
iSklearn: automated machine learning with irace
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Abstract—Automated algorithm engineering has become an
important asset for academia and industry. irace, for instance,
is an algorithm configurator (AC) that has successfully designed
effective algorithms for optimization problems. The major advan-
tage of irace is combining learning and parallelization, but no
fully-functional automated machine learning (AutoML) system
powered by irace has yet been proposed. This is rather striking,
as some of the most relevant existing AutoML tools are powered
by ACs, of which irace is one of the most effective examples.

In this work, we propose iSklearn, an irace-powered Au-
toML system. Our proposal improves existing work applying
an AC to engineer a machine learning (ML) pipeline. First, our
configuration space represents a minimalist pipeline template,
demonstrating that simpler pipelines can be competitive with
elaborate approaches (e.g. ensembles). Second, our configuration
setup improves the application of AC-based AutoML to time
series (TS) problems, and is more flexible to fit other applications.

We evaluate iSklearn on three major ML domains, namely
computer vision (CV), natural language processing (NLP), and
TS. Results prove competitive to AUTOSKLEARN, a state-of-the-
art AutoML system also built on scikit-learn. Furthermore, the
compositions of the pipelines devised vary with the problem
domain and dataset considered, providing further evidence for
the need of AutoML tools. We conclude our investigation ab-
lating through the proposed configuration space and setup to
understand their impact on the performance of iSklearn.

I. INTRODUCTION

Automated machine learning (AutoML, [1]) is a relevant
research effort that seeks to reduce two of the most significant
costs in the machine learning (ML) industry. The first is the
human resource cost, as the rising demand for ML engineers
has led to a shortage of supply, greatly increasing personnel
costs. The second, equally important, is the computation-
al/environmental cost, as state-of-the-art ML models leave
a significant carbon footprint [2] and require expensive to
maintain infrastructures. In an effort to alleviate this cost, cloud
computing has become the method-of-choice for companies,
specially when deep learning (DL) techniques are required [3].

The best-established AutoML approaches come from the
fields of algorithm configuration [4], [5], neuroevolution [6]–[8],
and neural architecture search [9]. These techniques have often
achieved remarkable results in several different application
domains. Indeed, the breakthroughs in the field have led
AutoML tools to focus not only on tabular datasets, but also
on challenging domains such as computer vision (CV), natural
language processing (NLP), and time series (TS) analysis.
Though the most striking results in those fields rely on DL, their
computational cost and carbon footprint are often prohibitive
and so AutoML approaches based on simpler ML pipelines

remain an important alternative. Another benefit of simpler
pipelines is interpretability, in particular pipeline composition.

This work investigates AutoML in this context of tackling
challenging domains using (relatively) simple ML pipelines. To
do so, we propose a fully-functional AutoML system dubbed
iSklearn, which represents a contribution for at least three
reasons. First, iSklearn is powered by irace [10], one of the
best-established algorithm configurators that has repeatedly
demonstrated its performance in several automated algorithm
engineering tasks and/or application domains [11], [12]. In
particular, irace bridges the advantages of other configurators
already employed in AutoML, namely the parallelization from
HyperBand [13] and the model-based learning from SMAC [14].
Yet, so far no AutoML initiative powered by irace could
be identified in the literature, likely because irace has been
originally proposed for configuring optimization algorithms.

The second way in which our work represents a contribution
is related to pipeline simplicity. Specifically, we define the
configuration space of iSklearn as a machine learning vanilla
template comprising a standard ML pipeline architecture, with a
relevant set of algorithmic components available for (i) feature
engineering and (ii) prediction. Our template is built on scikit-
learn, representing the common options a practitioner has at
hand when first working with ML. An instantiation of this
template represents a pipeline where all components were
jointly selected and configured. Compared to other AutoML
tools based on DL or ensembles, the interpretability of the
pipelines proposed is greatly improved.

The final contribution of our work concerns the configuration
setup, i.e., how to model machine learning datasets as instances
of an optimization problem. In more detail, we generalize the
approach adopted by other algorithm configurators [4], [5],
enabling, for instance, the proper application of ML pipelines
to TS analysis datasets. Given the number of application
domains that present some form of temporal dependency, this
improvement greatly increases the applicability of configurator-
based AutoML tools.

We evaluate the effectiveness of the proposed configuration
space and setup on different application domains, including CV,
NLP, and TS analysis. As expected, the configured pipelines are
nearly always more effective than naively selecting an algorithm
with its suggested default parameters. More importantly, even if
the focus of this work is not benchmarking AutoML approaches,
we produce ensembles using AUTOSKLEARN [5] to serve
as baseline for our comparison. Remarkably, the differences
in performance between models is minimal, and often the
simpler pipelines from iSklearn outperform the ensembles from



AUTOSKLEARN. Another important observation is how pipeline
composition varies not only as a function of the application
domain, but also of the dataset being tackled. Effectively, this
provides further evidence for the need of AutoML tools that
can be employed in academia and industry.

The last part of our investigation ablates the configuration
space and setup to understand their individual importance to
the effectiveness of iSklearn and produce insights that may
indicate relevant future work. To assess configuration space,
we use SMAC to engineer pipelines from our template. Since
SMAC is also the configurator that powers AUTOSKLEARN,
the comparison between pipelines and ensembles helps isolate
the impact of the minimalist template we propose. Results
show that pipelines configured from iSklearn by SMAC are
also competitive to the AUTOSKLEARN-generated ensembles,
which confirms the benefits of our proposed configuration
space. Finally, to ablate our configuration setup, we assess
the impact of configuration budget, maximum cutoff time,
and the sampling generalization we propose. Results show
that these factors interact with the given domain and dataset,
and that adequately adjusting each factor can be helpful.
Furthermore, in the context of TS problems, our proposed
sampling generalization makes iSklearn results outperform
ensembles from AUTOSKLEARN for all datasets considered.

The remainder of this work is structured as follows. In
Section II, we briefly discuss background on automated
machine learning, algorithm configuration, and irace. Section III
describes the configuration space and setup we propose for
iSklearn, which we assess in Section IV. The last part of
our investigation is given in Section V, where we ablate the
configuration space and setup. Finally, we conclude and discuss
future work possibilities in Section VI.

II. BACKGROUND

Automated machine learning (AutoML) research spans over
a diverse set of fields. In this section, we first highlight the
most relevant families of approaches from the literature. Next,
we deepen our discussion on algorithm configuration, the field
to which our approach belongs. Finally, we detail irace to add
context to our proposal in Section III.

A. Automated machine learning

Automated machine learning (AutoML) is a fast-expanding
field, largely due to the joint efforts from industry and
academia. Yet, its seminal works date from over two decades
ago (e.g., [15]), and range from the research on evolutionary
algorithms (EAs) to the research on neural networks. Indeed,
the more recent, abrupt expansion in AutoML is largely
due to the groundbreaking results achieved by deep learning
algorithms [3]. Effectively, these results have both (i) drawn
the attention of the industry to the efficacy of machine learning,
and (ii) demonstrated the challenge in designing and configuring
predictors. Since AutoML initiatives stem from diverse research
fields, an exhaustive review is beyond the scope of this paper.
Below, we focus our discussion on the most important aspects
of the main families of approaches from the literature:

Algorithm configuration approaches often model the Au-
toML task as the CASH problem, i.e., combined algorithm

selection and hyperparameter optimization [4]. In summary,
such approaches attempt to select a predictor from a portfolio
while simultaneously configuring their associated hyperparam-
eters. The search is conducted by a configurator, typically a
heuristic optimization algorithm. The best known works in this
field concern Auto-WEKA [4] and AUTOSKLEARN [5].

Neural architecture search focuses on the design and
configuration of neural networks [9]. The AutoML problem is
generally modeled as a reinforcement learning problem, where
a searching neural network must identify the best target neural
network according to a given reward function. Given its focus
on neural networks, this research field offers a number of
interesting approaches to better address this context. Indeed, a
number of recent breakthroughs in deep learning research are
directly related to this field.

Neuroevolution [6]–[8] is closely related to the research on
both algorithm configuration and neural architecture search.
In particular, neuroevolution approaches use EAs to evolve
the topology and/or parameters of neural networks. The most
emblematic algorithm from this field is likely NEAT [6], and
the interest in this topic has been strongly stirred by the
industry [7]. More recently, multi-objective neuroevolution
has targeted efficacy and efficiency as prototypical, conflicting
objectives to be simultaneously optimized [8].

A few important works do not fit our taxonomy. Yet, we
believe our brief review is important for the discussion on
algorithm configuration we conduct next. More importantly, it
highlights the diversity in approaches that have been proposed
over the years, and how challenging it would be to properly
benchmark them.

B. Algorithm configuration

Algorithm configuration is currently better understood as
automated algorithm engineering, a growing field that compre-
hends different tasks, such as selection, configuration, design,
and analysis [11]. The prominent results obtained by these
approaches span over a wide range of application domains,
such as decision [16], optimization [11], control [17], and,
more recently, machine learning [4], [5].

In the context of AutoML, approaches to CASH generally
combine a configuration (i) space and (ii) setup. A configuration
space is defined in terms of a meta-description of an algorithmic
portfolio, e.g. a template or a grammar. Examples are the tem-
plates proposed for Auto-WEKA [4] and AUTOSKLEARN [5],
respectively built on WEKA and scikit-learn. In addition, since
the predictors and other components of a machine learning
pipeline present hyperparameters, a configuration space must
also comprise the valid domains for their configuration.

Complementarily, the configuration setup is the definition
of an experimental setup to evaluate candidates. In more
detail, AutoML approaches powered by configurators search
the configuration space by sampling candidate configurations.
Navigation of the search space is guided by the performance
of these candidates, and hence a proper definition of a
configuration setup is critical to the performance of the AutoML
approach. The most important factors regarding setup concern
the (i) problem samples provided; (ii) performance metric



adopted, and; (iii) resource limits allowed. Further discussion
on each of these topics is provided in Section III.

Given the role of configurators, it is important to remark the
contrast between the large number of configurators proposed
in the algorithm configuration literature and the small number
of configurators adopted in AutoML research. One likely
explanation is their background, since many configurators
were proposed in the context of search optimization and their
application to machine learning is non-trivial. In general, algo-
rithm configurators can be classified as model-based or model-
free [12]. The former attempt to identify promising regions of
the configuration space by modeling the relationship between
hyperparameters and performance. This is the case with
SMAC [14], which powers Auto-WEKA and AUTOSKLEARN;
and irace, not yet applied to AutoML. Alternatively, model-free
applications identify promising configurations using stochastic
local search or randomized sampling (e.g, HyperBand, [13]).

C. irace

irace is an estimation of distribution algorithm (EDA),
a family of EAs that combine search aspects from both
optimization and learning. At each iteration, irace mantains
a population of candidates, a dual-nature representation of
configurations. Specifically, each candidate ci alive during a
given iteration comprises a set of probability distributions
Pi(φj), one distribution for each hyperparameter φj of the tar-
get algorithm. Complementarily, each candidate ci is evaluated
based on a concrete configuration sampled from Pi(φj) when
the candidate is first created.

The key idea in EDAs is to evolve these probability distri-
butions, which irace accomplishes by (i) racing the concrete
configurations alive in a given iteration, and; (ii) updating
the probability distributions between iterations based on the
surviving candidates. The racing mechanism represents a hill
climbing approach, where configurations are iteratively run on
problem instances and the worst-performing ones are discarded
as enough statistical evidence is collected. Through racing, irace
is able to promote sharpening, i.e., candidate configurations
that perform best get discarded last, meaning there is more
available evidence by the time irace must decide between
configurations that perform similarly well.

An iteration finishes when either a minimum number of
surviving candidate configurations or a maximum resource
limit is reached. Between iterations, irace produces offspring
candidates from the surviving candidates. An offspring candi-
date presents probability distributions that have been adjusted
to better reflect the concrete configuration from its parent,
given the good performance of that concrete configuration in
the previous iteration. To reduce variability between iterations,
offspring candidates are first evaluated on the same problem
instances used to evaluate the surviving candidates of the
previous iterations. Finally, irace may partially restart the
population to prevent premature convergence.

The effectiveness of irace has been repeatedly demonstrated
on diverse application domains [11]. Besides its effectiveness,
the best feature irace brings is the flexibility in the definition of
the configuration space and setup. Concerning the former, irace
was one of the first configurators able to couple with numerical

and categorical hyperparameters, and with their dependencies.
Regarding the configuration setup, irace has been applied to
domains as diverse as dynamic and multi-objective optimization.
Yet, these effective results were a product of carefully, manually
designed setups. This is likely the reason why no application
of irace to the context of automated machine learning can be
identified in the literature.

D. Contrasting algorithms

Though irace is the focus of this work, we provide further dis-
cussion on how it compares to the two most relevant algorithm
configurators employed in the ML literature, i.e., SMAC [14]
and HyperBand [13]. Both racing and sharpening are standard
techniques in the algorithm configuration literature [12], and
each configurator proposes a different approach to achieve them.
SMAC is a sequential model-based approach, i.e., a surrogate
model is used to reduce the number of actual evaluations
performed. When racing, candidate configurations are evaluated
based on the surrogate model, and sharpening is performed
by improving the model sequentially. SMAC and irace are
alike in being model-based, as previously discussed. Yet they
differ in that SMAC is inherently sequential, whereas irace
uses parallelization to a large extent.

HyperBand [13] represents a model-free paradigm, using a
massively parallel racing of candidate configurations. Sharpen-
ing is promoted by probing configurations with reduced budgets,
i.e., training configurations for increasingly longer periods.
Since model-based learning is not employed, the candidate
configurations in HyperBand are completely independent,
which allows for a parallelization level unmatched by model-
based configurators. However, sharpening is only effective in
HyperBand as long as the dataset investigated presents a strong
correlation between performance for varying training budgets,
which is not always the case in ML [18].

In a sense, irace represents a compromise paradigm between
SMAC and HyperBand, as it uses model-based learning but
is still parallelizable. Though other approaches bridging these
properties have been proposed recently [19], no fully-functional
AutoML tool based on ML pipelines powered by any such
configurator can be identified thus far. More strikingly, even a
fully-functional HyperBand-based system is not yet available.1

In the next section, we seek to fill this gap, proposing an
AutoML system using irace as configurator.

III. ISKLEARN: A FULLY-FUNCTIONAL AUTOML SYSTEM

As previously discussed, an AutoML approach based on
algorithm configuration comprises (i) a configuration space,
including a meta-description of a portfolio and valid domains
for the hyperparameters of the algorithms that comprise it,
and; (ii) an experimental setup to evaluate candidates, enabling
the AutoML approach to select/configure an algorithm that
is high-performing for the input dataset. In this section, we
propose a configuration space and setup, which we will assess
on a set of relevant ML datasets in Section IV.



S -> Preprocessing Prediction
Preprocessing -> Scaling FE | none
Scaling -> True | False
FE -> Selection | Selection Extraction

| Extraction Selection | Extraction
Prediction -> Scaling Predictor

Algorithm 1. iSklearn template described as a grammar.

A. Configuration space

The configuration space proposed in this work is modeled
as a template, given in Algorithm 1. The template models a
standard ML pipeline architecture, comprising two high-level
components. The first, Preprocessing, represents a feature
preprocessing stage, performed over the data prior to fitting
the model. In contrast to Auto-WEKA and AUTOSKLEARN,
our template offers a single choice of data preparation, namely
Scaling through standardization. Our rationale for this vanilla
version is that data preparation is a fairly important part of
the data science process, and that attempting to automatically
engineer the whole process would exceed the scope of this
work. For this reason, the datasets we later adopt for evaluating
pipelines are subject to manual preparation, as we will detail
in supplementary material2.

Besides Scaling, the Preprocessing component com-
prises feature engineering (FE). Available options are feature
Selection and Extraction, which can be used simultane-
ously and, if so, in any order. We provide these possibilities
as a manual pipeline design typically selects between these
choices, but an automated design might benefit from using
both. Algorithmic options for these components are given in
Table I and further detailed in the supplementary material.

In the case of feature Extraction, options are dimen-
sionality reduction algorithms that vary depending on the
characteristics of the dataset provided. Options for component
Selection are organized into groups, namely univariate and
multivariate. Univariate feature selection retrieves a certain
percentile of features based on a given scoring function
computed between each feature and the target variable. iSklearn
provides the most common functions available in scikit-learn,
detailed in the supplementary material for brevity. Conversely,
multivariate selection fits a feature importance model using a
predictor, and retrieves only the most relevant. Table I lists
the predictors available for multivariate selection, which we
choose due to their balance between efficacy and efficiency
when used with their suggested default parameters. Furthermore,
multivariate selection can be performed recursively, using the
recursive feature elimination (RFE) approach.

The second high-level component of iSklearn is
Prediction, where model fitting is actually performed. For
this component, we consider a representative subset of the
estimators available in scikit-learn, listed in Table I. Our
rationale with this subset is that it represents most families of
relevant approaches, such as generalized linear models, trees,
manifold learning, neural networks, and ensembles. Options

1Such a system has been proposed in [20], but it is not publicly available
in a fully-functional form.

2https://github.com/carlosemv/irace-automl-cec2021

TABLE I
ALGORITHMS CONSIDERED FOR EACH TEMPLATE COMPONENT.

Component Algorithms Conditions

Extraction
SVD sparse datasets
PCA, ICA, DL otherwise

Selection univariate,
multivariate

multivariate DT, RF, SVM classif. & regres.
LR regression

Predictor
LR, DT, RF, SVM, kNN, MLP, AB classif. & regres.
LR regression

(LR stands for linear or logistic regression, depending on the task.)

available vary according to the task nature, as iSklearn is able
to cope with both classification and regression. Finally, being
heuristic algorithms, these predictors present hyperparameters
of their own, which we expose for configuration. The details
on the hyperparameters exposed for each predictor and their
valid domains are given as supplementary material.

B. Configuration setup

As previously discussed, the most important factors com-
prising a configuration setup concern the (i) problem samples
provided; (ii) performance metric adopted, and; (iii) resource
limits allowed. Below, we discuss each of these topics, starting
from problem sampling, where our contributions lie;

Problem samples. AutoML through algorithm configuration
requires three sampling levels. The top level evaluates the
generalization of the AutoML approach; following the literature,
we adopt holdout for this stage [4], [5]. We refer to this
split as seen and test, since the configurator is never provided
test samples. Conversely, the bottom level sampling evaluates
the generalization of a candidate configuration on a subset
of problem samples. In the literature, Auto-WEKA and
AUTOSKLEARN once again adopt holdout. Conversely, we
generalize this sampling level and test 5-fold cross-validation
instead. Though this change could increase the computational
cost to train a single candidate configuration, it improves
the application of the AutoML systems to time series (TS)
problems. More precisely, walk-forward cross-validation is a
better fit for training time series models than holdout.

Finally, the mid-level sampling provides variability to the
configuration process, defining what samples are seen by the
bottom level sampling when a candidate configuration must be
evaluated. An extreme alternative is to provide each candidate
evaluation the whole dataset, at a significant computational
cost. In addition, the variability between runs from a single
configuration on the whole dataset is expected to be reduced
for some predictors, even if the dataset is shuffled every time.
The other extreme alternative would be to provide candidate
configurations as little samples as possible. Though fast, irace
would hardly see enough samples to avoid overfitting.

In the literature, Auto-WEKA and AUTOSKLEARN partition
seen samples into k folds for this mid-level sampling. For
clarity, we will dub these folds meta-folds. Concretely, every
time the configurator must evaluate a candidate, it is provided
a single meta-fold, which is then subject to the bottom
level sampling. Here, we also split the dataset into k meta-
folds, but once again we generalize the sampling and provide
the configurator p meta-folds at a time. The evaluation is

https://github.com/carlosemv/irace-automl-cec2021


performed using the bottom sampling on each of the p
meta-folds independently, and results are averaged by the
configurator. We remark that both our mid-level and bottom
level sampling methods may be more expensive than those used
by Auto-WEKA and AUTOSKLEARN. Our goal is to provide
more samples to the training phase of each individual model,
particularly when the dataset considered is not significantly
large or there exists some level of class imbalance. Further
discussion on how to set k and p is provided as supplementary
material.

Performance metric. The choice of performance metric is
more related to the problem one wants to address than to the
nature of the configurator considered. For regression, typical
choices include R2 or (R)MSE. For classification, configuration
for balanced datasets may adopt the traditional accuracy metric,
whereas configuration for unbalanced datasets may benefit more
from Matthews correlation coefficient (MCC).

Resource limits. iSklearn does not present a priori concerns
with memory resources. By contrast, time is a critical factor in
two major aspects. The first is the budget provided to iSklearn,
which irace uses to compute the maximum number of iterations
and the number of candidate configurations to be sampled
at each iteration. Also, one must set a cutoff time for the
evaluation of a given candidate, or else a very expensive model
fitting may compromise the configuration.

Altogether, the configuration space and setup proposed in
this section render iSklearn a fully-functional AutoML system,
which we evaluate in the next section.

IV. ASSESSING PIPELINES CONFIGURED FROM ISKLEARN

To evaluate our proposal, we take ensembles produced by
AUTOSKLEARN as baseline. As discussed, the focus of our
investigation is on computer vision (CV), natural language
processing (NLP), and time series (TS) prediction problems.
The Auto-WEKA and AUTOSKLEARN works used tabular
and CV datasets as benchmarks. Among the CV ones, the
most relevant are the MNIST and CIFAR-10 classification
datasets. However, since the differences in performance be-
tween algorithms is generally rather small for MNIST, we
replace it with the more challenging Fashion MNIST (FMNIST).
We additionally consider SVHN, a house number recognition
problem. Regarding the remaining application domains, we
included: (i) three NLP classification datasets, namely LMRD
for sentiment analysis, and Reuters and AGNews for topic
classification, and; (ii) two TS analysis regression datasets,
concerning crime incidence prediction [21] in the cities of
Boston, MA, USA, and Natal, RN, Brazil. Further information
on these datasets is given in the supplementary material,
particularly the details on manual data preparation, sampling,
and resource limits for AUTOSKLEARN.

Since irace and SMAC are heuristic algorithms, we report
results from 10 runs of both iSklearn and AUTOSKLEARN on
each dataset. A single run of iSklearn on a given dataset has
a configuration budget of 2 000 experiments. An experiment
is defined as evaluating a candidate configuration on a given
instance (tuple of p meta-folds). In the assessment done in
this section, we set p = 1 to isolate the effect of changing the
bottom-level sampling; alternative p values will be assessed in

Section V-B. Maximum runtime for each experiment is set to
10 minutes. If the evaluation of a configuration exceeds this
limit, the configuration is penalized so that irace may discard
it at the end of the iteration. After pipelines are configured
from iSklearn, we validate them on the test samples and report
mean performance and variance over the 10 runs. Following
the literature, both configuration and validation are guided by
accuracy for classification tasks and R2 for regression tasks.

We start by analyzing pipeline structures selected by irace
for each applicaton domain, given as sunburst plots in Figure 1.
FE1 and FE2 depict the possibility of using Selection and
Extraction simultaneously – if only one of them is used,
it is depicted as FE1. The two most important insights we
observe are the differences in composition between domains
and also datasets. In order, composition for NLP, CV, and
TS use increasingly more preprocessing components. While
pipelines from all domains use Extraction a few times, TS
pipelines additionally always use Selection. Use of different
prediction options increases in a different order, with NLP
being the domain where the least different alternatives are
chosen, and CV the one where the most are. Regarding NLP,
29 out of the 30 pipelines devised adopt LR. This algorithm is
also most frequently chosen for TS datasets, followed by SVM
and MLP. Finally, we notice that more complex predictors such
as ensemble methods are only once selected (AB for SVHN).

We further assess pipeline composition as a function of the
given dataset. For brevity, sunburst plots for each dataset are
provided as supplementary material. First, a different predictor
is mostly selected for each of the CV problems, namely LR for
CIFAR-10, SVM for FMNIST, and kNN for SVHN. In addition,
preprocessing is increasingly adopted in these datasets, in this
order. Concerning TS problems, LR is frequently selected
for the Boston dataset, followed by SVM, whereas for the
Natal dataset SVM, LR, and MLP are uniformly distributed.
Preprocessing patterns for TS problems are little affected by
the particularities of each dataset. Finally, only Reuters adopt
preprocessing in NLP, mostly through Extraction.

The compositions discussed above constitute strong evidence
for the benefits of AutoML tools over manual selection and
configuration. In addition, the simplicity of our template
greatly improves the understanding of the pipelines selected.
Finally, some of these observations might suggest the maximum
runtime we fixed for each experiment for feasibility affects the
composition of the pipelines. This possibility is further explored
in Section V-B. Nonetheless, the comparison of final scores for
each dataset given in Table II confirms that these pipelines are
indeed high-performing w.r.t. the provided configuration space
and setup. Accuracy scores given for classification problems,
as well as R2 scores given for regression problems, are to be
maximized. The best value per dataset is given in boldface.

As expected, pipelines devised by iSklearn and ensembles
devised by AUTOSKLEARN present better performance than
default models. The only exception is the Natal dataset, for
which LR outperforms both AutoML tools. Comparing iSklearn
and AUTOSKLEARN, it is remarkable that pipelines from the
former are competitive with the ensembles from the latter.
Indeed, the only datasets for which we see a non-negligible
gap between the performance of the models devised by the



Fig. 1. Pipeline composition for the different domains considered. From left to right: CV, NLP, and TS.

TABLE II
ACCURACY (%) AND R2 SCORES (MEAN ± STAND. DEVIATION) FOR EACH DATASET. THE BEST ALGORITHM PER DATASET IS HIGHLIGHTED IN BOLDFACE.

Task Domain Dataset KNN DT RF AB MLP SVM LR iSklearn AUTOSKLEARN

Classification

CV
CIFAR-10 32.98 26.78±0.27 34.61±0.35 31.08 34.21±0.37 20.44 30.24 43.96±6.95 50.55±9.44
FMNIST 85.54 79.05±0.17 85.44±0.14 54.25 84.87±0.52 10.02 80.12 88.12±2.24 79.88±5.48

SVHN 46.83 42.17±0.22 56.51±0.38 22.78 19.58±0.00 0.00 23.94 58.02±15.52 53.25±10.41

NLP
LMRD 67.20 70.23±0.15 73.00±0.64 80.31 86.29±0.09 63.29 88.31 88.32±0.19 88.01±0.19
Reuters 77.74 70.41±0.38 69.32±0.77 47.55±0.14 80.59±0.19 36.20 79.07 81.57±0.35 82.57±1.01
AGNews 90.20 75.97±0.22 84.06±0.41 68.24 91.07±0.19 72.30 91.39 91.74±0.07 91.57±0.9

Regression TS Natal 0.94 0.9134±0.0022 0.9538±0.0047 0.9185±0.0089 0.9547±0.0016 0.9389 0.9575 0.9538±0.0022 0.9549±0.0087
Boston 0.9576 0.9428±0.0009 0.9634±0.0004 0.9440±0.0023 0.9728±0.0021 0.8454 0.9743 0.9751±0.0001 0.9707±0.0006

two AutoML approaches are the three CV ones. For CIFAR-
10, ensembles present higher mean, though at the cost of
higher variance as well. For FMNIST and SVHN, it is the
pipelines that achieve higher mean, though again at the cost
of higher variance for the latter. Altogether, these results
evidence the difficulty posed by computer vision problems
when deep learning is not adopted. One likely explanation
is the computational cost incurred by sample dimensionality,
which becomes more critical in runtime-constrained scenarios.

From a practical point of view, most of the pipelines
engineered in this section could be deployed into a real-world
production setup, due to their simplicity and performance. The
only exceptions are CIFAR-10 and SVHN, for which both the
pipelines from iSklearn and ensembles from AUTOSKLEARN
still require improvements to produce estimators with a
reasonable level of effectiveness. In the next section, we
investigate the effects of our proposed configuration space
and setup in the performance of iSklearn.

V. ABLATING ISKLEARN

Results from the first part of our investigation validated
our irace AutoML proposal as a competitive approach in
terms of efficacy. We next ablate iSklearn to understand
how the proposed configuration space and setup affect its
performance. We start with a configuration space analysis,
where we assess the benefits of having a minimalist template.
Later, we appraise different configuration setups, exploring
the idea of the generalized mid-level sampling and providing
guidelines for the application of iSklearn to other problems.

Fig. 2. Accuracy comparison between pipelines configured by irace (blue)
and SMAC (green) from iSklearn and ensembles configured by SMAC from
AUTOSKLEARN (red).

A. Comparing configuration spaces

To assess the benefits of having a simpler template in terms
of efficacy of the pipelines produced, we use SMAC [14] to
configure pipelines from our template. Since SMAC is the
configurator powering AUTOSKLEARN, the comparison given
in Figure 2 helps us isolate the effects of configurator and
templated adopted. We focus this investigation on CV datasets
as they were the most challenging for both AutoML approaches.

Boxplots for the different datasets indicate that the per-
formance of pipelines configured from iSklearn by SMAC
are more similar in performance to pipelines configured from
iSklearn by irace than to the ensembles configured from
AUTOSKLEARN by SMAC itself. More repetitions of these
experiments would be required to understand if the differences
in distributions between irace and SMAC results are consistent,
or if the outliers observed are fluctuations in the experiments.
Nonetheless, the comparison between pipelines and ensembles



Fig. 3. R2 comparison of iSklearn and AUTOSKLEARN on TS datasets using
different configuration setups. Blue: regular; red: TM.

confirms that our proposed minimalist template is a contribution
not only in terms of simplicity and interpretability, but also
as to efficacy. Furthermore, it evidences the generality of the
configuration space and setup proposed, as they can be coupled
with any configurator that supports numerical, categorical, and
conditional parameters, such as SMAC.

B. Alternative configuration setups

Results discussed in Section IV indicated the efficacy of
the configuration setup adopted, but some relevant questions
need to be further investigated. We start with the analysis of
the TS datasets. Our goal is to understand the impact of the
different sampling generalization approaches we propose, in
particular the bottom-level sampling cross-validation approach
that should suit TS problems better than the traditional holdout.
Figure 3 gives boxplots of experiments where we compare
the original setup adopted in Section IV (dubbed regular)
and a setup where we increase the number of meta-folds to
p = 3 and total cutoff time to 15min (dubbed TM, for triple
meta-fold). For brevity, a discussion on the balance between
the number of meta-folds and total cutoff time is provided as
supplementary material. The regular setup is given in blue,
whereas the TM setup is given in red. Since it is not possible
to configure the number of meta-folds used for bottom-level
sampling in AUTOSKLEARN, results provided for ensembles
under TM reflect only the increase in total cutoff time.

As previously discussed, the best-performing AutoML tool
for the regular setup varies as a function of the TS dataset
considered. However, under the TM setup the pipelines from
iSklearn outperform the ensembles from AUTOSKLEARN for all
datasets. These results are explained by two factors. First, the
performance of iSklearn pipelines is improved by the inclusion
of more meta-folds, even if proportionally the cutoff time
for the evaluation of each meta-fold is halved. Second, the
performance of AUTOSKLEARN ensembles is reduced by the
increase in cutoff time. One likely explanation is that the larger
training time enables SMAC to select more complex ensembles,
which tend to overfit in a time series setup using holdout.

To further investigate the impact of cutoff time and number
of meta-folds, we extend our experimental design. Besides
those factors, we also investigate the impact of increasing
the total number of experiments irace is allowed to perform.
Table III depicts the setups we produce from these factors,

TABLE III
SUMMARY OF THE SIX CONFIGURATION SETUPS CONSIDERED IN THIS
SECTION. REGULAR (REG.) STANDS FOR THE CONFIGURATION SETUP

ASSESSED IN THE PREVIOUS SECTION, USED HERE AS BASELINE.

setup reg. 20m 5k TM 30m TM TM 5k
p 1 1 1 3 3 3

budget 2000 2000 5000 2000 2000 5000
cutoff 10m 20m 10m 30m 15m 15m

where regular serves as baseline. With 20m, 5k and TM
30m we independently investigate increased (i) cutoff time,
(ii) configuration budget, and (iii) number of meta-folds,
respectively. In addition, since a total cutoff time of 30m may
be impractical depending on the computational setup available,
we investigate with TM and TM 5k whether halving the total
cutoff time would be an option. For instance, the TS analysis
above adopted TM, where halving the total cutoff time was
compensated by the increased number of meta-folds.

Boxplots given in Figure 4 depict accuracy scores for
CV (left column) and NLP (right column) datasets, on which
we focus due to the larger improvement margins observed in
Section IV. However, margins as large as CIFAR-10 make
results for this dataset outliers, and hence the following
discussion focuses on the remaining ones. For a given plot,
setups are ordered as in Table III. We first remark that
the differences in performance among setups is much more
significant for CV datasets than for NLP ones. Apart from that,
the most important factor observed was cutoff time, as only for
Reuters we do not observe improvements under setup 20m. For
this dataset, none of the remaining factors consistently helped,
though adopting more samples worsened performance slightly.
For the remaining datasets, increasing either the number of
experiments (5k) or the number of meta-folds (TM) improved
performance. The only exception was FMNIST, for which
increasing the number of meta-folds changed performance to
a negligible rate. Finally, reducing the cutoff time did not
compensate for the increased number of meta-folds (TM),
though the possibility of more experiments (TM 5k) alleviated
the loss in performance. Once again, FMNIST was an exception,
since results under TM 5k were even better than for TM 30m.

VI. CONCLUSION

Automated machine learning (AutoML) is a growing research
field both as to the number of tools available and to the results
they help achieve. One of its main goals is to bridge non-
experts and the specialized knowledge underlying successful
ML applications. Another, equally important, is to reduce the
computational/environmental cost currently incurred by the
ML industry. Overall, AutoML approaches stem from research
fields as diverse as algorithm configuration, neuroevolution, and
neural architecture search. Yet, the proposal and assessment of
these approaches need to be aware of their cost.

In this work, we have conducted an experimental investi-
gation with these two goals in mind, attempting to maximize
the number of insights observed from our work while keeping
the number of experiments constrained. In this context, we
have empirically demonstrated how irace can be used to
configure pipelines that outperform the predictors that comprise
it, considering several relevant application domains, such



Fig. 4. Accuracy comparison on CV (left column) and NLP (right column)
datasets under alternative configuration setups. Within each plot, setups are
ordered as in Table III.

as computer vision, natural language processing, and time
series analysis. Even if the goal of the paper is not to
benchmark AutoML approaches, it is remarkable that the
pipelines engineered from iSklearn displayed competitive
performance w.r.t. more elaborate ensembles produced by
the well-known AUTOSKLEARN. Furthermore, our minimalist
configuration space proved helpful both as to effectiveness and
to interpretability of pipeline composition. Finally, we assessed
different configuration setups and discussed the different
options a practitioner can employ to further improve efficacy.

Our work aimed to be comprehensive, and so many of the
insights we observed deserve future investigation. The first
is pushing further the idea of environment-aware AutoML
research. Indirectly, this effort has been driven by the desire
to bring machine learning models to mobile hardware. One
emblematic example is multi-objective neuroevolution, which
evolves models to simultaneously optimize these two goals.
Concerning algorithm configuration AutoML approaches, irace
is an important asset in this task, as it has been effectively
employed for multi-objective configuration [11], [12].

A second path for future work is to investigate machine
learning-specific setups for irace. Here, we have observed that
variations to the setup adopted affect the performance of the
pipelines produced, specially for computer vision problems. A
likely promising direction is to mimic deep learning training,
where models are repeatedly exposed to the same dataset. In the
context of iSklearn, this would translate into resuming training
when a candidate pipeline needs to be evaluated on the same
meta-fold again. The main challenge with this alternative is to
balance effectiveness with the costs it incurs.

Finally, while our investigation has focused on AutoML
effectiveness, it is also imperative to pursue robustness. More
precisely, in this investigation we have sought to include
problem datasets from diverse applications domains. Yet, every
dataset we have considered was initially subject to some extent
of manual data preparation. Other AutoML tools, such as
AUTOSKLEARN, aim to automate even this part of the process.
Considering the importance of data preparation, its relevance
to predicting performance, and the reduced computational cost
of this stage, making available a data preparation module to
be coupled with iSklearn is an important path of future work.
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