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Abstract
Research on multi-objective evolutionary algorithms (MOEAs) has produced over the
past decades a large number of algorithms and a rich literature on performance assess-
ment tools to evaluate and compare them. Yet, newly proposed MOEAs are typically
compared against very few, often a decade older MOEAs. One reason for this apparent
contradiction is the lack of a common baseline for comparison, with each subsequent
study often devising its own experimental scenario, slightly different from other stud-
ies. As a result, the state of the art in MOEAs is a disputed topic. This paper reports a
systematic, comprehensive evaluation of a large number of MOEAs that covers a wide
range of experimental scenarios. A novelty of this study is the separation between
the higher-level algorithmic components related to multi-objective optimization (MO),
which characterize each particular MOEA, and the underlying parameters—such as
evolutionary operators, population size, etc.—whose configuration may be tuned for
each scenario. Instead of relying on a common or “default” parameter configuration
that may be low-performing for particular MOEAs or scenarios and unintentionally
biased, we tune the parameters of each MOEA for each scenario using automatic algo-
rithm configuration methods. Our results confirm some of the assumed knowledge
in the field, while at the same time they provide new insights on the relative per-
formance of MOEAs for many-objective problems. For example, under certain con-
ditions, indicator-based MOEAs are more competitive for such problems than previ-
ously assumed. We also analyze problem-specific features affecting performance, the
agreement between performance metrics, and the improvement of tuned configura-
tions over the default configurations used in the literature. Finally, the data produced
is made publicly available to motivate further analysis and a baseline for future com-
parisons.

Keywords
Multiobjective optimization, evolutionary algorithms, performance assessment, auto-
matic algorithm configuration.

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) are one of the most widespread ap-
proaches for tackling multi-objective optimization problems (MOPs). Over the decades
of MOEA research, a great number of algorithms have been proposed in the literature,



as reviewed in various surveys (Coello Coello et al., 2007; Mezura-Montes et al., 2008;
Chand and Wagner, 2015; Li et al., 2015). Nowadays, the study of algorithms for many-
objective problems (MaOPs), those with four or more objectives, is one of the most ac-
tive fields within MOEA research (Aguirre, 2013). This recent activity on MaOPs is
motivated by algorithmic and practical needs. First, as MOEA research on two- and
three-objective problems reached a mature stage, it became clear that MOEAs present
severe performance limitations when facing MaOPs (Khare et al., 2003; Purshouse and
Fleming, 2007; Bezerra et al., 2016). Second, many engineering applications are mod-
eled as MaOPs, where constraints are considered objectives (Fleming et al., 2005), thus
creating a need for improving existing MOEAs to tackle these problems. This need has
led to many novel MOEAs specifically designed for MaOPs (Chand and Wagner, 2015;
Li et al., 2015) and traditional MOEAs being redesigned to account for the particular
characteristics of MaOPs (Deb and Jain, 2014).

Besides algorithmic advances, the MOEA community has been a driving force in
the advancement of the performance assessment of multi-objective algorithms (Zitzler
and Thiele, 1999; Zitzler et al., 2003; Knowles et al., 2006; Deb et al., 2005). Those works
shaped the research on MOEAs, defining benchmark problems, performance metrics,
and experimental setups to be reused in most of the subsequent MOEA research. How-
ever, in the case of continuous MOPs, which is the main application domain of MOEAs,
experimental comparisons have mostly focused on demonstrating that a newly pro-
posed MOEA is better, in some sense, than one or two widely-known MOEAs and/or
a previous version of the new proposal. No previous work has done a comprehensive
comparison and analysis of a large number of algorithms that allows identifying the
state of the art for continuous MOPs. As a result, new proposals are repeatedly mea-
sured against the most widely-known MOEAs, even if previous proposals were shown
to outperform them in given scenarios.

In this paper, we carry out a detailed experimental study of MOEAs in order to
better understand the state of the art in the field. Compared to recent performance
assessments of MOEAs on many-objective problems (Hadka and Reed, 2012; Li et al.,
2013; Ishibuchi et al., 2015a), our study has several novel characteristics. In particular,
we study MOEAs considering five factors: (i) a large and representative set of MOEAs;
(ii) the parameter settings of the MOEAs; (iii) a diverse and challenging benchmark set;
(iv) the computational budget or stopping criteria allocated for solving each benchmark
problem; and (v) the metrics used for performance assessment.

Considering the first experimental factor, we select at least two relevant
MOEAs from each main MOEA paradigm: dominance-based, indicator-based and
decomposition-based approaches. In total, our analysis encompasses 9 MOEAs from
the literature: MOGA (Fonseca and Fleming, 1993), NSGA-II (Deb et al., 2002),
SPEA2 (Zitzler et al., 2002), IBEA (Zitzler and Künzli, 2004), SMS (Beume et al., 2007),
HypE (Bader and Zitzler, 2011), MOEA/D (Li and Zhang, 2009), MO-CMA-ES (Igel
et al., 2007), and NSGA-III (Deb and Jain, 2014). In addition, we make a distinc-
tion between the algorithmic components specifically related to multi-objective opti-
mization (MO-components) and other non-MO-specific components, such as whether
the underlying evolutionary operators (underlying EA) are based on genetic algo-
rithms (GA), differential evolution (DE) or CMA-ES. This is a crucial distinction be-
cause of two reasons. First, some MOEAs proposed in the literature only differ in the
underlying EA and are almost identical with respect to the MO-components. If we
wish to conclude anything about the MO-components, we need to be able to isolate the
influence of the underlying EA on performance in order to not attribute an effect to the
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MO-components that is actually caused by a difference in the underlying EA. Second,
there is no clear best choice of EA-components, and our recent work has shown that
interactions between MO-components and underlying EA play a critical role on perfor-
mance (Bezerra et al., 2015a,b). Thus, our study focuses on comparing MO-components
that characterize particular MOEAs and, whenever possible, the underlying EA is stud-
ied as an additional component to be configured.

The second experimental factor concerns the parameter settings of the MOEAs,
which strongly influence their behavior. Apart from the choice of the underlying EA
discussed above, MOEAs contain other crucial parameters such as population size, mu-
tation probability, and various MOEA-specific parameters. It has become standard to
reuse the parameter configuration given in the papers that originally proposed each
MOEA, regardless of differences in experimental scenarios. This approach is prone to
misguided conclusions, as parameter values are often critical to performance while not
being easily transferable between scenarios (Birattari, 2009; Hoos, 2012), for example,
between continuous and combinatorial MOPs (Bezerra et al., 2016). Sensitivity anal-
ysis and preliminary experiments typically evaluate a very small number of possible
parameter configurations without reporting the effort dedicated to each MOEA, or for-
mally defining the specific criteria used to make the final choice. If a different configu-
ration from the default is chosen, this is often a common “good enough” configuration
for all MOEAs under study, thus implicitly assuming that there are no interactions be-
tween parameters and MO-components. Due to the ad-hoc nature of this method for
parameter configuration, the potential of unintended biases influencing the final choice
is large. To prevent such biases and to take into account potential interactions, we use
an automatic parameter configuration tool with a formally defined setup and tuning
budget to find a high-performing parameter configuration of each MOEA for each sce-
nario considered here.

The third experimental factor in our comparison concerns benchmark problems.
While the DTLZ benchmark (Deb et al., 2005) was a major contribution in early works,
several problem features were not considered in its conceptual design. The WFG bench-
mark (Huband et al., 2006) was proposed a few years later providing a more diverse
set of benchmark functions, but only a few MOEAs have been evaluated on it (Robič
and Filipič, 2005; Tušar and Filipič, 2007; Bader and Zitzler, 2011; Bezerra et al., 2016).
The difficulty of the individual functions is mainly controlled by the number of de-
cision variables and the number of objectives. The use of a relatively small number
of decision variables may produce floor effects (Cohen, 1995) that lead to identifying
“state-of-the-art” MOEAs that are only good at solving easy problems. However, in-
creasing the number of variables may lead to a ceiling effect, where a problem becomes
so difficult that all MOEAs produce very poor approximations and their differences are
irrelevant. In addition, previous experimental comparisons often aim at identifying an
overall best-performing MOEA for multi- (two and three) and many-objective (four or
more) problems. Yet, the number of objectives is a discrete factor that is known before
solving a problem, and we should not expect that there exists a single MOEA, or config-
uration thereof, that performs optimally for any number of objectives. Instead, we find
the best parameter configuration of each MOEA for a given number of objectives and
analyze the impact of the number of objectives on MO-components.1 Following this

1We would not necessarily advocate to configure each MOEA for each possible number of objectives, even
if this could be done. An alternative may be, for example, to automatically configure MOEAs for increasingly
larger ranges of objectives, for example, for 2, 3, 4, {5, 6}, {7, 8, 9}, {10, 11, .., 15}, etc. objectives. We leave
this point for future research.
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perspective, our benchmark set comprises the DTLZ and WFG benchmarks with dif-
ferent numbers of variables (20 to 60) and we separately analyze scenarios with various
number of objectives (2, 3, 5, and 10).

The fourth experimental factor that must be defined is the computational budget
available to the MOEAs. In the literature, computational effort is often measured in
terms of the number of function evaluations (FEs), under the assumption that the com-
putational overhead of the MOEA itself is negligible in comparison to the evaluation
cost of real-world problems. Yet, many MOEAs use computationally expensive algo-
rithmic components that limit the number of FEs that can be executed in practice even
for benchmark problems. At the same time, some experimental studies allow for very
large number of FEs, hence implicitly assuming that evaluation cost is relatively low,
which contradicts the previous assumption. Thus, it is not uncommon that different
studies consider computational budgets that differ by an order of magnitude, while
never evaluating algorithms under various budgets. In addition, the best-performing
parameter settings for a given MOEA depend on the computational budget, thus a
comparison between “default settings” hardly makes sense and the conclusions ob-
tained under one computational budget cannot be generalized to another scenario with
a budget that is an order of magnitude larger. In order to take into account such effects,
we study scenarios with various budgets (2 500, 10 000, and 40 000 FEs), which simu-
late different levels of computational overhead posed by function evaluations, and we
tune the settings of each MOEA for each scenario.

Finally, the fifth factor concerns the specific metrics used for performance assess-
ment. When the algorithms under comparison produce outcomes that are incompara-
ble in terms of Pareto-optimality, these metrics introduce an additional refinement that
allows a ranking of the outcomes. This is particularly crucial in MaOPs, where the frac-
tion of mutually nondominated solutions typically grows exponentially with the num-
ber of objectives. While the use of Pareto-compliant metrics is generally acknowledged
nowadays to be essential, several such metrics exist, each of them introducing different
preferences. A diverse set of metrics will measure conflicting preferences (Jiang et al.,
2014), and we should not expect a single MOEA to be the best on all metrics (otherwise,
we could simply aggregate the multiple metrics into a single one). Another potential
pitfall is to generalize conclusions obtained with one metric to scenarios evaluated with
respect to a different metric. To account for these effects, our study considers three di-
verse unary metrics (hypervolume relative deviation, I rd

H , unary additive epsilon met-
ric, I1ε+, and inverse generational distance, IGD).

The experimental study of MOEAs presented here is the most comprehensive we
are aware of. In addition to being a concrete first step towards identifying the state-
of-the-art MOEAs for continuous optimization on two-, three-, five- and ten-objective
problems, we also analyze the effect of underlying EA choices, parameter tuning, com-
putational budget, problem characteristics and the correlation between performance
metrics. Yet, the potential studies that could be conducted from the experimental data
collected in this work far outnumber the analyses that we were able to fit within this sin-
gle paper. Moreover, one of our goals is that the results presented here help researchers
to correctly identify improvements on the state-of-the-art. For these reasons, we also
make all our data publicly available for further analysis, verification and extension.

The remainder of this paper is organized as follows. In Section 2, we review
MOEAs and highlight the particular ones we use in this study. Next, we detail our
performance assessment setup in Sections 3 and 4. In Sections 5 to 7, we present our
experimental results, starting by an overall comparison and moving on to further de-
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tailed analyses. We conclude and discuss future work in Section 8.

2 MOEAs, paradigms and underlying EAs

The number of different MOEA proposals in the literature is too large to be exhaus-
tively reviewed here (Coello Coello et al., 2007; Mezura-Montes et al., 2008; Chand and
Wagner, 2015; Li et al., 2015). In this work, we summarize MOEAs first from a historical
perspective and then we detail the most relevant MOEA paradigms, i.e., MOEAs that
share similar design characteristics. This taxonomy is instrumental for this work as we
select the most relevant MOEAs from each paradigm for our performance assessment.
Finally, we discuss the conceptual separation between the high-level MO components
and the underlying EAs, showing the equivalence between some independently pro-
posed algorithms.

2.1 MOEA design evolution

The historical evolution of MOEA design can be split into three main epochs. In the
first years, MOEA researchers designed MO components that allowed EAs to find mul-
tiple Pareto-optimal solutions in a single run. Algorithms could be seen as a combina-
tion of an EA with two MO components: (i) a Pareto dominance-based metric to pro-
vide convergence pressure, and (ii) a metric to preserve the search diversity, i.e., the
spread over the decision and/or objective space. MOGA (Fonseca and Fleming, 1993),
NSGA (Srinivas and Deb, 1994) and NPGA (Horn et al., 1994) are probably the most
relevant MOEAs from this epoch.

The second epoch in MOEA design focused on the development of effective meth-
ods to explore the potential demonstrated by the first MOEAs. Important concepts
proposed in this epoch include MO elitism (Zitzler and Thiele, 1999; Knowles and
Corne, 2000; Deb et al., 2002; Zitzler et al., 2002), external archives (Knowles and Corne,
2000; López-Ibáñez et al., 2011), ε-dominance (Laumanns et al., 2002), the integration
of quality indicators into the search (Zitzler and Künzli, 2004; Beume et al., 2007), the
decomposition of the original MOP into several single-objective problems (Zhang and
Li, 2007; Li and Zhang, 2009), and the use of underlying EAs other than genetic algo-
rithms (Knowles and Corne, 2000; Robič and Filipič, 2005; Kukkonen and Lampinen,
2005; Beume et al., 2007; Tušar and Filipič, 2007; Igel et al., 2007). Also during this
epoch, significant advancements were made for a proper performance assessment of
multi-objective optimizers (Zitzler et al., 2003; Knowles et al., 2006; Grunert da Fonseca
et al., 2001; Deb et al., 2005). The empirical analysis conducted by the authors of the
DTLZ benchmark (Deb et al., 2005) using NSGA-II (Deb et al., 2002) and SPEA2 (Zit-
zler et al., 2002) demonstrated the good performance displayed by both algorithms on
MOPs with two and three objectives. Since then, it has become standard in the MOEA
community to compare novel algorithms to one (or both) of these MOEAs.

The third (and current) epoch in MOEA design is characterized by an increased
interest on many-objective optimization problems (Purshouse and Fleming, 2007). MOPs
with more than three objectives pose significant further challenges, as standard MOEAs
such as NSGA-II and SPEA2 were shown to have scalability issues w.r.t convergence,
diversity, and/or running time (Khare et al., 2003). Generally speaking, standard
MOEA components were unable to scale because of dominance resistance (Ikeda et al.,
2001; Purshouse and Fleming, 2007): in the presence of a large number of conflict-
ing objectives, the proportion of the feasible space that is mutually nondominated is
large and the entire population of an MOEA becomes mutually nondominated and
spread too early, making further progress difficult. To overcome these limitations, two
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main approaches have been adopted. The first one revises the main components of
existing MOEAs to propose novel algorithms. HypE (Bader and Zitzler, 2011) and
NSGA-III (Deb and Jain, 2014) are two such examples. The other approach incorporates
new high-level components, such as dimensionality reduction (Tenenbaum et al., 2000),
space partitioning (Aguirre and Tanaka, 2009), or the use of surrogate models (Aguirre,
2013), to mention a few. In this work, we concentrate on the algorithms proposed using
the first approach since they are, in principle, general enough that they can be applied
to multi- and many-objective problems. Moreover, components from the second ap-
proach may be, in principle, combined with any existing MOEA; thus, a more detailed
analysis would be required to isolate their contribution.

2.2 MOEA paradigms

Traditionally, MOEAs have been categorized in the literature into one of the three fol-
lowing design paradigms. To make our experimental study comprehensive, we select
at least two algorithms from each paradigm.

Dominance-based approaches. These MOEAs rely on metrics based on Pareto dom-
inance to direct their search. The best known example is probably NSGA-II (Deb et al.,
2002), which considers the dominance depth of solutions, i.e., the dominance level
the solution belongs to. Besides NSGA-II, we consider MOGA (Fonseca and Fleming,
1993), and SPEA2 (Zitzler et al., 2002). MOGA bases its search on dominance rankings.
SPEA2 uses a similar idea, but takes into account the number of solutions that each so-
lution dominates. Each algorithm proposes a different approach to promote diversity.
Due to dominance resistance, dominance-based algorithms are not expected to be as
effective on MaOPs as they are on MOPs with two and three objectives. Moreover, the
performance of MOGA is presumed to be poor in comparison to the other algorithms
because it lacks elitism, that is, MOGA replaces the whole population with a new one
at each generation. We include MOGA in this assessment due to its historical relevance
and as a baseline to put other results in perspective.

Indicator-based approaches. After the proposal of Pareto-compliant quality indica-
tors, some authors envisioned using these indicators within MOEAs to direct their
search. Indicator-based approaches are expected to outperform dominance-based ones
on MaOPs because the convergence pressure provided by quality indicators is not di-
rectly influenced by the number of objectives. In addition, some indicators account
for diversity, keeping the population well-spread along the objective space. The draw-
back of indicator-based approaches is the computational complexity of some quality
indicators such as the hypervolume, which is exponential in the number of objectives
in the worst case (Beume et al., 2009). The most relevant MOEAs from this paradigm
are IBEA (Zitzler and Künzli, 2004), SMS (Beume et al., 2007), and HypE (Bader and
Zitzler, 2011). IBEA uses binary quality indicators to compute a fitness for each solu-
tion. Since pairwise comparisons between solutions using binary indicators are cheap
to compute, IBEA has very little computational overhead when compared to other
indicator-based MOEAs. SMS and HypE are based on the exclusive hypervolume con-
tribution and the shared hypervolume contribution, respectively. HypE was the first
indicator-based algorithm specifically designed for MaOPs; its shared hypervolume
contribution requires estimation for problems with more than three objectives, result-
ing in a less accurate metric, whereas modern implementations of the exclusive hy-
pervolume contribution impose little overhead for SMS (While and Bradstreet, 2012;
Nowak et al., 2014).

6



Decomposition-based approaches. An alternative research direction already during
the first epoch of MOEA design was to decompose the original MOP into single-
objective subproblems (Hajela and Lin, 1992; Jaszkiewicz, 2002), typically by means of
scalarizations. This paradigm, however, remained little explored for many years. More
recently, the interest from the MOEA community on this paradigm was stirred by the
proposal of the MOEA/D algorithms (Zhang and Li, 2007; Li and Zhang, 2009). Here
we consider the variant that won the IEEE CEC 2009 competition on unconstrained
multi-objective continuous optimization (Li and Zhang, 2009), which uses a dynamic
resource allocation (DRA) approach. This approach is an online adaptive strategy pro-
posed to reduce the computational budget wasted on non-promising search directions.
Besides MOEA/D, we also include NSGA-III (Deb and Jain, 2014) as a representa-
tive of this paradigm. Although the convergence pressure of its search is provided in
an identical fashion to NSGA-II, the diversity mechanism proposed for NSGA-III uses
weight-based reference lines to keep the population spread over the objective space.
More importantly, this algorithm was designed specifically for MaOPs.

2.3 Underlying EAs

One important feature that is typically overlooked when designing and comparing
MOEAs concerns their underlying evolutionary algorithm. As previously discussed,
MOEAs can be seen as a combination of high-level MO components, responsible for
dealing with the particular aspects of multi-objective optimization such as dominance,
convergence, and diversity, coupled with an underlying EA responsible for selection
and variation operators. In general, MOEA authors have focused their efforts on de-
vising effective MO components, and reused the same underlying EA choices tradi-
tionally adopted in the literature, i.e., GAs or evolution strategies (ESs) typically using
SBX crossover and polynomial mutation. As a result, the literature exploring different
underlying EAs is limited, and the effect of variation operators of the underlying EAs
on performance is still rather poorly understood for both multi- and many-objective
optimization. Below, we discuss some works that have tried to extend MOEA research
in this direction:

2.3.1 Differential evolution (DE)

During the second epoch of MOEA design, some of the new MOEAs used DE as the
underlying EA, often reusing existing approaches for the MO components (Madavan,
2002; Abbass, 2002; Robič and Filipič, 2005; Kukkonen and Lampinen, 2005; Tušar and
Filipič, 2007; Tagawa et al., 2011). For instance, many of the first DE-based MOEAs
were fairly similar to NSGA-II concerning mechanisms to deal with convergence and
diversity, the two most relevant examples being DEMO (Robič and Filipič, 2005) and
GDE3 (Kukkonen and Lampinen, 2005). The positive results obtained by these DE-
based MOEAs motivated researchers to combine DE with other existing MO compo-
nents, such as in DEMOSP2 and DEMOIB (Tušar and Filipič, 2007), where MO compo-
nents are reused from SPEA2 and IBEA, respectively. Table 1 shows a set of algorithms
that are essentially equal with respect to their MO components, but differ in the under-
lying EA. Not all of these algorithm pairs had been previously recognized as equiva-
lent, e.g., SMS and IBDE (Tagawa et al., 2011), most likely because they were originally
described using different terminology.

In this work, we treat MOEAs that differ only in their underlying EA as the same
MOEA. More precisely, the choice of underlying EA is treated as a parameter that is set,
together with other algorithmic parameters, by means of automatic configuration. By
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Table 1: MOEAs that differ only in the underlying EA used.
Underlying EA

MO components GA / ES DE

dominance depth, crowding distance NSGA-II DEMO, GDE3

dominance strength, k-nn density estimator SPEA2 DEMOSP2

binary indicator IBEA DEMOIB

dominance depth, hypervolume contribution SMS IBDE

doing so, we ensure that each MOEA uses its best configuration of the underlying EA.
For example, henceforth, SPEA2 may denote the use of either GA or DE as underlying
EA, depending on the particular experimental scenario considered. A choice of GA
implies the use of the SBX crossover and polynomial mutation operators, whereas a
choice of DE uses binomial crossover and differential mutation operator. As far as we
know, several algorithms, including MOGA, HypE, and NSGA-III, have never been
studied with DE as the underlying EA, but such extensions are straightforward and we
include them here.

We could argue that our study includes at least 14 different MOEAs (including the
special case of MO-CMA-ES, which is discussed next), because the automatic config-
uration procedure may choose to replace the GA operators of the eight MOEAs men-
tioned in Section 2.2 by DE operators, thereby instantiating at least the five DE-based
MOEAs shown in Table 1. Since the GA-based MOEAs considered here were proposed
before their DE-based counterparts, we use in the following the original name given to
the GA-based MOEAs independently of the underlying EA.

2.3.2 Covariance matrix adaptation evolution strategy (CMA-ES)

Given its excellent performance on single-objective problems, researchers have pro-
posed adaptations of the CMA-ES algorithm to solve MOPs. The basic MO-CMA-ES
algorithm (Igel et al., 2007) consists of a number of concurrent executions of CMA-
ES starting from different initial solutions. Its remaining MO components comprise
dominance depth and the exclusive hypervolume contribution, resembling SMS. Other
variants of this algorithm were proposed later, allowing different quality indicators, se-
lection for survival, and learning strategies for the underlying CMA-ES algorithm (Voß
et al., 2010).

Ideally, we would like to study CMA-ES as yet another possible underlying EA for
all MOEAs. However, devising such CMA-ES-based MOEAs is not as straightforward
as in the case of DE, since we would need to somehow couple the learning mecha-
nisms from CMA-ES with other MO components, which is beyond the scope of this
paper. Instead, MO-CMA-ES is the single representative MOEA using CMA-ES as the
underlying EA, and we study its different variants as parameters to be configured, as
explained in Section 3.1.

3 Experimental factors

Besides the MOEAs described above, our experimental study considers four additional
experimental factors, detailed below.
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3.1 Parameter configuration space

Apart from the choice of the underlying EA, each MOEA has several parameters that
need to be set, that is, we need to specify a parameter configuration. Normally, two
approaches are adopted in the literature regarding parameter settings in experimental
comparisons. Some studies use a given configuration, either the “default” one from the
literature or a configuration found after limited, and often unspecified, preliminary ex-
periments. Other studies investigate the effect of various parameter settings, and their
interactions, but due to the large number of possibilities, only a very small number
of parameter configurations can be studied and conclusions are often not conducive
to identifying the highest-performing settings. Ideally, we would like to compare al-
gorithms using their highest-performing parameter configuration for a given problem.
Although we may know a priori certain features of the application scenario, such as
the number of objectives and the stopping criterion, we cannot assume that the actual
problem being tackled, and thus the optimal parameter configuration for each problem,
is known.

Automatic algorithm configuration methods find high-performing parameter con-
figurations for a given application scenario given a set of training problems, which are
assumed to be representative of the actual, not yet known, problems we aim at tackling
in practice. The use of such automatic configuration methods allows us to consider a
very large parameter space and still find, for a given application scenario, a parame-
ter configuration that is general enough to be expected to be high-performing over a
diverse set of benchmark problems.

In this work, the automatic configuration step considers the following parameter
domains:2

Population size (µ). For the dominance- and indicator-based algorithms, we consider
µ ∈ {10, 20, . . . , 100}. However, we use µ ∈ {100, 200, . . . , 500} for MOEA/D, as its
population size determines the number of weights and it therefore cannot be too small;
in fact, a small number of weights on a problem with a large number of objectives may
miss large regions of the objective space. Finally, for NSGA-III, the population size and
the number of weights used are tightly related parameters, so we detail them later.

Underlying EA. As previously explained, we give algorithms a choice between two
different underlying EAs: (i) GA, using the traditional deterministic tournament, SBX
crossover (Deb and Agrawal, 1995) and polynomial mutation (Deb and Agrawal, 1999)
operators; or (ii) DE, using binomial crossover and differential mutation operators in
the DE/rand/1/bin fashion (Robič and Filipič, 2005). Additional parameters associ-
ated with each variation operator are given in Table 2, namely tournament size (tsize),
the crossover and mutation probabilities and distribution indices (pc, pm, ηc and ηm,

2Following the original proposals of the MOEAs studied here, we do not use any external archive. Nev-
ertheless, we argue in the conclusions that one should apply the methodology proposed here to compare
MOEAs with archives and we expect conclusions will be different. Since we do not use an external archive,
the population size determines the size of the approximation front. However, each MOEA performs differ-
ently depending on the population size and prescribing a fixed population size a priori may favor specific
MOEAs while hindering others. Therefore, we let the automatic configuration procedure choose the popula-
tion size of each MOEA for each scenario that minimizes a performance metric. This may result in very small
approximation fronts that are of higher quality (according to the metrics) than much larger ones. If this is
a concern in practice, then the metrics used in the literature, which we follow here, are inadequate, but it is
trivial to apply our methodology and repeat our analysis with different metrics. Moreover, if an approxima-
tion front of a specific size is desired, then it is arguably better to use an external bounded archive (Schütze
et al., 2008, 2010; López-Ibáñez et al., 2011), and still tune the population size of each MOEA.
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Table 2: Parameter space of variation operators for all MOEAs but MO-CMA-ES.
GA DE

Parameter tsize pc, pm, pv ηc, ηm CR F

Domain {2,4,8} [0, 1] {1, . . . , 50} [0.01, 1] [0.1, 2]

Table 3: Parameter space for tuning specific MOEA/D parameters.
Parameter ρ δ φ tsize ν

Domain [0.1, 1] [0, 1] [0.01, 1] {1, 2, . . . , 20} {2, 3, . . . , 10}

Table 4: Parameter space for MO-CMA-ES learning parameters.
Parameter σ0 d ptarget pthresh cp cc c′cov u′cov

Domain [0, 1] {1, 2, . . . , 50} [0, 0.5[ [0, 0.5[ [0, 1] ]0, 1] [0, 1[ [0, 1[

respectively) for the GA variation operators,3 and crossover rate and scaling factor (CR
and F , respectively) for the DE operators. As previously explained, these parameters
do not apply to MO-CMA-ES.

A few other MOEAs present parameters additional to the ones we discussed
above, which we briefly list below. We refer to the original papers for a better un-
derstanding of all parameters.

MOGA. The fitness sharing diversity metric used by MOGA requires the definition
of a niche radius, which we set as σshare ∈ [0.01, 1].

SPEA2. When used for mating selection, the k-th nearest neighbor density estimation
strategy adopted by SPEA2 computes k using a pre-defined formula (we refer to this
option as kmethod = auto). Alternatively, k may be set directly, with k ∈ {1, 2, . . . , 9}.
IBEA. Although any binary indicator could be used by IBEA, we consider the ones
originally proposed, i.e., the binary ε-indicator (Iε) and the binary hypervolume indi-
cator (I−H ).

MOEA/D. The DRA strategy (Li and Zhang, 2009) used by MOEA/D requires a num-
ber of additional parameters, whose domains are given in Table 3. Furthermore, the
decomposition part of the algorithm can be selected from three options: weighted
sum aggregation (WS), Tchebycheff aggregation (TA), or penalty-based boundary in-
tersection (PBI). When PBI decomposition is used, an additional penalty parameter
ξ ∈ {1, 2, . . . , 10} needs to be set.

MO-CMA-ES. In the original proposal, the values of learning-related parameters are
set as a function of the number of decision variables. In this work, for each of the pa-
rameters listed, the parameter may either use the default formula or a specific value
within the ranges given in Table 4.4 Two parameters constitute an exception to this

3Following Bezerra et al. (2016), we use two probability parameters for the mutation: pm decides if an
individual will undergo mutation, whereas pv decides whether to mutate a particular decision variable from
the selected individual. By default, pv is set to 1/nvar.

4We use surrogate parameters to tune the covariance matrix learning (ccov) and unlearning (ucov) rates and
ensure they are always smaller than cc. Concretely, ccov = c′cov · cc and ucov = u′cov · cc.
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pattern: (i) the initial step size σ0, for which no default formula is available, and (ii) the
covariance matrix unlearning rate u′cov, which is not a parameter of the original MO-
CMA-ES, yet it is part of the most widely adopted MO-CMA-ES implementation in
Shark (Igel et al., 2008). For the latter, we allow three alternatives: (i) the original ap-
proach, i.e., u′cov = c′cov; (ii) the formula used in Shark (Igel et al., 2008); or (iii) a specific
value according to the range given in Table 4. Concerning the multi-objective compo-
nents of MO-CMA-ES, we consider three parameters to be set: (i) the quality indicator,
which can be epsilon or hypervolume; (ii) using steady-state replacement or not; and
(iii) the notion of success, which can be population or individual-based (Voß et al., 2010).

NSGA-III. It adopts the traditional approach of uniform weight generation, but also
proposes a two-layer approach for MaOPs. In the two-layer approach, the number of
weights generated for the outer and the inner layer are a function of two parameters
H1 and H2, respectively. In the uniform approach, the number of weights is a function
of the number of objectives M and a numerical parameter, p in the original paper (Deb
and Jain, 2014), that we also call H1 for simplicity. In our experiments, we use uniform
generation for M ∈ {2, 3, 5} and we consider the domains:

H1 ∈





{2, . . . , 100} if M = 2,
{2, . . . , 30} if M = 3,
{2, . . . , 10} if M = 5,

(1)

andH2 does not need to be defined. WhenM = 10, we use the two-layer approach and
the domain of both H1 and H2 becomes {1, . . . , 3}. The population size is then calcu-
lated as µ = µ′ ·W , where W is the number of weights generated and µ’ is a numerical
parameter to be configured, µ′ ∈ [0.5, 1.5].

3.2 Benchmark problems

Although multi-objective continuous optimization is ultimately a practical field rich in
real-world problem examples, MOEA research has traditionally used artificial bench-
mark problems. The main advantages of artificial benchmarks are that (i) one has bet-
ter control of the problem characteristics being analyzed, and (ii) these problems are
designed to be scalable as to the number of variables and objectives. However, we
observed that scaling the number of variables of DTLZ1 and DTLZ3 leads to ceiling
effects, and therefore we do not include them in our analysis. In this work, we con-
sider 14 box-constrained functions, namely the remaining 5 functions that comprise
the DTLZ benchmark (Deb et al., 2005) and the 9 functions that comprise the WFG
benchmark (Huband et al., 2006). We do not include the CEC 2009 competition bench-
mark (Zhang and Suganthan, 2009) as one cannot scale the number of objectives for
each problem. Table 5 summarizes the characteristics of these benchmark problems.

Number of objectives (M ). We consider four values for the number of objectives,
namely M ∈ {2, 3, 5, 10}. This allows us to conduct in-depth analysis for each of the
values considered as well as to observe trends that arise as the number of objectives
increases. We choose to represent MaOPs using five and ten objectives to analyze the
effect of this large increase in the number of conflicting objectives. Our intuition is that
MOEAs will have considerable difficulty dealing with the large effect of dominance re-
sistance present in MaOPs with ten objectives. By contrast, previous experiments (Bez-
erra et al., 2015b, 2016) indicate that some MOEAs not specifically designed for MaOPs
are still able to cope with the dominance resistance of five-objective problems if prop-
erly tuned.
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Table 5: Summarized description of the benchmark problems used in this work.
DTLZ2–6 are considered partially separable, since optimizing single variables leads
to some, but not all globally optimal solutions. U: unimodal; M: multimodal; D: de-
ceptive. DTLZ5-6 are degenerate for M = 3, but it is not possible to determine their
geometry for M > 3. Further details are provided by Huband et al. (2006).

MOP Separability Local fronts Modality Bias Geometry

DTLZ2 3∗ – U – concave
DTLZ4 3∗ – U polynomial concave
DTLZ5 3∗ – U – degenerate (M = 3)
DTLZ6 3∗ 3 U – degenerate (M = 3)
DTLZ7 3 – U,M – disconnected

WFG1 3 – U polynomial convex, mixed
WFG2 – – U,M – convex, disconnected
WFG3 – – U – linear, degenerate
WFG4 3 – M – concave
WFG5 3 – D – concave
WFG6 – – U – concave
WFG7 3 – U parameter dependent concave
WFG8 – – U parameter dependent concave
WFG9 – – M,D parameter dependent concave

Problem sizes (nvar). An experimental factor often ignored in the MOEA literature
is problem size, i.e., the number of variables present in the benchmark problems.
For instance, studies with the DTLZ benchmark consider a number of decision vari-
ables, e.g., nvar = 12 for the three-objective DTLZ2 (Deb et al., 2005), that is relatively
small compared to the usual single-objective benchmarks. In this work, we assess
MOEAs in terms of their scalability with respect to problem size by studying the range
nvar ∈ {20, 21, . . . , 60}.5

3.3 Computational cost and stopping criteria

Traditionally, MOEAs have been designed and tested using as stopping criterion a max-
imum number of function evaluations (FEs), rather than actual computation time. The
rationale is that FEs in real-world problems are computationally and/or financially ex-
pensive, and much more expensive than the time required by the MOEA itself. We
have observed three pitfalls when adopting this approach. First, many MOEAs contain
algorithmic components that are computationally expensive, and it is assumed that
the overhead posed by such components would be compensated by the overhead pre-
sented by the FEs. In the literature, however, many studies use a very large number
of FEs, contradicting the assumption that FEs are expensive (Deb et al., 2005; Huband
et al., 2006; Zhang and Suganthan, 2009). Second, other MOEAs present a very aggres-
sive intensification behavior at early evolution stages under the assumption that not
many FEs would be available. However, the optimization literature is rich on exam-
ples of drawbacks caused by such behavior (Hoos and Stützle, 2004), in particular, the
propensity of getting stuck in locally optimal solutions (in this case, local Pareto fronts).
Finally, MOEAs perform differently depending on the stopping criterion (Bezerra et al.,
2016).

In this work, we simulate different levels of computational cost by means of dif-

5The WFG benchmark presents a configurable ratio between the number of distance and position vari-
ables, as well as constraints on problem sizes. For further details on how we handle these constraints and
ratio, we refer to the supplementary material (Bezerra et al., 2017b).
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ferent maximum numbers of FEs given to each run (FEmax). Concretely, we consider
FEmax ∈ {2500, 10000, 40000}, representing high, medium, and low computational cost
per FE, respectively. In addition, we also account for computationally expensive algo-
rithmic components by setting a maximum cut-off CPU-time (tmax); where tmax is set to
1 hour for FEmax = 2500, and to 10 minutes for FEmax ∈ {10000, 40000}. Although the
same benchmark functions are used in all experiments, scenarios where MOEAs are
given a low number of function evaluations (FEmax = 2500 and tmax = 1 hour) simu-
late real-world problems that are expensive to evaluate, hence, not many evaluations
can be used and the algorithm can spend significant computational time. By contrast,
scenarios where FEmax is high6 (FEmax = 40 000 and tmax = 10 minutes) simulate real-
world problems for which function evaluations are relatively cheap to compute and
the MOEA should also execute relatively fast.

3.4 Performance metrics

Once a single run of a MOEA reaches the stopping criterion, the quality of the obtained
approximation of the Pareto-optimal front is evaluated according to a set of perfor-
mance metrics, where each metric tends to favor different characteristics of the approx-
imation front. The general desirable characteristics of an approximation front are the
following (Jiang et al., 2014).

Convergence refers to the closeness to optimality. A front is said to have converged if
all of its solutions are Pareto-optimal.

Spread refers to the extent of the front, more specifically to the distance between the
extreme solutions of a front.

Distribution refers to the evenness of the front, more specifically to the uniformity of
the distances between pairs of adjacent solutions. Gaps in the approximation that
do not exist in the Pareto-optimal front are, in principle, undesirable.

The performance metrics adopted here and the characteristics they measure are
described next (all of them should be minimized).

The hypervolume relative deviation (I rd
H ). The hypervolume metric IH(A) computes

the volume of the objective space dominated by an approximation frontA and bounded
by above (in the case of minimization) by a reference point r. Instead of directly evalu-
ating IH(A), we compute the relative deviation with respect to a reference front R:

I rd
H(A) =

IH(R)− IH(A)

IH(R)
(2)

where R is a very good approximation of the Pareto-optimal front for a given prob-
lem. The range of the hypervolume metric, and I rd

H by extension, becomes considerably
small with increasing number of objectives, making it difficult to assess the actual close-
ness to the Pareto-optimal front. Moreover, negative I rd

H values are possible in practice,
because R is often a subset of the true Pareto-optimal front, and it may present gaps or
not be spread enough.

6High in comparison to the other scenarios we consider in our setup. In practice, FEmax = 40 000 may still
be considered a low value depending on the application, but we adopt it here because FEmax = 10 000 is a
standard value used in the literature (Bader and Zitzler, 2011), and FEmax ∈ {2 500, 40 000} preserve a ratio
between FEmax values across different scenarios (a factor of 4). Other works have used a factor of 10 (Deb
et al., 2005; Huband et al., 2006), e.g., FEmax ∈ {2 500, 25 000, 250 000}, but our experiments indicate that a
value such as FEmax = 250 000 leads to floor effects for many of the benchmark functions.
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The unary additive epsilon metric (I1ε+). This metric measures the minimum
ε-translation in all objectives required such that a given approximation front A dom-
inates the reference front R. A result of I1ε+ ≤ υ means that the MOEA has successfully
approximated the actual front with υ tolerance. However, a result such as I1ε+ > υ may
represent a lack of convergence or spread. Moreover, an approximation front may have
the same I1ε+ value as another because of one point being far away from the Pareto-
optimal front, despite the former completely dominating the latter for all the other
points. Thus, this metric can be seen as a worst-case measure.

Inverted generational distance (IGD) measures convergence, distribution, and
spread like I rd

H , but it is distance-based like I1ε+. Concretely, IGD computes the aver-
age Euclidean distance between the points in the reference front and the approxima-
tion front considered. Despite the well-known issues with the classical IGD, such as
lack of Pareto-compliance and its dependence on the quality and size of the reference
fronts (Ishibuchi et al., 2015b; Rudolph et al., 2016; Bezerra et al., 2017a), it is still com-
monly used to assess the state of the art (e.g., Deb and Jain (2014)). Therefore, we use it
here for the sake of comparison with those studies.

The use of multiple metrics is motivated by the fact that, when evaluating fronts
that are incomparable in terms of Pareto-optimality, each metric favors different fea-
tures of the approximation fronts. The number of objectives (M ) and shape of the fronts
also influence the interpretation of the various metrics. In particular, as M grows, I1ε+
favors spread over distribution, while the other two metrics do the opposite (Jiang et al.,
2014). Convex fronts with smaller (better) values for I1ε+ will show increasingly larger
(worse) values for both I rd

H and IGD, as M grows. By contrast, on concave fronts, IGD
prefers distribution over spread and decreasing IGD values result in increasing values
for the other two metrics for any number of objectives.

We only consider unary metrics because the main benefit of binary metrics is being
able to identify more precisely cases where one approximation front is better than an-
other in terms of Pareto-optimality (Zitzler et al., 2003). However, this advantage is not
very useful in our context, where most approximation fronts are Pareto-incomparable,
and the binary metrics produce no better conclusions than their unary counterparts.

4 Experimental Setup

Given the experimental factors discussed above, our experimental setup proceeds as
follows. First, we define one application scenario for each combination of number of
objectives and stopping criterion, that is, 12 scenarios in total. For each scenario, we
use irace (López-Ibáñez et al., 2016), an automatic algorithm configuration method, to
find a high-performing parameter configuration for each MOEA, within the parameter
space previously defined. Finally, the best parameter configuration of each MOEA for
each scenario is evaluated by executing them on a set of benchmark problems that is
slightly different from the one used for configuring parameters, and computing the
various performance metrics discussed above.

In the context of automatic algorithm configuration, the use of different benchmark
problems for the configuration (tuning or training) phase and the evaluation (testing)
phase prevents the overfitting of parameter settings to particular problems. However,
given that the benchmark functions used in continuous optimization are considerably
heterogeneous, any disjoint partition in terms of functions would result in a training
set for tuning that is not representative of the evaluation set. Instead we partition the
benchmark set with respect to the number of decision variables (Liao et al., 2014; Bez-
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erra et al., 2016) that is, we use nvar ∈ {20, . . . , 60} \ ntesting for the tuning phase, where
ntesting ∈ {30, 40, 50} are the sizes we reserve for testing. We follow this approach as
an alternative to the leave-one-problem-out cross-validation since that would incur a
computational cost 14 times higher than the current cost, which would make this study
close to infeasible.

All our experiments were run on a single core of Intel Xeon E5410 CPUs, running
at 2.33 GHz with 6 MB cache size under Cluster Rocks Linux version 6.2/CentOS 6.2.
In addition, MOEAs were implemented in C++ and compiled using GCC version 4.7.2
and the -O3 optimization flag. We verified our implementations by comparing our
results against those obtained by the publically available reference implementations.
When these were not available, we verified our implementation against results from
the original papers proposing them.

The performance evaluation of a given algorithm (or candidate configuration) and
the setup of the tuning and testing phases are described in the following.

4.1 Performance evaluation

We compute reference fronts for each benchmark problem by randomly generat-
ing 1 000 Pareto-optimal points using the methodology described in the original
DTLZ (Deb et al., 2005) and WFG (Huband et al., 2006) papers. We noticed, how-
ever, that these randomly generated fronts were not evenly distributed and large gaps
could be identified for increasing number of objectives. Thus, we followed a series of
steps to further improve the generated reference fronts. First, we used the randomly
generated reference sets to automatically tune a subset of MOEAs for scenarios with
FEmax = 10 000, obtaining high-quality parameter settings. We then ran these MOEAs
with FEmax = 150 000 on each benchmark problem using the parameter settings ob-
tained in the previous step. Finally, for each benchmark problem, we merged all the
approximation fronts obtained in the previous step with the randomly generated refer-
ence sets, and filtered out the dominated solutions.

Before computing any performance metric, we took precautions to avoid skewed
results in the presence of strong outliers. Concretely, we have filtered out solutions
that were dominated by an upper bound point u, determined based on the extreme
solutions found in the improved reference sets:

u =





[10]M , if M ∈ {2, 3}
[15]5, if M = 5

[25]10, if M = 10

(3)

This upper bound also determines the reference point r used by the I rd
H metric, with

r = α · u, where α is a factor that ensures extreme solutions influence the hypervolume;
here we use α = 1.1.

4.2 Parameter tuning setup

We use an offline automatic algorithm configuration tool, irace (López-Ibáñez et al.,
2016), to determine high-performing parameter settings of each MOEA for each sce-
nario defined as a combination of number of objectives and maximum number of FEs.
Our reasoning is that the number of objectives and the maximum number of FEs are
usually known in advance before executing the algorithm, and that they may require
very different parameter settings.7 For instance, MOEA designers have traditionally

7Even if the precise setting for a scenario is only available a short time before actually executing the
algorithm, one can easily imagine that MOEAs may have been previously tuned for many different scenarios
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tried to devise effective algorithms regardless of the number of objectives presented
by the problem. Based on the current insights available in the literature, however, we
believe that such a goal is counter-productive, leading to generalist parameter settings
that perform worse than parameter settings tuned for each number of objectives. The
same reasoning goes for the stopping criterion, as previously discussed.

For fairness, we use a common tuning setup for all algorithms and scenarios. Each
run of irace is given a maximum budget of 20 000 experiments, i.e., executions of the
MOEA being tuned. Each MOEA execution is stopped according to the stopping cri-
teria of the given scenario. All runs of irace use, as training benchmark problems, the
union of the DTLZ, except for DTLZ1 and DTLZ3, and WFG benchmarks with a fixed
number of objectives given by the scenario and with problem sizes nvar ∈ {20, . . . ,
60} \ ntesting for tuning, where ntesting ∈ {30, 40, 50} are the sizes we reserve for testing.

The irace method was originally designed for tuning single-objective optimizers,
but it may use unary performance metrics to evaluate the quality of the approximation
fronts returned by each MOEA execution (López-Ibáñez and Stützle, 2012). In partic-
ular, for scenarios with M ∈ {2, 3, 5}, we use the hypervolume relative deviation (I rd

H )
metric, whereas for scenarios with M = 10, we use the unary additive epsilon (I1ε+)
metric because I rd

H becomes exceedingly time-intensive given the large number of ex-
periments executed during tuning. Metrics are computed as described in Section 3.4.

4.3 Evaluation (testing) setup

Once all MOEAs have been properly tuned for each scenario, we end up with one high-
performing configuration of each MOEA for each scenario. Next, we run each of them
25 times on the test benchmarks. For each scenario, the test benchmarks are also the
union of the DTLZ, except for DTLZ1 and DTLZ3, and WFG benchmark sets for a given
number of objectives M with problem sizes ntesting ∈ {30, 40, 50}. For each scenario,
the stopping criterion for all runs is the same used for the tuning (see Section 3.3).
The approximation sets returned by each run are evaluated according to performance
metrics discussed earlier (Section 3.4): I rd

H , I1ε+ and IGD.
The following sections analyze the results of these experiments and compare the

various MOEAs according to each scenario and performance metric.

5 Preliminary analysis

This section conducts a preliminary analysis to assess our experimental setup. In par-
ticular, we verify the effectiveness of parameter tuning, the effect of the underlying EA,
the importance of the stopping criterion, and the correlations between performance
metrics.

5.1 Effectiveness of parameter tuning

As previously discussed, we used irace as an offline automatic algorithm configurator
to find high-performing parameter configurations of the MOEAs for each experimen-
tal scenario. All tuned configurations for the various MOEAs and scenarios are avail-
able from the supplementary material (Bezerra et al., 2017b). Since both irace and the
MOEAs are stochastic optimizers and the benchmark functions are very heterogeneous,
we cannot expect that the configurations found are better than the default configura-
tions from the literature in every run; yet we expect that they are better overall.

We compare the results obtained by MOEAs using tuned parameter settings ver-
sus default ones in the scatter plots shown in Figure 1. In particular, the points de-

and tuned settings are available from a database.
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Figure 1: Scatter plots comparing the performance of tuned (x-axis) and default (y-
axis) parameter configurations of MOEAs according to the I rd

H (left), I1ε+ (center), and
IGD (right) metrics. Each point is the mean result of 25 runs of the same MOEA on a
particular benchmark problem with the same stopping criterion.

picted in the plots are pairs (t, d), where t and d are the mean results, according to the
corresponding metric, over 25 runs of the tuned and the default version of a MOEA,
respectively. Each point corresponds to one MOEA on a specific MOP from the test-
ing benchmark set and a specific stopping criterion. In total, the number of samples
of each plot comprises 4032 pairs (8 MOEAs, 14 MOPs, 3 values of ntesting, 4 values of
M and 3 stopping criteria). The only algorithm left out of this analysis was MOGA,
since the original work does not provide default parameter settings. Points above the
diagonal denote runs where the tuned settings perform better than default ones. In
parenthesis at the top of each plot, we provide the ratio of pairs for which t < d; e.g.,
the value 0.769 means that the tuned MOEAs are better in terms of the I rd

H metric than
the default settings in 76.9% of the runs. In terms of the I1ε+ and IGD, the values are
62.9% and 53.5%, respectively. A consequence of using I rd

H as the metric guiding irace in
most scenarios is that the benefits of the tuning are most significant for I rd

H . Moreover,
since optimizing I rd

H does not necessarily optimize IGD, the tuned parameter settings
may not be better than the default ones with respect to IGD. This analysis shows that
it is possible to find much better parameter configurations than the defaults suggested
in the original proposals or in benchmark assessments (Deb et al., 2005; Huband et al.,
2006); yet, the setup utilized to find these configurations must be thoroughly described
in order to understand the results produced.

Even more noteworthy is the effect of parameter tuning for a given stopping crite-
rion. The example in Fig. 2 shows the development of I rd

H over the number of function
evaluations (averaged across 25 runs) of IBEA with DE as underlying EA on problem
WFG8 (M = 3, nvar = 30), using four different parameter configurations. The first con-
figuration, labelled IBEA, uses the parameter settings proposed in the original DEMOIB

paper (Tušar and Filipič, 2007). The remaining three curves were obtained by parameter
configurations selected by irace for different FEmax values, and are labelled IBEA FEmax.
To generate the plot, all configurations were run up to FEmax = 50 000. The plot shows
that IBEA 2500 only performs well for small values of FEs and performs poorly for
larger values of FEs. Interestingly, the default configuration is only better than IBEA
2500 when the number of FEs is large, and always worse than the rest. A similar pat-
tern is observed in other curves: the best performance of a configuration w.r.t. other
configurations is typically obtained around the number of FEs for which the algorithm
was tuned.
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Figure 2: I rd
H performance of IBEA using DE as underlying EA with different numerical

parameter settings on WFG8 (M = 3, nvar = 30).
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Figure 3: Classification tree of the underlying EA selected by irace for the 96 high-
performing MOEA configurations (excluding MO-CMA-ES) found in the tuning phase.
Cluster cardinalities are given as percentages in the leaf nodes.

5.2 Underlying EA choices

The classification tree given in Figure 3, generated by the rpart R library, analyzes which
underlying EA was chosen by irace for each high-performing algorithm configuration.
In the tree, the left subtree of a node represents the subset of scenarios that satisfy the
condition stated by the node. For instance, the root of the classification tree shows
that the most important factor affecting the choice between the different underlying
EAs is the MOEA considered. The left subtree refers to HypE, IBEA, MOEA/D, SMS,
and SPEA2, while the right subtree refers to MOGA, NSGA-II, and NSGA-III. The first
insight from this analysis is that, for the three latter MOEAs, high-performing MOEA
configurations tend to use GA, as traditionally adopted in the literature, regardless of
other experimental factors.

Moving along the left subtree, we see that for the remaining MOEAs, DE is chosen
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Figure 4: Mean I rd
H values of different MOEAs using parameter settings tuned for a

common stopping criterion (FEmax = 10 000) on WFG3 (M = 3, nvar = 50).

more often for most of the scenarios considered. There are some exceptions, though.
For example, by following the right subtree from the second node, we can observe that
the chosen EA was often GA when solving ten-objective problems using HypE or IBEA
given a low or moderate number of FEs. Finally, by summing up the percentages of the
different EA choices (given in the leaf nodes), we see that DE was selected in 52% of the
configurations generated, with GA being selected in the remaining 48%. Although we
remark that the differences in performance between using DE or GA vary significantly
according to the MOEA considered, this result is strong evidence that the “best” un-
derlying EA depends not only on the scenario, but also on the particular MOEA (Tušar
and Filipič, 2007; Bezerra et al., 2015b).

5.3 The importance of FEmax

The effect of generalizing results obtained with a given stopping criterion to a different
one is illustrated in Fig. 4, which shows the development of mean I rd

H (25 independent
runs) over the number of function evaluations for various MOEAs that were tuned
with a stopping criterion of FEmax = 10 000 and then run with FEmax = 50 000. The plot
shows the curves crossing at several points of the plot, meaning that different stopping
criteria would favor different algorithms.

A more general observation is obtained by measuring the correlation between the
performance of the MOEAs for two different FEmax values. More precisely, we rank all
results for each performance metric and each experimental scenario. Then, we compute
the sum of the ranks for each MOEA according to each metric and each scenario, and
split the data according to FEmax value. Finally, we compute the correlation between
rank-sum values for different FEmax values, paired by MOEA, metric and experimental
factor. Table 6 gives the Pearson’s correlation coefficients, considering both results from
tuned and from default configurations of the MOEAs.

The correlation coefficients show a significant positive correlation, which sug-
gests that the overall ranking between MOEAs does not strongly depend on the par-
ticular stopping criterion. However, the correlations between results obtained with
FEmax = 2500 and with larger values of FEmax are much lower than the correlation
between FEmax = 10000 and FEmax = 40000, which indicates that generalizing conclu-
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Table 6: Pearson’s correlation coefficient between MOEA rankings for different FEmax.
tuned default

corr(2 500, 10 000) 0.86 0.77

corr(2 500, 40 000) 0.81 0.68

corr(10 000, 40 000) 0.94 0.96
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Figure 5: SMS and IBEA performance according to the I rd
H (left) and IGD (right) on

function WFG8 (M = 2, nvar = 30, FEmax = 10 000).

sions obtained with very low FEmax to large FEmax or vice versa is not advisable. A more
detailed analysis is obtained by studying scatter plots, but for brevity, this analysis is
provided as supplementary material (Bezerra et al., 2017b).

5.4 Performance metric correlations

Each performance metric prefers different characteristics of approximation fronts. For
this reason, we examine the correlations between these metrics on selected scenarios.
First, it is common to see different rankings for the same MOEAs depending on the
metric chosen, independently of the scenario considered. An example of this is shown
by boxplots of the I rd

H and IGD for SMS and IBEA on the WFG8 function withM = 2 and
nvar = 30 given in Figure 5, where the I rd

H values indicate better performance for IBEA
while IGD indicates the opposite. As previously mentioned, on concave problems the
I rd
H prefers spread over distribution, while the IGD does the opposite. This is confirmed

by the empirical attainment function (EAF) difference plot (López-Ibáñez et al., 2010)
given in Figure 6, where IBEA finds more solutions on the extremes of the objective
space, whereas SMS is better at filling the gaps throughout the front.

Although the ranking of the MOEAs depends on the metric considered, the best
and worst performing MOEAs are consistent on most scenarios when M ∈ {2, 3, 5}. It
is only when M = 10 that one sees major variations in the best and worst MOEAs ac-
cording to the metric chosen. Table 7 shows Pearson’s correlation coefficients between
the rankings assigned by the performance metrics to MOEAs on different scenarios
grouped by M . The first column, for instance, gives correlation coefficients between
different metrics on scenarios with M = 2. The correlation is high for M ∈ {2, 3, 5} and
much lower when M = 10 for all metric pairs assessed. Concerning I rd

H and IGD, these
metrics have recently been shown to consistently disagree on concave problems (Jiang
et al., 2014) and, as we will discuss in Section 7, this is the type of problem that becomes
considerably harder with increasing M . Correlations involving I1ε+ are considerably
smaller because of the large disparity of the ranks obtained by MOEA/D for M = 10
among the various metrics, as shown later in Table 8.
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Figure 6: EAF difference plot of the fronts produced by IBEA (left) and SMS (right) on
function WFG8 (M = 2, nvar = 30, FEmax = 10 000).

Table 7: Pearson’s correlation coefficient between MOEA rankings for different perfor-
mance metrics.

M 2 3 5 10

corr(I rd
H , I1ε+ ) 0.97 0.94 0.95 0.50

corr(I rd
H , IGD ) 0.89 0.86 0.85 0.78

corr(I1ε+, IGD ) 0.95 0.88 0.90 0.35

6 Comparison of MOEAs

We now move on to discuss the performance of the MOEAs across all scenarios consid-
ered. We group our discussion for scenarios where M ∈ {2, 3, 5} since the previously
discussed agreement between performance metrics allows us to clearly identify the
best-performing MOEAs on these scenarios, and we discuss results for M = 10 sep-
arately. Moreover, we show only results for FEmax = 10 000 for brevity, although we
remark that our conclusions are general enough to account for all scenarios. The com-
plete set of results as well as a more detailed analysis concerning each specific scenario
are provided as supplementary material (Bezerra et al., 2017b).

6.1 Performance patterns for M ∈ {2, 3, 5}
For each metric and each scenario, we partition the results according to individual
benchmark instances and the random seeds used to repeat each experiment 25 times.
Within each partition, we rank the MOEAs from 1 to 9, according to the performance
value obtained by their run. Then, we sum up the ranks to obtain an overall ranking,
where lower rank-sum values indicate better performance. Table 8 summarizes this
rank-sum analysis, from which the following performance patterns can be observed.

From the rank-sum analysis, we can cluster algorithms into four different groups
according to their performance on scenarios with M ∈ {2, 3, 5}. In general, SMS and
IBEA are the algorithms that present the best and most robust performance, regard-
less of the experimental factors considered. The second group is formed exclusively
by MOGA, which consistently, as expected, presents the worst performance among
all MOEAs. The remaining two groups comprise algorithms whose performance is
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Table 8: Ranking of MOEAs for various metrics and values ofM (FEmax = 10 000). Numbers in parenthesis give the rank-sum difference
to the best ranked (left-most) MOEA. MOEAs in boldface present rank sums statistically significantly better than the rest according to
Friedman’s non-parametrical test.

M = 2

I rd
H IBEA SMS (113) SPEA2 (1149) NSGA-II (1846) MOEA/D (2819) HypE (3593) CMA (3731) NSGA-III (4017) MOGA (6682)

Iε SMS IBEA (425) SPEA2 (894) NSGA-II (1993) MOEA/D (3091) HypE (3401) CMA (3749) NSGA-III (4231) MOGA (6740)

IGD SMS SPEA2 (711) IBEA (1387) HypE (2382) NSGA-II (2774) MOEA/D (4237) NSGA-III (5068) CMA (5240) MOGA (7297)

M = 3

I rd
H SMS IBEA (556) MOEA/D (1805) HypE (2290) SPEA2 (2302) CMA (3616) NSGA-II (4378) NSGA-III (4627) MOGA (7029)

Iε SMS IBEA (494) SPEA2 (2516) CMA (2968) HypE (3132) MOEA/D (3552) NSGA-III (4253) NSGA-II (4885) MOGA (7323)

IGD IBEA SMS (654) SPEA2 (1041) MOEA/D (1622) HypE (2960) NSGA-II (3640) CMA (4240) NSGA-III (4264) MOGA (6886)

M = 5

I rd
H SMS MOEA/D (1471) IBEA (1535) SPEA2 (3295) CMA (3374) NSGA-III (3897) NSGA-II (4130) HypE (5811) MOGA (7562)

Iε SMS IBEA (1713) MOEA/D (2569) CMA (2588) NSGA-II (4086) NSGA-III (4124) SPEA2 (4701) HypE (5907) MOGA (7664)

IGD SMS IBEA (1898) MOEA/D (2119) NSGA-II (2329) CMA (2515) SPEA2 (3579) HypE (5040) NSGA-III (5225) MOGA (7398)

M = 10

I rd
H IBEA SMS (222) CMA (1116) NSGA-III (2326) SPEA2 (2532) NSGA-II (3241) HypE (4846) MOEA/D (5114) MOGA (6919)

Iε MOEA/D IBEA (1258) SMS (2794) CMA (3250) NSGA-III (3347) NSGA-II (4045) SPEA2 (4562) HypE (5214) MOGA (6922)

IGD NSGA-III IBEA (36) SPEA2 (646) NSGA-II (1776) SMS (1828) CMA (1987) HypE (2557) MOEA/D (4424) MOGA (5151)
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sensitive to specific problem characteristics, the stopping criterion and the number of
objectives. The results of NSGA-II, SPEA2, and HypE worsen with increasing num-
ber of objectives. By contrast, MOEA/D, NSGA-III, and MO-CMA-ES rank clearly
worse than IBEA and SMS for low number of objectives, but rank comparably better
for M = 10 for at least one of the metrics we considered.

The performance patterns observed lead to some interesting insights. First and
most important, IBEA and SMS prove that it is possible to design MOEAs that can
be applied to a wide range of objectives, as long as their parameter settings are prop-
erly configured for each scenario. By contrast, algorithms that were designed specif-
ically for MaOPs, such as HypE and NSGA-III, are not the best MOEAs for a low
number of objectives. This is also the case for MOEA/D and MO-CMA-ES, which
are often assumed to be better than older MOEAs (such as IBEA, SPEA2 or NSGA-II)
for problems with M = 2 objectives. As our results show, this is not necessarily the
case when high-performing configurations are used for these older MOEAs. The sec-
ond insight we observe is that algorithms are nearly perfectly clustered according to
their underlying design paradigm, that is, the performance of indicator-based MOEAs
is similar, with the exception of HypE; the same can be said, to a lesser degree, of
decomposition-based MOEAs and, independently, of dominance-based MOEAs with
the exception of MOGA. We now summarize the most important conclusions concern-
ing each paradigm below.

Indicator-based. The performance displayed by SMS and IBEA is remarkable with
both algorithms being particularly robust to all the experimental factors considered in
this work. More importantly, these MOEAs rank best not only for the indicator that
is used to drive their search but for essentially all indicators. By contrast, the perfor-
mance of HypE depends on the scenario. For M ≤ 3, HypE appears in the middle of
the ranking among the other MOEAs, whereas for M > 3, HypE is among the worst-
ranked ones. The explanation for the low performance of HypE in M > 3 scenarios is
not straightforward. A possible explanation is that the estimation (104 samples) of the
shared hypervolume contribution (IhH ) done for M > 3 is not sufficiently accurate. To
test this hypothesis, we carried out additional experiments with different numbers of
samples (105 and 106) to increase the estimation accuracy, stopping after FEmax = 10 000
or tmax = 10 minutes. The changes in the number of samples produced no significant
differences in the rank sums. We also tested the exact computation of IhH instead of the
estimation with a stopping criteria of FEmax = 50 000 or tmax = 3 hours. The exact com-
putation did improve the performance of HypE by a large margin on most problems,
however, it was still not enough to match the results of IBEA and SMS. Nevertheless,
this result suggests that the estimation accuracy in HypE is crucial and that a number
of samples of around 106 is not yet enough to ensure high enough accuracy.

Dominance-based. The performance trends of these MOEAs are highly dependent
on M . When M ≤ 3, the performance differences between dominance- and indicator-
based algorithms are relatively small. In fact, SPEA2 is sometimes able to outrank IBEA
as a consequence of the particularly good performance of SPEA2 on the WFG bench-
mark, which has been previously reported (Bradstreet et al., 2007). When M = 5, their
performance becomes worse relatively to IBEA and SMS. Some instances of particularly
poor ranking of SPEA2 and NSGA-II are related to specific problem characteristics that
we will discuss later. Finally, as already discussed above, MOGA is consistently ranked
in the last place. This is only in part explained by its lack of elitism. Additional exper-
iments show that an elitist variant of MOGA improves over its non-elitist counterpart,
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Table 9: Ranking of tuned and default configurations of NSGA-II and NSGA-III. Num-
bers in parenthesis give the rank-sum difference to the best ranked (left-most).

M Ranking according to I rd
H (FEmax = 10 000)

2 NSGA-IIt NSGA-IId (1270) NSGA-IIIt (1424) NSGA-IIId (2257)

5 NSGA-IIt NSGA-IIIt (11) NSGA-IIId (901) NSGA-IId (1212)

yet it is unable to match the performance of NSGA-II.

Decomposition-based. MOEA/D and NSGA-III are outranked by most other
MOEAs for M = 2. For M ∈ {3, 5}, the rankings of MOEA/D improve consider-
ably, and it is ranked as the best MOEA on a few scenarios not shown in Table 8, but
available as supplementary material (Bezerra et al., 2017b). By contrast, it is common
that NSGA-III and NSGA-II appear close to each other in the rankings. In fact, we
conducted a set of additional experiments to compare these two algorithms, includ-
ing their default configurations. Table 9 shows the ranking of the results according to
I rd
H . For M = 2, both default and tuned NSGA-II outrank their NSGA-III counterparts.

With M = 5, the tuned configurations obtain similar results and significantly better
than the default configurations, while the default configuration of NSGA-III outranks
the default configuration of NSGA-II. This result reinforces the importance of proper
parameter tuning before comparing algorithms. These conclusions are consistent with
recent findings about the effectiveness of NSGA-III in comparison with NSGA-II for a
low number of objectives (Seada and Deb, 2015).

MO-CMA-ES. We observe two main characteristics of the performance of MO-CMA-
ES. First, on the FEmax = 2500 scenarios (tables and results available as supplementary
material (Bezerra et al., 2017b)), it performs much worse than the other MOEAs. For
larger stopping criteria, the performance of MO-CMA-ES improves and becomes even
better for largerM . For theM = 5 and FEmax = 40 000 scenario, its performance is often
similar to that of SMS and IBEA, although it performs consistently worse on WFG1.

6.2 Performance patterns for ten objectives (M = 10)

The increase in the number of objectives to ten leads to changes in the patterns reported
above. As a first step, we regenerated the reference fronts because MOEAs were able
to find up to 30 000 new solutions not dominated by the reference fronts generated in
Section 4.1. This would lead to I rd

H values in the range [−2, 0]. Thus, we decided to
regenerate the reference fronts as the union of the previous reference fronts together
with the approximation fronts produced by all MOEAs, and used these to compute the
various performance metrics.

One salient observation in the case of M = 10 is that the best ranked MOEA
strongly depends on the performance metric used, as shown in Table 8. Although this
is expected, due to the different preferences implied by each metric (an example is the
I rd
H and IGD on the concave WFG problems (Jiang et al., 2014)), the effect is stronger

for ten objectives. The relative ranking of MOEA/D also changes strongly between I rd
H

and I1ε+. A first conclusion is that designing a single MOEA for MaOPs that optimizes
simultaneously a diverse set of performance metrics is a challenging task. Moreover,
conclusions obtained from a single performance metric may change when using a dif-
ferent metric. This is specially worrying when comparing MOEAs that were configured
for metrics different from those used for the final evaluation and when relying exclu-
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sively on metrics that are not Pareto-compliant, such as IGD.
When considering all scenarios, and not only those shown in Table 8, a few obser-

vations stand out. First, the only algorithm to be well-ranked according to all metrics
is IBEA, being the best according to I rd

H and statistically indifferent to the top-ranking
algorithm for IGD. By contrast, MOEA/D and NSGA-III also rank first for particular
metrics, but much worse according to others. Finally, SMS and MO-CMA-ES display
very good performance according to I rd

H and I1ε+ in many problems, but rank worse
according to IGD.

We now analyze each algorithm in detail based on the data provided as supple-
mentary material.

IBEA. The only exceptions to the good overall performance of IBEA are the concave
WFG problems and the DTLZ6 and DTLZ7 problems. However, most MOEAs perform
poorly on these problems. In addition, the performance of IBEA is consistently good
across the different stopping criteria considered, but its top-performance is observed
when FEmax = 40 000, where it ranks the best according to all metrics.

NSGA-III. The performance of NSGA-III varies greatly depending on the given met-
ric. It is the best ranked algorithm according to IGD, largely due to its results on the
concave WFG functions. Moreover, NSGA-III is always ranked better than NSGA-II,
demonstrating that the diversity measure of the former is better suited for scenarios
with many objectives than the crowding distance used by NSGA-II.

MOEA/D. It is among the best ranked MOEAs according to I1ε+, whereas it becomes
the second worst MOEA according to I rd

H and IGD. Given the characteristics of the met-
rics, these results indicate that MOEA/D does not produce a good distribution of non-
dominated solutions with respect to the reference sets. One possible explanation is
that some implementations of MOEA/D combine DE-operators with polynomial mu-
tation (Li and Zhang, 2009; Zhang et al., 2009), which is a combination never used by
other DE-based MOEAs and not included in the parameter space described in Sec-
tion 3.1 for fairness. However, we evaluated the effects of this choice by tuning a ver-
sion of MOEA/D that combines DE and polynomial mutation. Experiments on the
M = 10 and FEmax = 40 000 scenario show that this alternative MOEA/D further im-
proves I1ε+ but at the cost of even worse I rd

H and IGD, thus producing an even poorer
distribution of nondominated solutions.

The second hypothesis we tested is whether MOEA/D would still suffer from poor
distribution when tuned using a different metric than I1ε+. Hence, we tuned the param-
eters of MOEA/D using the IGD metric for M = 10 and FEmax = 40 000 scenario. Re-
sults show that tuning for IGD improves the distribution of the approximation fronts
generated, and MOEA/D becomes the fourth best-ranked MOEA according to IGD.
However, the ranking does not improve for I rd

H and worsens considerably for I1ε+.

SMS. For scenarios with ten objectives, SMS is no longer among the top two MOEAs,
except for the scenario with FEmax = 2500 and tmax = 1 hour and according to I rd

H . SMS
becomes very computationally expensive with ten objectives, thus the most logical ex-
planation is that the cut-off time of tmax = 10 minutes of other scenarios stops SMS
from producing better results. To corroborate this hypothesis, we compute the average
number of function evaluations (FEs) used by SMS across different M scenarios. While
for all scenarios with 2, 3, and 5 objectives, SMS is able to reach FEmax, this is not the
case for scenarios with 10 objectives, where it uses on average 2478.82, 8858.32, and
32723.9 FEs for scenarios with FEmax equal to 2500, 10000, and 40000, respectively.
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Table 10: Comparison between MO-CMA-ES and SMS (M = 10, FEmax = 10 000) on
specific functions. D stands for DTLZ and W stands for WFG. Each entry shows the best
ranked of the two, according to the sum of ranks computed by taking all other MOEAs
into account. = denotes no statistically significant difference between the rank-sums.

D5 D6 W1 W2 W4 W6 W7 W8

I rd
H SMS SMS CMA = SMS CMA = SMS
I1ε+ = SMS = SMS SMS CMA = CMA
IGD = CMA CMA = CMA CMA CMA =

Furthermore, the population size selected by irace also decreases on the scenarios
where the cut-off time has an effect on the FEs, suggesting that it is better to save time
by reducing the complexity of the hypervolume computation in order to perform more
FEs. Yet, SMS cannot outrank other MOEAs for high number of objectives if runtime is
limited.

MO-CMA-ES. The above analysis of SMS also applies to MO-CMA-ES, since both al-
gorithms use the exclusive hypervolume contribution to guide their search. Moreover,
the performance of MO-CMA-ES on M = 10 is very similar to that of SMS. Comparing
both algorithms on individual benchmark functions reveals performance differences
on particular problems. Table 10 summarizes the results of applying the Friedman test
only to MO-CMA-ES and SMS on specific benchmark functions. The best ranked al-
gorithm is shown if the test suggests that the difference in ranks is significant, and an
equality sign is shown otherwise. The first observation is that metrics agree or not de-
pending on the particular function, confirming similar observations made above. On
convex problems (WFG1–2), I1ε+ disagrees with the other metrics, whereas on concave
problems (WFG4–8), the IGD tends to disagree with the others.

Another observation is that, according to IGD, MO-CMA-ES often ranks better or
at least equivalently to SMS on most WFG problems and on DTLZ5–6. In general,
we observe that MO-CMA-ES produces consistently good results in terms of IGD for
different number of variables. By contrast, MO-CMA-ES performs much worse than
SMS on WFG3 and on the deceptive WFG problems (WFG5 and WFG9).

Finally, the relatively good ranking of NSGA-II and SPEA2 in most scenarios with
ten objectives may seem somewhat surprising. However, we must remark that both
algorithms improve significantly after proper parameter tuning. Moreover, the tuned
configurations of SPEA2 use DE as the underlying EA for scenarios with FEmax equal to
10 000 and 40 000, highlighting the need of proper tuning and choice of underlying EA
before comparison. In fact, when we compute Pearson’s correlation coefficient consid-
ering only the rankings obtained by these two algorithms before and after tuning, we
get only a low correlation (0.31), confirming the positive effects of the automatic tuning
coupled with the flexibility of choosing different underlying EAs.

7 Problem-specific analysis

As previously discussed, dominance resistance describes the fact that the proportion
of locally mutually nondominated solutions increases rapidly for higher number of ob-
jectives, and MOEAs cannot rely on dominance to guide the search towards the Pareto
front. As an indication of dominance resistance in our experiments, we take the perfor-
mance of the algorithms as given by the values of the metrics that we measure; thus,
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Figure 7: Boxplots of all I rd
H values for FEmax = 10000, grouped by M and benchmark

function, depicting how dominance resistance affects problems in different ways.

we interpret here an increase in metric values for increasing number of objectives as
indirect evidence of the fact that an algorithm suffered from increased dominance re-
sistance. From our results, we can make the following two observations. First, the
overall trend shown by the results confirms that performance typically decreases as
the number of objectives increases. As a result, the performance of MOEAs on ten-
objective problems is poor for many problems, showing that MOEAs still need major
improvements to deal with dominance resistance.

The second observation concerns the interaction between the number of objectives
(M ) and particular problem characteristics on the difficulty of benchmark problems. In
particular, an increase in M affects the performance of the algorithms in very different
ways depending on the particular problem, as we illustrate in Figure 7. Boxplots of
I rd
H in scenarios with FEmax = 10 000 are shown grouped by the number of objectives
M and benchmark function. For brevity, plots showing other metrics are provided as
supplementary material (Bezerra et al., 2017b). Some problems, such as DTLZ7, appear
to show more dominance resistance than others. Conversely, for particular problems
and metrics one can see the opposite effect. For instance, results according to the I rd

H

metric on DTLZ4 get better as M increases, and the same happens for results on WFG2
according to both I rd

H and I1ε+ metrics.
Next, we identify problem-specific features that affect MOEA performance.

7.1 Geometry of Pareto-optimal fronts

On problems with concave Pareto-optimal fronts, scenarios with M ∈ {2, 3} show sim-
ilar metric values, yet metric values become considerably larger (worse) as the number
of objectives is increased, regardless of the other characteristics they present. By con-
trast, on problems with convex Pareto-optimal fronts such as WFG1–3, most MOEAs
using GA instead of DE perform worse already for M ∈ {2, 3}, but the metric val-
ues do not significantly increase by the addition of more objectives. As a result, when
M ∈ {5, 10}, MOEAs achieve smaller metric values on convex problems than on the
concave ones. We illustrate this with the boxplots of IGD shown in Figure 8. The IGD
values of MOEAs given FEmax = 40 000 on the (convex) WFG1 problem with nvar = 40
and increasing M are shown on the top, and the IGD values on the (concave) WFG4
problem with the same experimental factors are given at the bottom. IGD values are
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Figure 8: IGD performance of MOEAs given 10 000 FEs on selected problems with 40
variables and M = 2 to M = 10 objectives. Top: WFG1 having convex Pareto-optimal
fronts; bottom: WFG4 having concave Pareto-optimal fronts.

relatively small and homogeneous for all MOEAs on the concave problem with 2 and 3
objectives (bottom), yet the values increase vary rapidly with higher number of objec-
tives. By contrast, on the convex problem (top) the values are more heterogeneous for
various MOEAs, but they increase much more slowly with the number of objectives.
These results are consistent with the findings of Schütze et al. (2011), who report that
the increase in dominance resistance is only clearly observable for concave problems.

7.2 Local Pareto-optimal fronts

MOEAs face considerable difficulties on problems that present local Pareto-optimal
fronts, such as DTLZ6. We illustrate the effect on performance by running NSGA-II
on several modified versions of the DTLZ6 problem, which we parametrize to regu-
late the number of local Pareto-optimal fronts. In the original DTLZ6 formulation, an
auxiliary function g(x) =

∑
x∈xM

xρ with ρ = 0.1 induces local Pareto-optimal fronts,
where smaller ρ values lead to more local fronts. The plot given in Figure 9 shows
the development of the I rd

H value, averaged over 25 runs, obtained by NSGA-II (tuned
for M = 3 and FEmax = 10 000) across 50 000 FEs on the DTLZ6 problem (nvar = 50,
ρ ∈ {0.01, 0.1, 1.0, 5.0}). The shift in the curves towards smaller (better) values follows
the increase in ρ, confirming that for M = 3 the difficulty of this problem is strongly
dependent on the number of local Pareto-optimal fronts.

7.3 Density bias

Two of the benchmark problems considered (DTLZ4 and WFG1) present bias, i.e., a
shift in the density of the objective space meant to test whether MOEAs can obtain a
well-distributed approximation front. In DTLZ4, for example, the degree of bias is con-
trolled by a parameter α, set by default to 100, where larger α values lead to a stronger
bias and, presumably, more difficult problems. Figure 10 illustrates this by showing
the development of the I rd

H value, averaged over 25 runs, obtained by SPEA2 (tuned for
M = 3 and FEmax = 10 000) on the DTLZ4 problem with M = 3, nvar = 50, and several
values of α ∈ {1, 10, 100, 1000}. The plot shows that large bias leads to much worse
approximation fronts (up to 10% from the optimal hypervolume). In general, when
M ∈ {2, 3}, the performance of some MOEAs, such as SPEA2, is greatly affected by
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the bias of problems such as DTLZ4 and WFG1, relative to their performance on sim-
ilar problems, DTLZ2 and WFG2, respectively, without such bias. However, with the
addition of more objectives, results become more similar between these problems that
mostly differ in the bias; thus we believe that the difficulty introduced by bias does not
increase with M . In fact, performance metrics values on DTLZ4 become increasingly
better, in general, with larger M , as we had previously discussed.

8 Conclusion

In this work, we have conducted a comprehensive performance assessment of multi-
objective evolutionary algorithms (MOEAs) both on multi- and many-objective opti-
mization problems (MOPs and MaOPs, respectively). Our study considered a large
number of experimental factors, namely: (i) number of MOEAs, (ii) a formally defined,
large parameter space, (iii) benchmark problems with various numbers of objectives,
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(iv) different stopping criteria, and (v) several performance metrics. We designed dif-
ferent scenarios for each combination of number of objectives and stopping criteria,
and, before comparing MOEAs, we identified high-performing parameter configura-
tions for each scenario by means of an automatic algorithm configuration method. Fi-
nally, we also established a clear separation between high-level multi-objective (MO)
algorithmic components and the underlying evolutionary algorithm (EA) with which
they are coupled, thus encompassing a large number of MOEA variants that only differ
on the latter, while at the same time using the best underlying EA for each MOEA and
experimental scenario.

Given the large amount of data produced in this work, we have focused the dis-
cussion on the most important insights. First, we have shown how the use of high-
performing (tuned) parameter configurations, instead of the default ones from the lit-
erature, can significantly affect the comparison. In particular, the choice of underlying
EA, while often overlooked in the literature as a minor detail, depends strongly on the
particular scenario and has a significant impact on the performance of MOEAs. More-
over, the choice of performance metric, number of objectives and, to a lesser extent,
stopping criterion, all affect the ranking of MOEAs. All this indicates that one should
avoid over-generalizing conclusions from one choice to a different one. Nevertheless,
we can still identify overall good MOEAs for the scenarios studied here. In particu-
lar, SMS shows the best and most robust performance across a number of objectives
M ∈ {2, 3, 5}, and IBEA is a close competitor to SMS or sometimes also surpasses it.
In the case of ten objectives, the best MOEA strongly depends on the particular perfor-
mance metric used for ranking: IBEA is the best for I rd

H , MOEA/D for I1ε+ and NSGA-III
for IGD. Overall, IBEA shows the most consistent performance across all metrics.

Although our analysis confirms and extends previous observations about the influ-
ence of problem-specific features, such as convexity, local Pareto fronts, bias, and dom-
inance resistance, the results presented here also cast into doubt some of the accepted
intuitions and “common knowledge” in MOEA research. We attribute this to the fact
that our experimental setup aims at avoiding over-generalizations and unintended bi-
ases caused by floor effects, the choice of parameter settings, limited number of MOEAs
and scenarios under study, and overlooked interactions between MO-components and
underlying parameters. The characteristics of our study suggest that the conclusions of
previous, more restricted studies may have been premature due to under-performing
parameter settings and specific scenario characteristics.

Nonetheless, even a study as large as the one presented here is limited in com-
parison to the number of MOEAs and problems available in the literature. However,
experiments with additional algorithms can be easily incorporated into the analysis fol-
lowing the experimental principles discussed above. Moreover, the use of an automatic
configuration method for deciding the parameter settings of each MOEA means that
the process can be fully automated given a benchmark set and a performance metric,
making such extensions straightforward. In fact, an important extension of this inves-
tigation concerns benchmark problems. Specifically, we have briefly analyzed problem
features and their role on dominance resistance, and we show that designing MOEAs
and tuning their parameters according to specific problem features improves their per-
formance. However, the precise problem features are often not known in advance for
real-world problems. Further work in this direction would benefit from the creation of
a set of benchmark problems parametrized by various features, and from the identifi-
cation of relevant features that can be cheaply computed in advance or while solving a
problem.
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Another direction in which this investigation should evolve is to consider the use
of external archives, as discussed in Section 3. In particular, many works have ad-
dressed the importance of external archives for convergence (López-Ibáñez et al., 2011),
and our previous work on the topic has demonstrated how MOEAs can benefit from
the complementary roles of populations and archives in search (Bezerra et al., 2016).
Existing experimental comparisons (Tanabe et al., 2017) rely on default configurations
even when studying the anytime behavior of MOEAs, for which we know that sig-
nificant different results may obtained after parameter tuning (Radulescu et al., 2013).
We expect that an analysis similar to the one conducted in this work but considering
external archives could lead to different, yet complementary insights that would be
of particular importance in scenarios where large population sizes are prohibitive for
some MOEAs (such as the M = 10 scenarios studied in this work).

A final contribution of our study is making publicly available (Bezerra et al., 2017b)
all the data produced by our experiments to serve as a baseline for future studies and
to carry out further analysis. The data provided may also be used to understand corre-
lations between the algorithmic components of MOEAs, problem features and perfor-
mance metrics, in order to understand what is the best MOEA design to tackle specific
real-world problems.
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