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Abstract—Neural architecture search (NAS) is a field where
computational effort poses a significant challenge, requiring
large computing clusters and specialized hardware. Furthermore,
the lack of common experimental guidelines often compromises
NAS comparison or induces premature conclusions. In a recent
work, NAS-Bench-101 was proposed to help mitigate those
factors, providing both a common benchmark and experimental
guidelines for its use. In this work, we discuss the design choices
in NAS-Bench-101 and propose improvements that increase the
potential of the benchmark. First, we bridge NAS and the
research on anytime performance, showing how a bi-objective
formulation of NAS can improve the insights provided by
NAS-Bench-101. Then, we discuss choices made in the design
of the benchmark, namely (i) the fixed-size encoding, (ii) the
effects of the limited variability available, (iii) the assessment of
algorithms only from a TPU time perspective, and; (iv) the num-
ber of repetitions proposed. We demonstrate our contributions
assessing the best-performing algorithms originally benchmarked
on NAS-Bench-101 and also irace, one of the best-performing
algorithm configurators from the literature. Results indicate that
(i) the anytime performance methodology enriches the insights
obtained from the assessment on the original NAS-Bench-101;
(ii) algorithm comparison is strongly affected by the design
choices discussed, and; (iii) the performance of SMAC in this
benchmark is significantly improved by our alternative setups.

I. INTRODUCTION

Neural architecture search (NAS) is likely the most promis-
ing field in automated machine learning (AutoML) when the
data to be modeled is unstructured. Recent NAS breakthroughs
include challenging application domains, such as computer vi-
sion and natural language processing [1]–[3]. These promising
applications have evidenced the need for intelligent approaches
to mitigate the significant computational effort required for the
experimental campaigns involved in the development of NAS
techniques. The development of representative benchmarks
that enable fast and standardized experimentation is thus a
need in the NAS field. NAS-Bench-101 [4] is a repository of
benchmarked convolutional neural networks for the CIFAR-
10 [5] dataset that can be used by NAS researchers when
evaluating or proposing algorithms. NAS-Bench-101 enables
the evaluation of neural architectures in negligible time, pro-
viding NAS developers with a fast test suite, and avoiding the
duplication of computational effort when evaluating architec-
tures. Besides reusability, NAS-Bench-101 is also an effort to
standardize NAS performance assessment since comparability
between different works in the field is in general limited.

In this work, we analyze the design choices in
NAS-Bench-101 and how these relate to the performance
insights provided by the benchmark. We propose to enrich
the insights provided by NAS-Bench-101 in three significant
ways. First, we formulate NAS as a bi-objective problem
comprising solution quality and computational resources con-
sumed. This anytime formulation [6] extends NAS-Bench-101
final quality approach to an approach that compares the
performance dynamics of algorithms in a Pareto-compliant
way. Second, we discuss other experimental design choices
that underlie NAS-Bench-101 such as (i) fixing the number
of vertices, which we believe could restrict the potential of
NAS algorithms; (ii) limiting the variability included in the
benchmark, which may lead to a weak representation of a NAS
scenario, and; (iii) assessing NAS algorithms solely based on
TPU time, overlooking the overhead of the search process of
the algorithms. Finally, we revisit the experimental guidelines
suggested by NAS-Bench-101; specifically, the large number
of repetitions suggested to benchmark NAS algorithms.

An experimental assessment of high-performing algorithms
complements our theoretical discussion. In more detail, we
consider two of the best-performing algorithms identified in
the original NAS-Bench-101 assessment, namely regularized
evolution (RE [1]) and SMAC [7]. We also include irace [8] in
this assessment, an algorithm configurator known to have state-
of-the-art performance on the optimization of algorithm design
for solution quality [9]. Performing a more reasonable number
of repetitions than in the extensive campaign adopted in the
original NAS-Bench-101 assessment, we are able to reproduce
the same conclusions obtained from the original final-quality
performance analysis of RE and SMAC. Furthermore, results
show that the algorithm, number of vertices, variability degree,
and stopping criterion are interacting factors, confirming our
design choice discussion’s relevance.

Even if the algorithms assessed have been configured for
final-quality performance, our anytime assessment using a bi-
objective optimization methodology enriches the analysis of
NAS-Bench-101. Specifically, RE is outperformed by the re-
maining algorithms in the final-quality analysis, but it outper-
forms irace regarding anytime performance. We further inspect
differences between algorithms with empirical attainment
function (EAF [10]) difference plots and observe that RE and
SMAC are incomparable under the original NAS-Bench-101
setup. Regarding the latter, SMAC consistently outperforms



the remaining algorithms both concerning final-quality and
anytime performance. We believe these results further support
our argument that NAS-Bench-101 assessment should account
for NAS computation time, given that the time required by a
SMAC execution is considerably larger compared to the time
required by a run of RE or irace.

We conclude our work with an analysis of the high-
performing architectures selected by the NAS algorithms.
Interestingly, some of these do not include pooling layers,
even if convolutional layers do not constrain feature map
dimensions. We believe this result highlights that a bi-objective
performance formulation should be discussed not only at NAS
level, but also at model training. Though NAS-Bench-101
provides temporal snapshots of the training process, only
the final accuracy of the models is used when assessing
an architecture. Thus, costly architectures may be deemed
equivalent to much faster ones, clearly an undesirable behavior.

The remainder of this paper is structured as follows.
Section II briefly reviews background concepts related to
this work, namely neural architecture search, the most rel-
evant NAS algorithm classes and their performance on
NAS-Bench-101, and anytime optimization. Next, Section III
presents our theoretical discussion, in particular the bi-
objective formulation for NAS-Bench-101 and potential im-
pact of benchmark design choices on both final quality and
anytime performance. Section IV details the final quality
results observed for the selected algorithms with regards
to the previously discussed benchmark characteristics. The
anytime performance of the selected algorithms is discussed in
Section V. We then conduct an analysis on high-performing
architectures in Section VI. Last, we conclude and discuss
future work in Section VII.

II. BACKGROUND

In this work, we bridge the research on NAS and anytime
optimization. For context, we define NAS, its application to
computer vision, and the inner works of NAS-Bench-101.
Next, we detail the most relevant NAS algorithm classes,
and discuss their performance on NAS-Bench-101. Finally,
we review how a bi-objective formulation of optimization
problems can model anytime performance.

A. Neural Architecture Search (NAS)

From a high-level perspective, NAS comprises the design
and configuration of neural networks [11]. In the context
of deep learning, NAS is being instrumental to challenging
fields such as computer vision [1]–[3]. Given the computa-
tional overhead it poses, different mitigation approaches have
been considered, such as designing architecture cells that
are replicated to become larger networks [2], [3]. This is
the approach followed by NAS-Bench-101, a benchmark of
convolutional networks for CIFAR-10 [5]. Below, we detail
the most important characteristics of this benchmark:
Design space. A cell is modeled as a directed acyclic
graph (DAG), where each node represents a neural network
layer (convolutional or pooling). The cell contains up to five
layers (not counting input and output layers). Solutions are
encoded as (i) an adjacency matrix, which defines the topology

of the cell, and; (ii) a node label list, which determines the
types of layers that will be employed.
Architecture evaluation. Performance metrics are provided
for different stopping criteria run on tensor processing
unit (TPU) clusters. Besides TPU time, queries to the API
provided training, validation, and test accuracy. Results are
sampled from three different seeds for variability.

B. NAS Algorithms and Their Performance on NAS-Bench-101

Three major classes of NAS algorithms can be identified
in the literature [11], namely evolutionary algorithms (EAs),
algorithm configurators (AC), and neural networks. In [4], a
set of relevant algorithms from each class were applied and
compared on NAS-Bench-101. The algorithms were compared
using as stopping criterion the total TPU time available for
the search process (107s). In that comparison, multi-fidelity
algorithms such as HyperBand [12] could not benefit from
the different stopping criteria provided. In turn, regularized
evolution (RE, [1]) and SMAC [7] stood out. In the following,
we give the details of both RE and SMAC. Next, we describe
irace [8], another relevant AC that we assess in this work.

Regularized evolution is a (µ,1)-EA proposed for NAS that
uses accuracy and aging for mating and environmental selec-
tion, respectively. In more detail, at each iteration RE main-
tains a population of candidate architectures. Best-performing
architectures regarding accuracy are more likely to be selected
to produce a novel candidate architecture. This is achieved
by bit-flip mutation to an arbitrary edge, or by replacing
an arbitrary node’s label with a different label. The novel
candidate architecture replaces the oldest candidate in the
current population. In particular, authors argue that this aging-
based environmental selection promotes regularization.
SMAC is a sequential, model-based algorithm configuration
procedure. The configuration process in SMAC starts by
performing the evaluation of an initial configuration (e.g. a
parameter setting known for its good performance). Then,
it alternates between (i) building a random forest model to
predict configuration performance; (ii) searching the configu-
ration space for promising configurations using the model as
surrogate for performance assessment, and; (iii) evaluating the
selected configurations on the target problem.

The good performance obtained by SMAC indicates that
out-of-the-box ACs have the potential to be good options
for real NAS tasks. Yet, real NAS tasks pose an additional
challenge regarding the computation time that is required for
the configuration process. This aspect is not fully addressed
in NAS-Bench-101, as the configuration task is assessed for
final performance. In a real NAS task, the sequential nature
of SMAC can be a drawback. Compared to SMAC, Hyper-
Band (HB) has the advantage of being fully parallel, but HB
applies limited learning on its search process, relying entirely
on multi-fidelity. Another potentially parallelizable algorithm
is RE, given the maturity of the literature on parallel EAs;
yet, its current version is sequential. In this work, we add
to the evaluated methods an AC called irace. Like RE, irace
can be classified as an EA and thus inherently parallelizable.
In addition, irace adopts a learning approach to detect high



performing areas of the configuration space and focus on them,
as described in the following.
irace is an estimation of distribution algorithm that imple-
ments iterated racing for configuration evaluation. The AC
alternates between (i) applying a racing procedure in which
a set of configurations is evaluated on subsets of training
instances several times, and; (ii) updating a set of probability
distributions used to sample a set of new configurations for a
novel iteration (race). At each race, candidate configurations
are initially evaluated on a fixed number of instances. Once
these evaluations are completed, a statistical test (Friedman’s
or Student’s t-test) is applied to eliminate poor performing
configurations from the race. This process continues until
the budget assigned for the race is depleted (i.e. number of
evaluations) or other convergence criteria are met. A new race
is then started using configurations sampled from the updated
probability distributions. The most successful applications of
irace refer to solution quality optimization, and more recently,
it has also been applied to anytime optimization [6].

Note that for ACs a basic configuration scenario comprises
(i) the problem samples provided; (ii) the parameter/design
space; (iii) a performance metric, and; (iv) the configuration
budget. It is important to note that ACs were originally
proposed to configure heuristic optimizers, and that some
adjustments have to be done when applying them to AutoML.
Hyperparameter tuning, for instance, uses folds to represent
problem instance distributions. But this is not an option in
the deep learning context, as models are commonly trained
repetitively on a single dataset. Hence, the application of ACs
to deep learning model design is not trivial, as most ACs are
not designed for this single-instance scenario and its lack of
variability. Regarding parameter space, the way design choices
are encoded is critical for a benchmark like NAS-Bench-101,
since the parameters should allow the configurator to detect
good architecture components and their interactions.

Concerning performance, the measure adopted in the con-
figuration process is an estimation of the real performance
across training samples and stochasticity. In more detail, the
performance estimation required to assess the quality of a can-
didate configuration is commonly calculated by aggregating
the results obtained from multiple evaluations of the given
configuration. The larger the variability in the results, the
more evaluations will be required for a precise estimation.
For this reason, both irace and SMAC evaluate the same
configuration multiple times. By contrast, RE follows the
traditional approach in EAs of evaluating each candidate
configuration only once. A configuration is re-evaluated only
if it is produced in different generations (iterations).

C. Anytime Optimization

Assessing and designing algorithms from the perspective
of anytime optimization [6] means that algorithms should be
high-performing regardless of the stopping criteria adopted.
Though this is always desirable, optimization algorithms are
sensitive to the stopping criterion adopted, as a fast-converging
search tends to lead to poor final-quality outcomes. In NAS,
this is even more important given the cost of specialized

computational resources. NAS-Bench-101, for instance, re-
ports results benchmarked for increasing stopping criteria. Yet,
multi-fidelity approaches are unable to benefit from this to the
extent expected, as mentioned.

An alternative approach to anytime performance is to for-
mulate the underlying optimization problem as bi-objective,
where resources consumed and solution quality are objectives
to be minimized. Using this approach, the performance as-
sessment theory devised for bi-objective optimization can be
employed to draw Pareto-compliant conclusions, as follows:
Set comparison relations. Two sets of solutions that repre-
sent different compromise solutions between conflicting objec-
tives can be compared using Pareto set comparison relations.
Among the most relevant to our assessment, two solution sets
A and B can be considered incomparable. In the context
of anytime performance where the conflicting objectives are
resources consumed and solution quality, an example is an
algorithm A finding better solutions faster than another algo-
rithm B, but being outperformed by B in the long run.
Unary performance measures [13]. In many practical situa-
tions, two solution sets will be deemed incomparable, but it is
still possible to prefer one over another. This is captured by dif-
ferent unary performance measures, such as the hypervolume
indicator. The hypervolume is also proven Pareto-compliant,
which means that a set cannot be better than another if the
hypervolume indicates the opposite. Unary indicators are also
scalable as to the number of sets assessed, a desirable aspect
in the assessment of optimization algorithms.
Empirical attainment functions (EAFs) [10]. A fine-grained
comparison between two sets can help visualize what parts
of the objective space are better achieved by each algorithm.
EAFs are probability distribution density plots that indicate the
frequency with which an algorithm finds solutions in a given
region of the objective space. EAF difference plots compare a
pair of algorithms by computing the difference in their EAFs,
indicating which algorithm performs better in which region of
the objective space and with what probability.

III. ENRICHING THE INSIGHTS FROM NAS-BENCH-101

As discussed above, NAS-Bench-101 is a very relevant
effort towards comparability in NAS research, and a promising
testbed for novel algorithms. In this section, we discuss how to
further benefit from it. Concretely, we first consider how any-
time performance assessment complements final-quality. Next,
we discuss the design choices that define NAS-Bench-101,
specifically the fixed number of nodes, the limited variability
provided, and the stopping criterion adopted. Finally, we
discuss the suggested experimental guidelines, in particular
the number of repetitions for algorithm evaluation.

A. Evaluating Anytime Performance

The original evaluation setup for NAS-Bench-101 assesses
algorithms based on the selected cell architecture performance.
Specifically, authors compute the empirical cumulative distri-
bution function (ECDF) in this final-quality approach (though
they do not aggregate ECDFs for conclusions). However
common in the optimization literature, this approach greatly
reduces the benefits of having a pre-computed benchmark,



especially given the extremely large TPU computation time
available to NAS algorithms. By contrast, a very large budget
is an asset to anytime assessment, as it covers a wide range
of different scenarios practitioners may encounter.

One limitation with a bi-objective formulation for anytime
performance is that the performance of algorithms must com-
prise a monotonic curve (the Pareto front). Yet, in machine
learning this is only expected for validation error, and it is
very likely that an algorithm that performs exceedingly well
on validation will decrease its performance on testing due to
overfitting. Two alternative solutions can be considered in this
context. The first is to render performance curves monotonic.
The practical interpretation of this choice is that all best-so-
far cell architectures identified by the algorithm would have
to be tested when arbitrary stopping criteria were required.1

A second alternative is to compute the area under the curve
depicted by the Pareto front, though without an assurance that
conclusions will be Pareto-compliant. In the assessment we
conduct in this paper, we opt for the first alternative, given
the importance of Pareto-compliance.

B. Experimental Design Choices
Solution encoding in NAS-Bench-101 comprises a fixed-

size adjacency matrix to represent a variable-size graph. In
more detail, a 7x7-matrix is used to represent a DAG, and
nodes that are not connected to the input are ruled out when
computing metrics (along with their labels). An alternative is
to have the number of nodes as part of the encoding and the
sizes of the adjacency matrix and label list dependent on this
variable. Though traditional algorithms are often unequiped to
deal with such conditional parameters, ACs may explore this
formulation to improve their search.

Furthermore, to simulate the variability that experimental
data generally has in practice, authors provided results for runs
with three different seeds. Though relevant, we believe that the
variance provided by this approach would not compensate for
the added training time for given ACs. Specifically, algorithms
that search the cell design space caching architecture perfor-
mance will likely consider three times more architectures than
algorithms that always query NAS-Bench-101.

Finally, algorithm comparison in NAS-Bench-101 is based
on TPU time alone,2 under the assumption that the CPU
time spent by algorithms would be negligible in comparison.
Though this is common practice in expensive function evalua-
tion optimization, we argue that this assumption does not hold
in a NAS scenario. However expensive, architecture evaluation
is performed on TPU clusters, which are highly parallel.
In contrast, algorithm processing is traditionally performed
in CPUs, and if algorithms do not use an efficient parallel
approach, a bottleneck at this point of the process is not com-
pensated by additional TPU power. To preserve comparability
with the results from NAS-Bench-101, we maintain the TPU-
time assessment, but remark that some of the conclusions
should be investigated in a wallclock-time-based future work.

1We assume that TPU availability for testing is not an issue, as it is expected
to be negligible in comparison to training time.

2Though results are reported in that work concerning wallclock time (which
should include CPU time), the code provided by the authors to replicate
experiments only reports TPU time.

C. Suggested Experimental Guidelines

Among the suggestions from the NAS-Bench-101 proposers
to improve comparability between NAS algorithms is to use
a large number of repetitions of the algorithms assessed.
Indeed, authors employed 500 repetitions from each algorithm
considered for a maximum TPU time of 107 seconds per run.
We argue against this practice, believing it is not realistic and
can become counterproductive as follows. Probing algorithms
for an excessively large number of repetitions with such a
large cutoff time will produce statistics that have little practical
meaning. A practitioner aiming at low-probability performance
would be inclined to run a significant number of repetitions
of the selected algorithm. Yet, NAS algorithms performance
improves as a function of the computational budget provided.
As such, a reduced number of repetitions using a larger
cutoff time would likely produce better results than what the
guidelines suggest. Though we cannot simulate the scenario
with a budget larger than 107 TPU seconds, we show how
the relative performance of the algorithms is little affected by
using a more reasonable number of repetitions.

The discussion provided in this section evidences the num-
ber of ways in which we believe the insights obtained from
NAS-Bench-101 could be enriched. In the next section, we
conduct a performance assessment of algorithms that were
identified as high-performing in NAS-Bench-101, as well
as irace, which represents ACs that are able to combine
parallelization with learning.

IV. PRELIMINARY FINAL-QUALITY ASSESSMENT

In this section, we perform experiments to study, with
regards to final quality, the main points on NAS-Bench-101
discussed in the previous section. Initially, we demonstrate
that with a reduced number of repetitions we are still able
to satisfactorily assess relative performance of the algorithms
considered here. Next, we compare the algorithms we consider
from a final-quality perspective. Additionally, we examine
the consequences of limiting evaluation variability. Lastly,
we discuss the effects of extending the parameter space to
explicitly handle a variable number of nodes.

The following experiments evaluate and compare the best-
performing techniques reported in NAS-Bench-101, namely
regularized evolution (RE) and SMAC. In this study, we
also include irace, an AC that was not evaluated in the
NAS-Bench-101 proposal. All NAS algorithms are run on four
24-core Intel Xeon Gold 6252 CPUs running @ 2.10GHz, with
128GB of RAM. We compare all algorithms based solely on
TPU time, following the original work. RE and SMAC are
run using the code provided by NAS-Bench-101. Additionally,
both RE and SMAC are evaluated using parameter settings
that showed to lead to good performance in the original
NAS-Bench-101 work [4]. For fairness, we preliminarily
assessed the performance of irace in NAS-Bench-101 and
selected suitable hyperparameters for its application to a final-
quality NAS setup. Details of the configuration process and the
hyperparameters used are given in supplementary material.3

3https://github.com/carlosemv/anytime-nasbench-cec2021

https://github.com/carlosemv/anytime-nasbench-cec2021


Fig. 1. Empirical cumulative distribution function (x-axis) of the mean final
regret (y-axis) assessing the effect of reducing the number of repetitions from
500 (dashed) to 20 (solid) for selected algorithms. Green: RE; blue: irace.

A. Effect of the Number of Repetitions
We start our assessment discussing the effect of the

number of repetitions adopted for algorithm evaluation in
NAS-Bench-101. We aim at reproducing as best as possible
the experiments presented in the original NAS-Bench-101
paper. Nevertheless, we are constrained by the computational
overhead incurred by the sequential nature of SMAC and
thus, we are unable to execute the 500 runs of SMAC in our
computational setup. We include in the supplementary material
runtime statistics for all runs performed here. In the following,
we assess if the NAS techniques can be evaluated using fewer
runs and if these results are comparable to the ones in the
original NAS-Bench-101 work.

Figure 1 shows the ECDFs for final quality, measured as
mean test regret, of 20 (solid) and 500 (dashed) runs of
RE (green) and irace (blue). Regarding RE, we remark that
its performance after 500 executions (dashed green curve)
matches the report in the original NAS-Bench-101 assessment.
More importantly, the comparison between ECDFs produced
with 20 or 500 repetitions for the algorithms highlights two
important insights. First, the ECDFs for both algorithms are
lowered when a larger number of repetitions is adopted.
Indeed, this effect is observed progressively if we increase the
number of repetitions gradually, as reported in the supplemen-
tary material. Second, the relative performance between irace
and RE is not greatly affected by the number of repetitions,
with the differences in ECDFs following similar patterns.

B. Comparing Algorithms for Final Quality
Figure 2 depicts the ECDFs for final quality, measured as

mean test regret, of 20 runs of irace, RE, and SMAC. Once
again, all algorithms are run under the setup described in the
NAS-Bench-101 proposal with the exception of the number of
runs, reduced for these experiments from 500 to 20. Concern-
ing SMAC, results differ w.r.t. the original NAS-Bench-101
assessment given a change we adopt in the evaluation for
comparison fairness. Specifically, the original assessment of
SMAC considered a single evaluation of each configuration
arguing that this led to faster convergence than multiple
evaluations. We believe that this faster convergence is an effect
of the limited variability provided by NAS-Bench-101 and
thus using such strategy may benefit all algorithms. As we

Fig. 2. Empirical cumulative distribution function (x-axis) of the final
regret (y-axis) from 20 runs of each algorithm.

will discuss in the following sections, that approach not only
speeds convergence for SMAC, but leads to an improvement
in its anytime performance.

Concerning results given in Figure 2, the comparison be-
tween irace and the remaining algorithms shows that RE
and SMAC are able to find better-performing architectures
more often than irace. However, irace less often returns poor-
performing architectures compared to RE and SMAC. Interest-
ingly, SMAC outperforms not only irace, but also RE, which
had not been reported in the NAS-Bench-101 evaluation. We
believe this is due to the single versus multiple evaluation
per candidate previously discussed, as follows. In [4], authors
report that single evaluation speeds up convergence for SMAC.
In search optimization, it is rather common that improving
convergence speed without accounting for anytime perfor-
mance leads to a decrease in final-quality performance. In
addition, it is important to remark that the stopping criterion
adopted does not include CPU time, hence the overhead
incurred by learning in SMAC is not accounted for.

For overall conclusions, we compare algorithms based on
the area between their ECDF and the y-axis. The smaller
the value, the better the performance of the algorithm. Ta-
ble I groups results by experimental setup (top) and algo-
rithm (bottom). The original setup discussed in this section is
labeled O (original). For this setup, SMAC is the best-ranked
algorithm, followed by irace and RE. We performed a Fried-
man non-parametric test with 98% confidence and Nemenyi’s
posthoc test. When statistical significance is observed, best-
ranked levels in Table I are highlighted in boldface, along with
algorithms that are not statistically different to them. Under
the setup considered in this section, no statistical difference
between the algorithms can be observed.

C. Evaluation Variability

As previously discussed, the performance estimation re-
quired to assess the quality of an architecture requires multiple
evaluations to be precise. In NAS-Bench-101, the variability
of the evaluations of the sampled architectures is represented
only by three evaluation seeds. Given this characteristic
of NAS-Bench-101, we can consider storing evaluation re-
sults (caching) to use the saved TPU time to evaluate more
candidate architectures. This is essentially equivalent to the
evaluation strategy defined in the experimental setup of SMAC



TABLE I
ECDF ANALYSIS GROUPED BY EXPERIMENTAL SETUP (TOP) AND
ALGORITHM (BOTTOM). O: ORIGINAL; VS: VARIABLE-SIZED; C:

CACHING; CVS: CACHING & VARIABLE-SIZED. BEST-RANKED LEVELS
ARE HIGHLIGHTED WHEN STATISTICALLY DIFFERENT THAN THE OTHERS.

VALUES IN PARENTHESES ARE MULTIPLIED BY 104 .

O SMAC (23) irace (28) RE (31)

VS SMAC (18) irace (46) RE (47)

C SMAC (34) irace (50) RE (55)

CVS SMAC (20) irace (42) RE (50)

RE O (31) VS (47) CVS (50) C (55)

irace O (28) CVS (42) VS (46) C (50)

SMAC VS (18) CVS (20) O(23) C (34)

in the original evaluation of NAS-Bench-101. In this section,
we assess algorithms setting to one the maximum number
of evaluations per architecture. Though only SMAC has a
hyperparameter to limit the number of function evaluations per
configuration, we implement caching within the benchmark
querying API for RE and irace.

Table I shows results for the setup discussed in this sec-
tion labeled as C (short for caching). Results grouped by
experimental setup (top) show that the relative performance
of the algorithms is not altered by this factor alone. Yet,
results grouped by algorithm (bottom) demonstrate that the
performance of all algorithms is much worsened when the
caching strategy is adopted, though no statistical difference
is observed w.r.t. other setups. We remark that irace and
RE were originally configured for the setup without caching,
which could affect their performance in the caching setup.
Interestingly, SMAC performs better by not using caching even
having been configured for the caching setup in the original
NAS-Bench-101 assessment. Furthermore, it is also important
to remark that irace bases its search on statistical tests, which
require variability to work. In a sense, though caching allows
irace to better explore the NAS search space, it also impairs
the exploitation capability of the algorithm.

D. Including the Number of Nodes in the Design Space
The design space adopted in the original NAS-Bench-101

considers a fixed-size encoding of network architecture. It is
important to note that, though the encoding is fixed-size, the
final architecture they encode is variable in size. Yet, search
algorithms are blind to this decoupling between architecture
and its representation. We then include the number of nodes as
a parameter in the design space that determines the dimensions
of the adjacency matrix and node label list. Concerning final-
quality ECDF analysis grouped by experimental setup given
in Table I (top) for this setup (labeled variable-sized, VS),
the relative performance of the algorithms is not affected. Yet,
SMAC is now able to significantly outperform the remaining
algorithms. In more detail, results grouped by algorithm (bot-
tom) show that SMAC greatly benefits from the variable-sized
approach, whereas RE and irace worsen their performance.

Regarding RE and SMAC, these results are consistent with
our previous discussion on the benefits of ACs. In more detail,
the variable-size approach poses higher difficulty due to the
larger parameter space and/or the conditional dependencies

Fig. 3. Boxplots of the hypervolume (x-axis) obtained in 20 runs from each
of the algorithms selected, depicted in varying colors. Boxplots are grouped
along the y-axis by the experimental setup adopted.

incurred by the new parameter. Under this setup, RE mutation
might not be as adequate for the new design space and the
algorithm is not able to define as good search trajectories as
before. Conversely, ACs have been devised for scenarios that
include this kind of parameter, and the performance of SMAC
reflects this. Concerning irace, we conjecture that the different
probability modeling approaches adopted by SMAC (global)
and irace (local) account for the differences in performance
between these algorithms for this setup. In addition, we remark
that algorithms have been configured for the original setup,
and hence an assessment of this encoding using reconfigured
algorithms could likely alter our conclusions.

We conclude our preliminary final-quality assessment high-
lighting that the combination of caching and variable-sized
encoding (a setup labeled CVS) reveals interactions between
these factors. In more detail, Table I shows that combining
caching with variable-sized encoding improves over using each
of these factors individually for irace. Conversely, for RE
and SMAC, caching reduces the benefits of the variable-sized
encoding, even if to a much smaller extent than when we
compare the original setup with using caching alone.

V. ASSESSING ANYTIME PERFORMANCE

As discussed in Section III, an assessment based solely on
final quality excludes from the analysis the time required to
achieve a given performance level. In this section, we perform
an anytime comparison of all algorithms to investigate how
their search dynamics differ. We also discuss the anytime
effects of caching and of the variable-sized encoding.

A. Comparing Algorithms for Anytime Performance
Figure 3 gives boxplots of the hypervolume achieved by

the algorithms in which runs are grouped by the experimental
setup adopted. The smaller the value achieved, the better
the anytime performance of the algorithm. The hypervolume
indicator requires a reference point, and as traditionally done
in the literature we use point (2.1, 2.1). To do so, we initially
normalize results to the [1, 2] range respectively using [0, 107]
and [0, 1] as bounds for TPU time and mean test regret.

For the original setup adopted in NAS-Bench-101, we
observe intersections between the boxplots, though clearly
SMAC outperforms irace. This is confirmed by the rank sums



TABLE II
RANK SUM (RS) ANALYSIS OF HYPERVOLUMES GROUPED BY

EXPERIMENTAL SETUP (TOP) AND ALGORITHM (BOTTOM). O: ORIGINAL;
VS: VARIABLE-SIZED; C: CACHING; CVS: CACHING & VARIABLE-SIZED.

BEST-RANKED LEVELS ARE HIGHLIGHTED WHEN STATISTICALLY
DIFFERENT DIFFERENT THAN OTHERS.

O SMAC (30) RE (37) irace (53)

VS SMAC (30) RE (40) irace (50)

C SMAC (32) RE (43) irace (45)

CVS SMAC (30) RE (43) irace (47)

RE VS (47) O (48) CVS (49) C (56)

irace O (45) CVS (48) C (52) CVS (55)

SMAC VS (43) CVS (46) O (54) C (57)
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smac.fnn.10m.nocacheFig. 4. Empirical attainment function (EAF) difference plots comparing RE
(left) and SMAC (right) run 20 times each. x-axis: TPU time; y-axis: mean
test regret.

given in Table II (top), where SMAC is followed by RE and
irace ranks last. Interestingly, the variance in results increases
in this order as well. The relative rankings observed for
anytime performance contrast with the rankings observed for
final quality in Table I (top), where irace ranked better than
RE. The poor anytime performance of irace is related to the
budget set for each iteration, which is directly affected by the
hyperparameters we configured for final-quality assessment.

We then compare the two best-performing algorithms, i.e.,
RE (left) and SMAC (right), with the help of empirical
attainment function (EAF) difference plots, given in Figure 4.
As previously discussed, the x-axis depicts TPU time only,
whereas the y-axis gives mean test regret. Dashed lines
depict the 50% attainment function from each algorithm,
and differences depicted as shaded areas on either side of
the plot indicate that the given algorithm presented a better
performance at that point of the runs. RE is designed for this
type of configuration scenario, favoring a quick intensification
of the search. On the other hand, SMAC requires more TPU
time to obtain a similar level of performance. This is the
consequence of the evaluation strategy implemented by SMAC
which, despite the low variability inherent to NAS-Bench-101,
assumes the estimation of architecture performance to require
several executions to be accurate. Hence, RE has a higher
probability of obtaining best performance than SMAC with a
lower TPU time budget, while for higher TPU times SMAC
provides a better probability. If CPU-time were accounted for,
however, the conclusions drawn from this comparison would
likely be affected by the sequential nature of SMAC.

B. Caching and Variable-Sized Encoding Effects

The final-quality assessment discussed in the previous sec-
tion showed that algorithm, variability degree, and solution
encoding were interacting factors. Specifically, the only pattern
observable in Table I (bottom) referred to the caching strategy,
which led to poor results for all algorithms when used with the
fixed-size solution encoding. By contrast, Figure 3 shows that
these alternative approaches affect most anytime performance
as to the variance in the results. RE is the algorithm most
affected, whereas SMAC is the least. Distribution shifts are
also observed for all algorithms, though they vary as a function
of the remaining factors. For SMAC and RE, the variable-
sized encoding right-shifts the distributions, though a bit less
in the presence of caching. Conversely, irace presents its best
anytime performance in the original NAS-Bench-101 setup.

The rank sum analysis given in Table II confirms these
findings. On the top grouping, experimental setups do not alter
the relative performance of the algorithms, though caching
affects statistical significance due to the high variance in
SMAC results discussed above. For the bottom grouping, rank
sums for the different setups are very similar within each
row, again due to the increased variance in results. As pre-
viously discussed, these conclusions should consider that all
algorithms have been configured for final-quality optimization
under the original setup. Yet, they further evidence the need for
benchmarking NAS from an anytime performance perspective.

VI. HIGH-PERFORMING CONFIGURATION INSIGHTS

In this section, we analyze the final configurations and thus,
the architectures selected by the different NAS techniques. For
this purpose, we study the configurations obtained in each run
of the algorithms. Figure 5 shows parallel categories plots for
SMAC. For clarity, only NAS hyperpameters related to the
node label list are given (op1-op5). The possible values for
these parameters are conv3 (3× 3 convolution), conv1 (1× 1
convolution), mp (3×3 max-pooling), or empty in the case of
the variable-sized approach. Since topology is defined by the
adjacency matrix, no layer order or architecture size should be
assumed. Color scaling reflects the mean test regret, which we
additionally depict as a discretized variable in the left-most
column of the plot. Though conclusions in this section are
drawn from all plots analyzed, the remaining ones are given
as supplementary material for brevity.

In line with the layer type performance effects reported in
NAS-Bench-101, conv3 is the most frequently selected node
value. This was especially true for irace, particularly in the
fixed-size approach. In fact, several of the high-performing
configurations seem to use only conv3 nodes, with no conv1
nor pooling layers. This is surprising, as manual design would
certainly include them. We believe that these results reflect the
design for accuracy adopted in NAS-Bench-101. In particular,
one of the most significant benefits from pooling is reducing
training time. Yet, architectures are generally evaluated only
as to their accuracy. Though it would be possible to assess
some level of trade-off between architecture accuracy and
total training time, we have followed the original setup from
NAS-Bench-101 where this is not considered. We remark,



Fig. 5. Parallel categories plots of the 20 architectures selected by SMAC with fixed (left) and variable (right) number of nodes.

though, that this can lead to the selection of extremely costly
architectures, such as the conv3-based mentioned previously.

Regarding caching, all algorithms have a hard time finding
good configurations using this approach. This is a further
indication of the usefulness of variability in this benchmark
from a final-quality perspective. On the other hand, adopting
a variable number of nodes can be beneficial, as is the case
for SMAC. Yet, we remark that the architectures given in
Fig. 5 may present less than nnodes nodes due to their topology,
which is not shown here. Finally, we note that RE finds a top-
performing configuration containing a single 1×1 convolution
layer. We remark that this is possible due to the scalable
architecture approach discussed in Section II.

VII. CONCLUSION

Deep learning breakthroughs in challenging fields such as
computer vision have redefined the research in neural archi-
tecture search (NAS [1]–[3]). Besides the traditional contri-
butions from neuroevolution, other effective algorithm classes
have shown interesting results, such as algorithm configura-
tion (AC [11]). However, the characteristics of deep learning
scenarios differ considerably from optimization scenarios for
which most effective ACs have been devised. In addition,
the computational cost incurred for evaluating architectures
currently prohibits extensive ACs runs.

NAS-Bench-101 is a first effort towards comparability of
NAS algorithms. Besides reusable data, authors also provide
relevant guidelines for the evaluation and proposal of algo-
rithms. In this work, we have proposed different ways in which
the insights produced from this benchmark can be enriched,
the most significant being the bi-objective formulation that
enables an anytime performance assessment. Not surprisingly,
the evaluation of irace [8], RE [1], and SMAC [7] show that the
relative performance of the techniques is not always the same
from a final-quality or an anytime performance perspective.

A second contribution from our work is to study the effects
of design choices embedded in the original NAS-Bench-101
assessment. Specifically, we discuss the effects of a variable-
sized encoding and caching, and demonstrate that algorithms
are affected in different ways by these alternative setups.
Finally, we argue against the use of an excessive number
of algorithm repetitions, providing evidence that the budget
of a configurator could be better spent on more instances or
evaluating more architectures.

Besides the future work possibilities discussed along the
paper, we highlight two other important pathways. The first is
how to account for architecture training time besides accuracy,

likely in a bi-objective formulation of architecture evalua-
tion. The second is extending NAS-Bench-101 to account
for more datasets, so effective algorithms devised for multi-
instance configuration may identify architectures that are high-
performing across different datasets. Altogether, the benefits
of these investigations may contribute to reduce dataset-
dependent, computationally prohibitive campaigns.
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