
ments are modeled as hard constraints, i.e. solution feasibility.
By contrast, preferences are modeled as soft constraints, and
their minimization comprises solution optimality. Though HST
problems vary substantially from one educational institution
to another, hard constraints are commonly linked to physical
conflicts such as overlapping lessons from a given teacher for
different classes. Soft restrictions commonly found include:
(i) meeting teaching staff personal preferences for specific time
slots, and; (ii) minimizing windows for students and teachers.

C. Related work

Given the heterogeneous nature of the HST literature,
we focus our review on efforts that help promote collab-
oration. Specifically, we discuss: (i) the most commonly
used heuristic for HST problems, namely the Kingston high
school timetabling engine (KHE [8]), and (ii) the International
Timetabling Competition (ITC) edition that focused on the
HST. The KHE heuristic has been open sourced as a pro-
gramming library to provide a fast and robust alternative for
the HST. KHE builds on hierarchical schedules, i.e., merging
smaller timetables recursively until a complete solution is

produced. The algorithm is under continuous development,
with its current version incorporating as polymorphic ejection
chains [8]. ITC is an international competition that focuses
on a different timetabling problem each year. Its third edition,
held in 2011, addressed the HST problem. Next, we discuss
its main contributions.
Algorithms. An algorithm combining simulated anneal-
ing (SA [9]) and iterated local search (ILS [9]) to refine initial
solutions produced by KHE won the competition. In detail,
the algorithm was proposed by the Group of Optimization
and Algorithms (GOAL) [7], and produced the best solutions
for almost all datasets included. More recently, the same
group proposed an improved HST algorithm, replacing SA
and ILS for variable neighborhood search (VNS [9]) and
matheuristics ([9]) [13]. We refer to this hybrid solver as
HS, and remark that it achieved best solutions for 15 out of
17 datasets considered in its evaluation.
Dataset description format. ITC 2011 helped popularize a
description format for HST datasets. XHSTT [6] helps stan-
dardize both problem input and output, an provides flexibility
for modeling the HST from different contexts. Currently, .

As discussed in this section, the HST is a problem that
varies among different countries and educational systems.
Though effective algorithms exist, their application to different
contexts may be limited. In the next section, we model the
HST problem for the technical courses offered at IFRN.

III. HIGH SCHOOL TIMETABLING AT IFRN

IFRN is part of a federal network of educational institutions
that serves the 27 Brazilian federated units. In this section,
we initially further detail its context and relevance. Later, we
formulate the HST problem at IFRN from the perspective of
constraints, mathematical model, and benchmark instances.

A. Context and relevance

The Rede Federal de Educação Profissional, Cientı́fica e
Tecnológica network was established in 2008, as an expansion
of the previous federal education networks in Brazil that
originated in the early 20th century. As of 2019, the network
comprised 38 federal institutes, in addition to technical uni-
versities and associated technical schools. Overall, the network
comprises 653 educational units and serves over two million
students, nearly half of which attend technical high-school
courses. Importantly, the network plays a critical role in social
equality, with over half of the students that declared income,
gender, and ethnicity coming from low income families,
being women, and self-declaring as non-white. Staff-wise,
the network comprises over 50,000 teachers and professors,
with nearly 20,000 holding a Master degree and circa 15,000
holding a doctoral degree.

IFRN is the federal institute located in the state of Rio
Grande do Norte, in the Northeast region of Brazil. In total,
IFRN has 21 campi in 18 different cities for on-site education,
plus an online campus for remote education. Across its on-site
campi, IFRN offers nearly 500 (technical) high-school and
undergraduate level courses in all three shifts, serving over
80,000 students. Nearly half of IFRN students attend technical
high-school courses. Given the state and region social and

TABLE I: IFRN timetabling constraints.

Hard constraints Soft constraints
ID Description ID Description
H1 Curriculum compliance S1 Student window
H2 Teacher exclusivity minimization
H3 Class exclusivity S2 Teacher window
H4 Twin lessons minimization
H5 Justified teacher availability S3 Unwarranted
H6 Lesson distribution weekly distribution
H7 Maximum teacher daily lessons S4 Critical-time history
H8 Theoretical lessons limit per class

economical indicators, IFRN plays an even more important
role in social equality, with low-income, female, and non-white
student ratios above the national average. Staff-wise, IFRN has
around 1,500 professors, with nearly 1,000 holding a Master
degree and circa 500 holding a doctoral degree.

B. Problem constraints

For each IFRN campus, high-school technical course, and
academic semester, subjects are offered according to the cur-
riculum of the given course. Despite the existence of common
subjects for different courses, there is usually no sharing
of classrooms between different classes. This way, teachers
are pre-allocated to subjects for a specific course. The prior
allocation of teachers increases the constraints of the problem,
but eliminates the need to allocate classrooms.

Table I details the set of problem constraints we identify
at IFRN, classifying them as hard or soft. Below, we briefly
discuss the hard constraints.
H1: a class must be assigned the number of lessons proposed

for each subject, as defined in its course curriculum.
H2 & H3: for a given time slot on a given school day, neither

a teacher nor a class can be assigned to multiple lessons.
H4: a set of lessons from a given subject and class at a given

school day must be arranged contiguously.
H5: a teacher can determine his teaching days provided legal

justification.
H6: pedagogical preferences, e.g. to avoid a large number

of consecutive lessons from a given teacher on a given
subject for a given class on a given day.

H7: a teacher can be assigned maximum 10 lesson hours on
a given school day.

H8: a teacher can be assigned a maximum four theoretical
lesson hours for a given class on a given school day.

Soft constraints at IFRN comprise the minimization of
student (S1) and teacher (S2) windows. For practical purposes,
we also include constraints S3 and S4. The former refers
to teacher preferences regarding concentrating lessons on a
subset of school days, given other activities conducted in
the institute such as research and outreach. The latter is an
approach adopted by course coordinators to rotate teacher
allocation on lessons assigned to the first time slots of Monday
and to the last time slots on Friday. Finally, we remark that
in this case study constraints H8 and S4 are not addressed
due to the dependence of exogeneous data. Respectively,
constraint H8 requires as input the split between theoretical
and practical hours for a given subject of a given course,
whereas constraint S4 requires teacher assignment history. In

addition, we merge constraints H5 and S3 for simplicity, i.e.,
all required distribution should be met.

C. Mathematical formulation

The input to the proposed model comprises sets of teach-
ers and/or professors (P), classes (C), subjects (S), week-
days (D), and time slots (T). The model also requires
(i) hour loads H , i.e. how many lessons hps teacher p
should teach for subject s, and; (ii) teacher availability A,
i.e. whether (apd = 1) or not (apd = 0) teacher p is available
on day d. We assume that each lesson has a pre-allocated
teacher and class, so subjects and teachers are not shared
among classes and the H6 constraint is assured. The goal
function is given by Equation 1, a weighted sum of windows
for teachers (Wp) and students (Wc) using weight importances
Ip and Ic that are provided for decision-maker configuration.
Auxiliary functions Wp and Wc are provided as supplementary
material [14], for brevity.

min
∑
d∈D

(∑
p∈P

Ip ·Wp(p, d)

)
+

(∑
c∈C

Ic ·Wc(c, d)

)
(1)

Equations 2–9 ensure hard constraints, where xpsdt indi-
cates if teacher p is scheduled for subject s on day d and time
slot t. Equation 2 ensures curriculum compliance (H1). Equa-
tions 3 and 4 respectively prevent conflicts among teacher (H2)
and class schedules (H3). Note that Eq. 4 refers to a set of
subjects from a given class as Sc. Equations 5–7 ensure that
lessons for the same subject taught on the same weekday be
twinned (H4). Equation 8 ensures teacher availability (H5),
and Eq. 9 limits the number of daily lessons per teacher (H7).∑

d∈D

∑
t∈T

xpsdt = hps ∀p ∈ P, s ∈ S (2)

∑
s∈S

xpsdt ≤ 1 ∀p ∈ P, d ∈ D, t ∈ T (3)

∑
p∈P

∑
s∈Sc

xpsdt ≤ 1 ∀c ∈ C, d ∈ D, t ∈ T (4)

(∑
t∈T

xpsdt · xpsd(t+1)

)
+1 =

∑
t∈T

xpsdt ∀p ∈ P, s ∈ S, d ∈ D

(5)(∑
t∈T

xpsdt · xpsd(t−1)

)
+1 =

∑
t∈T

xpsdt ∀p ∈ P, s ∈ S, d ∈ D

(6)

(∑
t∈T

xpsdt · xpsd(t+1)

)
=

(∑
t∈T

xpsdt · xpsd(t−1)

)
∀p ∈ P, s ∈ S, d ∈ D

(7)

∑
s∈S

∑
t∈T

xpsdt = apd ·
∑
s∈S

∑
t∈T

xpsdt ∀p ∈ P, d ∈ D (8)

TABLE II: Instance characteristics. M: morning; A: afternoon.

Campus Semester Shift ID T C S P U

Caicó 2018.2 M CA182M 30 11 109 41 71
M&A CA182MA 60 22 209 58 105

2018.1 M JC181M 30 9 87 39 77
João M&A JC181MA 60 15 147 52 98

Câmara 2018.2 M JC182M 30 9 86 44 91
M&A JC182MA 60 14 144 52 107

Ipanguaçu 2018.1 M IP181M 30 10 84 56 112
Pau 2018.1 M PF181M 30 12 122 51 102
dos 2018.2 M PF182M 30 12 124 55 110

Ferros A PF182A 30 13 98 55 109

∑
s∈S

∑
t∈T

xpsdt ≤ 10 ∀p ∈ P, d ∈ D (9)

D. Dataset modeling
To foster research on the HST at IFRN and other fed-

eral institutes, we devise XHSTT instances based on real
timetables deployed in 2018 at four different IFRN campi on
the first (2018.1) and second (2018.2) academic semesters.
Details on how we model the HST at IFRN using the
XHSTT format are provided as supplementary material [14],
for brevity. The instances devised comprise both high school
and undergraduate courses, given that teachers and professors
at IFRN are often assigned to both. For this case study,
we produced ten instances. Due to an absence of pattern
among campi, we could not automate dataset production
for an arbitrary semester/campus. Instead, the instances were
reverse engineered from the timetables deployed, assuming
that (i) lesson distribution adopted was requested by teachers,
and; (ii) teacher unavailability was daily-wise rather than slot-
wise. These assumptions increase problem constraints, and
should be addressed when producing future timetables.

Table II depicts the general characteristics of each instance
produced. Besides campus, semester, shift(s), and an unique
identifier, we also give: (i) the number of time slots, classes,
subjects, and teachers, and; (ii) the sum of unavailable days
registered for the set of teachers. In average, each teacher
presented between 1.5 and two unavailable days, whether
justified or unwarranted. For this case study, we have not
considered classes that attend the night shift. Furthermore, we
have devised instances with (i) 30 time slots, comprising only
classes that attend the morning or afternoon shifts, and; (ii) 60
time slots, comprising classes that attend both shifts.

As discussed in this section, we have modeled the HST
problem at IFRN as to constraints, mathematical formulation,
and real-world instances. Proposing a mathematical program-
ming approach to benefit from our formulation exceeds the
scope of this paper, and is planned as future work. In the
next section, we propose an HST algorithm tailored for IFRN,
which we later benchmark on the instances we provide.

IV. PROPOSED ALGORITHM

As previously discussed, the HST is an NP-Hard problem
for which (meta)heuristic algorithms are typically the method-
of-choice. In addition, the specificities of the educational sys-
tems render customized algorithms important when addressing
the HST at a given institution. In this section, we propose
an algorithm based on the GRASP metaheuristic [9] for the
HST at IFRN. GRASP is an effective yet simple metaheuristic

Algorithm 1 GRASP

Require: P , A, S, H
1: LB ← splitSubjects(S,H)
2: for i← 1 to maxItr do
3: τ ← construct(P , A, LB)
4: if τ then
5: return refine(A, τ)

Ensure: timetable τ

Algorithm 2 Refinement

Require: A, timetable τ
1: fill(τ)
2: for i← 1 to δ do
3: b1, b2 ← selection(τ)
4: if b2 then
5: τ ′ ← swap(b1, b2, τ)
6: evaluate(τ , τ ′)
7: move(τ)

Ensure: timetable τ

that has been successfully employed in timetabling problems
and combines constructive and refinement procedures. For
simplicity, we initially describe the GRASP metaheuristic
and the refinement procedure we employ, which follows the
existing HST literature [7]. Later, we detail the constructive
procedure tailored for the HST at IFRN.

A. The GRASP metaheuristic

GRASP [9] is a multi-start metaheuristic that combines
a greedy randomized adaptive constructive procedure with a
refinement procedure based on local search. GRASP has been
successfully applied to several timetabling problems [10], and
is especially suited for constrained problems like the HST.
To regulate the exploitation/exploration trade-off, GRASP
presents a numerical (hyper)parameter α that must be con-
figured on a problem-basis. Alternatively, reactive GRASP [9]
self-adjusts α, as we do in this work.

The GRASP algorithm we propose for the HST at IFRN is
given in Algorithm 1. For consistency, we describe its input
using the same notation adopted in the mathematical formula-
tion. Before proceeding to its main loop, procedure splitSubjects
processes the input data, returning a set of lesson blocks
LB respecting hard constraint H6. Details on this procedure
are provided as supplementary material [14]. The main cycle
given in Lines 2–5 alternates between solution construction
and refinement. For simplicity, we initially describe solution
refinement, given in Algorithm 2 and detailed below.

B. Refinement

Given teacher availability and a feasible timetable τ , the
refinement procedure exploits its neighborhood using the event
swap (ES) operator [7], depicted in Figure 1. In that example,
an event is a single lesson; more generally, we consider
that lesson blocks can be swapped, as in the event block
swap operator [7]. Furthermore, we fill the empty slots in
τ with dummy lessons (Line 1) to render the ES operator

Algorithm 3 Construction

Require: P , LB
1: while LB and γ do
2: if RCL = ∅ or deadend then
3: RCL ← buildRCL(LB, α)
4: increaseAlpha(∆α)
5: b, t ← selectBlockTime(RCL)
6: deadend ← t = ∅
7: if not deadend then
8: allocate(b, t, τ , LB, stack)
9: else

10: backtrack(β, stack, τ , LB, γ)
Ensure: timetable τ if LB = ∅

also equivalent to the event move operator [7]. Neighborhood
exploitation (Lines 2–6) is performed for a given number δ
of local search iterations. Once exploration is concluded, we
remove dummy slots and move lesson blocks up or down
within the given shifts to remove windows (Line 7).

The loop given in Lines 2–6 comprises three procedures.
First, procedure selection attempts to select two compatible
lesson blocks for swap. In detail, the first block (b1) is selected
at random. The second block (b2) must match the size of
b1, respect teacher availability, and target a different subject.
If b2 exists, a neighbor solution τ ′ is produced in Line 5
and evaluated in Line 6. Since we adopt a first-improvement
pivoting rule, τ is replaced by τ ′ within procedure evaluate if
the latter outperforms the former according to the following
evaluation function:

f(s) = (Ip ·Wp) + (Ic ·Wc) + (ϕ · v) (10)

where v corresponds to the number of hard constraint viola-
tions that swap operations may produce. Weights Ip, Ic, and,
ϕ are exposed as (hyper)parameters.

C. Construction

The constructive procedure is given in Algorithm 3, which
executes a maximum γ attempts to build a feasible timetable
from the lesson blocks provided in LB (Lines 1–10). In
particular, we say that the algorithm has reached a dead end
if no further lesson block can be scheduled without violating
hard constraints. For every unsuccessful attempt, the algorithm
self-adjusts to increase its success odds. If γ is reached, no
timetable is returned.

The success odds for building a feasible solution are regu-
lated by the (hyper)parameter α, as follows. In GRASP algo-
rithms, the constructive procedure is greedy, randomized, and
adaptive. This is implemented through a restricted candidate
list (RCL). In detail, the RCL is greedily built according to a
given problem-specific heuristic. Yet, the next solution compo-
nent to be assigned is randomly chosen from the RCL, helping
to avoid local optima and/or violate problem constraints. In
this approach [10], we build the RCL at the beginning of each
attempt (Lines 2–3). The greedy maximization function g(b)
for each lesson block b ∈ LB is defined as:

Fig. 2: Example of timetable construction

g(s) = λ · g1(p) + µ · g2(p) + ν · g3(b) (11)

where λ, µ, and ν are weights for the auxiliary functions g1,
g2, and g3, and p ∈ P is the teacher for lesson block b.
g1(p) and g2(p) respectively count the teacher’s (i) number
of unavailable days and (ii) weekly workload in the shift of b,
whereas g3(b) returns the course load of the subject of b. As
such, teachers with higher unavailability and workloads and
subjects with higher loads are favored. The RCL comprises
lesson blocks b ∈ LB for which g(b) ∈ [b, b+ α(b− b)],
where b and b are the lesson blocks in LB with maximum and
minimum g values, respectively. Parameter α ∈ [0, 1] regulates
RCL size, and hence the odds of building a feasible timetable.
In the extreme scenarios, RCL comprises only lesson blocks
with maximum value for g (α = 0) or all lesson blocks
available for allocation (α = 1). In this work, we start
from α = 0, and increase it by ∆α everytime the RCL is
(re)built (Line 4).

At Line 5, procedure selectBlockTime randomly selects a
lesson block b, and searches for a feasible time slot t for
b. If t exists (Lines 6–8), procedure allocate assigns b to
τ , removing it from LB. Else, a backtracking procedure
is employed to reverse the last β assignments recorded in
a history stack (Lines 9–10). This is illustrated in Fig. 2,
where the block selected from the RCL comprises two History
lessons from teacher F, who is not available on the day with
two empty slots (Friday). Backtracking enables building an
alternative, feasible timetable.

In this section, we have described a GRASP algorithm
tailored for the HST at IFRN. Besides the inherent (hy-
per)parameters of GRASP, we have exposed further (hy-
per)parameters for configuration on a problem-basis. In the
next section, we detail how we configure and benchmark our
proposed approach, and discuss how it compares to commer-
cial and state-of-the-art HST optimizers.

V. VALIDATION

The experimental analysis we conduct in this section has
two major goals: (i) to demonstrate the benefits of the real-
world instances we produce, benchmarking existing state-of-
the-art approaches on this dataset, and; (ii) to validate the

proposed GRASP algorithm, assessing how it compares to
the literature and the importance of its components. Initially,
we describe how we configure our proposal and benchmark
algorithms. Later, we discuss results both from benchmarking
and from ablating our proposed approach.

A. Configuration and benchmarking setup

Our initial experiments considered a single GRASP iteration
to understand the effectiveness of its components. However, as
we will later discuss in this section the results observed for
maxItr = 1 were already remarkably good. As such, we leave
the analysis of multiple-iteration executions for future work.
Considering the number of other (hyper)parameters we expose,
we employ the irace heuristic configurator [15], as follows.

Problem sampling. We use holdout to separate between train-
ing and testing instances with a 60%/40% ratio.1 Considering
the limited number of training instances, we followed [16]
and created meta-instances, each containing three training
instances sampled without repetition. Performance on a meta-
instance is the average performance from its comprising in-
stances.
Configuration space. For self-adjusment, we consider
∆α ∈ [0.001, 0.05], with an initial α = 0. For the heuristic
function g(b), we consider λ, µ, ν ∈ {1, . . . , 15}. Finally, the
backtracking procedure removes β ∈ {25, 35, . . . , 85}
lessons from the allocation stack for a maximum
γ ∈ {1 500, 2 000, . . . , 6 500} times. In total, this parameter
space comprises 1.3× 107 configurations.
Configuration setup. The proposed algorithm was imple-
mented in Java and executed on a single core of an Intel Core
i5 @ 2.3 GHz with 4MB of cache running the macOS 10.13
operating system. irace could execute our algorithm 1.000
times, each limited to four CPU minutes. Configurations were
evaluated using the goal function given in Eq. 10 with weights
Ip = 1, Ic = 100, and ϕ = 10000. In a given irace iteration,
configurations could be discarded after three meta-instances
were executed. Under these experimental conditions, irace was
able to evaluate 151 configurations and its total execution
took five CPU days. The selected configuration is provided as
supplementary material [14], for brevity, and discussed along
this section when relevant.

The evaluation metric, stopping criterion, and execution
environment used for benchmarking are the same adopted
for (hyper)parameter configuration. Concerning algorithms,
we used the KHE heuristic as baseline to evaluate our pro-
posed constructive procedure. To compare final timetables,
we benchmark the: (i) HS algorithm [13]; (ii) KHE heuris-
tic coupled with our proposed refinement procedure, and;
(iii) commercial software adopted at the given IFRN campus.
Furthermore, considering the stochastic nature of heuristic
optimization algorithms, multiple repetitions per instance are
necessary for an analysis of performance variability. In this
validation, each algorithm that has a stochastic component was
executed 10 times per testing instance.

1Training: CA182M, JC181M, JC182MT, IP181M, PF181M, PF182M.
Testing: CA182MT, JC181MT, JC182M, PF182T.

0

50

100

150

200

250

IF
H
ST

KH
E.
R

KH
E

H
S

JC181MT

C
os
t

0

50

100

150

200

250

IF
H
ST

KH
E.
R

KH
E

H
S

JC182M

C
os
t

0

100

200

300

400

500

IF
H
ST

KH
E.
R

KH
E

H
S

PF182T

C
os
t

variable IFHST
Fig. 3: Algorithm benchmark performance

B. Benchmarking results

Test instance results are given on the boxplots depicted
in Figure 3, which compare the performance (y-axis) of
the different algorithms considered in this work (x-axis) in
each test instance. Only three instances are given, as no
algorithm was able to produce feasible timetables for CA182MT.
We remark the y-axis range varies per graph depending on
the difficulty presented by the given instance. The dashed
horizontal line indicates the quality of the solution produced
by the commercial software that originated the timetable
deployed at the given campus and semester, which we used
to make the instance. Note that the solution quality reported
for commercial software disregards penalties for violations we
consider for other algorithms, since it is not possible to assess
all hard constraints from the timetables deployed. The GRASP
algorithm is labeled IFHST, whereas KHE coupled with our
refinement procedure is labeled KHE.R. Points at the top edge
of a given plot represent incomplete or unfeasible solutions.
Next, we discuss the main insights observed.
IFHST produced feasible solutions for three out of the four
testing instances considered. In general, solutions returned did
not present student windows and had a very reduced number
of teacher windows. Additional experiments comparing IFHST
performance on training and testing instances provided in
the supplementary material [14] showed that instances from
the same campus and number of shifts presented similar
results. An ablation analysis of runtime and solution quality
component importance is given later in this section.
KHE was unable to produce a complete and feasible solution
for any of the testing instances. For the two-shift instances,
KHE could not handle window minimization using the XH-
STT modeling we adopted. Regarding JC182M and PF182T,
solutions produced were respectively unfeasible and incom-
plete. The issues presented by KHE could not be repaired by
our refinement procedure on the testing instances. This was
only observed for two training instances, which we report in
the supplementary material [14].
HS delivered optimal solutions with a negligible runtime
when it was able to produce a feasible and complete solution,
namely for the single-shift instances. The inability of HS
to produce feasible and complete solutions for the two-shift
instances is in part justified by using KHE as a constructive

step. Compared to IFHST, we observe that both approaches
can be considered competitive. In detail, IFHST was the only
algorithm able to produce a feasible solution for a two-shift
instance (JC181MT). For JC182M, both algorithms presented
solutions with high quality. Finally, HS performed better than
IFHST on PF182T. Yet, despite the variance in IFHST results, the
median cost remained close to zero. Finally, we remark that
IFHST and HS were implemented in different programming
languages, preventing a direct runtime comparison.
Commercial software results were in general outperformed
by IFHST and HS. In detail, URÂNIA produced the timetables
for the JC181MT and JC182M campus, whereas ascTimetables
produced the timetables for the PF182T campus. Only for
PF182T the commercial solution was better than a few IFHST
solutions. It is important to note that commercial software are
designed in a general way, without considering variations in
hard restrictions among different institutions.

C. Ablation analysis
To further understand the contributions from IFHST proce-

dures, we conduct an ablation analysis on the testing instances
given in Figure 4. On the top, scatter plots show the runtimes
from the constructive and refinement procedures individually
and combined. On the bottom, boxplots give the solution cost
produced by the constructive procedure and later by the swap
and move neighborhood operators. We remark the y-axis range
varies per graph depending on the difficulty presented by the
different instances considered.

Regarding execution times, we observe that most of the
computational effort is due to the constructive procedure. This
is explained by the difficulty in producing feasible timetables,
reflected in the configuration selected by irace with β = 65,
γ = 3500, and ∆α = 0.001. Concerning solution cost, we
note that the solutions returned by the constructive procedure
are good regarding teacher windows and could be further
improved regarding student windows. The quality of these
solutions reflect the configuration selected for irace for the
(hyper)parameters of the heuristic function g(b), with λ =
2, µ = 7, and ν = 9. Student windows are further improved
for all instances by the refinement procedure. Furthermore,
only for instance JC182M the move operator is unable to further
improve results obtained with the swap operator.

Overall, the analysis we have presented in this section
confirms the contributions of our work. For most instances,
we were able to benchmark state-of-the-art algorithms. More
importantly, our proposed algorithm was able to solve more
instances than the remaining algorithms benchmarked, display-
ing a competitive performance. Furthermore, we have observed
how its individual components contribute to its performance,
indicating possibilities for future improvements.

VI. CONCLUSION

Rede Federal de Educação Profissional, Cientı́fica e Tec-
nológica is one of the largest educational networks in Brazil
and in the world. Its role in social equality has been es-
tablished since the beginning of the 20th century, and over
the past decades it has been significantly expanded. Network
importance is even more pressing in low-income states such

0

50

100

150

200

250

Phase

Ti
m
e

 JC181MT

0

50

100

150

Phase

Ti
m
e

 JC182M

0

50

100

150

Phase

Ti
m
e

 PF182T

variable Constructive Refinement IFHST

(a) Runtime

0

200

400

600

C S M

JC181MT

C
os
t

0

100

200

300

400

C S M

JC182M

C
os
t

0

500

1000

1500

2000

C S M

PF182T

C
os
t

variable C S M

(b) Solution cost

Fig. 4: Ablation analysis of GRASP component. C: construc-
tive procedure; S: swap operator; M: move operator.

as Rio Grande do Norte, where Instituto Federal de Educação,
Ciência e Tecnologia (IFRN) is located. Given the high qualifi-
cation of its staff and the broad reach of its courses, optimizing
resources in this network is a critical and demanding task.

In this work, we have modeled the high school
timetabling (HST) problem at IFRN, identifying constraints,
proposing a mathematical formulation, and devising ten real-
world instances using the international XHSTT format [6].
Moreover, the algorithm we proposed was able to produce
feasible timetables within the time limit adopted for most
of the real-world instances considered, showing competitive
performance with the state-of-the-art. This in line with re-
sults from (i) international competitions, where even the best
algorithms cannot produce viable solutions for all datasets,
and; (ii) the literature approaches considered, which could not
solve instances with multiple shifts. Furthermore, our solution
has been made configurable for decision makers regarding the
importance of teacher and student windows. Nevertheless, the
proposed algorithm was able to produce timetables with (close
to) zero teacher and student windows.

Our work is seminal in many relevant ways. First and
foremost, future work should focus on automating instance
production to devise a dataset comprising most units from

the network, including also scenarios with three shifts. In
this context, novel constraints and exogenous data should
be addressed, as well as automated validation to ensure the
existence of feasible solutions. Algorithm-wise, future work
should (i) investigate mathematical (hybrid) approaches for
the proposed formulation, given the successful literature on
the topic; (ii) render the proposed algorithm applicable to
the general dataset, with appropriate adjustments as needed,
and; (iii) investigate multiple-iteration scenarios, for instance
allowing construction to accept violations to be repaired by
refinement, potentially balancing the computational cost of the
algorithmic components.

REFERENCES

[1] R. J. Willemen, “School timetable construction: algorithms and com-
plexity,” Ph.D. dissertation, Technische Universiteit Eindhoven, 2002.

[2] T. B. Cooper and J. H. Kingston, “The solution of real instances of
the timetabling problem,” The Comput. J., vol. 36, no. 7, pp. 645–653,
1993.

[3] G. H. Fonseca, H. G. Santos, and E. G. Carrano, “Late acceptance hill-
climbing for high school timetabling,” J. of Sched., vol. 19, no. 4, pp.
453–465, 2016.

[4] L. Saviniec and A. A. Constantino, “Effective local search algorithms
for high school timetabling problems,” Applied Soft Computing, vol. 60,
pp. 363–373, 2017.

[5] N. Pillay, “A survey of school timetabling research,” Ann. of Oper. Res.,
vol. 218, no. 1, pp. 261–293, 2014.

[6] G. Post, S. Ahmadi, S. Daskalaki, J. H. Kingston, J. Kyngas, C. Nurmi,
and D. Ranson, “An XML format for benchmarks in high school
timetabling,” Ann. of Oper. Res., vol. 194, no. 1, pp. 385–397, 2012.

[7] G. H. G. da Fonseca, H. G. Santos, T. Â. M. Toffolo, S. S. Brito, and
M. J. F. Souza, “GOAL solver: a hybrid local search based solver for
high school timetabling,” Ann. of Oper. Res., vol. 239, no. 1, pp. 77–97,
2016.

[8] J. H. Kingston, “Repairing high school timetables with polymorphic
ejection chains,” Ann. of Oper. Res., vol. 239, no. 1, pp. 119–134, 2016.

[9] M. Gendreau, J.-Y. Potvin et al., Handbook of metaheuristics. Springer,
2010, vol. 2.

[10] A. V. Moura and R. A. Scaraficci, “A GRASP strategy for a more
constrained school timetabling problem,” Intern. J. of Oper. Res., vol. 7,
no. 2, pp. 152–170, 2010.

[11] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35,
no. 3, pp. 268–308, 2003.

[12] A. Schaerf, “A survey of automated timetabling,” Artif. Intell. Rev.,
vol. 13, no. 2, pp. 87–127, 1999.

[13] G. H. Fonseca, H. G. Santos, and E. G. Carrano, “Integrating matheuris-
tics and metaheuristics for timetabling,” Comput. & Oper. Res., vol. 74,
pp. 108–117, 2016.

[14] L. H. A. Dantas, L. C. T. Bezerra, and R. C. Andrade,
“High school timetabling at a federal educational institute
in brazil (supplementary material),” 2022. [Online]. Available:
https://anonymous.4open.science/r/ifhst-supp/

[15] M. López-Ibánez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle, “The irace package: Iterated racing for automatic algorithm
configuration,” Oper. Res. Persp., vol. 3, pp. 43–58, 2016.

[16] C. Vieira, A. d. Araújo, J. E. Andrade Júnior, and L. C. T. Bez-
erra, “isklearn: automated machine learning with irace,” in 2021 IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2021.

