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Abstract

Ant colony optimization (ACO) algorithms have originally been designed for static optimization problems, where the
input data is known in advance and is not subject to changes over time. Later, the long term memory of ACO proved
effective for reoptimization over environment changes when extended to deal with dynamic combinatorial optimiza-
tion problems (DCOPs). Among the major proposals of this kind, several adaptations of ACO procedures to improve
information reuse can be identified, as well as a population-based ACO algorithm (P-ACO) specifically designed for
DCOPs. Indeed, P-ACO drew the attention of the research community due to its ability to faster process pheromone
information, but the few works assessing the effectiveness of the adapted ACO procedures and also P-ACO are not
enough to reach more general conclusions on the current state-of-the-art in ACO for dynamic optimization. In this
work, we conduct an extensive experimental campaign to evaluate the most common ACO procedure adaptations iden-
tified in the literature, using as underlying algorithms the state-of-the-art in ACO for static optimization (MAX-MIN
Ant System,MMAS) and the most relevant ACO algorithm proposed for dynamic optimization (P-ACO). A variant
of the traveling salesman problem with dynamic demands (DTSP) is used as test benchmark, similarly to most inves-
tigations on ACO for combinatorial optimization. Besides the carefully designed experimental setup we adopt, our
work represents a significant contribution for, at least, three reasons. First, our work is the first to acknowledge that
DCOPs require custom-configured parameter settings, and also the first to use automatic configuration tools for this
task. Concretely, we show how the hypervolume indicator can be used to evaluate and configure the anytime behavior
of algorithms for DCOPs. Second, we directly compare MMAS and P-ACO, isolating local search as an experi-
mental factor. While P-ACO proves indeed effective in the absence of local search, MMAS is able to consistently
outperform it when local search is adopted. Finally, we conduct an experimental investigation on the DCOP-specific
components proposed for ACO, once again isolating local search. Results show that those components contribute very
little to performance when algorithms are allowed to use local search, but are remarkably effective in its absence. In
fact, coupled with DCOP components,MMAS outperforms P-ACO for a large part of our experimental setup.

Keywords: Ant colony optimization, dynamic traveling salesman, automatic configuration, hypervolume indicator.

1. Introduction

Ant colony optimization (ACO) [1, 2] has played a central role over the past decades as a successful metaheuris-
tic for combinatorial optimization problems (COPs). In ACO algorithms, artificial ants search the solution space
stochastically, biased by (i) a priori problem-specific heuristic information, and (ii) pheromone information knowl-
edge acquired on-the-fly as the algorithm tackles an instance of the given problem. This pheromone-based memory
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of ACO algorithms has proven well suited to static COPs [1, 2], where the input data do not change during the run
of the algorithm or before a solution is executed. In this scenario, the knowledge acquired by ACO algorithms in the
form of pheromone accumulates into a strong bias towards promising regions of the search space.

The successful applications of ACO to static COPs stirred the interest of researchers that investigate dynamic
COPs (DCOPs) [3–7], where dynamic problem components are allowed to change at runtime without notice. In
the context of routing problems, examples of real-world dynamic components range from objective functions [8] to
instance data, such as production costs, travel distances [9–12] or supply demands [13–21]. In contrast to the highly
advantageous use of a pheromone memory in static COPs, a dynamic scenario makes the long-term knowledge of
ACO a mixed blessing. On one hand, changes to the problem data are expected to only affect a portion of its original
definition, and so ACO algorithms could possibly reuse information learned before the changes to speed up the re-
optimization cycle. On the other hand, if an ACO algorithm has already converged to a specific region of the solution
space that after a change is no longer interesting or even feasible, the algorithm search might be delayed by the need
to first forget its previous knowledge.

The most innovative ACO proposal targeting DCOPs is an algorithm meant to optimize the reuse of pheromone
information after problem changes, which we will refer to as pheromone transfer. In more detail, the P-ACO algo-
rithm [22, 23] proposed a one-shot pheromone evaporation approach with the aid of a solution archive, in which the
pheromone contribution from a given solution in the archive is only removed when that solution leaves the archive.
Besides efficiency, this archive-based pheromone memory of P-ACO directly regulates the contribution timespan
from solutions found before problem changes, and hence this algorithm quickly rose to become the ACO reference
for DCOPs. However innovative, the studies targeting ACO for DCOPs that directly compared P-ACO to other pro-
posals left important questions unanswered. Perhaps the most important, those studies have not sufficiently clarified
the role played by local search [16, 21, 24, 25] in this context. The efficacy of ACO algorithms proposed for static
COPs heavily rely on the efficient use of local search operators and the pressure they add on convergence, improving
both the search speed and the expected quality of the final solution found by algorithms. More importantly, studies
in the context of static COPs have shown that the result of comparisons between algorithms is strongly dependent on
whether or not they are allowed to use local search operators [2], a fact likely to hold also in the context of DCOPs.

Another important question that has been overlooked in the ACO literature targeting DCOPs is the role of the
experimental setup [1, 2, 26, 27] which includes (i) the proper configuration of parameters settings, and (ii) an adequate
solution quality measurement. Concerning the former, the efficacy of ACO algorithms depends on balancing heuristic
and pheromone information. This balancing is regulated by numerical parameters, and their proper setting requires
significant knowledge of parameter configuration, ACO algorithms, and of the problem instances one is dealing with.
Regarding solution quality measurement in dynamic optimization [11, 15, 19, 25, 27–33], many measures evaluate
algorithms based solely on the quality of the final solution they produce, completely disregarding the performance
of the algorithm during different re-optimization cycles. Among the measures that assess the behavior of algorithms
over dynamic changes and solution quality development, some depend on a combination of other metrics [16, 21, 22],
whereas others were proposed in the context of artificially designed test problems, where optimal solutions are known
beforehand [11, 15, 19, 27].

In this work, we conduct a computational study to investigate the role of pheromone transfer, local search, and
experimental setup in the performance of high-performing ACO algorithms for DCOPs. Our computational study is
conducted on the traveling salesman problem (TSP) with dynamic demands [13, 16, 34]. We select the TSP because it
is an extensively studied COP that has been used as test benchmark for many algorithms, and because ACO algorithms
have been successfully applied to it. In fact, we observe a similar pattern in the context of DCOPs, with many
proposals (ACO or not) being firstly assessed on this problem [1, 14, 17, 34, 35]. To assess algorithms on this variant
of the TSP, we define a complete experimental design that is applicable to DCOPs in general. The most important
component of the proposed design is an effective way to configure parameter settings and evaluate performance, which
builds upon our preliminary work on the anytime behavior of dynamic optimization algorithms [34]. In that work,
we have showed that the hypervolume indicator [36] does not present the disadvantages observed for existing quality
measurements applied to dynamic optimization, and has additional advantages demonstrated in the multi-objective
optimization literature. Here, we go one step further and show how it can be used to optimize the anytime behavior of
dynamic optimization algorithms through automatic parameter configuration [36].

The investigation we conduct in this work is split into two stages. In the first stage, we compare P-ACO with
MAX-MIN Ant System (MMAS [37]), one of the best-performing ACO algorithms from static optimization. In
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fact, its performance on static COPs motivated a number of adaptations to extend this successful algorithm to deal
with DCOPs [11, 16, 18, 21, 25, 27]. We compare P-ACO andMMAS (i) in their version configured for the TSP
with dynamic demands versus the default configurations typically adopted for static and dynamic problems in general,
and; (ii) with and without local search procedures. With (i), we demonstrate that a proper configuration of the ACO
algorithms parameter settings can improve their performance, whether they have been proposed for static (MMAS)
or dynamic (P-ACO) optimization. With (ii), we demonstrate that using or not local search can drastically change
the results of the comparison. In more detail, when local search procedures are not adopted, the computation time
saved by the archive-based pheromone memory of P-ACO is impressive in comparison toMMAS. In addition, most
of the procedures related to pheromone transfer contribute to the efficacy of P-ACO. Conversely, when local search
is introduced, the speed-ups from P-ACO become irrelevant since (i) local search requires a significant amount of
time and (ii)MMAS presents speed-ups of its own for dealing with local search. Under this setup, the performance
ofMMAS significantly surpasses the performance of P-ACO.

The second stage of our investigation revisits some of the proposals to extendMMAS to DCOPs [11, 16, 18, 21,
25, 27], assessing under our setup the improvements toMMAS performance provided by those pheromone transfer
mechanisms. More importantly, we useMMAS as ACO test benchmark to understand if those components contribute
to the performance of effective ACO algorithms in general. Among the most relevant insights we observe,MMAS
is able to outperform P-ACO for a large extent of the experimental setup we consider when coupled with pheromone
transfer approaches. Yet, the benefits of those approaches become minimal in the presence of local search. Altogether,
these results reinforce the need for computational studies that consider multiple real-world factors.

The main contributions of our work can be summarized as follows:

I. the definition of a complete experimental design for DCOP that includes the use of an effective way to define
algorithmic parameter settings and evaluate performance;

II. the use of the hypervolume indicator, a well-known performance measure in the multi-objective research com-
munity, to assess the anytime behavior of DCOP algorithms;

III. a comparison of the most relevant ACO algorithms for static and dynamic combinatorial optimization;

IV. a computational study addressing the effectiveness of ACO procedure adaptations proposed in the dynamic
combinatorial optimization literature.

The remainder of the paper is organized as follows. In Section 2, we introduce the existing dynamic variants of the
TSP, highlighting the variant that we use as benchmark in this work. Section 3 gives an overview of ACO algorithms
and their adaptations to deal with DCOPs. In addition, we also discuss the factors that have been overlooked in other
investigations, namely local search procedures and parameter configuration. In Section 4, we target the performance
assessment of DCOP algorithms, briefly reviewing the two major metric categories from a critical perspective, and
detailing our approach to the automatic configuration in dynamic optimization. Section 5 describes our experimental
setup, whereas the comparison of P-ACO and MMAS is discussed in Section 6. Section 7 reports the computa-
tional study of the ACO adaptations for dynamic optimization. Finally, conclusions and future work are discussed in
Section 8.

2. The dynamic traveling salesman problem

The traveling salesman problem (TSP) is one of the most studied NP-hard combinatorial optimization problems.
It is a problem on which a number of important algorithmic ideas have been tested for the first time and it is also the
problem to which ant system, the first ACO algorithm, was initially applied [38]. Since then, the TSP has been used
frequently in ACO research to test new ACO algorithms and to evaluate their progress over ant system [1, 2].

The TSP is motivated by the task of a salesman that, from his hometown, needs to find a shortest tour through all
the cities scheduled for a visit, and then back home. It can be represented by an undirected weighted graph, G(V, E),
where V is the set of n = |V | vertices and E is the set of edges that fully connects the vertices. A weight di j is assigned
to every edge (i, j). Here we assume that for all pairs of vertices i, j we have di j = d ji, that is, the TSP is symmetric.
The objective of the TSP is to find a Hamiltonian tour of minimum weight, where the weight of a tour is computed as
the sum of all the weights of the edges crossed in it.
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The dynamic traveling salesman problem (DTSP) is a variation of the TSP in which the problem data change
over time. It has been proposed as an idealized model of time-varying problems that arise in many areas such as
routing, logistics or production scheduling, and that make a problem more challenging. Two main variants of the
DTSP can be found in the literature. The first variant considers that the distances between the vertices change over
time, simulating the occurrence of traffic jams, accidents or the change of weather conditions [9, 11, 17]. The second
variant considers dynamic demands, where the vertices that need to be visited in a tour change over time due to the
cancellation of known visits or the appearance of new ones [13, 16, 18–21]. In this paper, we study this latter version,
which can be modeled by a sequence of graphs Gs = (Vs, Es), s = 0, ..., S , and two sequences of vertex sets As and
Ds, s = 1, ..., S − 1. In particular, As represents the set of new customers to be served and Ds represents the set of
deleted customers. We then have that G0 = (V0, E0) is the starting graph and each Vs is obtained by (Vs−1

⋃
As)/Ds

and Es = Vs × Vs.
One important issue that arises for DOPs is to build up a proper test environment. Different ways have been

proposed in the literature depending on how re-optimization is done over the run and whether changes are periodic,
continuous, or cyclic. A review about several DOPs benchmark generators for both continuous and combinatorial
DOPs is presented in [39, 40]. For our experiments here, we have used the same principle proposed in [14], where
the dynamic environment is generated as follows. First, the set of customers from the actual problem instance is split
into two sets called currentpool and sparepool, where the former defines the current problem instance to be tackled. At
specific moments, a fraction of the vertices are switched between currentpool and sparepool to define the new problem
instance, regulated by parameter ξ ∈ [0, 1], here called degree of dynamism.

A second parameter that characterizes the instances is the frequency of change, which defines how often the
instance in dynamic problem changes. While in [16, 18–21] the number of iterations/evaluations between changes
was fixed, in this paper the periodic re-optimization occurs according to runtime. Our rationale is that real-world
dynamic problems are subject to asynchronous changes in time, with no regard to algorithmic concepts such as the
number of iterations or the use of function evaluations. However, for simplicity we keep the frequency of change
fixed, i.e., environment changes happen synchronously producing f time intervals evenly split. Besides modeling
real-world problems more accurately, this change in formulation has a direct impact in how algorithms should be
engineered. More precisely, an algorithm that presents a high computational overhead at each iteration might have
very few iterations to re-optimize solutions between changes, which is clearly an undesirable behavior. In the next
section, we discuss how different ACO algorithmic components have been proposed to handle these characteristics of
DCOPs.

3. Ant colony optimization

Ant system (AS) was the first ACO algorithm and was developed for solving the static TSP [38]. After that, many
successful ACO variants have been developed and applied to a large number of COPs [1]. In general, ACO algorithms
consist in a set of ants that build solutions biased by so-called (artificial) pheromone trails and heuristic information.
The relative influence each one has in the solution construction is defined by two numerical parameters α and β,
respectively. The pheromone trails encode a long-term memory about the search process of the ants. Effectively,
this memory enables the colony of ants to reuse knowledge from solutions they have generated in previous iterations.
The way pheromone update is implemented differs across ACO variants, and the choice of an appropriate pheromone
update mechanism is essential to obtain effective ACO algorithms. Pheromone update usually involves pheromone
evaporation, which is implemented as the reduction of the pheromone trail strength, normally by a fixed percentage,
and the deposit of pheromone by one or several ants. A detailed description of pheromone update procedures of ACO
algorithms can be found in [1].

This reusable source of information has raised the interest of researchers for applying ACO algorithms to DCOPs,
since the pheromone matrix can be seen as a soft memory of solution components that have shown to be useful in
the previous stage and may still be useful after environmental changes. To ensure the effectiveness of the learning
procedure of the ants, however, one must decide how this past information should be considered in different dynamic
environments, and many adaptations of ACO algorithms for DCOPs have been proposed in the literature [9, 13, 14].
In the following, we review the MMAS [37, 41] and P-ACO [13, 22, 23] algorithms, two of the most relevant
ACO algorithms that we will use in this paper. Next, we discuss the most important adaptation aspects required for
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applying ACO algorithms to DCOPs such as the DTSP and, in particular, we consider the adaptation proposals from
the literature involvingMMAS and P-ACO.

3.1. Underlying ACO algorithms for DTSP

MMAS is one of the most efficient ACO algorithms for COPs, in particular the TSP [2, 37, 41]. As a consequence,
it has been used as underlying algorithm to compare the performance adaptations of the ACO mechanisms for
the DTSP [13, 22, 23, 42]. MMAS handles pheromone trails concerning four major aspects: (i) the range of the
pheromone trail strengths is bounded by numerical parameters τmax and τmin, that is ∀τi j, τmin ≤ τi j ≤ τmax; (ii) when
the algorithm first starts, the pheromone values are initialized to τmax; (iii) the pheromone trails are reinitialized
every time the algorithm shows stagnation behavior, and; (iv) after each iteration, only one ant is allowed to add
pheromone, which can be the best so far ant, T gb, or the restart-best, T rb. In addition, the pheromone update rule of
MMAS is given below,

τi j(t + 1) = (1 − ρ) · τi j(t) + 4τbest
i j (1)

where ρ ∈ [0, 1] is the evaporation rate, 4τbest
i j = 1/Lbest if the edge (i, j) belongs to the best tour or 0 otherwise, and

Lbest is the length of the best tour.

We remark that, in the context of the TSP, many ACO algorithms such as MMAS use nearest neighbor lists for
speeding up solution construction. Concretely, whenever a DCOP moves from Gs to Gs+1, the set of customers to
be attended changes. Thus, the best solution found so far and also the nearest neighbor lists may change or even
be not valid anymore. In this paper, every time there is a change on Gs, the nearest neighbor lists are generated
again for the new instance set defined,1 and used to identify the best-so-far solution by using the nearest-neighbor
heuristic.

P-ACO differs from most ACO algorithms in its way to manage pheromone. Instead of accumulating pheromone in-
formation provided by solutions constructed in every iteration, only solutions maintained in an archive are reflected
in the pheromone matrix. Concretely, when a solution k enters the solution archive P (bounded to a maximum size
K), pheromone is added on the edges it contains. When |P| = K, every new solution replaces another solution in the
solution archive. When this replacement happens, the pheromone contribution of the components of the solution
exiting P are removed.2 The general form of the P-ACO pheromone matrix is as follows:

τi j(t + 1) = τ0 + ∆ · |{π ∈ P|(i, j) ∈ π}| (2)

∆ =
τmax − τ0

K
(3)

that is, the pheromone over edge (i, j) at a given iteration t + 1 equals the initial pheromone deposit τ0 plus a deposit
of ∆, as many times as the number of occurrences of that edge in the solutions that belong to the archive.3

The approach of P-ACO to pheromone management has two major consequences. First, the pheromone update
mechanism of P-ACO is typically faster than that of other ACO algorithms, which makes P-ACO a promising
algorithm to be applied to dynamic COPs. Second, since only solutions in the archive influence the pheromone
matrix, the archive management strategy is critical for the performance of P-ACO. Different archive management
strategies were proposed by Guntsch [23] and their choice depends on the problem tackled. For the DTSP, the
age-based strategy proved to be better or as competitive as the others proposed strategies [23], and hence it is the
strategy adopted in later studies using P-ACO on DTSPs [42] and also here. Effectively, this strategy follows a FIFO
(first in first out) queue behavior, where new solutions replace the firstly added to the archive.

1Note that the pheromone level of edges Vs−1 \ Ds × As and As × As, unless said otherwise, are initialized to τmax and the other edges (that is,
all those in Vs−1 \ Ds × Ds−1 \ Ds) keep the same values as before the move.

2Note that, when the algorithm starts, all entries of the pheromone matrix have an initial value of τ0, which has the same effect as the minimum
pheromone trail limit inMMAS [37].

3Note that the pheromone over edge (i, j) at a given iteration t + 1 does not depend on the pheromone over that edge on previous iterations, and
that the deposit does not depend on solution quality.
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3.2. Adapting ACO to the DTSP

ACO algorithms have been originally designed for static COPs, with the goal of converging to a given region
of high-performing solutions. As a result, if the pheromone information has already converged, the high levels of
pheromone in most high-performing ACO algorithms will force the colony to follow a single trail, even after a dynamic
change. To address this issue, different adaptations to maintain cross-environment search diversity or, more generally,
improve the effectiveness of ACO algorithms in the context of dynamic optimization, have been proposed. In this
section, we present an overview of the most relevant contributions found in the literature.

3.2.1. Pheromone transfer
The major proposals to improve ACO algorithms for DCOPs concern transferring pheromone information across

different environments, typically by means of adaptations to the pheromone update procedure. Effectively, the
pheromone transfer mechanism values the importance of the pheromone deposits from previous environments.

Guntsch [23] originally proposed that the pheromone information of the edges added and deleted should be (re)set
to τ0, with the resetting of the pheromone for edges Vs−1/Ds being regulated by a forgetting parameter γ ∈ [0, 1], i.e.,
∀ j , i, τi j = (1−γ) ·τi j +γ ·τ0. Also concerning edges Vs−1/Ds, authors proposed a second approach comprising local
assignments, where pheromone update values are computed based on the heuristic or the pheromone information,
depending on the strategy adopted by the ACO designer4. Alternative update proposals are described in [43]. The first
is dubbed local random restart, where the pheromone information of the newly added edges is uniformly randomly
initialized a to value r ∈ [0, 1]. The second approach, dubbed local restart, zeroes the pheromone level for all
newly added edges. However, authors remark that both approaches are only effective when combined with hyper-
populations, and that otherwise the approaches proposed in [23] prove better.

Another set of approaches to pheromone transfer concerns immigrant schemes, firstly introduced in the context
of evolutionary algorithms [28, 44–46], and later extended to ACO algorithms [11, 16, 19, 27, 47]. In general,
an immigrant is either an ant or a solution that is moved from its original search context to another to promote
diversification in a biased way. In dynamic ACO algorithms, this is a default practice as the pheromone information
from many solution components created in past environments are reused in new ones. However, few proposals can be
seen in the literature where randomly modified solutions are used as immigrants [15], thus introducing a perturbation
to the pheromone that is transferred across environments.

An alternative immigrant-based scheme for pheromone transfer involves both pheromone deposit and evapora-
tion [27]. In more detail, authors proposed a multi-colony version ofMMAS where colonies use different evapora-
tion rates ρ, empirically defined, and after environmental changes they can exchange the best solution found so far by
each colony. By migrating solutions, the pheromone structure of the colonies can be guided towards regions different
from the ones colonies had converged to, and hence diversity is introduced. Later, a self-adaptive evaporation rate was
proposed [20], where the value of the evaporation rate can be increased or decreased during the run of the algorithm
to manage the influence of the knowledge transferred from previous environments.

Another multi-colony approach is proposed in [17], where ants are grouped in castes and attempt to re-optimize
solutions with different exploration versus exploitation trade-offs. In more detail, castes adopt the pseudo-random
constructive rule originally proposed for Ant Colony System (ACS [1]), differing as to the values adopted for its asso-
ciated numerical parameter q0. Thus, depending on how q0 is set, some castes will search favoring exploitation, while
other castes favor exploration. Although this variant does not alter pheromone values when transitioning between
environments, it allows solution construction to value pheromone information less than the traditional ACO approach.

Recently, Mavrovouniotis et al. [5] reviewed the above approaches in the context of another DTSP variant, namely
the TSP with dynamic weights. Though their conclusions escape the scope of this paper, we refer the reader to that
work for further reference on pheromone transfer approaches.

3.2.2. Local Search for the DTSP
Local search (LS) procedures play an important role for ACO effectiveness on static COPs, providing the algorithm

a means to explore locally a neighborhood in the search space. Among the most notable neighborhood operators

4We refer to the original work for further information on these options.
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adopted in adaptations to the DTSP, we highlight the inver-over (IO) operator [48]5, the 2- and 3-opt operators [1],
and the unstringing and stringing (US) operator [21]. All these operators plus the Lin-Kerninghan (LK) heuristic have
been assessed in the context of the TSP with dynamic weights in [25, 32]. Once again, conclusions on a different
DTSP variant do not fit our overview, but the reader is referred to those works for further reference on LS procedures
used in ACO algorithms for DTSP problems.

From the experiments reported in the literature for the TSP with dynamic demands, target of our overview, the
contribution of applying local search is clear in terms of solution quality improvement. On the other hand, when
tackling dynamic problems such as the DTSPs, the time spent to improve solution quality is as important as the
performance improvement itself, and so LS operators should be assessed having this trade-off in mind. Finally,
another important remark concerning LS operators is that different algorithms can benefit from them in different rates,
and hence a comparison that considers only algorithms with local search and another that considers only algorithms
without local search may reach very different conclusions, as in the case of the static TSP [2].

3.2.3. Parameter settings
ACO algorithms are highly sensible to their parameter settings, as they regulate various aspects of their search

behavior (e.g., the importance of pheromone versus heuristic information). Clearly, the change from static to dynamic
environments defines a new problem class that likely requires parameter settings different from the default ones em-
ployed in static optimization. Two major groups of approaches can be identified in the literature concerning parameter
settings. The first one considers multiple parameter settings within a single run of an algorithm, an approach modeled
in ACO algorithms through the use of multiple species, castes, or, more generally, ant groups [17, 20].6 The ratio-
nale behind these multi-settings approaches is that the features a dynamic problem may present, such as degree or
frequency of change, might demand different trade-offs between exploration and exploitation, for instance. This way,
by splitting the available computational effort among different search strategies, one expects to maximize the chances
of performing effectively across a wide range of problem features. On the other hand, this increased robustness may
cost the algorithm a significant share of its computational resources, compromising the overall gain.

The second major group of parameter-related approaches concerns configuration, whether online or offline. Ap-
proaches of the former type consider adaptive strategies that modify parameter configurations as a function of the
environment changes, an approach also called parameter control [49]. A major disadvantage of online approaches
is that the mechanisms used are typically limited towards adapting very few, often only one parameter. In addition,
online approaches naturally introduce additional parameters that are used to regulate the adaptive strategies. More
importantly, in the case of random environment changes like in this work, it is difficult to anticipate how parameters
should be adapted on-the-fly.

In the second class of approaches, offline configuration, algorithms are configured on a training benchmark set
before being actually deployed. Several manual approaches to offline configuration can be identified in the dynamic
optimization literature [17, 20, 23, 27], relying on the well-known trial-and-error method that configures parameters
sequentially. The major drawback of this approach is that it does not take into account that parameters in optimization
algorithms often interact, e.g. the regulation of the pheromone and heuristic information of the ACO construction
procedure. Alternatively (as we do in this work), automatic approaches [50–52] model parameter configuration as
an heuristic optimization problem, where parameters are variables to be configured. The goal of the configurator is
then to optimize the performance of the target algorithm according to a given metric, such as solution quality, runtime
or the number of solutions constructed. In this work, we use an off-the-shelf automatic configurator (irace [52]) to
fine-tune the parameter settings of the algorithms investigated, ensuring that our conclusions concern high-performing
settings of the given algorithms.

In the next section, we discuss the metrics traditionally employed in the context of dynamic optimization to
evaluate the performance of algorithms, and detail and motivate the metric we adopt for configuration and analysis.

5Although the authors do not consider the IO as a type of LS, the IO operator is a 2-opt exchange move without taking into account the heuristic
information. In fact, an issue that arises from the experiments conducted in [48] is that comparisons are made only with algorithms that do not use
LS, providing an unfair advantage to the IO-based algorithm.

6In fact, the critical feature that distinguishes these multi-settings approaches from the multi-colony approach of [27] is that multi-colony
approaches consider multiple pheromone structures, whereas multi-caste or multi-species approaches use a single pheromone structure for all ant
groups.
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4. Improving performance via configuration in DCOPs

The performance analysis of stochastic optimization algorithms applied to DCOPs is a challenging, still maturing
research area. As such, many performance metrics have been proposed, typically classified either as quality-based
or behavior-based [29, 30, 42, 53]. In this section, we give a high-level overview of each category. Initially, we
differentiate them between the ones adapted from static optimization and the ones proposed specifically for dynamic
optimization. Later, we deepen our discussion of the hypervolume indicator, the primary metric of interest in our
investigation, and explain how we use it for the automatic configuration of dynamic optimization algorithms.

4.1. Overview of metrics applied to DCOPs

The most common performance metrics for static COPs are based on the solution quality of the best solution found
up to a given termination criterion (the final solution), averaged over a series of runs. For example, when the optimal
solution of a given instance is known a priori, as with the most commonly used TSP instances [54], it is possible to
compute the relative percentage deviation (RPD) between the best solution found by an algorithm and this optimal
solution. In fact, the average of the RPD over a series of runs is likely the most commonly adopted metric in static
optimization [55]. By contrast, the environment changes in dynamic COPs may require re-evaluations of the quality
of solutions, due to changes to the input data and/or to the optimal solution [30, 56].

Many proposals adapting solution quality analysis for dynamic problems can be found in the literature [11, 19,
21, 25, 27, 28, 30, 39, 42, 53, 57–59]. Most of the proposals based on solution quality for DCOPs average the quality
of the best solution found in each environment (the environment-final solutions) and are hence called quality-based.
Conversely, behavior-based metrics provide a more comprehensive perspective of the performance of algorithms. In
particular, the main issue with quality-based metrics is that different algorithms can display the same average values
at the end of a run or period, but completely diverge on their search dynamics. In fact, the goal of a dynamic optimizer
is not only to retrieve a high-performing solution at the end of its run (or over all environment changes), but also to
proceed with this retrieval in an efficient way. In a sense, each environment change forces the algorithm to restart its
search, and each of these optimization cycles must be able to retrieve high-performing solutions consuming as few
resources7 as possible.

4.2. Assessing the anytime behavior of a dynamic optimizer

In the context of static optimization, assessing the performance of an algorithm considering both resource con-
sumption and solution quality is known as assessing its anytime behavior [36]. When the resource consumption
to be minimized is runtime, solution quality over time (SQT) plots can be used for a graphical analysis [55]. For
dynamic optimization, several behavior-based metrics extend analytically the SQT to deal with multiple environ-
ments [16, 29, 39, 58, 60, 61]. However, many such metrics have been proposed in a context where artificial bench-
mark problems are used, having the knowledge of the optimal solutions for each environment at hand. In most
real-world situations (and also here), such metrics cannot be applied as the optimal solution is in constant change
across the different environments (see Section 2).

Contrarily to this pattern, the area between curves (ABC) [62] is a behavior-based metric that does not require
any assumptions about optimal solutions. This is illustrated in Figure 1, which depicts the performance fronts of two
dynamic optimizers (left-most plots). In all plots, runtime is given on the x-axis, while solution quality is given on
the y-axis (w.l.o.g. we consider a solution quality minimization problem). In more detail, the performance of a given
algorithm ΨA is represented as a set of points ΦA = (〈φt1

A , t1〉, 〈φ
t2
A , t2〉, . . . , 〈φ

tmax
A , tmax〉), where φti

A is the solution quality
of the best solution found by ΨA up to time instant ti. The ABC metric computes the area between the performance
fronts (or curves) of two algorithms, illustrated in Figure 1 (right). In fact, this metric is a binary variant of a metric
known in the context of multi-objective as the unary hypervolume indicator [36], one of the best-established metrics
for the performance analysis of multi-objective optimizers [63]. Specifically, the ABC metric is a particular case
of the binary hypervolume metric where the reference point is only weakly dominated by the front assessed, and
hence conclusions drawn from it cannot be guaranteed Pareto-compliant [36]. More importantly, this poor choice of
reference point (albeit implicit in the metric definition) means environment-final solutions may not be properly valued.

7E.g., computational time or function evaluations.
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Figure 1: The hypervolume of two different sets of points (left and center), computed as a function of a bounding reference point. Given that points
represent the performance of a dynamic optimizer, the hypervolume depicts its anytime behavior. In the dynamic optimization literature, the ABC
metric (right) had been employed for a direct comparison of pairs of algorithms, measuring the difference between hypervolumes. Instead, in this
work we compare multiple algorithms in an unary way, comparing the hypervolume values each algorithm achieves at a given run. We refer to the
text for the reasons why we choose the unary hypervolume version over the binary one (ABC).

In a preliminary work, we have proposed the application of the hypervolume indicator to the context of dynamic
optimization with minor adjustments [34]. The high-level idea is to compute the hypervolume dominated by each
algorithm in each environment separately and aggregate over environment-wise hypervolumes to draw overall con-
clusions. As illustrated in Figure 1 (right), we adopt environment-wise hypervolume measurements since, if the
whole run of an algorithm were considered as a single front, most of the points depicting a given environment would
be considered dominated by the best solution of the previous environment. To ensure hypervolumes from multiple
environments are comparable, we follow a two-stage approach. First, the values from both axes are globally scaled to
ensure both axes always contribute equally to the hypervolumes. Second, the reference point for a given environment
is computed as an x-axis translation of a global reference point. As a consequence, solutions from each environ-
ment need to be evaluated in isolation, since the reference point of a given environment would intersect with the next
environment.

The most important advantage of the hypervolume over the ABC metric is the preservation of the benefits of the
original anytime behavior formulation. Specifically, given two algorithms ΨA and ΨB, with their respective sets of
performance-describing points ΦA and ΦB, the formally proven properties of the hypervolume indicator (IH) ensure
that, if ΨA presents a better anytime behavior than ΨB, then IH(ΦA) < IH(ΦB). Alternatively, one can also say
that, if IH(ΦA) < IH(ΦB), then ΨA cannot present a worse anytime behavior than ΨB. Additionaly, using the unary
hypervolume instead of its binary variants renders the analysis scalable w.r.t the number of algorithms compared.
Regarding an overall analysis, the benefits of our approach vary as a function of the aggregation method considered.
A rank sum analysis indicates how often one algorithm reacts more efficiently to problem changes than others. In
the extreme case, an algorithm ΨA presents larger hypervolumes than another algorithm ΨB on all environments, so
it is clear that ΨA cannot present worse anytime behavior than ΨB. Alternatively, one can also assess the average
performance of an algorithm across environments. This flexibility of aggregation approaches is another improvement
over the ABC metric, specially given that an algebraic sum implicitly embedded in the ABC metric provides less
information than the alternatives discussed here.

We next describe how we use this formulation to enable the automatic configuration of dynamic optimizers.

4.3. Automatic configuration for dynamic optimization

As previously discussed, parameter settings are critical for the performance of metaheuristic-based algorithms
such as ACO. Nonetheless, few are the works that conduct rigorous analysis of the parameter configuration best suited
for dynamic optimization algorithms. More importantly, transferring parameter settings configured for one setup to
be used in another setup is an approach prone to major drawbacks, as the literature on parameter configuration has
repeatedly demonstrated [64]. In this context, automatic configuration tools can be instrumental, as they help address
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the two major challenges regarding the configuration task, namely (i) the computational effort; and (ii) the expertise
in parameter analysis.

In common, all offline configuration tools require four inputs: (i) a parameter space, i.e., the set of parameters to be
configured and their respective domains, from which candidate configurations are sampled; (ii) a training instance set
on which candidate configurations are run, different but representative of the test instance set for which algorithms are
to be configured; (iii) the performance metric used to evaluate the candidate configurations on the training instances,
and thus guide the configuration process, and; (iv) a pre-defined computational configuration budget, that limits
the total number of experiments conducted. In the context of optimizing the anytime behavior of algorithms, the
hypervolume metric is used as the configuration guiding metric [36]. As previously explained, the properties of the
hypervolume ensure that optimizing this metric translates into optimizing the anytime behavior of the algorithm being
tuned. In the next section, we present the experimental setup we adopt in our computational study, further detailing
the configuration and testing setups we employ.

5. Experimental setup

Different adaptations of ACO algorithms and procedures for DCOPs have been proposed in the literature, but
no study targeting the potential interactions between adaptation proposals has yet been conducted. In this work, we
conduct such an investigation specifically targeting the three aforementioned sets of proposals, namely (i) pheromone
transfer, (ii) local search, and (iii) parameter settings. We initially select an underlying ACO algorithm to use as
baseline for comparison. In particular, we first conduct a comparison between P-ACO and MMAS to understand
which algorithm performs better in the context of the DTSP with dynamic demands studied in this work. Next, we
create a set of variants of the selected baseline ACO algorithm, differing by the addition of a single pheromone transfer
proposal. Effectively, the assessment of a variant is actually an assessment of how the algorithmic component that
characterizes the given variant contributes to the performance of high-performing ACO algorithms in the context of
DCOPs. In addition, to understand the importance of the other two experimental factors (local search and parameter
settings), each experiment we conduct is performed with and without local search, and with different parameter
settings that are obtained both from manual and automatic configuration.

Next, we detail the experimental setup we adopt, individually detailing benchmark, performance evaluation, con-
figuration, and testing setups. We remark that all adaptations of ACO algorithms for the DTSP were implemented
and executed on top of the ACOTSP software package available at http://www.aco-metaheuristic.org/aco-code/.
Experiments conducted in this paper have been run on AMD Opteron CPUs with 12MB cache and 16 GB of RAM
running under Cluster Rocks Linux. The algorithms studied are coded in C and compiled with gcc version 4.1.2.

Benchmark. Two sets of instances were used in the experiments conducted in this work, to further understand how
algorithms perform when faced with instances that are structurally different. The first set is composed of instances
taken from the TSPLIB instance benchmark [54], ranging from 1000 to 3000 cities8. The second set is composed of
random uniform Euclidean (RUE) instances, with sizes depending on whether local search is used or not9. Dynamic
environments were generated using the method described in [42] and also in Section 2. In particular, we consider
currentpool and sparepool with equal sizes, i.e., each pool contains half of the cities from the original instance. As
also explained in Section 2, two parameters define by how much instances change (degree of dynamism, ξ) and
how often they change (frequency of change, f ). In our experiments, f is set to 2 and 10, respectively meaning
that changes occur after half and a tenth of the maximum allowed runtime. The degree of change is set to ξ ∈
{20%, 40%, 80%}, and so the combinations of ξ and f comprise 6 different scenarios.

Evaluation. As previously discussed, algorithms applied to DCOPs have been traditionally compared using different
performance metrics. In common, both final-quality based and behavior-based metrics have been indiscriminately
assessed concerning number of iterations, function evaluations, or solutions generated [13, 22, 29, 30, 42, 53, 58,

8The selected TSPLIB instances are rl1323, u1817, rl1889, u2152, pr2392. The instance name gives the number of cities in the instance.
9Specifically, we use 2 subsets of 5 instances with sizes ranging from 2500 to 3000 when local search is not applied, and 3 subsets of 5 instances

with sizes ranging from 3000 to 4000 when local search is applied. All RUE instances were generated using the portgen generator from the 8th
DIMACS Implementation Challenge.
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Table 1: Parameters space used as input for irace when configuringMMAS and P-ACO. For brevity, we use the (xi, xn) notation to represent a
discrete interval between xi and xn, where all integer values are considered by irace.

Algorithm m ρ α β q0 τmax K

MMAS (5, 100) [0.1, 1] [0, 5] [1, 10] − − −

P-ACO (5, 100) − [0, 5] [1, 10] − [1, 10] [1, 25]

62, 65]. The rationale behind these resource consumption metrics is understanding by how much algorithms are able
to improve solutions within a given iteration, of after a fixed number of function evaluations / solutions generated.
Although they share the benefit of being hardware-independent (as long as no maximum runtime is established),
they also mask the computational overhead of the algorithms, an effect that is particularly undesirable in the context
of dynamic optimization. In this work, we evaluate algorithms using the hypervolume metric detailed in Section 4,
considering as resource consumption metric the runtime of the algorithms. Concretely, algorithms are allowed a
maximum runtime of 2 000 seconds when they use local search, and 1 000 seconds otherwise. By doing so, we put
on evidence the most important characteristic algorithms designed tackling DCOPs should present, namely to be
efficient as to the runtime they require for reoptimizing solutions.

Configuration. As detailed in Section 4, automatic algorithm configurators such as irace should be used within a
carefully designed configuration setup. To meet this need, we formally define a configuration space given in Table 1
based on the ACO literature [1, 13, 22, 23, 42], delimiting parameters and domains for each algorithm we configure
in this investigation.

Concerning the separation between configuration and testing benchmark sets, we created an alternative benchmark
set for configuration, comprising thirteen instances ranging from 100 to 3000 cities taken from the TSPLIB instance
benchmark [54]10, and 15 RUE instances, ranging from 2 000 to 4 000 cities. Additionally, to prevent floor effects
that could reduce the effectiveness of the automatic configuration, when configuring an algorithm allowed to use
local search we only adopt instances with more than 600 cities. Concerning the configuration budget, irace is
given a maximum of 5 000 experiments for each configuration campaign. Candidates are evaluated according to
the hypervolume metric, with reference points computed on-the-fly, and are discarded based on Friedman’s non-
parametric rank sum test using the default configurations of irace.

Testing. To account for the stochastic nature of ACO, each algorithm and their variants are executed 20 times on each
instance. The qualitative analysis is conducted with the aid of solution quality over time (SQT) plots, depicting
the average performance of each algorithm considered, measured according the hypervolume metric. The same
averaged hypervolume approach is used to draw overall conclusions, in this case with the aid of Friedman’s non-
parametric rank sum test.

6. ComparingMMAS and P-ACO

In this section, we discuss results from the first set of experiments we conducted. Overall, the goal of this first
stage of the investigation is to compare the two best-performing ACO algorithms from the context of static and
dynamic optimization, respectivelyMMAS and P-ACO, isolating the effects of local search and parameter settings.
Concretely, we run each algorithm with and without local search, using three different settings:

1. Default: the default settings used byMMAS and P-ACO in the static COP literature [66, 67];

2. Dynamic: the settings used by these algorithms in the dynamic COP literature [21, 25, 32, 42], and;

10The selected TSPLIB instances are rd100, kroA150, kroB200, gr202, pr226, pr439, gr666, u724, vm1084, rl1304, vm1748, u2319 and
pcb3038.
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Table 2: Default (top) and configured (bottom) parameter settings used forMMAS (settings with the mmas prefix) and P-ACO (settings with the
paco prefix). The LS suffix is appended to settings used on experiments where local search is adopted. We remark that settings for pacoDynamicLS
are not given since no study has yet investigated P-ACO coupled with local search for dynamic optimization.

MMAS + P-ACO MMAS P-ACO

Settings m α β ρ τmax K

mmasDefault n/4 1 2 0.2 − −

mmasDefaultLS 25 1 2 0.2 − −

mmasDynamic 50 1 5 0.2 − −

mmasDynamicLS 50 1 5 0.2 − −

pacoDefault n/4 1 2 − 3 25
pacoDefaultLS 25 1 2 − 3 1
pacoDynamic 50 1 5 − 3 3

mmasTuned 96 1 5 0.6 − −

mmasTunedLS 9 1 1 0.4 − −

pacoTuned 79 1 3 − 3 25
pacoTunedLS 5 2 2 − 3 1

3. Tuned: a parameter setting that is obtained with automatic configuration for the context of the DTSP, as previ-
ously detailed.

Note that, in the first part of our investigation, neither of the ACO algorithms employ the pseudo-random proportional
rule proposed by ACS [68], where a numerical parameter q0 is used to regulate the balance between exploitation and
exploration (this will be investigated in Section 7). In addition, parameter settings often have their local search
counterparts, that is, parameter settings specific for the experiments where local search is adopted. We start this
analysis with the insights concerning the effects of the automatic parameter configuration.

6.1. Assessing parameter settings

Parameter settings used in these experiments are given in Table 2, where default settings are given in the top rows,
whereas configured settings are given in the bottom ones. In addition, the suffix LS is added to settings that are used
in experiments where local search is adopted. Concerning default settings, a few observations stand out. First, despite
their different structural characteristics, P-ACO andMMAS have typically been run with the same parameter settings.
Second, settings are very similar whether local search is used or not. Finally, the most noticeable difference between
settings from the static and the dynamic optimization literature is the value of β, in an attempt to provide algorithms
with stronger convergence pressure and thus speed-up solution re-optimization.

By contrast, the configured settings selected by irace given in Table 2 (bottom) are different for each algorithm, as
well as between runs that use local search and runs that do not. ConcerningMMAS, for instance, we notice a larger
value of ρ that makes the search more explorative. Effectively, this setting helps the algorithm escape from the search
space region to where it had converged before an environment change, but had not yet been considered by manual
configuration. The value of β changes as a function of local search. When local search is not adopted (mmasTuned), β
is also increased, to allow the algorithm faster exploitation due to the limited amount of runtime available. Conversely,
the strong exploitation nature of the local search component induced a decrement of β in mmasTunedLS.

Regarding P-ACO, parameters configured by irace for the experiments without local search (pacoTuned) greater
resemble the settings adopted in the static optimization literature (pacoDefault) than the ones used in the dynamic
optimization literature (pacoDynamic). Interestingly, this resemblance between static and configured settings also
holds in the presence of local search (pacoDefaultLS and pacoTunedLS). To empirically assess the impact of the
different parameter settings presented in Table 2, we discuss below the most important insights observed with the help
of SQT plots.

Dynamic characteristics of the scenarios. Figure 2 shows the anytime performance of MMAS (top)
and P-ACO (bottom) on a TSPLIB instance, run without local search using the three different parameter settings on
two different experimental scenarios. In common, both scenarios present a degree of dynamism ξ = 40%, but differ
as to the frequency of change f ∈ {2, 10}. The overall pattern depicted in these plots shows how parameter set-
tings can be affected by the dynamic characteristics of the scenarios. Notice, for instance, the anytime performance
of MMAS settings on the topmost plots. On the left (Figure 2a), the default settings of MMAS (mmasDefault)
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Figure 2: SQT plot depicting the anytime performance ofMMAS (top) and P-ACO (bottom) on TSPLIB instance pr2392, without local search,
run with different parameter settings on different dynamic scenarios.

improve over the dynamic settings (mmasDynamic), but the opposite happens on Figure 2b. In summary, an in-
crement in the frequency of change is enough to alter the relative performance of the settings. The configured
settings (mmasTuned) represent a compromise solution that shows robust performance across different scenarios.

Regarding P-ACO, the improvements obtained with the help of automatic configuration are significant for most
scenarios. Yet, for specific scenarios such as the one depicted in Figure 2c, P-ACO with default and configured
configuration settings (pacoDefault and pacoDynamic, respectively) present similar performance. Moreover, we
remark that the worst performance observed in Figures 2c and 2d concern P-ACO run with dynamic settings (paco-
Dynamic), which reinforces the importance of automatic parameter configuration methodologies.

Interactions with local search. Figure 3 shows the anytime performance of MMAS and P-ACO when run with
local search on the same instance and scenarios from the previous analysis. Although the conclusions about the
effects of the dynamic characteristics of the scenarios still hold, the use of local search significantly changes the
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Figure 3: SQT plot depicting the anytime performance ofMMAS (top) and P-ACO (bottom) on TSPLIB instance pr2392, with local search, run
with different parameter settings on different dynamic scenarios.

improvement rate provided by automatic configuration for MMAS. This is easily explained by the high-quality
solutions obtained when local search is adopted, which makes any further improvement much more difficult to
be obtained. The performance of P-ACO, on the other hand, is significantly improved by the configured settings.
Furthermore, the benefits of automatic configuration are consistent through both scenarios.

Structural characteristics of the benchmark instances. The differences in benchmark instance characteristics are
reflected in the performance displayed by different parameter settings, at least in the case of MMAS. Figure 4
helps explain our observation, showing the performance improvements obtained from automatic configuration when
runningMMAS on scenarios with f = 10 and ξ = 20% (left) or ξ = 80% (right). Specifically, results from RUE
instances (top) show a much larger improvement provided by configuration, even if the improvement seen on the
results from TSPLIB instances (bottom) is also significant.

A possible explanation is the importance of cities (customers to be attended) in the different benchmark sets. In more
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Figure 4: SQT plots depicting the anytime performance ofMMAS on RUE instance 3002 (top) and on TSPLIB instance pr2392 (bottom), without
local search, run with different parameter settings on different dynamic scenarios.

detail, RUE instances are expected to present cities of similar relevance to solution quality, whereas the relevance
of TSPLIB instance cities may differ considerably. These results indicate that, though the configured settings are
robust w.r.t. benchmark sets, an a priori knowledge of these features would likely benefit the configuration process.

6.2. Performance comparison

We next directly compareMMAS and P-ACO, once again isolating the effects of local search. For these exper-
iments, however, we consider only the configured parameter settings, as the results from the previous section have
confirmed that the automatic configuration methodology leads to improvements in the anytime performance of the
algorithms. Overall, the insights we observe are considerably different for the experiments with and without local
search, corroborating our claim that experimental analyses should isolate this factor. Figure 5 illustrates the most
important insights we observe from each set of experiments, which we discuss below.
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Figure 5: SQT plots depicting the anytime performance of P-ACO andMMAS configured by irace, on TSPLIB instance pr2392 with (top) and
without (bottom) local search run on different dynamic scenarios.

Experiments without local search. When local search is not adopted (top-most plots), the difference in performance
betweenMMAS and P-ACO across different environments is significant. More precisely,MMAS demonstrates
its best performance before the first environment change, whereas P-ACO displays a constantly good performance
throughout the run. In addition, the effect for MMAS is much weaker for f = 2 (left) scenarios than when
f = 10 (right). Altogether, these observations can be justified by the characteristics of the ACO algorithms being
compared. MMAS is an algorithm originally designed for static, final-quality optimization, and thus it requires a
given minimum runtime to produce good results. Moreover, the best applications ofMMAS rely on local search
to increase its convergence pressure, an aid we specifically forbid in this set of experiments. Concerning P-ACO,
its pheromone transfer mechanism and the fast update procedure appear to be the keys for its good performance. In
addition, P-ACO studies have only started considering local search recently, and hence, the original algorithm has
been designed to be effective without this extra source of pressure.
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Table 3: Statistical analysis of MMAS and P-ACO using different parameter configurations, without and with local search, aggregated over all
instances and scenarios considered. Rank sum differences w.r.t. the best ranked algorithm are given in parenthesis.

Without LS Mean pacoTuned pacoDefault mmasTuned mmasDynamic mmasDefault pacoDynamic
(∆R = 36.77) (28.5) (142) (257) (313.5) (405)

With LS Mean mmasTunedLS mmasDefaultLS mmasDynamicLS pacoTunedLS pacoDefaultLS
(∆R = 9.3) (110) (190) (304) (406)

Experiments with local search. Results change considerably when algorithms are allowed to use local
search (bottom-most plots). In particular, both algorithms benefit from the additional convergence pressure,
butMMAS is now able to outperform P-ACO by a significant margin across all instance types, sizes, and scenarios.
More importantly,MMAS is no longer affected by the runtime available (nor, consequently, by the dynamic char-
acteristics of the scenarios). Analogously, the performance of P-ACO is the same across all environments, whatever
the instance type, size, or scenario considered. A deeper analysis revealed that the advantage of the faster pheromone
update designed for P-ACO is much reduced, since relatively the local search procedure uses a significant amount of
time. On the other hand,MMAS presents speed-ups specifically conceived to improve the efficiency of its coupling
with local search procedures, e.g., avoiding updating the pheromone matrix as a whole. Altogether, these changes
in the relative efficiency of the algorithms explain the change in their anytime performance, withMMAS clearly
becoming the best option for the DTSP when local search is allowed.

6.3. Statistical analysis
To support the insights discussed in this section, Table 3 provides a rank sum analysis where we compare all

variants of the algorithms, isolating the effect of local search. In more detail, we conduct three levels of aggregation.
At the bottom level, we evaluate an algorithm w.r.t. to the average hypervolume it produces over all environments in
a given run. At the mid-level, we evaluate an algorithm w.r.t. its average performance over the 20 runs on a given
block, i.e., a given instance from a given experimental scenario. At the top level, for each block algorithms are ranked
in ascending order according to their performance, and the sum of the ranks obtained by an algorithm on all blocks
depicts its overall performance. These rank sums are used to assess statistical significance with 99% confidence level
using Friedman’s non-parametric test and associated post-hoc test [69]. The critical difference in ranks indicated by
the test is provided as ∆R. Algorithms that present a rank sum difference w.r.t. to the best ranked smaller than ∆R are
highlighted in boldface, indicating that no statistical significant difference was observed between the performance of
the given algorithm and the best ranked one.

As discussed from the plots, when local search is not adopted, the performance of P-ACO is very similar both when
default and configured settings are adopted. Ironically, the worst performance among all algorithms is observed for
the settings typically adopted for P-ACO in the dynamic optimization literature. RegardingMMAS, the configured
settings improve over the manually-configured ones, but not enough to match the performance of P-ACO. Conversely,
conclusions change completely when local search is adopted. For this setup, MMAS is able to outperform P-ACO
no matter the configuration adopted. More importantly, the configured version ofMMAS statistically significantly
outperforms both the settings adopted in static and dynamic optimization. Regarding P-ACO, configured settings
improve over the settings adopted in static optimization, but not enough to match the performance ofMMAS.

6.4. Concluding remarks
The experiments comparing the top-performing ACO algorithms from the context of static and dynamic optimiza-

tion have confirmed that the most important factors in such an analysis are the appropriate configuration of parameters
and the use of local search. In real-world scenarios, parameter configuration and local search procedures need to be
assessed as to their practicality, since it may not always be the case that one is able to run the number of experiments
required by offline configuration, or the expected time available for each environment can be too small for local search
to be of any benefit. Nonetheless, it is easy to conceive a database of configured parameter settings for different prob-
lem benchmarks, scenarios, and stopping criteria, greatly reducing the overhead of offline configuration in practice. In
the next section, we investigate the benefits of approaches proposed in the dynamic optimization literature to improve
ACO performance.
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Table 4: Parameters selected by irace for MMAS variants using different pheromone transfer approaches. Settings specific to runs with local
search are indicated by the LS suffix.

MMAS reset multi

Variant m α β ρ γ q0

mmasTreset 96∗ 1∗ 5∗ 0.6∗ 0.8 −

mmasTresetLS 9∗ 1∗ 1∗ 0.4∗ 0.7 −

mmasResetT 95 1 5 0.4 0.9 −

mmasResetTLS 9 1 2 0.4 0.6 −

mmasRestartT 96 1 5 0.3 − −

mmasRestartTLS 6 1 1 0.1 − −

mmasMultiT 91 1 2 0.3 − 0.3
mmasMultiTLS 9 1 1 0.8 − 0.3

mmasMultiRestartT 98 1 5 0.4 − 0.4
mmasMultiResetT 95 1 5 0.3 0.4 0.2

* Settings reused from the experiments conducted in the previous section.

7. Assessing the effectiveness of pheromone transfer proposals

The experiments discussed in the previous section showed that, when properly configured and in the absence of
local search, the pheromone transfer approach used by P-ACO is particularly effective. Conversely, since MMAS
was proposed for static optimization, it fails to display competitive performance after the first problem change. In
this section, we assess the effectiveness of some of the pheromone transfer proposals reviewed in Section 3 when
coupled with MMAS. Initially, we investigate the benefits of adding to MMAS the pheromone transfer approach
from P-ACO, while isolating the effects of parameter configuration and local search. Next, we compare several
pheromone transfer approaches previously discussed, once again isolating the effects of local search. Finally, we
assess the combination of transfer approaches and compare the best-performing variant to P-ACO.

7.1. Assessing pheromone transfer through reset
As discussed in Section 3, P-ACO originally proposed that the pheromone information on edges Vs−1/Ds should

be (re)set to τ0 after each environment change, regulated by a forgetting parameter γ ∈ [0, 1]. In the context of
MMAS, this translates into (re)setting the pheromone information to τmax, since this is the initial pheromone value it
adopts.

For the set of experiments conducted here, we compare three variants of MMAS. The first version is the one
we configured in the previous section (mmasTuned), which does not use any pheromone transfer mechanism, and
serves as a baseline. The second variant uses the same parameter settings of the first one, but adopts the pheromone
reset approach (mmasTreset).11 Finally, the third version also adopts pheromone reset, but has been re-configured by
irace (mmasResetT). Our rationale is that the addition of pheromone transfer mechanisms could lead to interactions
with other algorithmic components of MMAS and thus require a different parameter configuration. Configured
settings for this set of experiments are given in Table 4 (top rows). Like before, experiments are run isolating the
effects of local search, and the LS suffix is added to configurations where local search is adopted.

In the following, we discuss the most important insights we observe from our analysis, with the help of the SQT
plots given in Figure 6. In particular, the plots depict the anytime performance of the three differentMMAS variants
we consider when run on a TSPLIB instance with (left) and without (right) local search, on the ξ = 40%, f = 10
scenario.

Parameter settings. The only parameters in which the settings of mmasTreset and mmasResetT differ are the evap-
oration (ρ) and the forgetting (γ) rates. The similarity also holds between the variants that use local search (mmas-
TresetLS and mmasResetTLS), though this time it is β rather than ρ that is changed by irace. From an algorithmic
point of view, the most likely explanation for these changes concern the absence of a pheromone transfer mecha-
nism in the originalMMAS, which was compensated by irace with an increased ρ value. Concerning performance,
bothMMAS variants that adopt the pheromone transfer mechanism from P-ACO perform similarly, although dif-
ferences are mostly observed in favor of mmasResetT.

11Since the pheromone reset introduces the forgetting parameter γ, we only configure this parameter.
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Figure 6: SQT plots depicting the anytime performance of three different MMAS versions, run on TSPLIB instance pr2392 with (right) and
without (left) local search, using different parameter configurations on the ξ = 40, f = 10 scenario.

Improvements over the original MMAS. Figure 6 (left) demonstrates the significant performance improvements
provided by pheromone transfer through reset. In particular, the transfer approach helps address the most concerning
issue with the original MMAS, in that the performance of the variants are consistent throughout the run. More
importantly, the benefits of transfer are observed for all instance sets, scenarios, and parameter configurations,
as shown in the rank sum analysis given in Table 5. Conversely, the effects pheromone transfer mechanism are
greatly reduced in the presence of local search, as shown in Figure 6 (right). In fact, it is often possible to identify
performance differences in favor of the original MMAS over the variants that adopt pheromone transfer. This is
an important finding that corroborates our claim that algorithmic components proposed for dynamic optimization
algorithms should be carefully assessed, in particular as to their possible interactions with other relevant components
algorithms might use, such as local search.

7.2. Comparing pheromone transfer approaches
The insights produced in the previous section demonstrate that pheromone transfer approaches may interact with

other algorithmic components, and hence reconfiguring variants is indicated. In this section, we compare three
MMAS variants, differing as to the transfer approach they adopt. The first variant is mmasResetT, which we pre-
liminarily assessed in the previous section and serves as baseline. The second variant (mmasRestartT) restarts the
pheromone trails of edges Vs−1/Ds to τmax, completely forgetting the deposits from previous environments.12 Finally,
the third variant (mmasMultiT) follows the multi-caste approach [17] discussed in Section 3. In our work, ants are
split into two groups of equal size bm/2c. The first group of ants constructs solutions using probability q0, whereas
the second group uses probability 1 − q0. Thus, depending on how q0 is set, half of the ants will search favoring
exploitation, with the other half favoring exploration.

Parameter settings. Configured settings for this set of experiments are given in Table 4 (middle rows). The different
pheromone transfer strategies produce little effect on the number of ants (m) and importance of the pheromone infor-
mation (α). Indeed, the only noticeable differences between settings used by the variants concern the importance of
heuristic information (β) and the evaporation rate (ρ). However, no overall pattern can be easily observed, although
it is remarkable that the variants that use local search present so contrasting ρ values. In particular, the very low ρ

12Notice that the restart variant is equivalent to configuring parameter γ to its maximum value in the reset variant.
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Table 5: Statistical analysis of the experiments conducted in this section.

Section Setup ∆R Rank sums

7.1 Without LS 17.51 mmasResetT mmasTreset (65) mmasTuned (178)

With LS 27.65 mmasTunedLS mmasResetTLS (7) mmasTresetLS (122)

7.2 Without LS 29.62 mmasResetT mmasMultiT (98) mmasRestartT (115)

With LS 31.51 mmasResetTLS mmasMultiTLS (34) mmasRestartTLS (107)

7.3 Without LS 35.69 mmasMultiRestartT mmasMultiResetT (10) mmasMultiT (56)

7.4 Without LS 36.31 pacoTuned mmasResetT (28) mmasMultiRestartT (47)

value adopted by mmasRestartT is probably an effect of its strong forgetting behavior. Conversely, the very high ρ
value adopted by mmasMultiT is likely induced from not having an explicit transfer mechanism.

Frequency of change and instance characteristics. The performance benefits provided by the different pheromone
transfer approaches assessed in this section vary considerably as a function of the dynamic and structural charac-
teristics of scenarios and instances. In general, the restart approach leads to less benefits than reset regardless of
set or scenario, as illustrated in Figure 7 (top). By contrast, the multi-caste approach leads to the most significant
improvements only on RUE instances when f = 2, as shown on Figure 7 (top left). In more detail, when we con-
sider TSPLIB instances (for all scenarios) or even RUE instances for f = 10 scenarios, adopting multiple castes is
the approach that brings less performance benefits among all transfer approaches compared. This is corroborated
by the analysis provided in Table 5, where mmasResetT is the best-performing variant. Regarding the frequency of
change, the reduced benefits from multiple castes when f = 10 are likely related to the split computational resources
among ant groups, given that the runtime available for each slot is much smaller than when f = 2. Concerning in-
stance characteristics, the experiments in Section 6 had already indicated that MMAS needs more runtime for
reoptimizing TSPLIB instances than for RUE instances, which becomes an issue for the multi-caste variant.

Local search. As in the preliminary assessment of pheromone transfer though reset, the presence of local search
renders the benefits from the transfer approaches minimal. This is illustrated in Figure 7 (bottom), where we observe
that this performance similarity between approaches holds whatever the frequency of change. Moreover, it is not
possible to observe differences between transfer approaches whatever the instance set and degree of dynamism. Yet,
when we aggregate over all runs considered, these small differences accumulate once again in favor of mmasResetT.

7.3. Combining pheromone transfer approaches

The assessment of pheromone transfer approaches produced two major insights. First, selecting a single pheromone
transfer approach depends on the experimental factors adopted. Second, in the presence of local search, the benefits
from all approaches considered become minimal. In this section, we assess the combination of pheromone transfer
approaches, to see if it is possible to combine their advantages into a single variant. In more detail, the multi-caste
approach only affects the solution construction rule. This way, the pheromone update behavior of the variants investi-
gated in this section during a given environment is identical to the originalMMAS. Only when transitioning between
environments is that the variants choose to either partially (mmasMultiResetT) or entirely (mmasMultiRestartT) forget
the pheromone information from previous environments. Furthermore, we remark that we restrict our investigation in
this section to experiments without local search.

Table 4 (bottom rows) shows the configured settings for the variants we consider in these experiments. The first
variant is mmasMultiT, preliminarily assessed in the previous section, which we use as baseline. The second and third
variants follow the multi-caste approach from the first variant, but explicitly promote pheromone transfer through
reset (mmasMultiResetT) or restart (mmasMultiRestartT). Overall, all three variants present similar configuration, the
strongest exception being parameter β, which is significantly increased for the novel variants. In a sense,MMAS is
now allowed to be more greedy as the transfer mechanisms help balance its search.

Figure 8 depicts SQT plots for experiments without local search, run on RUE instance 3002 on dynamic scenarios
that present frequency of change f = 10, but differ as to the degree of dynamism (left: ξ = 20%; right: ξ = 80%). The
most evident observation is how the combination of transfer approaches improve over using multiple castes alone.
Two other observations stand out. First, it is rather interesting how the degree of dynamism affects the variants that
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Figure 7: SQT plot depicting the anytime performance ofMMAS with three different versions of pheromone update mechanisms, run on TSPLIB
instance pr2392 without local search, using same parameter configurations and different dynamic scenarios.

do not adopt restart. In the case of mmasMultiT, its reoptimization in the initial environments is more effective when
the degree of dynamism is lower. In the case of mmasMultiResetT, this loss in performance is observed across all
environments, with a competitive performance on ξ = 20% scenarios contrasting with a less competitive performance
on ξ = 80% scenarios. Second, mmasMultiRestartT is able to improve over mmasMultiResetT, specially for larger
RUE instance sizes. Altogether, these findings are an excellent evidence of algorithmic component interaction, given
that in the previous set of experiments mmasResetT had outperformed both restart and multi-caste for a significant
number of experimental factors.

‘

7.4. ComparingMMAS variants with P-ACO
We conclude our investigation with a comparison of the best-performing algorithms and variants identified in this

work. Namely, in this section we compare (i) P-ACO (pacoTuned); (ii) MMAS coupled with pheromone transfer
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Figure 8: SQT plots depicting the anytime performance of three differentMMAS variants, run on RUE instance 3002 using different parameter
configurations on f = 10 scenarios, with ξ = 20% (left) and ξ = 80% (right) .

through reset (mmasResetT), and; (iii) MMAS using the multi-settings approach coupled with pheromone trans-
fer through restart (mmasMultiRestartT). Note that these experiments do not consider local search, as none of the
algorithms and variants considered here were competitive with (P-ACO) or able to improve significantly over (mmas-
ResetT and mmasMultiRestartT) the originalMMAS coupled with local search. Our main objective here is then to
measure the relative performance of theMMAS variants w.r.t. P-ACO when local search is not adopted.

Figure 9 shows SQT plots depicting runs without local search on RUE instances 3002 (top) and 4002 (bottom), on
scenarios that present degree of dynamism ξ = 40%, but vary as to frequency of change (left: f = 2; right: f = 10).
These plots help illustrate the two more relevant factors that affect results, as follows. First, the relative performance
of the MMAS variants w.r.t. P-ACO is strongly affected by the frequency of change. Specifically, Figure 9 (left)
shows that P-ACO outperforms allMMAS variants when f = 2. Conversely, we see from Figure 9 (right) that the
MMAS variants outperform P-ACO when there is an increase in the frequency of change. This is a rather remarkable
result that confirms that MMAS can be competitive in the context of dynamic optimization even in the absence of
local search procedures.

The second factor that affect results is the number of cities. In particular, we observe that the instance size plays
a more relevant role than the instance structural characteristics in this particular assessment. For this reason, we
include both a smaller (top) and a larger (bottom) RUE instances, with the smaller instance being representative of
the results for TSPLIB. When f = 2, P-ACO improves over the MMAS variants by a larger margin on smaller
instances (Figure 9a) than on larger instances (Figure 9c). Conversely, when f = 10 P-ACO is only competitive on
smaller instances (Figure 9b), and is worse than the MMAS variants by a significant gap on larger instances (Fig-
ure 9d) . When we look at the overall picture given in Table 5, we see that pacoTuned and mmasResetT are considered
equivalent.

Altogether, these experimental factors suggest that the results from this comparison may have been influenced by
the configuration setup adopted. More precisely, we have decided to use a single configuration for multiple exper-
imental scenarios and benchmark instance sets. In addition, the TSPLIB instances we selected are smaller than the
RUE instances we created. Balancing instance sizes among benchmark sets and adopting configurations specific to
each scenario and set would likely help further understand the performances of these algorithms and variants. How-
ever, we have made a significant progress through this performance assessment, in that many factors that have been
previously overlooked led to important insights, such as the effects of parameter configuration and the interactions
between algorithmic components, such as pheromone transfer and local search.
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Figure 9: SQT plot depicting the anytime performance of best performingMMAS versions and P-ACO, run on RUE instance 3005 ( 9a, 9b) and
on TSPLIB instance pr2392 ( 9c, 9d) without local search, using different parameter configurations and different dynamic scenarios. Left: scenario
ξ40 f 2. Right: scenario ξ40 f 10.

8. Conclusions

The good performance of ant colony optimization (ACO) algorithms for optimization problems where the input
data do not change over time motivated proposals to extend ACO to dynamic optimization. Among the most relevant
algorithms proposed are those that re-evaluate the pheromone information deposited on the solution components
affected by problem changes. The best known of these algorithms is P-ACO [22], which is based on a transient
pheromone memory that quickly adapts exploiting the most recent solutions found. Another major share of the ACO
dynamic optimization literature focuses on extendingMAX-MIN Ant System (MMAS [37]), given its excellent
performance on static optimization. However, most existing works have overlooked important experimental factors,
such as the proper configuration of parameter settings and the adoption of local search procedures, both critical to
ACO performance in the context of static problems.
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In this work, we have assessed P-ACO and many such pheromone transfer approaches through a rigorous com-
putational study on a dynamic variant of the traveling salesman problem (TSP). Our work has produced, at least,
three major contributions. First, we have proposed an automatic configuration approach for dynamic optimization,
where we use the hypervolume as a metric to evaluate the anytime behavior of algorithms. Second, we have compared
P-ACO to MMAS, one of the best-performing ACO algorithms for the static TSP, isolating the effects of parame-
ter settings and local search. In the absence of local search, as traditionally observed in the dynamic optimization
literature, P-ACO outperformsMMAS by a large margin. Yet, when local search is adopted, MMAS consistently
outperforms P-ACO on all experimental scenarios considered. Third, we have investigated the benefits of ACO adap-
tations for dynamic optimization, observing that their benefit is considerably reduced in the presence of local search.
However, pheromone transfer approaches renderMMAS more effective than P-ACO for a large part of the experi-
mental scenarios where local search is not adopted.

The insights produced in this investigation open a number of possible future work directions. Concerning the au-
tomatic configuration of anytime behavior for dynamic optimization, results revealed the importance of both instance
characteristics and size, indicating better results could likely be obtained from isolating these factors for configura-
tion. More importantly, given the overhead required by offline configuration, it would be paramount to assemble a
repository of configured settings for multiple algorithms, benchmark sets, and experimental scenarios. In addition, we
have only just started taking advantage of the theoretical benefits of the hypervolume. For instance, it remains an open
question whether the Pareto-compliant properties of the hypervolume when measuring the anytime behavior within a
single environment could also be extended for definite conclusions about the whole run.

Regarding the comparison betweenMMAS and P-ACO, we have observed that conclusions are strongly depen-
dent on local search. Yet, we have considered a single local search operator, which is neither the most efficient nor
the most effective for the static TSP. As extended investigation on operators possibly better suited for dynamic opti-
mization would likely indicate a means to reduce overhead while preserving the performance benefits. Conversely,
in the absence of local search it was not possible to identify a single best-performing algorithm for all scenarios.
Nonetheless, our work has paved the way for other high-performing ACO algorithms to be extended to dynamic
optimization.
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C. Cotta, M. Ebner, A. Ekárt, A. I. Esparcia-Alcázar, J. J. Merelo, F. Neri, M. Preuss, H. Richter, J. Togelius, G. N. Yannakakis (Eds.),
Proceedings of the European Conference on the Applications of Evolutionary Computation: Applications of Evolutionary Computation
(EvoApplications 2011: EvoCOMPLEX, EvoGAMES, EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC), Torino, Italy, April
27-29, 2011, Part I, Vol. 6624 of Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 324–333. doi:10.1007/978-3-
642-20525-5 33.

[43] A. Prakasam, N. Savarimuthu, Novel local restart strategies with hyper-populated ant colonies for dynamic optimization problems, Neural
Computing and Applications 31 (1) (2019) 63–76.

[44] S. Yang, Genetic algorithms with elitism-based immigrants for changing optimization problems, in: M. Giacobini (Ed.), Proceedings of
the Workshops on Applications of Evolutionary Computation (EvoWorkshops 2007) EvoCoMnet,EvoFIN, EvoIASP,EvoINTERACTION,
EvoMUSART, EvoSTOC and EvoTransLog, Valencia, Spain, April 11-13, 2007, Vol. 4448 of Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2007, pp. 627–636. doi:10.1007/978-3-540-71805-5.

[45] S. Yang, Genetic algorithms with memory- and elitism-based immigrants in dynamic environments, Evolutionary Computation 16 (3) (2008)
385–416. doi:10.1162/evco.2008.16.3.385.

[46] Xin Yu, Ke Tang, Xin Yao, An immigrants scheme based on environmental information for genetic algorithms in changing environments, in:
Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) – CEC 2008,
June 1-6, 2008, Hong Kong, China, 2008, pp. 1141–1147. doi:10.1109/CEC.2008.4630940.

[47] M. Mavrovouniotis, S. Yang, Ant colony optimization with memory-based immigrants for the dynamic vehicle routing problem, in:
Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, June 10-15, 2012, 2012, pp. 1–8.
doi:10.1109/CEC.2012.6252885.

[48] G. Tao, Z. Michalewicz, Inver-over operator for the TSP, in: A. E. Eiben, T. Bäck, M. Schoenauer, H. Schwefel (Eds.), Proceedings of the
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[49] Á. E. Eiben, R. Hinterding, Z. Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation
3 (2) (1999) 124–141.
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