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Abstract

M
ulti-objective optimization is a growing field of interest for both theoretical and applied research,

mostly due to the higher accuracy with which multi-objective problems (MOPs) model real-

world scenarios. While single-objective models simplify real-world problems, MOPs can contain

several (and often conflicting) objective functions to be optimized at once. This increased accuracy,

however, comes at the expense of a higher difficulty that MOPs pose for optimization algorithms in

general, and so significant research effort has been dedicated to the development of approximate and

heuristic algorithms. In particular, a number of proposals concerning the adaptation of evolutionary

algorithms (EAs) for multi-objective problems can be found in the literature, evidencing the interest

these algorithms have received from the research community.

This large number of proposals, however, does not mean that the full search power offered by multi-

objective EAs (MOEAs) has been properly exploited. For instance, in an attempt to propose significantly

novel algorithms, many authors propose a number of algorithmic components at once, but evaluate their

proposed algorithms as monolithic blocks. As a result, each time a novel algorithm is proposed, several

questions that should be addressed are left unanswered, such as (i) the effectiveness of individual com-

ponents, (ii) the benefits and drawbacks of their interactions, and (iii) whether a better algorithm could

be devised if some of the selected/proposed components were replaced by alternative options available

in the literature. This component-wise view of MOEAs becomes even more important when tackling a

new application, since one cannot antecipate how they will perform on the target scenario, neither pre-

dict how their components may interact. In order to avoid the expensive experimental campaigns that

this analysis would require, many practitioners choose algorithms that in the end present suboptimal

performance on the application they intend to solve, wasting much of the potential MOEAs have to offer.

In this thesis, we take several significant steps towards redefining the existing algorithmic engineering

approach to MOEAs. The first step is the proposal of a flexible and representative algorithmic framework

that assembles components originally used by many different MOEAs from the literature, providing a way

of seeing algorithms as instantiations of a unified template. In addition, the components of this framework

can be freely combined to devise novel algorithms, offering the possibility of tailoring MOEAs according

to the given application. We empirically demonstrate the efficacy of this component-wise approach by

designing effective MOEAs for different target applications, ranging from continuous to combinatorial

optimization. In particular, we show that the MOEAs one can tailor from a collection of algorithmic

components are able to outperform the algorithms from which those components were originally gathered.

More importantly, the improved MOEAs we present have been designed without manual assistance

by means of automatic algorithm design. This algorithm engineering approach considers algorithmic

components of flexible frameworks as parameters of a tuning problem, and automatically selects the

component combinations that lead to better performance on a given application. In fact, this thesis

also represents significant advances in this research direction. Primarily, this is the first work in the
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literature to investigate this approach for problems with any number of objectives, as well as the first

to apply it to MOEAs. Secondarily, our efforts have led to a significant number of improvements in the

automatic design methodology applied to multi-objective scenarios, as we have refined several aspects of

this methodology to be able to produce better quality algorithms.

A second significant contribution of this thesis concerns understanding the effectiveness of MOEAs

(and in particular of their components) for the application domains we consider. Concerning combi-

natorial optimization, we have conducted several investigations on the multi-objective permutational

flowshop problem (MO-PFSP) with four variants differing as to the number and nature of their objec-

tives. Through thorough experimental studies, we have shown that some components are only effective

when used jointly. In addition, we have demonstrated that well-known algorithms could easily be im-

proved by replacing some of their components by other existing proposals from the literature. Regarding

continuous optimization, we have conducted a thorough and comprehensive performance assessment of

MOEAs and their components, a concrete first step towards clearly defining the state-of-the-art for this

field. In particular, this assessment also encompasses many-objective optimization problems (MaOPs), a

sub-field within multi-objective optimization that has recently generate much interest within the MOEA

community given its theoretical and practical demands. In fact, our analysis is instrumental to better

understand the application of MOEAs to MaOPs, as we have discussed a number of important insights

for this field. Among the most relevant, we highlight the empirical verification of performance metric cor-

relations, and also the interactions between structural problem characteristics and the difficulty increase

incurred by the high number of objectives.

The last significant contribution from this thesis concerns the previously mentioned automatically

generated MOEAs. In an initial feasibility study, we have shown that MOEAs automatically generated

from our framework are able to consistently outperform the original MOEAs from where their components

were gathered both for the MO-PFSP and for MOPs/MaOPs. The major contribution from this subset,

however, regards multi-objective continuous optimization, as we significantly advance the state-of-the-art

for this field. To accomplish this goal, we have extended our framework to encompass approaches that are

primarily used for this continuous problems, although the conceptual modeling we use is general enough

to be applied to any domain. From this extended framework we have then automatically designed state-

of-the-art MOEAs for a wide range of experimental scenarios. Moreover, we have conducted an in-depth

analysis to explain their effectiveness, correlating the role of algorithmic components with experimental

factors such as the stopping criterion or the performance metric adopted.

Finally, we highlight that the contributions of this thesis have been increasingly recognized by the

scientific community. In particular, the contributions to the research of MOEAs applied to continuous

optimization are remarkable given that this is the primary application domain for MOEAs, having been

extensively studied for a couple decades now. As a result, chapters from this work have been accepted

for publication in some of the best conferences and journals from our field.
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CHAPTER 1

Introduction

Optimization problems arise in several real-world scenarios, particularly in the business and industry

areas. In industry, one example is the scheduling of intermediary steps of the production lines in a

workshop, which is a critical factor for the profit of an enterprise. This type of problem has been

modeled as shop scheduling problems in operations research [83]. In particular, when a processing order

must be respected for all jobs, this problem is known as the permutation flowshop problem (PFSP) [87],

one of the most studied combinatorial optimization problems in the literature. In business, predictive

models are used to extrapolate the values of a given variable given a sample distribution. Selecting

the best model, however, is a complex continuous optimization task that involves minimizing the error

ratio for the prediction of the known data [142]. In fact, this problem has become ever more important

with the advent of big data and the ongoing fourth industrial revolution, stirred on machine learning

techniques and deep learning [47].

Whether combinatorial or continuous, solving an optimization problem may prove to be a challenging

task. In theoretical computer science, this is captured by the definition of the class of NP-hard problems,

i.e., problems for which the currently most efficient algorithms require (at least) exponential running time

w.r.t. the number of variables to be optimized [86]. Whether it is possible to develop polynomial running

time algorithms for this class of problems remains the most important open question in computer science,

even after decades of research in this field. To be able to address many of these problems, researchers

have used theoretical models that simplify the challenges of the true real-world problems. For instance,

the bulk of the research on optimization algorithms has concentrated on theoretical problems that are

(i) static, meaning the problem information is fully available before the algorithm is run; (ii) deterministic,

meaning that the information is known with certainty, and; (iii) single-objective, meaning that a single

cost function is to be optimized.

The practical disadvantages of such models are clear. Concerning the number of objectives considered,

for instance, the traditional modeling had to either (i) rank cost functions and optimize only the most

important, or (ii) use an aggregated function representing some compromise between the different criteria.

Although neither of these approaches were ideal, they were required during the early years of optimization

research for the feasibility of those investigations. Over the past decades, however, the optimization

community has seen an ever growing movement towards adopting models that are more accurate w.r.t.

real-world problems [57, 105]. In particular, the field of multi-objective optimization has been the subject

1
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of an increasing number of investigations for at least three decades now [48, 50, 57, 149, 176, 199]. As

one might deduce, the already significant challenge posed by some single-objective optimization problems

makes the development of algorithms for multi-objective problems an even more difficult task. In fact,

even single-objective problems for which polynomial runtime algorithms have been developed may become

NP-hard with the addition of a second objective, such as shortest path problems [209].

The largest challenge posed by an extra objective concerns solution optimality. In multi-objective

problems it is rarely the case that a single solution will be considered optimal for all objectives at once.

This way, the traditional goal of multi-objective optimizers is to retrieve the optimal set of solutions

according to a given preference relation, an order relation that allows the algorithm to compare solutions.

The goal of an algorithm is then to retrieve the solution subset that is minimal (or maximal) according to

the given relation. The most adopted preference relation, Pareto dominance [84], states that a solution

s1 is only considered better than another solution s2 if s1 is not worse than s2 for all objectives, and

it is better for at least one. Clearly, Pareto dominance might lead to a significant number of optimal

solutions in a given problem – the more, the larger the number of objectives considered.

A significant share of the additional difficulties posed by multi-objective problems have been, how-

ever, successfully dealt with by metaheuristic algorithms. In particular, metaheuristics are problem-

independent heuristics that can be applied to any domain given a few adaptations [91]. Originally,

this kind of algorithm was devised with single-objective problems in mind, but it was quickly shown to

be particularly suited to MOPs. A subset of metaheuristics are population-based, i.e., they maintain

a set of candidate solutions being simultaneously optimized. In addition, information learned from a

given solution is used to improve others, making this kind of algorithm actually collaborative learning

approaches. Clearly, population-based algorithms are intrinsically applicable to MOPs, as they can be

adapted to maintain and simultaneously optimize a number of trade-off solutions within a single run

of the algorithm. As a result, an extensive research effort has been conducted over the past couple of

decades concerning proposals of population-based metaheuristics to MOPs [50, 85, 157, 176, 199].

The best-established metaheuristic community within MOP research is the one focusing on evolution-

ary algorithms (EAs). In fact, the first proposals of multi-objective metaheuristics concern EAs [204],

although nearly two decades were required for algorithms to start maturing [56]. Concretely, although

the population-based nature of multi-objective EAs (MOEAs) makes them natural candidates for opti-

mizing MOPs, preserving the learned information (convergence) and spread (diversity) throughout the

run of the algorithms is a critical ingredient that has been addressed ever more often. Initially, MOEAs

were reported to suffer from speciation (converging to a single trade-off region) or lacking convergence

at all [233]. Over time, key concepts such as elitism [60, 137, 233, 234], external archives [137, 160], and

indicator-driven search [19, 232] were proposed by MOEA designers, and their effectiveness experienced a

major improvement. Later, however, the increase in the number of objectives was shown to significantly

undermine the good performance of MOEAs [132, 195], initiating the current race for improving the

understanding of MOEAs and their effectiveness on many-objective problems (MaOPs), i.e., problems

with more than three objectives [3, 46, 79, 149].

A wide range of factors could likely explain the difficulties MOEAs still face when dealing with MOPs

and particularly MaOPs. For instance, in multi-objective continuous optimization some problem features

are known to pose additional difficulties for EAs, such as the presence of Pareto local optimum fronts,

multi-modality, or search space density bias [61, 112]. In MaOPs, this is made more challenging by the

large proportion of the objective space that becomes incomparable, a phenomenon known as dominance

resistance [195]. Concerning combinatorial problems, MOEAs are highly dependent on the quality of

the variation operators designed for the application domain, responsible for producing novel solutions

that should represent improvements over the original solutions. Since this can be a quite difficult task

to accomplish, it is not surprising that MOEAs benefit from additional convergence pressure provided,

for instance, by problem-specific local search heuristics [110, 187, 198].

Another factor that influences directly the performance of MOEAs on many-objective problems con-
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cerns the metrics used for their evaluation. In more detail, the evaluation of MOEAs has been tradition-

ally performed by assessing the image of the solution set they return. Formally, this image is called an

approximation front, and the goal of a multi-objective optimizer is to retrieve a front that best approx-

imates the image of the true subset of optimal solutions according to the preference relation used. In

the case of Pareto dominance, that image is called the Pareto-optimal front. However, comparing fronts

is an ever increasingly complex task as the number of objectives considered grows. Several analytical

metrics have then been proposed to simplify this task, in an attempt to make it independent of the

number of objectives presented by the target application. As one might infer, measuring the quality

of an approximation front of a multi-objective problem by means of real-valued, one-dimension metrics

means losing a considerable amount of information. More precisely, a performance metric is only able

to grasp a few of the desirable characteristics an approximation front should present, and hence it is

advisable to use a set of metrics to make assessments more complete. However, it has been shown that

some of these metrics present considerable inconsistencies, in some cases ever growing with the increase

in the number of objectives [129]. This way, MOEAs that were originally designed with a given metric

in mind are now being evaluated according to a more diverse set, and it becomes more and more clear

that the fronts produced by these algorithms could be improved in ways that had not previously been

considered.

Notwithstanding the traditional motives used to explain the need for improving MOEAs, we believe

that a significant portion of the responsibility should be laid upon MOEA researchers themselves or,

more precisely, on the traditionally adopted algorithmic engineering approach. On one hand, the MOEA

community is accredited with the major advancements on multi-objective performance assessment theory

and tools [61, 97, 140, 235], and with having proposed highly effective algorithmic ideas that have later

been reused by researchers from other metaheuristics. On the other hand, the theoretical work on the

performance assessment of MOEAs has never been properly matched by a rigorous evaluation of newly

proposed algorithms, or even by experimental campaigns benchmarking algorithms. In fact, the only

significant analyses of the latter type date now from over a decade ago [61, 132, 233], and in those studies

most of the now well-established performance metrics were not used. As a result, most of the MOEAs

proposed over the past ten years have only been compared to a few selected algorithms believed to be

high-performing, such as NSGA-II [60] or SPEA2 [234], which have been chosen due to their popularity

and historical relevance.

An additional factor that undermines the general conclusions taken from existing experimental analy-

ses is the lack of proper numerical parameter tuning. Specifically, metaheuristic algorithms are stochastic

methods that present numerical parameters used to regulate the balance between intensification and di-

versification. More precisely, depending on the characteristics of the target problem, pushing the search

for convergence (intensification) may cause the algorithm to get stuck either on plateaus, i.e., regions

where many solutions present the same quality, or in the basis of attraction of local optima, i.e., solutions

that are only optimal w.r.t. a subset of the feasible solution set [110]. Algorithm configuration hence

constitutes a meta-optimization problem, where one must optimize the numerical parameter values used

by a given metaheuristic algorithm to ensure its maximum performance when tackling a target problem.

As a manual task, configuring algorithms can be both time-consuming and of little effectiveness, as the

most common approaches either require a large computational effort (for running and comparing different

configurations) or deep statistical and/or problem knowledge (to narrow down the number of configu-

rations to be tested). More recently, however, the proposal of several automatic algorithm configurators

has made this task far easier and more effective [16, 36, 37, 113]. Concretely, such configurators are

in essence heuristic optimizers, presenting some parameters of their own and thus establishing a cyclic

issue. Nonetheless, they are able to address a number of peculiarities of the algorithm configuration

problem, namely the mixed nature of the variables to be optimized and the conditional dependencies

between them. As a result, automatic configurators have been ever more often used by researchers [107],

and are now even an integral part of some comercial optimizers such as the ILOG-IBM-CPLEX [118]. So
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far, however, no MOEA experimental analysis so far has used automatic configurators, and even novel

algorithms being proposed are still configured using manual approaches.

To further illustrate the issues with the traditional algorithm engineering methodology also adopted

by the MOEA community, consider a practitioner dealing with a novel application domain, or simply

little familiar with the literature on MOEAs. A quick literature review will reveal dozens of proposals

over the years, but no clearly defined outperforming algorithm and a yet more restricted set of analyses

of MOEAs on different application domains. A dedicated practitioner might still select a few popular

or recent algorithms and run some exploratory analysis on his/her target domain, but reach the wrong

conclusion about which MOEA suits his application best simply by not knowing which algorithms to use

in his analysis, or by using a single performance metric that is unable to evaluate MOEAs in a holistic

way. More importantly, by adopting parameter configurations originally suggested for an experimental

setup different from the one under consideration now, the practitioner may reach the wrong conclusions

even if he selects the appropriate subset of MOEAs to analyze.

From a research perspective, the way MOEAs have been proposed over the years poses a yet more

significant drawback, although this is not an issue exclusive to MOEAs. Specifically, MOEAs are de-

signed as collections of algorithmic components but evaluated as monolithic blocks. It is rarely the

case that individual components are assessed for their contribution to effectiveness or interactions with

other components. This lack of more general, unified model proposals has major consequences on the

overall learning speed of the community. As a result, there is a clear disconnection between some recent

proposed approaches and the algorithms they were meant to be built upon. Two important examples

concern (i) algorithms that are unable to clearly improve over their predecessors [13, 59], or; (ii) identical

algorithms that are independently proposed [19, 216]. Even more regrettable is the fact that MOEAs

have been seen as belonging to different design paradigms, and the research on combining these search

paradigms is yet incipient. The most relevant example of the potential benefits of these combinations

regards dominance- and indicator -based MOEAs. When first proposed, using quality indicators within

a MOEA to guide its search appeared an infeasible task due to the high computational complexity many

such indicators present. Later, however, researchers proposed using indicators as a refinement technique

to improve dominance relations, while reducing the computational overhead required to compute the

indicators. More recently, similar proposals have attempted to combine dominance- and decomposi-

tion-based algorithmic components [59]. Altogether, these efforts help demonstrate the importance of

considering MOEAs as a collection of algorithmic components rather than monolithic blocks.

One of the major drawbacks with a component-wise algorithm engineering approach is practicality.

Revisiting the example from a practitioner searching for a MOEA effective for his target application,

his investigation now becomes an issue of which components to select rather than which MOEA to

use. Even with some MOEAs presenting common components, it is clear that the design space for

the practitioner is now substantially expanded. However, it is possible to address this issue using one

of the most promising applications of automatic algorithm configurators. Concretely, recent works on

automatic algorithm design are based on using configurators to search an augmented configuration space,

including both algorithmic components to be selected and parameters to be configured. These works have

demonstrated the potential of configurators to effectively search these design spaces for several artificial

intelligence fields [70, 133, 154, 157, 208, 217, 226]. In particular, works on template- and grammar-based

automatic design of single- and multi-objective metaheuristics have shown not only the feasibility of this

approach, but also its effectiveness [70, 133, 157]. In more detail, such works initially analyze the literature

on metaheuristics proposed for a given field, and propose a structured, unified model (a template or a

grammar) that can be used to flexibly combine existing algorithmic components in human-reasonable

ways. Besides automating design, unified models are also instrumental for analyzing the effectiveness of

selected designs, a task that becomes straightforward as adding or removing components is made trivial.
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1.1 Objectives and Contributions

The main objective of this thesis is to propose a novel, automated, and more effective way to

(i) design and (ii) analyze multi- and many-objective optimization algorithms. Specifically,

the goal of this thesis is to investigate the effectiveness and applicability of the recent works on automatic

algorithm engineering for the field of MOEAs, using template-based algorithmic frameworks. To achieve

this goal, we (i) review the literature on MOEAs and propose a unified model that can be used as the basis

for a flexible and representative template-based algorithmic framework; (ii) demonstrate that effective

state-of-the-art algorithms can be designed in an automated way using this framework, and; (iii) show

that high-performing algorithms instantiated with this framework can be analyzed in an automated way,

producing relevant insights. To ensure the representativeness of our study, we consider two of the most

relevant domains where MOEAs have been applied, namely continuous and combinatorial optimization

problems.

The main contributions of this thesis are listed below:

1. A component-wise MOEA algorithmic framework based on a unified template: we

propose and later refine a component-wise MOEA algorithm framework based on a unified template

from which a practitioner can deal with MOEAs as freely combinable algorithmic components.

The proposed framework is based on the most representative MOEA unified model proposed to

date, evidenced by two important abstractions we adopt. The first concerns general preference

relations, a concept that we adapt from its original definition to make it practical for our purposes.

In particular, our modeling of preference relations allows algorithmic components from different

MOEAs to be freely integrated in human-reasonable ways. More importantly, our proposal allows

designers to combine, in a single algorithm, different search paradigms that so far had never been

jointly considered, such as the combination of indicator- and decomposition-based algorithmic

components. Finally, we allow designers to use different preference relations for each of the main

components of MOEAs, namely mating and enviromental selection, as well as archive truncation.

The second abstraction level concerns the conceptual separation between algorithmic components

responsible for dealing with multi-objective aspects of the search such as dominance, convergence,

and diversity (MO components), and the underlying EA with which they are coupled. In more

detail, evolutionary computation comprises a wide family of algorithms, some of which are jointly

called evolutionary algorithms. In multi-objective optimization, MOEAs do not always use the

same underlying EA, a fact that hinders directly the fairness of comparisons between them. Even

more serious is the fact that researchers have concentrated much of their efforts solely on devising

MO components, without paying the due attention to the interactions between these components

and the different underlying EAs one could use. As a result, the literature investigating the

effectiveness of underlying EAs or variation operators for multi-objective optimization is rather

small. The abstraction we adopt in our framework is instrumental in this direction, since effective

underlying EAs from single-objective domains can now be freely combined with the most relevant

MO components from the MOEA literature.

2. The empirical demonstration that automatically component-wise designed MOEAs

can outperform manually designed MOEAs: In an initial feasibility study, we automatically

design several MOEAs (AutoMOEA’s) that outperform the traditional MOEAs used for assembling

our framework. Concretely, we define a design space based on our template, and use an automatic

algorithm configurator to search this design space. We demonstrate the feasibility of the proposed

approach on four variants of the MO-PFSP, differing as to number and nature of their objectives,

as well as for two benchmark sets of continuous optimization problems with two, three, and five

objectives. In all scenarios considered, the AutoMOEA algorithms are both more effective and

more robust than the MOEAs from which we gathered the components used to assemble our
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framework were gathered. These results are further strengthened by the additional factors we

consider in each investigation. In the case of the MO-PFSP, we address the possibility of designing

an AutoMOEA general enough for any variant of this problem. Results demonstrate that this

is a feasible line of research, with the more general AutoMOEA outperforming existing MOEAs.

However, the performance of this algorithm is more strongly affected by the differences from tuning

and test instance sets, and so it is ultimately matched or surpassed by variant-specific AutoMOEA’s.

Regarding continuous optimization, we consider different stopping criterion and cross-benchmark

effects to respectively demonstrate the flexibility and robustness of the proposed approach. In the

former setup, for instance, we see how the performance of some of the best-performing existing

MOEAs is greatly affected, and also how the design of the AutoMOEA algorithms adapt to the

different setup. More importantly, this is compelling evidence that an automatic, component-wise

approach to MOEA design is a promising research direction.

3. A comprehensive performance analysis of multi- and many-objective EAs, a concrete

first step towards defining a state-of-the-art in MOEAs for continuous optimization:

When attempting to design state-of-the-art AutoMOEAs for continuous optimization, it became

clear that this primary application field for MOEAs lacked a recent, comprehensive, and rigorous

performance assessment that could identify the state-of-the-art MOEAs for both multi- and many-

objective optimization. The analysis we conduct is the broadest currently available in this field,

and is further enriched by the investigation of the several experimental factors we consider. In

particular, we assess MOEAs in a wide set of experimental scenarios varying in the number of

objectives and the stopping criterion used, and take additional precautions, such as using a set of

diverse performance metrics, a reasonable number of problem sizes, and properly tuning numerical

parameters presented by the algorithms for each experimental scenario. Even more importantly, in

this work we adopt the conceptual separation between high-level multi-objective components (MO)

and the underlying EA with which they are coupled, increasing both the fairness and the extent

of our assessment. In total, our analysis encompasses 15 independently proposed MOEAs, 12

experimental scenarios, and a large set of hypothesis that we investigate. In fact, the overwhelming

experimental data produced in this work is too large for a single research group to mine and is

made available for the MOEA community to facilitate further investigations.

4. The automatic design of state-of-the-art multi- and many-objective EAs for continu-

ous optimization: Besides demonstrating the feasibility of the automatic component-wise MOEA

design approach proposed in this work, we demonstrate that it is also possible to automatically

design MOEAs with state-of-the-art performance for a given application domain. In particular, we

select as target application the primary domain for which MOEAs are proposed and on which they

have been traditionally evaluated, namely continuous optimization. We then enrich our frame-

work with a set of algorithmic components that have been proposed specifically for this domain,

such as differential evolution [1, 2, 143, 166, 201, 219], or for the context of many-objective op-

timization, such as some decomposition-based components [59, 124]. Furthermore, the flexibility

of our template allows all these components to be freely combined with the components that are

domain-independent from our framework. Using a wide set of experimental setups, we design

and evaluate a set of AutoMOEA+ algorithms, MOEAs that are able to consistently outperform

the best-performing MOEAs identified in the literature for all scenarios considered. In particular,

we propose a refinement of the automatic multi-objective algorithm design methodology that is

instrumental for this and is one of the most significant contributions of our work. Specifically,

we propose a multi-objective formulation of the tuning problem that is able to alleviate the con-

tradictions between performance metrics, and allow us to automatically design MOEAs that are

considered effective by all metrics we adopt for their evaluation.
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5. A set of automated experimental analyses concerning the effectiveness and interactions

of individual MOEA components on a set of relevant benchmark problems: One of the

most direct benefits from the component-wise approach to MOEAs is the possibility to deconstruct

an algorithm into its components and investigate their effectiveness and interactions. In particular,

our component-wise approach is specially suited for an automated iterative analysis approach

named ablation analysis [77] that we adapt for the context of automatic algorithm design. In

this kind of analysis, one navigates a design space comprising the components of given source

and target algorithms. At each step of the procedure, atomic algorithmic component changes

are tested, and an ablation path is formed by iteratively selecting the atomic change that most

radically alters the performance of the current intermediate algorithm. This way, it is possible to

trace the performance evolution of atomic individual changes, understanding interactions between

components and, in some cases, even to discover an intermediate configuration that outperforms

both the source and target algorithmic designs.

Clearly, our component-wise framework is intrinsically suited for this kind of analysis. We con-

duct two sets of investigations of this kind concerning relevant application domains for MOEAs,

respectively the multi-objective permutation flowshop problem (MO-PFSP) and multi-objective

continuous optimization problems. The first investigation focuses on the experimental setup fac-

tors that concern ablation, and specially the flexibility level of the abstractions adopted when

ablating. We demonstrate, for instance, that the ability to use customized preference relations for

each of the main components of a MOEA is instrumental to their effectiveness. In addition, we

show that it is possible to find designs combining components from different MOEAs that outper-

form these algorithms. The second investigation focuses on the interactions between algorithmic

components, experimental factors, and performance metrics. Among the most important insights

drawn, we demonstrate how a design choice can lead to improvements according to a given metric

but worsen the performance of the algorithm according to another, competing metric. In addition,

we observe interactions between sets of algorithm components, reinforcing our claim about the

importance of understanding component interactions when proposing a novel MOEA.

The remainder of this introduction provides a structured outline of this thesis. In particular, we

delimit and further detail its structure and the publications related to this research.

1.2 Organization

This thesis is organized in six chapters, structured as follows. The most relevant background concepts

required for understanding the contents of the thesis are reviewed in Chapter 2. In particular, we review

the core concepts from multi-objective optimization, detail the most important characteristics of the

application problems we consider in this thesis, and review the theoretical basis used for the performance

assessment of multi-objective algorithms. A second topic covered by this chapter concerns evolutionary

algorithms and their adaptation to multi- and many-objective optimization. We pay special attention

to details that are critical for a proper understanding of the algorithms that are later deconstructed

to provide the algorithmic components that we use in the framework proposed in the core chapters of

the thesis. Finally, we discuss the most important topics concerning automatic algorithm design, in

particular the nuances of the tuning problem, the different existing algorithm configurators, and a set of

related topics that are closely related to automatic design. We remark that a reader familiar with all of

those topics may proceed directly to the core chapters.

Chapter 3 presents an initial feasibility study where we empirically demonstrate the effectiveness of

our component-wise approach coupled with the automatic algorithm design methodology. In particular,

we first present the unified template we propose from which a set of relevant, existing MOEAs can be
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instantiated, along with many other combinations that represent alternative MOEA designs. We then

automatically generate a series of MOEAs (AutoMOEAs) for continuous and combinatorial optimiza-

tion problems, demonstrating that these AutoMOEAs outperform the original MOEAs on nearly all

experimental scenarios we consider, and are robust to stopping criterion changes and cross-validation

experiments.

Our focused work on the field of continuous optimization is addressed by Chapters 4 and 5. In

Chapter 4, we describe the comprehensive performance assessment of multi- and many-objective algo-

rithms as a concrete first step to help clearly identify the state of the art in MOEAs for this domain.

More importantly, this chapter presents the discussion of the most relevant insights we observe from this

analysis, which comprise a major contribution to the design of better performing MOEAs.

The automatic design of state-of-the-art MOEAs for multi- and many-objective optimization is then

the topic of Chapter 5. After an initial discussion of how we augment our template to encompass

techniques specific to many-objective optimization and to continuous optimization, we demonstrate the

effectiveness of the novel set of AutoMOEAs, which consistently outperform existing MOEAs. More

importantly, we also discuss our efforts to refine the automatic algorithm design methodology, specially

its ability to design algorithms that excel according to a set of diverse (and sometimes contradicting)

performance metrics. Finally, we conduct a detailed follow-up investigation to assess the importance

of specific components. More precisely, we deconstruct the AutoMOEAs through ablation analysis to

correlate algorithmic components, structural problem characteristics, and performance metrics.

Finally, an extensive discussion about the conclusions drawn from this thesis are the goal of Chapter 6.

More importantly, this research work opens a number of interesting avenues for future work that we

discuss in detail, aimed at stirring the MOEA community towards such topics.

1.3 Publications

The research reported in this thesis has been the subject of collective work between the author and his

supervisors. In particular, the core chapters of this work are based on conference and journal papers

that have been published during the course of this research. A few of these works are still under revision

or are yet to be submitted, as follows:

• The feasibility study described in Chapter 3 is based on the papers listed below. In particular, the

initial studies on the MO-PFSP were published on selected conferences (1–2). A significantly ex-

tended version focusing on continuous optimization and considering a diverse set of tuning scenarios

was later published in a high-impact journal (3).

1. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Automatic design of

evolutionary algorithms for multi-objective combinatorial optimization. In Thomas

Bartz-Beielstein et al, editors, Parallel Problem Solving from Nature (PPSN XIII), volume

8672 of LNCS, pages 508-517. Springer International Publishing, 2014

2. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Deconstructing

multi-objective evolutionary algorithms: an iterative analysis on the permuta-

tion flowshop problem. In Panos M. Pardalos et al., editors, Learning and Intelligent

Optimization (LION 2014), volume 8426 of LNCS, pages 157-172. Springer International

Publishing, 2014.

3. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Automatic

component-wise design of multi-objective evolutionary algorithms. IEEE Trans-

actions on Evolutionary Computation, 2016. In press.
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• The comprehensive performance assessment targeting multi- and many-objective evolutionary al-

gorithms described in Chapter 4 is based on the papers listed below. In particular, the initial

investigations published at a specialized conference concern: (4) the interactions between high-

level multi-objective components and underlying evolutionary algorithms, and; (5) a preliminary

comparison of selected MOEAs from different design paradigms on a restricted experimental sce-

nario. The comprehensive version of this investigation will be submitted after the private defense

to a high-impact journal (6).

4. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Comparing

decomposition-based and automatically component-wise designed multi-objective

evolutionary algorithms. In A. Gaspar-Cunha et al., editors, Evolutionary Multi-Criterion

Optimization (EMO 2015), volume 9018 of LNCS, pages 396-410. Springer International Pub-

lishing, 2015.

5. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. To DE or not to DE?

Multi-objective differential evolution revisited from a component-wise perspec-

tive. In A. Gaspar-Cunha et al., editors, Evolutionary Multi-Criterion Optimization (EMO

2015), volume 9018 of LNCS, pages 48-63. Springer International Publishing, 2015.

6. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. A performance as-

sessment of tuned multi- and many-objective evolutionary algorithms. To be sub-

mitted to Evolutionary Computation (2016).

• The augmented MOEA template, the state-of-the-art AutoMOEAs, and the ablation analysis de-

scribed in Chapter 5 will be submitted to a high-impact journal after the thesis defense.

7. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Automatically de-

signing and understanding effective evolutionary algorithms for multi- and many-

objective optimization. To be submitted.

Other publications concerning related topics are listed below, published during the course of this

research work either as a collective work between the author and his supervisors (8 and 10), or as collab-

oration between the author and other research groups (9). However, they do not relate to any chapter

as their subject does not fall within the scope of the thesis. In particular, the first two of these papers

concern multi-objective ant colony optimization (MOACO) algorithms, addressing the extension of a

MOACO framework and the automatic design of MOACO algorithms for the bi-objective bidimensional

knapsack problem (8), and a component-wise analysis of MOACO components for the point-to-point

multi-objective shortest path problem (9). The bi-objective bidimensional knapsack problem is also the

subject of the last paper (10), where we conduct a component-wise analysis of a bi-objective stochastic

local search method (Pareto local search).

8. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. Automatic generation of

multi-objective ACO algorithms for the bi-objective knapsack. In M. Dorigo et al., edi-

tors, Swarm Intelligence (ANTS 2012), volume 7461 of LNCS, pages 37-48. Springer, Heidelberd,

Germany, 2012.

9. Leonardo C. T. Bezerra, Elizabeth F. G. Goldbarg, Luciana S. Buriol, and Marco C. Goldbarg.

Analyzing the impact of MOACO components: An algorithmic study on the multi-

objective shortest path problem. Expert Systems with Applications, 40:345-355, 2013.

10. Leonardo C. T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle. An analysis of local search

for the bi-objective bidimensional knapsack problem. In Martin Middendorf and Christian

Blum, editors, Evolutionary Computation in Combinatorial Optimization (EvoCOP 2013), volume

7832 of LNCS, pages 85-96. Springer, Heidelberg, Germany, 2013.
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Finally, we remark that several other papers are planned to be submitted as follow-up works from

the two journal papers that yet have not been published. We hope the reader appreciates the effort

dedicated to this research.



CHAPTER 2

Background

A
s previously discussed, this thesis covers a wide range of topics ranging from multi-objective

optimization to automatic algorithm configuration. In this chapter, we review the most important

theoretical foundations for understanding the remaining of the thesis. In particular, we start by

reviewing the definition and basic concepts of multi-objective optimization in Section 2.1. Specifically,

we address the formulation of a multi-objective problem, the most important issues regarding preference

relations (particularly Pareto dominance), and the grounds for the performance assessment of multi-

objective optimization algorithms. In addition, we detail the benchmark problems we use in this work,

namely the MO-PFSP and the continuous functions we adopt. Section 2.2 focuses on metaheuristics

and their adaptation to multi-objective optimization. In particular, we first provide a general overview

of metaheuristics, as well as the most challenging issues to be considered for the design of effective

multi-objective metaheuristics. Next, we detail evolutionary algorithms and their multi-objective design

evolution, ranging from the first EA applications to multi-objective problems to contemporary topics

such as many-objective optimization. Finally, the goal of Section 2.3 is to familiarize the reader with

automated algorithm engineering research. In particular, we pay special attention to the existing work

on automatic algorithm configuration and design, highlighting the works on multi-objective optimization

that inspired this thesis. The reader well versed in these subjects may proceed to the following chapters.

2.1 Multi-objective optimization

Multi-objective optimization problems (MOPs) are generalizations of single-objective problems where

several objective functions can be simultaneously considered. Examples of MOPs arise everywhere in

our daily lives, ranging from business to science, from industrial to sporting applications. Consider, for

instance, a company that has clients spread around the world. While it is imperative that consultants

reach out to these clients, travel costs must be minimized to ensure profit. In addition, if time windows

are considered, minimizing the waiting time of each client is critical for customer satisfaction. By his turn,

a salesman entitled to commissions per sale will also try to maximize his total earnings. In fact, when one

analyzes MOPs in general, it is easy to profile the most commonly seen objectives. First, nearly all MOPs

present an objective related to effectiveness. In business and industry, this is typically profit, whereas

in sports it is a performance measure such as time. A second recurring objective (usually conflicting)

11
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concerns the consumption of any resource one deems valuable. In auto sports, high accelerations must

be traded off against tyre consumption. In chemical plants, the total products of a reaction must be

maximized, while the consumption of reagents needs to be minimized. Finally, other types of objectives

may be related to reliability, safety, robustness, or other secondary quality measures of this nature. For

instance, high-profit stock portfolios must be assessed as to their risk and, in the Internet, minimizing

the route length between package origins and destinations must also account for alternate routes in case

links are dropped.

The importance of multi-objective problems in real-world scenarios had been recognized already in

the 1960s by the field of multi-criteria decision making (MCDM) [18]. This particular area of operations

research deals with the decision process that has to be made when solving an MOP. In particular, the

decision maker (DM) is a key player in multi-objective optimization because he is ultimately responsible

for selecting the solution to be used. Three different decision making approaches may be adopted when

solving a multi-objective problem. In an a priori approach, the DM defines a preference relation that

can be used to compare solutions, usually based on a ranking or aggregation of the different objectives.

Conversely, in an a posteriori approach a solver first finds the optimal solution subset (or an approxima-

tion of this set) according to a given objective-neutral preference relation, and the DM is responsible for

selecting from this set the solution(s) that best fit his preferences. More precisely, dominance relations

are preference relations where no a priori preference between the different objectives is specified, allowing

in theory the search to be conducted evenly across the objective space. Finally, an interactive approach

is a hybrid alternative to the previous approaches in which a dynamic, evolving preference relation is

used during the run of the algorithm. Concretely, at intermediate stages of the run the DM is prompted

to refine the preference relation used, either via selecting from a subset of the current solution set or by

reassessing the importance of the different objectives.

2.1.1 Core definitions

Formally, an MOP can be defined as follows.

Definition 1 (MOP) A multi-objective optimization problem (MOP) is a tuple Π = (S, f), where

f : S → RM is an M -dimensional objective function, M ≥ 2, that maps S, the set of candidate so-

lutions for Π, also called decision space, to RM . The image of S is also called objective space.

A MOP (as optimization problems in general) may vary as to the domain and possible constraints

of the variables that define it. Concerning the variable domain, continuous problems present real-valued

decision variables, whereas the domains of variables in combinatorial problems are discrete. Regarding

constraints, the decision variables of an unconstrained problem may assume any values (from their

domains). By contrast, a constrained optimization problem presents constraints that restrict the values

that some (or all) variables may assume. As a consequence, the interest of optimizers dealing with

constrained problems concerns the subset feasible(S) comprising only feasible solutions, i.e., solutions

that do not violate constraints.

Since the dimensionality of f is greater than one, each feasible solution has an associated objective

vector, i.e., its image in RM (M is also called the number of objectives). Comparing solutions in an MOP

is then a task of comparing their objective vectors. Not surprisingly, the often contradicting nature of

objectives usually leads to the situation where it is impossible to clearly decide between two objective

vectors. In particular, when the optimization problem considered presents an evaluation function with

M = 1, the algebraic relations ≤ and ≥ establish natural total orders over the solution quality domain

R, with a few different solution subsets presenting the same quality. Nonetheless, single-objective opti-

mization problems always present a single globally optimal point in the objective space, even if several

solutions map that same quality value. Analogously, in order to tackle an MOP one must first choose a
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preference relation to order the objective space RM , even if a neutral one such as a dominance relation.

We then define two important concepts that derive from using a preference relation.

Definition 2 (Ψ-efficient objective vector and solution) Given a preference relation Ψ and an ob-

jective vector v that is the image of a feasible solution s ∈ feasible(S), v is called a Ψ-efficient objective

vector if it is minimal (maximal) according to Ψ. In addition, a solution that maps to a Ψ-efficient vector

is called a Ψ-efficient solution.

As in single-objective optimization, it is possible to have subsets of solutions that are equivalent

according to Ψ, called Ψ-indifferent solutions. In addition, in multi-objective optimization one also

deals with the notion of Ψ-incomparability, i.e., vectors that are neither better, worse, nor indifferent to

each other according to Ψ. As a result, there usually exists a set of Ψ-incomparable efficient objective

vectors in an MOP, and a possibly even larger set of Ψ-incomparable efficient solutions. The goal of a

multi-objective optimizer is hence to retrieve a Ψ-optimal set or front for a given preference relation Ψ,

as follows.

Definition 3 (Ψ-optimal set) The Ψ-optimal set Ψset ⊆ S is the set of Ψ-efficient solutions.

Definition 4 (Ψ-optimal front) The Ψ-optimal front Ψfront ⊆ RM is the set of Ψ-efficient vectors.

In general, multi-objective optimization problems are at least NP-hard, even when the single-objective

problems from which they have been generalized are polynomially solvable [209]. An evidence of this

increased complexity concerns single-objective projections, or scalarizations, a technique that aggregates

the different objectives and is often employed in the literature of multi-criteria decision making. For

a particular type of aggregation techniques, the optimal solution for a single-objective projection of an

MOP is also dominance-optimal for the original MOP. In fact, the literature establishes a separation

between solutions that can be retrieved via linear scalarizations of the MOP and solutions that cannot,

respectively referred to as supported and non-supported. In other words, a supported efficient solution

of Π is a solution that belongs to its convex hull. For a particular class of MOPs that originates from

the generalization of polynomially solvable optimization problems, these can be retrieved in polynomial

time. In this type of MOPs, the goal of the multi-objective optimizer is made easier since supported

efficient solutions might suffice for a DM to choose from. For MOPs in general, however, even the task

of finding supported solutions is NP-hard. As a result, multi-objective optimization algorithms are often

approximative, not ensuring the optimality of the solutions contained in the set/front they return.

Definition 5 (Approximation set) An approximation set AΨ
set ⊆ S is a set of solutions (decision vec-

tors) returned as the output1 of a multi-objective approximative (heuristic) algorithm meant to optimize

an MOP according to a given preference relation Ψ.

Definition 6 (Approximation front) An approximation front AΨ
front = f(AΨ

set) is the image (objec-

tive vectors) of a given approximation set AΨ
set.

Overall, it becomes clear that the role of preference relations in solution comparison is critical for

the design of multi-objective optimization algorithms. Next, we discuss the most relevant categories of

preferences used in the literature.

2.1.2 Preferences and solution comparison

The highest-level separation between preference relations concern the importance given to objectives:

while dominance relations consider objectives equally important, the remaining preference relations

establish some order of priority over them2. Among the latter, the most basic form of ordering solutions

1The set of solutions maintained by a population-based algorithm during its execution is also called an approximation
set.

2It is however possible to have a special-case of scalarization-based preference relations where objectives are considered
equally important, as we will later discuss.
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in an MOP is lexicographically, and it is of particular interest for exact algorithms. For the multi-objective

shortest path (MSP) problem, for instance, a generalized version of Dijkstra’s algorithm has been devised

and showed to be efficient [169]. The proposed algorithm works by creating/expanding labels representing

partial solutions on the graph nodes. However, the optimality of the complete solutions found is only

ensured if all of the labels generated by the algorithm are expanded in lexicographical order of their

associated objective vectors.

Next we discuss in more detail the two most relevant families of preference relations, namely aggre-

gation and dominance relations.

Aggregation relations

Besides the natural approach of lexicographic ordering, another set of common preference relations in

MCDM that establishes a preference over objectives comprises weighted aggregations, utility functions,

and boundary intersection. All these approaches have in common the advantage of converting the original

MOP to single-objective projections. Among their benefits, one can highlight the reduced computational

complexity of the problem, meaning a much lower computational effort to find high-quality solutions.

In addition, by using multiple weight vectors one can retrieve multiple solutions from a single run when

using population-based metaheuristics, for instance. However, a major drawback related to this kind of

approach is that not all search directions will necessarily lead to optimal solutions. As a consequence,

much effort might be wasted by the algorithm, hindering its overall performance. We then further detail

each of them:

• Weighted aggregations use scalar values to aggregate the information concerning each objec-

tive3, the most common example being linear weighted sum [180]. Given a weight vector λ, the

linear weighted sum δlws of an objective vector v is given by:

δlws(v, λ) =
M∑
i=1

vi · λi, subject to λi ∈ [0, 1],
M∑
i=1

λi = 1 (2.1)

• Utility functions are more elaborate mathematical functions used to evaluate the preferability of

solutions. For example, the Tchebycheff function [177] uses both a weight vector λ and a reference

point r to measure the distance between an objective vector v and a given region of interest of the

objective space:

δTch(v, λ, r) = max{λi · (vi − ri)}, subject to λi ∈ [0, 1],

M∑
i=1

λi = 1 (2.2)

• Boundary intersection is an approach based on the fact that the intersections between reference

lines defined by a set of weights and the boundaries of the attainable objective space represent

optimal solutions. This way, the search process of an algorithm is directed towards minimizing the

distance between the current solution and the boundary intersection point, defined by the weight

vector used. However, to prevent solutions from converging to the same point in the objective space

one may use a penalty factor ξ, as in the penalty-based boundary intersection (PBI) approach [228]:

δpbi(v, λ, r, ξ) = d1 + ξ · d2, d1 = ||(r−v)T ·λ||
||λ|| , d2 = ||v − (r− d1λ)||

subject to λi ∈ [0, 1],
∑M
i=1 λi = 1

(2.3)

3In multi-criteria decision making, this technique is often used to express the preferences of the decision maker, where
weights refer to the relative importance of the different objectives.
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where, v and r are a reference point and an objective vector, respectively, and d1 and d2 respectively

represent the distance between v and the boundary intersection, and between v and the reference

line defined by λ.

Dominance relations

Concerning dominance relations, no distinction between objectives is made, as previously discussed. The

most commonly used are Pareto [84] and Lorenz [179] dominance, although clearly the works using the

former far outnumber the latter. In fact, several variants of the original Pareto dominance relation have

been proposed, although they escape the scope of this thesis. Concerning Pareto and Lorenz dominance,

they are both illustrated in Fig. 2.1.

Definition 7 (Pareto dominance) Given two different candidate solutions s1 and s2 of an MOP, the

Pareto dominance relation states that s1 dominates s2 if, and only if, s1 is not worse than s2 for all

objectives and strictly better for at least one. Formally, for a minimization problem (without loss of

generality),

s1 ≺ s2 ⇐⇒ ∀m = 1, . . . ,M, fm(s1) ≤ fm(s2), and ∃j such that f j(s1) < f j(s2)

The geometrical interpretation of Pareto dominance can be seen on Figure 2.1 (left). Given two

solutions sA and sB of a minimization problem, any other solution sC 6= sA 6= sB located within the

gray area of the plot will be dominated either by sA, by sB , or by both.

By contrast, Lorenz dominance compares solutions not based on their objective vectors, but on their

generalized Lorenz vectors.

Definition 8 (Generalized Lorenz vectors) Given an objective vector v and its i-th largest compo-

nent θi(v), the generalized Lorenz vector Θ(v) is defined as

Θ(v) = (θ1(v), θ2(v), ..., θM (v)) with θi(v) =
i∑

j=1

θj(v) (2.4)

The geometrical interpretation of Lorenz dominance can be seen on Figure 2.1 (right). In particular,

the region dominated by a solution s according to Pareto dominance is a subspace of the region dominated

by s according to Lorenz dominance. As a result, Lorenz dominance is considered more strict than

Pareto dominance, although it is clear that solutions that are Lorenz-incomparable will also be Pareto-

incomparable. For this reason, a recent empirical investigation has compared the effects of Lorenz

versus Pareto dominance w.r.t the increase in the number of objectives and as an additional source

of convergence pressure to algorithms [181]. Although the cardinality of the Lorenz fronts remains

reasonable, their spread is considerably lower than when Pareto dominance is adopted. Since this is still

a rather incipient research direction, we adopt Pareto dominance in the remainder of this thesis, which

we further detail next.

2.1.3 Pareto dominance

Besides the previously discussed relations between solutions, Pareto dominance presents additional nu-

ances for solution comparison, namely strict and weak dominance, which we formally detail in Table 2.1.

In particular, the weak Pareto dominance relation only assures that a solution is not worse than another.

All Pareto dominance solution comparison relations are generalized for the comparison of solution sets.

The baseline Pareto dominance relation for set comparison can be defined as follows.
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(a) Pareto (b) Lorenz

Figure 2.1: Difference between the dominated subspaces according to the dominance relation adopted.

Table 2.1: Pareto dominance relations among solutions [140].

Relation Interpretation in the objective space

Strict dominance s1 ≺≺ s2 s1 is better than s2 for all objectives

Dominance s1 ≺ s2 s1 is not worse than s2 for all objectives and is better for at least one

Weak dominance s1 � s2 s1 is not worse than s2 for all objectives

Incomparability s1 || s2 Neither s1 � s2 nor s2 � s1
Indifference s1 ∼ s2 s1 has the same value as s2 for all objectives

Definition 9 (Pareto set dominance relation) Given two sets of solutions A and B, A is said to

dominate B (A ≺ B) if, and only if, for every solution sb ∈ B there exists a solution sa ∈ A such that

sa ≺ sb.

The definitions of set strict-, weak-, and non-dominance are analogous to the baseline definition and

are formally defined in Table 2.2. Moreover, an extra relation has been defined for comparing sets,

namely the better (C) relation4.

Definition 10 (Pareto better dominance relation) Given two sets of solutions A and B, A is said

to be better than B (ACB) if, and only if, for every solution sb ∈ B there exists a solution sa ∈ A such

that sa � sb, but A is not identical to B.

The goal in MOPs that are tackled according to Pareto dominance is then to identify the Pareto-

optimal set and its associated Pareto-optimal front. Notice that the cardinality of the Pareto front may

be smaller than the cardinality of the Pareto set, since different solutions may map to the same objective

vector. For this reason, algorithms generally aim at retrieving the Pareto front rather than the Pareto set,

even though different Ψ-indifferent solutions could be of interest to decision makers. In practice, however,

the previously discussed MOP computational complexity means that this goal is relaxed towards finding

an as good approximation front as possible, although we will next discuss that this is a complex subject.

4We remark that the symbols ≺≺, ≺, �, C are interchangeably used in the literature with their symmetric symbols
��, �, �, B. In this work, we adopt the convention that these symbols should be used as generalizations of the < and >
symbols, and without loss of generality assume minimization for the remainder of the thesis (≺≺, ≺, �, C).
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Table 2.2: Pareto set dominance relations [140].

Relation Interpretation in the objective space

Strict dominance A ≺≺ B Every s2 ∈ B is strictly dominated by at least one s1 ∈ A
Dominance A ≺ B Every s2 ∈ B is dominated by at least one s1 ∈ A
Better A / B Every s2 ∈ B is dominated by at least one s1 ∈ A and A � B

Weak dominance A � B Every s2 ∈ B is weakly dominated by at least one s1 ∈ A
Incomparability A || B Neither A � B nor B � A
Indifference A ∼ B A � B and B � A

2.1.4 Performance assessment

The concept of high-quality approximation fronts is not straightforward. In the best-case scenario, every

front generated by one optimizer Φ1 strictly dominates every front generated by another optimizer Φ2. In

practice, however, this is rarely the case. In order to evaluate approximation fronts, several methodologies

can be used, such as dominance rankings [140], quality metrics (or indicators) [123, 129, 206, 235], and

empirical attainment functions (EAFs) [82, 158].

Dominance rankings

A rigorous comparison between the approximation fronts produced by different MOEAs is to use

dominance rankings. In more detail, let Φ1 and Φ2 be two algorithms one wants to compare and

A1
Φ1
, A2

Φ1
, . . . , ArΦ1

and A1
Φ2
, A2

Φ2
, . . . , ArΦ2

the approximation fronts they respectively produce over a se-

ries of r runs, comprising a collection C. Each of these fronts is assigned a dominance ranking depicting

how many fronts from C are better (C) than it. In this way, both algorithms can now be evaluated

based on the ranking values their approximation fronts achieve. In particular, statistical analysis can

investigate whether this transformed sample for Φ1 is significantly different from the sample for Φ2, and

post-hoc tests can indicate which algorithm produces better quality fronts if difference is observed [140].

As previously mentioned, this is a fairly rigorous approach since it is only possible to discriminate be-

tween algorithms that present very different performance. Therefore, to assess whether an approximation

front is better than other, a common approach is to use quality indicators, as we shall see next.

Quality indicators

Measuring the quality of an approximation front is a complex task. One approach that has drawn sig-

nificant attention from the research community is the use of quality indicators (or performance metrics).

Concretely, these metrics either (i) analytically measure a given (set of) characteristic(s) a high-quality

front should present, or (ii) analytically assess the difference between two fronts, in which case it is

possible to evaluate how well a front approximates the Pareto front. In the former case, a metric is said

to be unary, whereas in the latter it is said to be binary, as we formally defined next.

Definition 11 (Unary and binary quality indicators) Let Ω be the set of all possible approxima-

tion fronts of an MOP Π. A unary quality indicator I is a function I : Ω→ R that measures a particular

characteristic of approximation fronts and assigns them scalar values. A binary quality indicator is a

function I : (Ω,Ω)→ R that analytically measures the similarity between two approximation fronts.

As we will see later, some binary quality indicators can be used to construct as unary quality indica-

tors. More importantly, a requirement that should be observed by indicators concerns their agreement

with Pareto dominance, formally defined as follows.
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Definition 12 (Pareto compliance) Let I : Ω → R be a quality indicator which is to be maximized.

I is said to be Pareto-compliant if, and only if, for every pair of approximation fronts (A,B) ∈ Ω for

which I(A) ≥ I(B), it also holds that B � A.

As discussed by Zitzler et al. [235], true unary quality indicators display a limited potential for com-

paring sets of solutions while respecting Pareto dominance. By contrast, some binary indicators can

deliver Pareto compliance, but the amount of data produced when analyzing a set of algorithms with

multiple runs using binary indicators can be overwhelming. For these reasons, the most appropriate

approaches to quality indicators are either to (i) use binary indicators as an auxiliary method for com-

puting dominance rankings, or; (ii) reformulate binary indicators as unary indicators considering the

comparison between an approximation front and a reference front. For instance, consider the additive

binary ε-indicator (Iε+) [235] which we will shortly explain. Being a binary indicator, the Iε+ takes

two input approximation fronts to compare. However, it is possible to use it as an unary indicator as

I1
ε+(A) = Iε+(A,R), where R is a reference front [140].

The ideal reference fronts to be used by quality indicators are true Pareto fronts. However, in combi-

natorial optimization it is often the case that one cannot compute these directly given the NP-hardness of

the original single-objective problems. For continuous problems, the artificially designed problems typi-

cally considered for multi-objective optimization present backdoors that allow Pareto optimal solutions

to be easily generated. However, these Pareto fronts can be too large for practical purposes depending

on the tolerance level used and the correlation between the different objectives. Whenever Pareto fronts

are not available, reference sets can be assembled by merging all approximation fronts found by all opti-

mizers being assessed. At this point, one can either (i) filter these supersets to leave only nondominated

solutions or (ii) generate “average fronts” via different methods. Although this approach is far from

ideal, reference sets can become rich information sources as long as they are continuously refined by

adding solutions found by high-performing algorithms. Next, we detail and discuss the most important

indicator proposals observed in the literature:

1. The hypervolume indicators [231, 235]: In its original unary version (IH), the hypervolume

indicator measures the volume of the subspace dominated by a given approximation front bounded

by a reference point. The larger the hypervolume, the better the approximation front is. Given

the drawbacks already discussed for unary indicators, different binary versions of this metric have

been adopted in the literature, as follows:

• The hypervolume difference (I−H or IHD) [231]: given two approximation fronts A and B, the

IHD computes the difference between the hypervolume of the subspace bounded by a reference

point r that is dominated by A and but not by B. Used as an unary indicator with a reference

front R as B, we have the following minimization metric:

I1
HD(A) = IHD(R)− IHD(A) (2.5)

• The relative hypervolume (IH%) [231]: given two approximation fronts A and B, the IH%

computes the ratio between the hypervolume of the subspace dominated by A and the hyper-

volume of the subspace dominated by B. Used as an unary indicator, we have the following

minimization metric:

I1
H%(A) =

IH(A)

IH(R)
(2.6)

• The hypervolume relative percentage deviation (IHR) [32]: given two approximation fronts A

and B, the IHR computes the relative percentage deviation between the hypervolume of the

subspace dominated by A and the hypervolume of the subspace dominated by B. Used as an
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unary indicator, we have the following minimization metric:

IrpdH (A) =
IH(R)− IH(A)

IH(R)
(2.7)

The hypervolume-based indicators are the most used in the literature due to their Pareto-

compliance, as long as the reference point used is strictly dominated by the approximation

front [140]. In fact, the hypervolume is the only indicator that has been shown to present this

property5. On the other hand, the most significant challenge concerning hypervolume-based indi-

cators is the computational complexity of computing the hypervolume for an approximation front,

which is exponential in the number of objectives [20]. However, significant work towards reducing

the overhead imposed by this indicator has been able to produce much improved implementa-

tions [20, 183, 223, 224]. Finally, an additional challenge is evaluating the region of interest for

these indicators as the number of objectives grows. For instance, hypervolume implementations

have to deal with overflows when addressing large numbers of objectives, such is the increase in

the hypervolumes. Consequently, the range of values that the unary hypervolume metrics display

becomes considerably small.

2. The ε-indicators (Iε and Iε+) [235]: originally defined as binary metrics, the additive (Iε+) and

multiplicative (Iε) ε-indicators measure the translation (additive) or scaling (multiplicative) that

would be required for an approximation front A to become weakly dominated by another front B.

Used as unary indicators, we have the following minimization metrics [140]:

I1
ε (A) = Iε(A,R) I1

ε+(A) = Iε+(A,R) (2.8)

The binary ε-indicators are able to assess whether an approximation front is better (C) than

another, being weakly Pareto-compliant [235]. In addition, used as unary indicators they are able

to assess whether an approximation front has converged to the reference front with ν tolerance.

However, it is not possible to determine whether an I1
ε+ > ν (I1

ε > ν) means a lack of convergence

or diversity. Furthermore, compared to the hypervolume indicator the computational overhead

posed by the ε-indicators is minimal.

3. The generational distance indicators (IGD, IIGD, and IIGD+) [49, 123, 220]: the first proposed

member of this family of binary indicators was the generational distance indicator (IGD) [220], a

minimizing convergence metric that measures the average Euclidean distance between each point

of an approximation front A and the closest point to it from another front B. This metric strictly

concerns convergence, and is generally used as an unary metric comparing the distance between

an approximation front and a reference front. Later, the inverted generational distance (IIGD) [49]

was proposed as a unary metric that accounts for both convergence and diversity. Concretely, the

IIGD is defined in function of the IGD indicator:

IIGD(A) = IGD(R,A) (2.9)

In other words, the inverted generational distance of a given front A w.r.t. an approximation

front R is actually the generational distance between R and A. Similarly to the ε-indicators,

the computational overhead required for computing IIGD is minimal when compared to the effort

required for the hypervolume computation. However, although this indicator is the most widely

adopted in the field of many-objective optimization, it is not Pareto compliant [123]. Recently, a

Pareto-compliant version of the IIGD was proposed (IIGD+, [123]), differing by a specific feature of

5We will later see that the Iε+ indicator has also been shown to be Pareto-compliant, but only weakly.
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the distance computation. Given an approximation front A one wants to evaluate and a reference

front R, a modified Euclidean distance calculation between points a ∈ A and z ∈ R is used, which

considers only the objective vector components for which a is dominated by z. Formally, the

distance between a and z for a given objective i is computed as follows (considering a minimization

problem without loss of generality):

d+
i (z, a) = max{ai − zi, 0}, i = 1, 2, . . . ,M (2.10)

As discussed above, each metric is a different approach to measure the quality of an approximation

front. Given that different metrics may favor different characteristics, it is not surprising that they

eventually disagree, as an empirical investigation has recently shown [129]. In order to understand the

consistencies and contradictions between metrics, we first define more precisely the characteristics most

commonly used to analyze approximation fronts:

Convergence: refers to the optimality of solutions. A front is said to have converged if all of its

solutions are Pareto-optimal.

Spread: refers to the extent of the front, more specifically the distance between the extreme solutions

of a front. It can be used to assess whether an algorithm faces difficulties in a given objective, like

in combinatorial optimization problems where the objectives may differ considerably as to their

nature.

Distribution: refers to the evenness of the front, more specifically to the uniformity of the distances

between pairs of adjacent solutions. In particular, analyzing distribution is a way of detecting

gaps in the fronts, meaning that the algorithm had difficulties to optimize some combination of the

objectives.

We then review the most important findings of the empirical investigation that reported the contra-

dictions between performance metrics [129]. In particular, the authors used a set of different metrics

to evaluate two different Pareto optimal fronts, differing between each other because the second had

been post-processed to improve its IH value. We remark that the findings were observed for continuous

problems where fronts have smooth shapes, and hence it is not clear how they generalize to the tricky

fronts of some combinatorial problems. In addition, we restrict our review to the metrics that were both

present in that study and that we have previously explained (IH , Iε+, IIGD).

The key features behind the interactions between metrics concern the geometry of the Pareto fronts

and the correlations between objectives (0.1 ≤ ρ ≤ 3.0), as follows:

Convex problems: The IH and the IIGD agree in these problems, valuing distribution over spread. By

contrast, Iε+ increasingly disagrees with the remaining indicators as the number of objectives grows.

For M = 3, Iε+ favors spread over distribution for half of the correlation values considered (0.1 ≤
ρ < 0.5). Moreover, already for M = 4, Iε+ disagrees with the remaining metrics for most

correlation values considered.

Concave problems: The IH and the Iε+ value spread over distribution. Conversely, the IIGD disagrees

with these metrics for all correlation values considered whatever the number of objectives.

Empirical attainment functions

Besides quality indicators, another essential methodology for comparing multi-objective optimizers is

the use of empirical attainment functions (EAFs) [158, 235]. To understand this concept, one must

first understand the concepts of attainment functions and empirical attainment surfaces. Attainment
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Figure 2.2: EAF difference plots comparing two multi-objective optimization algorithms. Darker areas
on the left indicate that the fronts from the algorithm depicted on the left have better spread more often
than the fronts from the algorithm depicted on the right.

functions measure the percentage of times an algorithm generates fronts that dominate each vector of

the objective space. Since it is not feasible to compute exact attainment functions, in practice one

estimates empirical attainment functions from the available approximation fronts. This information is

generally used for comparing multiple optimizers through statistical tests [140].

Having calculated the empirical attainment functions for the data available from a set of optimizers,

one can compute their empirical attainment surfaces. Attainment surfaces are used to delimit which

parts of the objective space have been attained up to a frequency rate k. For example, a 10%-attainment

surface delimits which parts of the objective space have been attained by at least 10% of the runs of a

given algorithm. Computing several of these attainment surfaces, one can use this data for graphical

visualization.

The most important graphical visualization methodology currently using empirical attainment sur-

faces are the EAF difference plots [158]. This type of plot is the first choice when directly comparing two

algorithms because they resemble density distribution differences showing which algorithm has attained

more often each region of the objective space. An example is shown in Figure 2.2. Each side of the figure

shows the resulting EAF difference for each algorithm being compared. Darker areas on the left box

indicate that the fronts from the algorithm depicted on the left have better spread more often than the

fronts from the algorithm depicted on the right. Additional information can also be retrieved from this

type of plots. The inner and outer continuous lines on both sides of the figure respectively represent the

worst-case and the best-case attainment surfaces for both algorithms. The dashed line represents the

median attainment surface of each algorithm. Despite the large amount of information they can depict,

EAF difference plots face a major conceptual limitation. So far, these tools have only been of practical

use for bi-objective optimization.
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2.1.5 Application MOPs

We next formally define the MOPs we consider as application problems in this thesis. We start by

discussing the most important concepts concerning continuous optimization and by reviewing the char-

acteristics of the existing artificial problem benchmarks used in the literature for this field. Concerning

combinatorial optimization, we select as application the multi-objective permutation flowshop prob-

lem (MO-PFSP). As we will discuss, a number of multi-objective metaheuristics has been applied to the

MO-PFSP due to the particular characteristics presented by the most commonly used objective functions

of this problem.

Continuous optimization

The domain of continuous optimization involves all application problems that can be modeled as a math-

ematical function dependent on real-valued variables. Although confusing, a multi-objective continuous

problem is simply referred to as an MOP in the literature. Formally, an MOP with M objectives and

nvar variables is defined as6:

min f(s) = (f1(s), f2(s), . . . , fM (s)) (2.11)

where s ∈ feasible(S) is a solution (a decision vector) and each fi : feasible(S) → R is an objective

function to be optimized.

Although this is a field rich in real-world applications, most studies rely on artificial benchmark

problem sets. Before reviewing the most relevant sets observed in the literature, we discuss the most

recurring characteristics present in real-world objective functions and problems that these sets try to

capture [61, 112].

1. Separability: separable objective functions allow the optimization task to be done iteratively by

fixing a few variables and optimizing others. In multi-objective optimization, it is also common to

have a separation between (i) variables that affect the optimality of the problem, thus leading to

novel dominating solutions (distance-related variables), and; (ii) variables that when modified can

only lead to incomparable solutions, and hence affect only the search diversity (position-related

variables).

2. Local Pareto-optimal fronts: a locally optimal front is a surface that tricks algorithms into

believing that they have found the true Pareto front of an MOP, slowing down their progress.

When a problem presents a large number of local Pareto-optimal fronts, algorithms may even be

unable to converge to the true front.

3. Modality: unimodal objective functions present a single, globally optimal objective vector. Con-

versely, multi-modal functions are more difficult to optimize because they present a series of local

optima that can trick an algorithm or at least slow down its convergence. In addition, multi-

modal functions are more recurring in the real-world than unimodal ones. Finally, a special type

of multi-modality is known as deceptiveness. A deceptive objective presents only two optima, and

the majority of the search space favors the local one, deceiving algorithms in their search for the

global optimum.

4. Density bias: objective space bias means that there is a shift in the density distribution of

the objective space meant to test algorithms for their ability to keep the search well-spread. In

particular, the biased regions of the objective space may act as attractive poles at any point during

the search process and, hence, this feature constitutes an important challenge for optimizing MOPs.

6Notice we assume minimization for all objectives without loss of generality.
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MOP Separability (1) Local fronts (2) Modality (3) Bias (4) Geometry (5)

DTLZ1 X∗ X M – linear
DTLZ2 X∗ – U – concave
DTLZ3 X∗ X M – concave
DTLZ4 X∗ – U polynomial concave
DTLZ5 X∗ – U – degenerate?
DTLZ6 X∗ X U – degenerate?
DTLZ7 X – U,M – disconnected

WFG1 X – U polynomial convex, mixed
WFG2 – – U,M – convex, disconnected
WFG3 – – U – linear, degenerate
WFG4 X – M – concave
WFG5 X – D – concave
WFG6 – – U – concave
WFG7 X – U parameter dependent concave
WFG8 – – U parameter dependent concave
WFG9 – – M,D parameter dependent concave

Table 2.3: Summarized description of two problem benchmark sets commonly used in the literature of
multi-objective continuous optimization: DTLZ [61] and WFG [112].

5. Pareto front geometry: a series of different Pareto front geometries can be observed in real-world

problems, namely convex, mixed, linear, degenerate, and disconnected. It is also possible to have

combinations of these geometries, and thus evaluate the ability of algorithms to simultaneously deal

with them. In particular, we briefly discuss the concepts of degenerate and disconnected fronts, as

they are not as obvious as the others.

• A degenerate front presents a dimensionality that is, at least, two dimensions lower than the

dimensionality of the problem considered. For instance, a degenerate front of a three-objective

problem would be a line;

• A disconnected front presents pools of Pareto-optimal solutions, and tests the ability of algo-

rithms to simultaneously approximate multiple trade-off regions of the objective space.

6. Correlation between the objectives: objectives that present high correlation are easier to

optimize because there is a high probability that when one objective is improved, the positively

correlated one(s) is (are) also improved. By contrast, when a problem presents conflicting objectives

converging towards the Pareto front requires being able to simultaneously optimize them.

A number of benchmark problem sets has been proposed in the literature of continuous optimiza-

tion [12, 61, 112, 229], and an even larger number of independent benchmark problems [112]. In this

chapter, we restrict our discussion to two benchmarks that we select because they are scalable as to the

number of variables (nvar) and objectives (M), namely the DTLZ [61] and the WFG [112] benchmark

sets. Both benchmark sets present problems that are box-constrained, i.e., their variables can only take

values within a bounded real interval. A summarized detail of the problems contained in these sets is

given in Table 2.3, following the analysis of Huband et al. [112]. In particular, we remark that computing

correlations between objectives over a range of different M values would not fit this section due to the

amount of pairwise analysis required by this approach. The most important overall remarks about the

selected benchmark problems sets are discussed next:

The DTLZ benchmark: this problem benchmark represents an important milestone when one an-

alyzes the multi-objective optimization performance assessment literature. In particular, this was

the first benchmark problem set simultaneously scalable w.r.t. M and nvar, although increasing
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nvar only increases the number of distance-related variables. In addition, the large variety of prob-

lem characteristics assessed by this benchmark set has been instrumental for helping design robust

algorithms. However, a few disadvantages have to be remarked:

• Extremal optima – for many DTLZ problems, Pareto optimal solutions are found when

distance-related parameters are set to the lower bound of the domain of values variables

can take. Truncation procedures used by algorithms when variables violate bounds can then

lead to good results simply due to this characteristic.

• Separability – functions are considered separable from a practical point of view since it is

possible to find at least one global optimum when optimizing variables independently.

• Geometry – the DTLZ5–6 problems present design issues that affect their analysis [112], and

hence when M > 3 it is not possible to assess their true geometry.

• Flexibility – fiddling with the DTLZ functions to regulate the number of Pareto-local optima

or other problem characteristics is not a straightforward task.

• Problem sizes – although this benchmark was proposed to be scalable as to nvar, very few

works have considered problem sizes different from the ones suggested by the DTLZ proposers,

which can be very low for practical purposes (nvar < 10).

The WFG benchmark: proposed a few years later than the DTLZ, the WFG set was proposed as an

illustrative example of a flexible toolkit designed to allow researchers to freely construct or modify

MOPs. In particular, a WFG problem is the result of a series of composable transformations that

define the geometry, bias, and other characteristics the problem presents. In practice, however,

the use of the WFG toolkit has been limited, and researchers have attained to the illustrative

benchmark problem set defined by the WFG proposers. Even more so, the major drawback with

this problem set is precisely the few algorithms that have been benchmarked on it, reducing the

available knowledge as to the true difficulty posed by this set.

The multi-objective permutation flowshop problem

The MO-PFSP is a generalization of the permutation flowshop problem, a workshop scheduling problem

that arises in any industrial setting where a set of n jobs has to be executed by m different machines in a

given machine order. The profit of chemical, steel, or ceramic tile production companies depends directly

on the efficiency of the job scheduling order, since each execution takes a different amount of time. An

instance ΠPFSP of the PFSP is a tuple ΠPFSP = (n,m,P ), where P is a n×m matrix of processing times

pij depicting the time required for the execution of job i on machine j.

Although for more than three machines optimal solutions may be non-permutation schedules, a

common restriction in flowshop scheduling research is to consider only permutation schedules, that is,

schedules where the job order on all machines in the same. Here, we follow this tradition. In addition,

we adopt also the usual assumptions taken in many permutation flowshop scheduling problems such as

job availability at zero and that operations may not be interrupted. A solution to ΠPFSP is, hence, a

permutation π specifying the order in which jobs are to be processed. The completion times of all jobs

on all machines are defined as

Cπ0,j = 0, j = 1, ...,m, Cπi,0 = 0, i = 1, ..., n,

Cπi,j = max{Cπi−1,j , Cπi,j−1}, i = 1, ..., n, j = 1, ...,m

(2.12)

where πi is the job at position i in the permutation, π0 is a dummy job, and machine 0 is a dummy

machine. Although many variants of the PFSP have been proposed in the literature, in this thesis we
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Figure 2.3: Approximation fronts retrieved by a state-of-the-art optimizer [69] for the MO-PFSP on
different bi-objective variants depicting the correlation between the objectives.

consider only the original variant described above. Moreover, we restrict our review to the analysis of

the most common objectives used in the literature, as follows:

• Makespan (Cmax): minimizing the completion time of the last job on the last machine, i.e., Cπn,m.

Formally,

Cmax(π) = Cπn,m (2.13)

• Total flow time (TFT): minimizing the sum of the completion times Cπi,m of each job

i = 1, 2, . . . , n on the last machine. Formally

TFT(π) =
n∑
i=1

Cπi,m (2.14)

• Total tardiness (TT): minimizing the difference between the completion times Cπi,m of all jobs

in the last machine and their due dates dπi , which need to be provided. More precisely,

TT(π) =

n∑
i=1

max{Cπi,m − dπi , 0} (2.15)

• Weighted tardiness (WT): a more general version of the total tardiness objective, where weights

wi assessing the importance of jobs are provided. Formally,

WT(π) =

n∑
i=1

wπi · Tπi Tπi = max{Cπi,m − dπi , 0} (2.16)

In this thesis, we consider a three-objective variant of the PFSP with the tuple of objectives

(Cmax,TFT,TT), as well as the bi-objective variants comprising their pairwise combinations, namely

(Cmax,TFT), (Cmax,TT), and (TFT,TT). Since the original PFSP problems are NP-hard, Pareto fronts

are not available. Furthermore, we illustrate the shapes of high-quality approximation fronts for each of

the bi-objective variants in Figure 2.3. In particular, each plot shows the aggregation of 25 approxima-

tion fronts returned by a state-of-the-art optimizer for the MO-PFSP when ran with different seeds. The

roughly convex shapes of the fronts found for the PFSPCmax-TFT (left) and for the PFSPCmax-TT (center)

contrast with the shape for the PFSPTFT-TT (right). In fact, this latter problem presents a particular

characteristic of increasingly correlated objectives as the number of jobs grows [68].
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Algorithm 1 Constructive metaheuristics

1: repeat
2: Construct(pop)
3: Learn(pop)
4: s? ← ExtractBest(pop)
5: until termination condition is met

Output: s?

2.2 Multi-objective metaheuristics

Except for a particular family of problems for which polynomial algorithms have been devised, the com-

plexity of MOPs made it impossible to use the a posteriori approach in the early years of MCDM.

However, while the a priori approach reduces the difficulty of MOPs, any changes to those preferences

may require re-executing the optimizer from scratch, which can be a computationally costly task depend-

ing on the given MOP. A surrogate approach used at early MCDM days was to employ multiple runs

of the optimizer using different sets of preferences, providing the DM with a set of solutions that could

be readily available in the case of preference changes. The advent of population-based metaheuristic

algorithms (metaheuristics, for short) later enabled the adoption of the a posteriori approach from a

single algorithmic run. Since defining preferences was never a straightforward task, efforts in applying

metaheuristics to MOPs arose throughout the literature of operations research. Promising results have

shown that it is indeed possible to devise high-performing algorithms able to retrieve large numbers of

solutions at a small computational cost. By now, a number of such proposals can be identified forming

a rich literature of multi-objective metaheuristics [50, 157, 199].

2.2.1 General overview of metaheuristics

Metaheuristics have been proposed as problem-independent heuristic algorithmic frameworks. On a

higher abstraction level, metaheuristics work by constructing and/or refining solutions for a given op-

timization problem, in an iterative process that is held until a given termination criterion has been

reached. At a lower level, the methods used either for constructing or for refining solutions make use

of problem-specific knowledge, ensuring that the search is biased towards promising regions of the ob-

jective space. The flexibility of metaheuristic algorithms coupled with the good performance they have

shown for many applications to important optimization problems has led to a rich literature on the

subject [65, 74, 90, 92–94, 103, 106, 109, 127, 131, 134, 197, 213]. Metaheuristics have initially been

proposed for single-objective optimization and later adapted for problems with multiple objectives. For

this reason, we start our review by the original, single-objective versions of metaheuristics. However, a

detailed description of the most relevant approaches observed in the literature would not fit this section,

such is the extent of this field. By contrast, we choose to explain metaheuristics by focusing on the most

relevant high-level features that characterize them.

To this date, many taxonomies for classifying metaheuristics have been proposed, but so far this task

remains complex. The most common structural feature distinguishing metaheuristics is the way solution

quality is improved, i.e., how the algorithm learns to identify the most promising regions of the search

space. In common, metaheuristics create solutions by means of problem-specific heuristic procedures

during each iteration. However, while some construct solutions from scratch, others generate solutions

by modifying existing ones.
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Algorithm 2 Population-based refinement metaheuristics

1: pop ← InitialSolutions()
2: repeat
3: Refine(pop)
4: s? ← ExtractBest(pop)
5: until termination condition is met

Output: s?

Algorithm 3 Local search metaheuristics

1: s ← InitialSolution()
2: repeat
3: Perturb(s)
4: LocalSearch(s)
5: until termination condition is met

Output: s

Constructive metaheuristics

Algorithms that stochastically build solutions from scratch at each iteration are called constructive. To

increase the probability of generating high-quality solutions, metaheuristics such as ant colony opti-

mization (ACO, [65]) and estimation of distribution algorithms (EDA, [144]) learn from the correlations

between solution components and solution quality. In ACO, learning is modeled by means of positive and

negative feedback. Analogously, EDAs iteratively refine the statistical distribution modeling of solution

component correlations to improve the quality of sampled solutions. A high-level pseudocode for con-

structive metaheuristics is given in Algorithm 1. In particular, at each iteration an algorithm may keep

either a single solution or a population of solutions, meant to increase the variability of the constructive

procedure.

Refinement metaheuristics

Algorithms that start from a (set of) solution(s) and iteratively try to improve them are called refinement

metaheuristics. Two main classes of metaheuristics can be identified on this group. The first maintain

a population of solutions and produces novel solutions from their interactions. The other considers a

single candidate solution and refines it by the systematic application of perturbations, i.e., modifications

to a solution done in a heuristic way.

Population-based metaheuristics. The intelligence in population-based metaheuristics comes from

(i) the set of potential solutions they keep and (ii) a heuristic way to use their interaction in

an improving way. Evolutionary algorithms (EAs, [106, 197, 213]), for instance, use problem-

specific variation operators such as crossover and mutation to modify existing solutions in hopes of

improving them. Similarly to crossover operators from EAs, scatter search [94] algorithms reason

that combining solution components from multiple solutions can lead to novel improved solutions,

and do so by applying the path-relinking [94] operator. Another example of population-based

metaheuristic is particle swam optimization (PSO, [74]), where solutions are modeled as particles

that “fly” through the search space, modifying their path in function of the other particles from

the population. Algorithm 2 is a high-level pseudocode for population-based metaheuristics.

Local search metaheuristics. These metaheuristics are heavily based on the use of local search

procedures, and Algorithm 3 presents a high-level pseudocode for these algorithms. In more detail,

given a perturbation pattern (neighborhood operator) σ and a candidate solution s, a local search
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metaheuristic approach
population local

inspiration
based search

evolutionary algorithms [106, 197, 213] refinement yes optional Darwinian evolution

ant colony optimization [65] constructive yes optional ant foraging behavior

particle swarm optimization [74] refinement yes optional bird flocks

artificial bee colony [131] refinement/LS yes native bee colonies

simulated annealing [134] local search no native metallurgy

tabu search [92, 93] local search no native gaming

GRASP [78] both no native none

iterated greedy [127] constructive/LS no native none

variable neighborhood search [103] local search no native none

scatter search [94] refinement/LS yes native none

Table 2.4: Non-exhaustive descriptive list of metaheuristics. LS stands for local search.

procedure starts by a systematic evaluation of the solutions s′ that can be produced by applying

σ to different solution component subsets of s (its σ-neighborhood). A selected improving neighbor

replaces s, and the local search procedure is applied iteratively until a σ-local optimum solution is

found. Local search metaheuristics are algorithms that use local search procedures as underlying

search engine, but provide intelligent approaches to escape local optima. Tabu search (TS, [93]),

for instance, allows the local search procedure to accept a non-improving σ-neighbor of s, but

keeps a memory of previous moves to prevent cycling (the tabu list). Variable neighborhood

search (VNS, [103]), by contrast, uses a set of different σi neighborhood operators of increas-

ing perturbation size to allow an algorithm to escape a σi-local optimum through a σj neighbor,

with j > i. Additionally, a local search metaheuristic can restart the local search procedure from a

different point in the search space when no further refinement can be achieved, which is generally

done by applying a randomized perturbation to the current candidate solution.

It is important to remark that, in practice, the separation between metaheuristics is not so blunt. For

instance, local search procedures have been incorporated by many metaheuristics due to their effectiveness

on particular application domains such as combinatorial optimization. In addition, some metaheuristics

such as GRASP [78] and iterated greedy [127] combine a stochastic constructive approach with local search

procedures at each iteration. Even more interesting is the hybridization of different metaheuristics, an

ongoing research field with many relevant contributions [40].

A relevant sample of metaheuristics is summarized in Table 2.4 according to the features described

in this section. We remark that the taxonomy we use in this review is merely structural. Other fea-

tures could be considered that would reveal different categories of metaheuristics. For instance, some

metaheuristic proposals are called inspired because the intelligent mechanisms they use derive from ob-

servations of real-world intelligence. A few examples of inspiration metaphors for metaheuristics are

shown under the last column of Table 2.4. For further information on specific metaheuristics, the reader

is referred to Hoos and Stützle [110] and to Gendreau and Potvin [91].

2.2.2 Adaptation to multi-objective optimization

It is often the case that the adaptations of metaheuristics to multi-objective optimization face critical

design questions that eventually lead to a number of possible algorithmic structures. Some of these

questions are general and apply to all metaheuristics, whereas others concern specific features of given

metaheuristics.
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General design challenges

We start our discussion by the more general issues that affect multi-objective metaheuristics. The first

concerns how to maintain a search on multiple regions of the objective space at once. The most commonly

used solutions are distinct for population-based and non-population-based metaheuristics.

Population-based metaheuristics: One naturally assumes this type of metaheuristics is intrinsically

suited for the parallel optimization of MOPs, but the first studies on multi-objective evolutionary

algorithms [204] showed that a population can suffer from: (i) speciation, when the population

isolatedly converges to the extremes of the objective space, or; (ii) stagnation, when the popu-

lation fails to get closer to the true Pareto front. Different solutions were proposed for specific

metaheuristics to ensure a well-spread and effective search. In general, EAs use dominance-based

preference relations [57]. By contrast, PSO algorithms have primarily relied on archives and their

inherent concept of neighborhoods to ensure a diversified population [199].

Multiple weighted aggregations: Decomposing the original MOP into a set of subproblems via

scalarizations is an approach used by many different multi-objective metaheuristics. In this case,

the most important design question regards the methods for generating weight sets. In a uniform

distribution, the number of weights grows significantly with the number of objectives. To a given

extent, one can reduce the number of weights by increasing the spacing between the weights,

but this approach leaves ever growing gaps in the search directions. Other approaches consider

randomizing search directions, at the risk of not searching entire regions of the objective space. We

remark that population-based metaheuristics can benefit from weighted aggregations, and in their

case there is the extra design issue of how to promote cooperation between the different search

directions. The solution is typically the use of neighborhoods w.r.t. search directions, based on the

idea that the exploration of similar subproblems should consider solutions that are also similar. In

practice, different metaheuristics use this concept in different ways [157, 186, 228].

Another example of a practical design question related to the adaptation of metaheuristics to solve

MOPs concerns external archives. This algorithmic component is an auxiliary set used to store nondom-

inated solutions found during the run of an algorithm. External archives are essential to non population-

based algorithms because they optimize a single solution per iteration. To population-based algorithms,

these archives are useful for two main reasons: (i) when the number of nondominated solutions of a given

MOP is too large to be contained in a population, and; (ii) because of two theoretical properties that

a bounded-size approximation front A such as a population may not present, namely limit-stability and

limit-optimality [160], which are defined as follows.

Definition 13 (Limit-stability) For any sequence consisting of points drawn indefinitely with a strictly

positive probability from a finite set, there exists a point t such that ∀ v > t,At = Av. That is, the set A

converges to a stable set in finite time.

Definition 14 (Optimal approximation front of bounded size) If A ⊆ RM is a nondominated

set, |A| ≤ N , N ∈ N+, and @B ⊆ RM , |B| ≤ N , B C A, then A is an optimal approximation front of

bounded size N .

Definition 15 (Limit-optimality) For any sequence consisting of points drawn indefinitely with a

strictly positive probability from a finite set, the set will converge to an optimal bounded front.

Several questions derive from the use of external archives [160]: (i) which solutions are to be accepted

in the archive; (ii) should the archive size be bounded, and; (iii) if bounded, how to select the solutions

that are kept and that are removed when the archive size surpasses this limit.



30

Acceptance criterion: The traditional acceptance criteria used by external archives in the literature

are related to Pareto dominance. When nondominated solutions are considered acceptable, the

total number of solutions contained in the archive may rapidly increase. As a consequence, the

performance of the algorithm may be impaired since the number of comparisons required for de-

termining if a new solution will be inserted or not in the archive also grows. On the other hand,

if only solutions that dominate solutions from the archive are accepted, such a performance issue

is not a problem. However, this acceptance method opens the possibility of archive stagnation,

i.e., not being able to add new solutions, even if they are not dominated by any solution in the

current archive. The direct consequence of such situation is the presence of gaps in the output

approximation fronts.

Bounded archives: A possible design alternative for dealing with the acceptance issues previously

described is the use of bounded archives. Typically, bounded archives accept any nondominated

solution but limit the archive size to prevent slowing the optimization process down. Several archive

bounding techniques have been proposed so far, each presenting different strategies for determining

which solutions are deleted from the archive every time a new solution is accepted. A theoretical

and experimental analysis of this subject was performed by López-Ibáñez et al. [160]. The authors

show that these bounding techniques can even lead the archive to a cycling situation, and that

a careful analysis is required before selecting the proper archiving technique, with no particular

archive being clearly consistently better than the remaining ones. We will resume this discussion

when reviewing the MOEA literature, since most external archivers were proposed in this context.

2.2.3 Evolutionary algorithms

As discussed above, design questions are numerous when adapting a metaheuristic to deal with multi-

objective optimization. Not surprisingly, the number of different MOEA proposals in the literature is

large and an exhaustive review would go beyond the scope of this thesis. More importantly, in order to

grasp the peculiarities of the different MOEA proposals, a precise definition of the original single-objective

EAs is required.

Evolutionary algorithms are, in fact, a family of distinct algorithm subclasses [55]. In common, EAs

share the characteristic of maintaining a population of individuals subject to an evolutionary process.

This evolution is operationalized by means of (i) variation operators that produce new offspring indi-

viduals from parent individuals of the current population, and (ii) using selective pressure to maintain

the population size constant throughout iterations. By combining these two procedures, EA designers

expect their algorithms to converge towards high-quality solutions. A general pseudo-code of EAs can

be seen in Algorithm 4. First, a population of solutions is generated, typically randomly or by means

of problem-specific constructive heuristics. Then, the evolutionary process takes place and when a given

termination criterion is met, such as a number of iterations, a number of solution evaluations, or a num-

ber of solutions generated, the best solution s? of the population is returned. In particular, the Reduce

procedure is used by some algorithms to select solutions that will survive on the next iteration. In others,

the population size is kept constant by online replacement, meaning offspring solutions replace parent

solution as soon as they are created.

Although all EAs share the same overall structure, they present significant differences which we detail

next.

Genetic algorithms

The best known type of EAs, genetic algorithms (GAs) [106] are among the first proposals in the field

of evolutionary computation. Using the biological terminology, GAs represent candidate solutions as

evolving chromosomes. In its original proposal, instead of optimizing decision variables directly GAs
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Algorithm 4 Evolutionary algorithms

1: pop ← GenerateInitialSolutions()
2: repeat
3: Variation(pop)
4: Reduce(pop)
5: s? ← ExtractBest(pop)
6: until termination condition is met

Output: s?

generally made use of indirect encoding. Concretely, the genotype of the chromosome maps an actual

solution to the problem – its phenotype. Binary encoding, for instance, maps the ranges of the decision

variables to binary representation. Although indirect representation is still used nowadays on specific

scenarios, direct encoding has become the most common encoding used by current GAs.

The GA chromosome population is evaluated at every generation (iteration). The fitness computation

of chromosomes is an important component of GAs because every step of the evolutionary process tries

to maximize the overall fitness of the population. More precisely, before applying variation operators, a

GA first builds a mating pool of parent solutions. After the application of the operators, GAs perform

a population reduction known as environmental selection. For both selection scenarios, the fitness of the

individuals plays a central role as high-quality individuals are favored in hopes of improving the overall

quality of the population. Concerning mating, many selection operators can be used in GAs, the most

common being: (i) roulette-wheel, where the probability of selecting an individual is proportional to its

fitness, and; (iii) n-ary tournament, where n individuals are randomly selected and pairwisely compared

according to their fitness until only one is selected (like a champion in sports playoffs). Once the mating

pool is built, genetic operators are applied to generate offspring solutions.

The standard variation operators used by GAs are crossover and mutation. Crossover operators

require (at least) two parents and mix their information to generate offspring solutions. Mutation

operators are unary operators that apply perturbations to chromosomes, and are complementary to

crossover. Several operators of each kind have been proposed for the various domains of optimization, and

later we will discuss the most used for the target problems we consider in this thesis. Once the offspring

population has been created, GAs apply an environmental selection procedure to reduce the population

size back to its standard value. The first proposal of GAs originally used generational replacement, i.e.,

maintaining only the individuals created in the current generation. Later, elitism was introduced, where

algorithms allow the best solutions of the previous generation to persist in the new population. The

number of elitist solutions to be preserved is a critical parameter of GAs, which needs to be defined on

an application-basis. For further information on GAs, the reader is referred to Reeves [198].

Evolution strategies

One of the earliest proposals of metaheuristics, evolution strategies (ES) [197] are also the conceptually

simplest approach among EAs. By contrast to GAs, ES always represent solutions through direct encod-

ing. The set of decision variables is known as object parameter set, and the individuals as object parameter

vectors. These individuals are subject to variation operators as in other evolutionary algorithms, but

the mating selection is typically performed randomly. Similarly to GAs, once the offspring population is

produced, an environmental selection strategy is employed. Formally, an ES algorithm is defined using

the (µ/ρ+
, λ)-ES notation, where µ stands for the population size, ρ stands for the number of parents

used by the crossover operator, and λ stands for the number of offspring produced in one generation of

the ES. The comma and plus refer to the environmental selection strategy. In a comma strategy, only

the λ newly generated offspring comprise the selection pool. In other words, the new population will be

exclusively formed by µ < λ offspring elements, equivalent to the generational replacement from GAs.
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Conversely, plus strategies add the µ solutions from the parent population to the selection pool, thus

allowing elitism in the algorithm. Originally, ES proposals took the form of (1 + 1)-ES algorithms, i.e.,

the population size set to one, and so the number of offspring. In addition, only mutation operators were

used [197]. Later, steady-state ES were proposed, taking the form (µ/2 + 1)-ES. In these algorithms,

two parents are randomly selected and subject to crossover producing a single offspring7, which is then

subject to mutation. The newly generated offspring then replaces the worst individual of the population.

Over the years, the (µ/ρ + λ)-ES and (µ/ρ, λ)-ES were proposed, thus giving birth to the (µ/ρ+
, λ)-ES

notation [21].

From a high-level perspective, one notices the similarities between GA and ES. In fact, the separation

between these two EAs has become ever blurrier, with algorithms being simply referred to as EAs.

Nonetheless, there is one particular feature of ES that makes it unique with regard to GAs, namely

the self-adjustment of its numerical parameters. In particular, some ES algorithms use co-evolution to

simultaneously evolve the object parameter set and its numerical parameter values. The current most

successful example of an evolution strategy that self-adapts some of its numerical parameters concerns

the field of continuous optimization. CMA-ES (covariance adaptive matrix evolutionary strategy) [102]

is a (µ/µ, λ)-ES algorithm that samples object parameter vectors using statical distributions regulated

by a covariance matrix. At every iteration, the covariance matrix is adapted to learn from the newly

produced individuals. Due to its popularity, many variants of this algorithm have been proposed, among

which we highlight two: (i) a variant that is the current state-of-the-art for single-objective continuous

optimization [11], and; (ii) a variant that has been proposed for multi-objective optimization, which we

will later further detail [119]. For further reference on ES, the reader is referred to Beyer and Schwefel

[21].

Differential evolution

Differential evolution (DE) is an EA approach proposed for the field of continuous optimization several

decades after the first proposals of GA and ES [213]. The underlying concept of DE algorithms is calcu-

lating difference vectors between individuals to guide their movement. Similarly to ES, DE algorithms

use direct encoding by means of parameter vectors, but in the literature of DE these individuals are

also referred to as chromosomes. Traditionally, the initial population in DE algorithms is generated

randomly. The evolutionary process makes use of a three-stage combined operator. First, a target vector

is selected. Second, a donor vector is created by means of a differential mutation operation. Finally, a

trial vector is produced by the crossover between the target and donor vectors. The trial vector created

by this differential operation replaces the target vector in the following generation if it is not worse than

it. The basic structure of DE algorithms is then defined as schemes DE/x/y/z, where x stands for the

target vector selection method, y for the number of donor vectors used by each target vector, and z is

the type of crossover used. Concerning mutation, five standard schemes have been proposed by Storn

and Price [213], which we describe next.

• The first two DE schemes use a single donor, varying only as to the target selection mechanism:

DE/rand/1 (2.17) selects target vectors randomly, whereas DE/best/1 (2.18) always uses the best

individual as its target. Formally, given randomly generated mutually exclusive indices rij , a

crossover operator represented by the + symbol, and a scale factor F ∈ [0, 1], the i-th trial vector

produced at generation G, ~Vi,G, is defined as:

~Vi,G = ~Xri1,G
+ F · ( ~Xri2,G

− ~Xri3,G
) (2.17)

7In case two offspring are produced by the crossover operator, one is selected at random and discarded before being
evaluated.
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~Vi,G = ~Xbest,G + F · ( ~Xri1,G
− ~Xri2,G

) (2.18)

• Other two standard schemes are obtained from the first two by the addition of a second donor

vector, thus giving rise to schemes DE/rand/2 (2.19) and DE/best/2 (2.20):

~Vi,G = ~Xri1,G
+ F · ( ~Xri2,G

− ~Xri3,G
) + F · ( ~Xri4,G

− ~Xri5,G
) (2.19)

~Vi,G = ~Xbest,G + F · ( ~Xri1,G
− ~Xri2,G

) + F · ( ~Xri3,G
− ~Xri4,G

) (2.20)

• The last standard scheme, DE/target-to-best/2 (2.21), uses a random target individual which is

recombined with two donors. The first is the output of the differential mutation operation between

itself and the best vector of the population. The second, the output of the differential mutation

between two randomly selected vectors.

~Vi,G = ~Xri1,G
+ F · ( ~Xribest,G

− ~Xri1,G
) + F · ( ~Xri2,G

− ~Xri3,G
) (2.21)

Concerning crossover operators, the traditional proposals in the DE literature are the exponential

and the binomial operators. Exponential crossover uses two randomly generated numbers: a start-

ing position r and the number of elements L that will come from the donor vector. Given a problem

with n decision variables, a donor vector ~V and a target vector ~X, the trial vector ~U is defined as
~U = (x1, ..., xr−1, vr, ..., vr+L, xr+L+1, ..., xn), with all indices subject to modulus n. By contrast, bino-

mial crossover randomly selects for each position of the parameter vector if the information will come

from the target or from the donor vectors. For further information on differential evolution, the reader

is referred to Das and Suganthan [54].

2.2.4 MOEA design evolution

The historical evolution of MOEA design to deal with the adaptation issues from the generalization to

multi-objective optimization can be split into three main epochs.

Initial years

In the first years, MOEA researchers were mainly concerned with modeling MO components to allow

EAs to search and retrieve multiple Pareto optimal solutions in a single run, to overcome the speciation

issue observed in the first ever MOEA, VEGA [204]. The most instrumental ideas from this period

were the proposal of tackling convergence and diversity through different preference metrics to be used

in mating selection. The first suggestion of such a proposal described the ideas for nondominated

sorting (convergence) and fitness sharing (diversity) [96], although very briefly. A few years later, three

of the most relevant algorithms from this epoch were proposed in a very short span of time, namely

MOGA [80], NSGA [212], and NPGA [111]. In fact, these algorithms are responsible for stirring the

studies on MOEAs, as they were the first to successfully demonstrate their potential for simultaneously

optimizing multiple solutions from different regions of the objective space. In general, all these algorithms

used fitness sharing for diversity. For brevity, we only review the nondominated sorting approaches

implemented by MOGA and NSGA, as follows.

Nondominated sorting

• MOGA [80] evaluates its population based on their dominance rankings. More precisely, the

dominance ranking of a solution equals one plus the number of other solutions from the population
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that dominate it. Solutions with lower rankings are favored, and solutions with unitary ranking

comprise a nondominated subset within the population.

• NSGA [212] authors argued that dominance rankings were a misleading approach, since solutions

with the same ranking could dominate each other in the case of rankings greater than one. As

an alternative, dominance depth divides the population into nondominated fronts, ensuring that

(i) the members of the first front are not dominated by any individual of the population; (ii) the

members of front i are only dominated by members of fronts j < i, and; (iii) members of a given

front are nondominated w.r.t. each other.

Fitness sharing: the idea of fitness sharing is to promote convergence within localized regions of

the objective space, while maintaining several niches spread along the objective space. Although

algorithms present slight variations as to the implementation of this metric, the general idea is to

analyze the density of the niche with radius σshare centered in the solution under analysis. This

way, if the algorithm must select between two solutions (either for mating or replacement), the one

with fewer solutions in its niche should be favored, potentially preventing the search from missing

a region of the objective space. In practice, this algorithmic component was used in different ways

by the proposed MOEAs, with some computing niches in the decision space (NSGA) and others in

the objective space (NPGA and MOGA). Finally, we remark that the most significant drawback

with this approach is setting σshare appropriately, since this parameter may be affected by factors

such as problem dimensionality, objective ranges, and stage of the run.

Maturing years

With the promising results from the first epoch, the second epoch in MOEA design focused on the

development of effective methods to explore the potential demonstrated by the first MOEAs. Important

concepts proposed in this epoch include MO elitism [60, 137, 233, 234], external archivers [137, 147, 160],

the integration of quality indicators into the search [19, 232], the decomposition of the original MOP in

subproblems for parallel optimization [150, 228], and the use of EAs other than genetic algorithms [19,

119, 137, 143, 201, 219].

MO elitism: Although the first MOEA proposals demonstrated that it was possible to optimize

multiple solutions at once, an experimental analysis conducted by the authors of SPEA [233]

revealed that elitism was critical for improving the convergence ability of MOEAs. In addition,

authors proposed a new diversity approach and a refined version of dominance rankings, namely

dominance strength, as follows.

• When computing dominance rankings, SPEA takes into account the number of solutions each

individual dominates, i.e., its dominance strength. This way, the refined ranking of a solution

equals one plus the strength sum of the individuals that dominate it.

• To preserve diversity, SPEA clusters solutions and selects one individual to represent each

cluster. In particular, clustering is done based on the average distance between solutions and

the number of clusters equals the number of surviving population members, and hence no

numerical parameters are required.

In particular, it is important to remark that SPEA used dominance strength solely for mating

selection, whereas clustering was used only for environmental selection. A series of elitist MOEAs

were proposed in the following years, among which we remark PAES [137], NSGA-II [60], and a

refined version of SPEA, namely SPEA2 [234]. We remark that the elitism proposed for PAES is

directly related to its external archive, and hence for now we restrict our presentation to NSGA-II

and SPEA2.
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• To promote elitism, NSGA-II [60] uses dominance depth and crowding diversity both for

mating and environmental selection, in this order of priority. In particular, diversity based on

crowding is a parameter-less approach where individuals are evaluated based on their distances

to their neighbors. The notion of solution neighborhood in this proposal is defined objective-

wise. More precisely, solutions are sorted for each objective and consecutive solutions are

considered neighbors. The crowding distance of a solution is then the average distance between

the pairs of neighbors of a solution from each objective. The main benefit of this approach is

that no numerical parameter needs to be set, and that for two-objective problems the notion

of neighborhood is precise. By contrast, at least three drawbacks deserve to be mentioned.

First, selecting neighboring solutions based on objective-wise sorting is an approach that does

not scale well with the number of objectives. Second, since extreme solutions have a single

neighbor, their values are artificially enlarged to ensure they are not discarded. However, an

extreme solution that is only slightly improving for one objective but is particularly poor for

the others will still be favored in selection because of this artificial crowding. Finally, the

crowding distance of a solution for a given objective i does not vary with modifications to its

i-th objective as long as it remains within the bounding box delimited by the i-th objective

values from its neighbors.

• Similarly to NSGA-II, SPEA2 [234] uses convergence and diversity metrics in this priority

order both for mating and environmental selection. However, SPEA2 is the first algorithm to

consider diversity metrics with different behaviors for each of these procedures. In particular,

although both metrics are based on k-th nearest neighbor computation, mating selection uses

a pre-defined formula for computing k as a function of the population size. By contrast, the

environmental selection procedure considers k = 1, and increasing k in the case of ties.

The proposal of elitist MOEA approaches can be clustered according to the number of times

fitness metrics are computed for the environmental selection. One-shot removal [13] computes

metrics once and discards the worst solutions altogether. Sequential (or iterative [13]) removal [160]

discards one solution at a time and recomputes metrics before the next solution is discarded.

Although the information provided by the sequential removal policy is more accurate, this policy

is computationally more demanding, which may compromise its performance in time-constrained

scenarios. Among the approaches we discussed, NSGA-II adopts the one-shot removal [60], whereas

SPEA2 uses sequential removal [234].

External archives: Although elitism improved MOEA convergence properties, Laumanns et al. [147]

demonstrated that approximating a possibly limitless Pareto front using a bounded population was

a task that the then existing MOEAs were unable to accomplish. In particular, diversity-preserving

selection approaches as the ones used by NSGA-II and SPEA2 lack both limit-stability and limit-

optimality. By contrast, the proposal of an auxiliary, external solution set (archive) to ensure

convergence was firstly proposed for PAES [137] and later novel stand-alone archiving proposals

followed [135, 145, 147, 160]. Below we summarize their characteristics following the theoretical

and empirical analysis of López-Ibáñez et al. [160]. In particular, besides the concepts of limit-

stability and limit-optimality, the authors also considered the concepts of Pareto-monotonicity

and of C-monotonicity, respectively meaning that (i) a vector present in an archiver cannot be

dominated by a vector previously discarded, and; (ii) there does not exist a previous state of the

archiver At such that At CAc (At is better than Ac), Ac being the current state of the archiver.

• The adaptive grid archiver (AGA) [137]: this archiver divides the objective space into a

hypergrid with identical volume grid cells. The size of the grid cell is defined adaptively as

a function of the objective ranges of the extreme solutions found so far in the search and of
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a numerical parameter l that establishes the number of divisions per objective. Since only a

single solution per grid cell is allowed, this archiver ensures diversity. However, similarly to

the diversity-preserving approach from NSGA-II and SPEA2, this archiver originally proposed

for PAES [137] is unable to ensure convergence, being neither monotone, C-monotone, limit-

stable, nor limit-optimal.

• The adaptive ε-Pareto archiver [147]: this archiver is very similar to the AGA, but defines

the size of its grid cells as a function of an ε value. In particular, the objective-wise size of

each grid cell increases exponentially as a function of ε, meaning that near the Pareto front

the granularity of this archiver is much more refined than for distant regions. Similarly to the

AGA, this archive is diversity-preserving, but neither monotone, C-monotone, limit-stable,

nor limit-optimal.

• The hypervolume archiver (AAs) [135, 139]: this archiver accepts a novel nondominated

vector by discarding the least hypervolume contributor of the current archive. More precisely,

the least hypervolume contributor of an approximation front is the vector v ∈ A that least

contributes to the hypervolume of A. With this approach, the AAs ensures that IH of the

archive never decreases, inheriting its properties, i.e., this archiver is both diversity-preserving

and C-monotone. In addition, since a maximum IH exists for any given MOP, this archiver

is also both limit-stable and limit-optimal. The only property not displayed by this archiver

is monotonicity.

• The multi-level grid archiver (MGA) [145]: this grid-based archiver uses a surrogate

dominance concept to ensure convergence, called box dominance. More precisely, the box

index vector of a solution comprises its box indices r(i) for each objective i = 1, 2, . . . ,M ,

where r(i) = bvi · 2−ic. The box dominance relations ensure that a solution is only accepted

if it belongs to a grid cell that is closer to the true Pareto front, i.e., if it box-dominates

another solution from the archiver. In particular, this archiver has been shown to be diversity-

preserving, C-monotonic, limit-stable, an limit-optimal. However, similarly to the AAs it is

not Pareto-monotonic.

As discussed above, the analysis conducted by López-Ibáñez et al. [160] demonstrated that only

the AAs and the MGA are simultaneously limit-stable and limit-optimal. However, while both

archivers are shown to be monotone w.r.t. the better (C) relation, it is possible that a objective

vector present at the end of a run be dominated by an objective vector discarded along the search.

It is important to remark that the algorithms and test cases used by the authors were both artificial,

but one overall concludes the importance of external archives and that this research field requires

further targeted efforts.

Indicator-driven search: With the proposal of Pareto-compliant quality indicators, some authors en-

visioned using these indicators within MOEAs to direct their search. In particular, the convergence

pressure provided by some quality indicators is not directly influenced by the number of objectives.

In addition, some indicators also account for diversity, keeping the population well-spread along

the objective space. The drawback of indicator-based approaches is the computational complexity

of some quality indicators such as the hypervolume, which is exponential in the number of objec-

tives in the worst case [20]. The firstly proposed indicator-based MOEAs were IBEA [232] and

SMS [19], which we next detail.

• IBEA [232] uses a refined version of dominance rankings based on binary quality indicators.

Concretely, IBEA computes the pairwise values of a given binary quality indicator for the

whole population. Then, the preference of each individual is given by the aggregation of

its binary values w.r.t. to the rest of the population. Since only Pareto-compliant binary
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indicators are used, the solutions that dominate a given solution s contribute negatively to

the score of s, whereas the solutions that s dominates contribute positively to its score. By

favoring solutions with larger scores, IBEA is able to promote convergence and diversity.

In addition, given that pairwise comparisons between solutions using binary indicators are

cheap to compute, IBEA has very little computational overhead when compared to other

indicator-based MOEAs. The most used binary indicators for IBEA are the additive epsilon

indicator (Iε+) and the hypervolume difference (I−H) [235]. In addition, IBEA is an elitist

MOEA that uses sequential removal for the environmental selection.

• SMS [19] uses a set of metrics for its environmental replacement, the most distinguishing

one being the exclusive hypervolume contribution (I1
H). More precisely, SMS was proposed

as a hypervolume-based MOEA, but the I1
H is a computationally demanding indicator. For

this reason, SMS-EMOA combines the I1
H with two other convergence metrics to reduce the

number of times this indicator is employed. Concretely, the primary convergence metric used

by SMS is dominance depth. In case multiple nondominated fronts are identified in the popu-

lation, dominance ranking is used to distinguish dominated and nondominated solutions. This

way, the exclusive hypervolume contribution is only used when the population is comprised

solely of nondominated solutions. Furthermore, to reduce the overall computational complex-

ity of the search, SMS uses steady-state replacement, as we will later further describe. By

generating a single offspring per generation, the environmental selection procedure of SMS

reduces to the computation of the least hypervolume contributor as in AAs, and recent avail-

able implementations have been able to considerably reduce this overhead for larger numbers

of objectives [183, 223].

MOP decomposition: An alternative research direction already during the first epoch of MOEA

design was to decompose the original MOP into simpler subproblems [100, 128], typically by means

of scalarizations. This paradigm, however, did not become mainstream for many years for two main

reasons. First, in the initial years MOEA researchers were more interested on developing approaches

that could deal with MOPs from a dominance perspective, since VEGA [204] had demonstrated

that a population can suffer from speciation. Second, the performance of the decomposition-

based MOEA considered in the experimental comparison conducted by Zitzler and Thiele [233],

HLGA [100], was worse than the performance of the MOEAs that used nondominated sorting and

fitness sharing. In particular, the most commonly believed explanations for the poor performance

of HLGA were the theoretical issues previously discussed for scalarization-based approaches. A

few other decomposition-based MOEAs were proposed for continuous [124, 125] and combinatorial

optimization [122, 128], but it was not until the proposal of the MOEA/D algorithms [150, 228]

that the interest from the MOEA community on decomposition was stirred. Next, we detail the

two most relevant MOEA/D algorithms.

• The original MOEA/D algorithm uses a set of uniformly distributed weight vectors to simul-

taneously optimize different subproblems. As aggregation method, the authors of MOEA/D

consider all the options we previously discussed in Section 2.1.2, namely linear weighted sum,

Tchebycheff utility, and penalty-based boundary intersection (PBI). To promote cooperation

around diversified regions of the objective space, the mating selection of MOEA/D considers

local neighborhoods for each subproblem. Concretely, these local neighborhoods are defined

based on the Euclidean distance between the weight vectors used to define each subprob-

lem. Variation operators are applied as in a regular EA, and the newly generated solution

is compared to the best solutions found so far for each subproblem. In particular, MOEA/D

implements a strong version of elitism via a cloning mechanism that allows the same solution

to become the new best solution for multiple subproblems.
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• MOEA/D-DRA was proposed a few years later, with a number of modified algorithm com-

ponents w.r.t. the original MOEA/D. The most significant novelty of MOEA/D-DRA con-

cerns the dynamic resource allocation (DRA) procedure, an online adaptive strategy proposed

to reduce the computational budget wasted on non-promising search directions. Initially, each

of the µ weight vectors is given the same utility value. At each iteration, MOEA/D-DRA se-

lects a subset µ/ν to explore via tournament selection based on the utility values of the

weights. Once the weights have been selected, variation is applied to each search direction. In

this version, however, a parameter δ regulates whether mating selection will consider the local

neighborhood or the whole population. Finally, a subset of the selection set (local neighbor-

hood or population) is used to update the search reference point for the current weight. The

size of this subset is regulated by an additional parameter φ. At intermediary stages of the

search, the utility values of the weights are recomputed. Despite the large set of numerical

parameters, MOEA/D-DRA gained popularity after winning the IEEE CEC 2009 competition

on unconstrained multi-objective continuous optimization [150].

Alternative EAs: In general, MOEA authors have focused their efforts on devising effective com-

ponents to deal with the multi-objective aspects of the search, while simply reusing the same EA

and variation operator choices traditionally adopted in the literature. In particular, nearly all the

MOEAs we reviewed so far were GAs with deterministic tournament selection, SBX crossover and

polynomial mutation. The only MOEAs we have discussed so far that were based on different EAs

are (i) SMS, a steady-state (µ+ λ)-ES that uses random mating selection but adopts the same

variation operators used by the other MOEAs, and; (ii) MOEA/D-DRA, which uses DE variation

operators.

Overall, the literature exploring different EAs is limited, and the role variation operators of the

underlying EAs have on performance is still rather poorly understood for both multi- and many-

objective optimization. The most relevant MOEA proposals based on different EAs or using dif-

ferent variation operators during this epoch were DEMO [143, 201]8 and MO-CMA-ES [119],

which we discuss below.

• DEMO stands for differential evolution (DE) for multi-objective optimization. Following an

initial research on the adaptation of DE for MOPs [1, 166], the authors of DEMO proposed

an algorithm that combines the online replacement from single-objective DE with nondomi-

nance sorting and diversity preservation mechanisms from NSGA-II. For mating, DEMO uses

the DE/rand/1/bin strategy, and no other strategy has been reported by the authors. The

positive results achieved by DEMO later motivated its authors to test other existing environ-

mental selection metrics, resulting in different DEMO versions [219]. In particular, authors

demonstrated that DE could improve the overall performance of existing MOEAs such as

SPEA2 and IBEA.

• MO-CMA-ES is an adaptation of the successful covariance matrix adaptation evolu-

tion strategy (CMA-ES) used in continuous single-objective optimization [101]. The basic

MO-CMA-ES algorithm [119] works as a number of parallel executions of the CMA-ES algo-

rithm starting from different initial solutions. For environmental selection, dominance depth

and the exclusive hypervolume contribution (I1
H) are used in this priority order. Variants of

this algorithm were proposed later, allowing different quality indicators, selection for survival,

and learning strategies for the underlying CMA-ES algorithm [221].

8DEMO [201] and GDE3 [143] are two independently proposed MOEAs that are identical in nearly all of its algorithmic
components. We choose to explain DEMO since it was proposed shortly before GDE3.
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Contemporary years

The third (and current) epoch in MOEA design is characterized by an increased interest on so called

many-objective optimization problems (MaOPs) [79, 195]. Originally, MaOPs did not draw much atten-

tion of MOEA researchers for two main reasons. First, researchers deemed that algorithms that per-

formed well on problems with two and three objectives would naturally scale to deal with any number of

objectives. Second, the practical applicability of such models was seen as reduced, since an a posteriori

decision making process would have too many incomparable solutions to deal with. Both these premises

have recently been re-evaluated. From an application perspective, Fleming et al. [79] demonstrated that

existing engineering problems could be remodeled by considering constraints as objective functions, coin-

ing the term many-objective optimization. From the perspective of algorithm performance, two works

were instrumental. The first one [132] demonstrated that MOEAs (in particular NSGA-II, SPEA2, and

PESA [52]) faced scalability issues w.r.t convergence, diversity, and/or running time when solving DTLZ

problems with up to ten objectives. In fact, even doubling the already extremely large number of function

evaluations given to MOEAs was not enough for them to reach the actual Pareto fronts. The second

work [195] demonstrated how existing MOEA algorithmic components were unable to scale in face of

dominance resistance. More precisely, in the presence of a large number of conflicting objectives, the

proportion of the feasible space that is incomparable becomes too large for traditional MOEAs to handle.

Already at an early execution stage, the entire MOEA population becomes nondominated and spread,

making it difficult for MOEAs to progress through the evolutionary operators commonly used.

Altogether, these factors increased the application demand and reinforced the need for improving

existing MOEA approaches. To overcome these limitations, several approaches have been considered, as

identified by Li et al. [149]. Below we detail the most relevant approaches grouped in two main categories,

as follows.

Dimensionality analysis. The first category considers analytical approaches to easy the task of

dealing with multiple objectives. Concretely, these dimensionality reduction approaches look for

objectives with high correlation that could be further represented by a single objective [203], or use

feature-based selection to extract only the objectives that are most significant [161]. In general,

this kind of analysis is conducted offline, meaning it does not incur in computational overhead for

algorithms and can possibly be reused by different optimizers. Nonetheless, a few online approaches

have also been proposed [149].

Algorithmic approaches. The second category comprises new algorithmic concepts, such as using

reference-based search [59, 148, 192], or revisiting existing ideas, such as quality indicators [62, 174,

202, 222], and alternative dominance definitions [4, 98, 99, 145, 181, 227]. We further discuss each

of these approaches:

• Reference-based search: these approaches focus specifically on the diversity challenge

posed by the large number of objectives. In particular, to ensure that the search is con-

ducted in a balanced way, reference elements are used as attraction sources. In some pro-

posals, these elements are actual solutions, like an archive focused on diversity to ensure the

spread of the search [148, 192]. In other, abstract elements such as reference lines [59] or

target vectors [124, 126] are used. We remark that reference solutions can also be used to

drive an algorithm towards convergence, as MOEA/D does with the best elements for each

subproblem [228].

• Quality indicators: given the contrast between the desirable properties and the computa-

tional complexity of the hypervolume, some algorithms have considered: (i) novel indicators

such as generational distance indicators [62, 174, 175], ∆p [202], and α [43, 222], or; (ii) a

refined version of the hypervolume coupled with less computationally costly methods for its

approximation [13].
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• Alternative dominance definitions: since Pareto dominance is known to become less

restrictive as the number of objectives increases, these approaches either (i) rely on existing

dominance alternatives to Pareto dominance such as the previously discussed ε-dominance [98,

99], grid dominance [227], box-dominance [145], and Lorenz dominance [181], or; (ii) propose

novel relations such as space partitioning [4].

It is important to remark that many of the components discussed above are not conceptually novel,

having been revisited from their original proposals. We then select two algorithms to further detail them,

namely the indicator-based HypE [13] and the reference-based NSGA-III.

HypE [13] is an indicator-based MOEA that searches the solution space guided by the shared hyper-

volume contribution (IhH) of the individuals. This quality indicator measures the volume of the

subspace an individual exclusively dominates, plus shares of the volumes that it jointly dominates

with up to other h individuals of the population. For mating selection, HypE uses the IhH indicator

with h = µ, the population size. For environmental selection, HypE uses dominance depth as a

primary convergence metric, and uses the IhH contribution to distinguish between solutions from

the first non-fitting nondominated front. In addition, the elitist environmental selection from HypE

uses sequential removal. When recomputing the IhH contributions, h equals the number of solutions

from the non-fitting front that still have to be discarded. Due to its computational overhead, HypE

uses a Monte Carlo simulation to estimate IhH for problems with more than three objectives.

NSGA-III [59] is the most recent algorithm in the NSGA series. Similarly to NSGA-II, the environ-

mental selection uses dominance depth as primary fitness metric. However, the crowding distance

operator from NSGA-II is replaced in NSGA-III by a diversity mechanism that uses weight-based

reference lines. More precisely, each solution is initially associated with its closest reference line.

The algorithm then selects a representative from the population for each line, ensuring that the

population remains spread over the objective space. More importantly, NSGA-III proposes a two

layer weight generation methodology to reduce the total amount of weights required by large num-

bers of objectives. The elitism procedure of NSGA-III follows a one-shot approach, since solutions

are associated to reference lines only before the solutions to be discarded are selected.

2.2.5 MOEA frameworks

Given the large number of MOEAs proposed in the literature, several algorithmic framework initiatives

have prompted to encourage practitioners wanting to use MOEAs on their application domains. In

particular, these frameworks focus on reusability from a problem perspective, meaning MOEAs are

provided as classes and an end user needs only to implement (or select an available implementation) of

the solution encoding and evolutionary operators that suit his needs best. Below we detail the most

relevant MOEA frameworks from the literature, since a better understanding of these frameworks is

instrumental to grasp the originality of the framework we propose in this thesis. We remark that we only

include compilable frameworks in our discussion since frameworks implemented in interpreted language

present a natural runtime handicap that could interfere in experimental assessments9.

Shark [120] is a machine learning framework that implements a few MOEAs such as SMS-EMOA

and MO-CMA-ES. Since the scope of Shark is broad, it is not surprising that a few MOEAs

are provided by default, although implementing a novel MOEA using this framework is not a

challenging task. A few, classical evolutionary operators are provided, and so are a few MO

9We do not include PISA [39] in our review for a similar reason. More precisely, although compilable PISA is implemented
as a state machine that uses file-based communication. This architecture greatly hinders its efficiency and makes it
unpractical for experimental analyses.
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components such as dominance depth and the hypervolume indicator, but for the latter we remark

that the computational complexity of the implementation provided is far from efficient.

PaGMO [38] is a framework for parallel global optimization that provides a few MOEA implementations

such as NSGA-II, SPEA2, and SMS-EMOA. In particular, PaGMO implements one of most efficient

hypervolume (contribution) algorithms. Since the main focus of PaGMO is parallel optimization,

implementing a novel MOEA is not as easy as reusing parallel computation models, for instance,

although similarly to Shark it cannot be considered a challenge per se. By contrast, PaGMO offers

implementations of other multi-objective metaheuristics such as particle swarm optimization (PSO)

and artificial bee colony (ABC), which can prove useful in given circumstances such as hybridization

studies.

ParadisEO-MOEO [153] builds upon the ParadisEO framework, adding the functionalities required for

EAs to deal with multi-objective optimization. Besides being problem-flexible, ParadisEO-MOEO

is the only framework we identify in the literature that allows MOEA components to be reused in

a flexible way. More precisely, practitioners are given the option of implementing MOEAs from

scratch or as an instantiation of a template that takes algorithmic components as input. This way,

implementing a novel MOEA can be made simpler since only the lacking algorithmic components

need to be implemented. However, the major drawback with this framework is precisely that the

template used for defining a MOEA offers little representativeness. In particular, this template is

based on the early works where MOEAs were mostly based on fitness/diversity-specific components.

In addition, it is not possible to use a single component with different behaviors according to the

type of selection it is used for (mating or environmental), as often seen in the literature. Two

facts further evidence the representativeness limitations we address. First, only a few MOEA

implementations are provided as default instantiations of this template, since implementing other

approaches would require considerable changes to the structure of the template. Second, the SPEA2

template instantiation provided requires a specific archiver implementation, although we show in

this thesis that the truncation procedure proposed for archivers by SPEA2 is not in essence different

from its mating selection preferences.

As it can be seen, frameworks are a relevant research effort observed in the literature, and have

greatly helped disseminate the use of MOEAs by practitioners with little expertise in multi-objective

metaheuristics. Nonetheless, it is important to remark that their main motivation is MOEA reusability

rather than MOEA algorithmic component reusability, being fundamentally different from the approach

we propose in this thesis.

2.3 Automated algorithm engineering

As shown in the previous section, the number of different MOEAs available for a practitioner to con-

sider when dealing with a novel multi-objective application problem is beyond what practically can be

considered. In addition, since these algorithms have numerical parameters, wrong conclusions can easily

be drawn simply due to an algorithm configuration that is suboptimal for the experimental setup under

consideration. More importantly, although our discussion considers MOEAs as case study, any given

heuristic optimization technique with a set of different parameterized algorithmic proposals would also

be a representative scenario for this problem. In this section, we discuss recent research that deals with

the automated selection, configuration, and/or design of algorithms. In particular, we first formally de-

fine the algorithm selection (AS) and configuration (AC) tasks, which underlie the different approaches

in automating algorithm engineering. Next, we review the literature on the two best-established related

research areas, namely automatic algorithm configuration and automatic algorithm design, the focus of

this thesis.
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2.3.1 Algorithm selection and configuration

The algorithm selection task was first formally defined by Rice [200] in 1976. In particular, he identified

a recurring pattern of having a set of available algorithms from which one has to select the algorithm that

optimizes a given performance metric on a target application problem. Framed in this way, an effective

abstract approach to this issue would probably be applicable to any concrete example of this selection

task. A formal definition is provided as follows.

Definition 16 (Algorithm selection) Given a set of instances Π⊂ of a given problem Π and a set of

algorithms ΨΠ available for solving Π⊂, select the best algorithm ψbest ∈ ΨΠ for solving Π⊂ according to

a given set of performance metrics Ĉ.

In particular, the algorithm selection formulation is flexible w.r.t. considering subsets of Π⊂, Ψ,

and/or Ĉ. For instance, in general a single performance metric is considered. In addition, the major

focus of the research on algorithm selection concerns per-instance algorithm selection, the goal of which

is to identify a mapping between instances and algorithms, that is, a best algorithm Aπibest ∈ ΨΠ for each

instance πi ∈ Π⊂. Despite its flexibility, the general AS formulation defines algorithms ψj ∈ Ψπ with no

regard for their eventual numerical parameters, assuming that they are optimally configured. A problem

that is complementary to the algorithm selection task is then the algorithm configuration task, which

can be formally defined building on the following definition.

Definition 17 (Configuration and configuration space) Let ψ be a parameterized algorithm with

a set of parameters Φψ = {φi}, each with domain Dφi . The configuration space Θψ of ψ is given by

the cross-product of all domains Dφi , and comprises all possible configurations θψ = {θφi}, i.e., vectors

comprising a value θφi ∈ Dφi for each parameter φi ∈ Φψ.

Definition 18 (Algorithm configuration) Given a set of instances Π⊂ of a given problem Π, an

algorithm ψ with a set of parameters Φψ and configuration space Θψ, find the configuration θψ ∈ Θψ

that optimizes a given performance metric ĉ(ψ, θψ,Π⊂), i.e., running ψ on Π⊂ using configuration θψ.

In the literature, the algorithm configuration task is also called the tuning task, since a properly set

parameter configuration can also be referred to as tuned settings. Although complementary, algorithm

selection and configuration differ in their nature, and so the first is traditionally approached as a feature-

based machine learning prediction problem, whereas the latter can be the subject of both machine

learning and heuristic optimization approaches, as we briefly introduce below:

1. Portfolio-based AS (PbAS)[9, 88, 184, 194, 225]: the goal of this research approach is to devise

algorithm portfolios comprising instance-specific, high-performing algorithms and thus maximizing

the effectiveness of the portfolio on an instance benchmark. In particular, this approach combines

offline and online strategies. Offline, machine learning techniques taking instance features as input

are devised to identify effective algorithms for given instances10. Hence, a subset of ΨΠ that is

considered effective for different instance classes is chosen to comprise a portfolio. Online, the

selector defines which algorithm(s) of the portfolio will be run based on the features of the target

instance.

2. Automatic AC [8, 17, 37, 113, 115, 130]: this research approach aims to automate the AC

process. Given a configuration budget, typically the number of experiments or a maximum runtime,

approaches search the configuration space to retrieve a high-performing parameter setting for a

given instance benchmark set. It is also possible to consider per-instance automatic algorithm

configuration, and in this case the configurator (tuner) returns a set of configurations θψ,Π to be

used by algorithm ψ for subsets of input instances that share structural features [130].

10In general, parameters are not considered part of the feature space used to create models.
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Next, we further detail the latter research line discussed above, since it is tightly related to the

research on automatic algorithm design, which we present right after.

2.3.2 Automatic algorithm configuration

A significant research effort has been devoted over the past decade to automating the algorithm con-

figuration process. In particular, a number of automatic algorithm configuration tools, or configurators

for short, have been proposed [75, 107]. The most emblematic example is probably the commercial

mixed-integer programming solver IBM-ILOG-CPLEX, which now ships with an integrated configurator

to help end users fine-tune the nearly hundred relevant parameters it presents [118]. In fact, this initiative

is a result of the significant improvements demonstrated by the automatic configuration community on

the runtime required by CPLEX for solving particular problems once properly tuned [114], sometimes

surpassing 50-fold speedups over the default settings previously recommended by the CPLEX team. An-

other direct benefit of the automatic algorithm configuration methodology is encouraging developers to

expose parameters that were previously hard-wired into the code, but that can be handled more appro-

priately by applying automatic configuration to the target domains, as advocated by the proponents of a

software design approach know as programming by optimization [108]. In its most advanced version, this

design paradigm gives rise to the augmented automatic configuration approaches in automatic algorithm

design, as we will later discuss in this section.

Ironically, the fast rise in the number of configurator proposals has created a recursive problem. Since

the computational overhead for a rigorous experimental assessment of a configurator is considerable (and

without large computing clusters, unfeasible), most configurators have only been compared against one

or two other configurators, whereas others have been directly tested on application problems. Although

it is not our intention to discuss the empirical performance of any configurator, it is clear that a practi-

tioner needing to select a configurator to tune an algorithm is now faced with the problem of selecting

an appropriate tool without knowing the practical (dis)advantages they offer. In some cases, this lack

of clearly defined practical guidelines will simply incur in a greater overhead for setting up the configu-

rator. In most extreme situations, however, the practitioner might (i) have to transform his data to fit

the requirements of a given configurator (e.g., discretizing real-valued parameters), or (ii) not be able

to conduct post-configuration analysis about why specific parameter values have been selected. More

importantly, a poor separation between training and testing instance sets might lead to an overfitted

configuration being selected [35].

In this section, we present a conceptual analysis of existing configurators that is complementary to

the existing automatic algorithm configuration surveys [75, 107] because it is at the same time practical,

revelant, and succint. More importantly, this analysis helps us identify the most suited configurator for

our purposes, and ensures the experimental soundness of our work.

Conceptual definitions

Since automatic algorithm configuration is a field derived from several research areas, we incrementally

address the concepts originating from each of these fields, namely algorithm configuration and the re-

lated research on experimental design and artificial intelligence. Next, we detail concepts particular to

automatic configuration, which are instrumental for our analysis and guidelines.

Algorithm configuration. Overall, the parameters of an algorithm can be of two primitive types:

• Numerical: a parameter φi is said to be numerical if its domain is Dφi ⊂ R (a real -valued

parameter) or Dφi ⊂ Z (an integer -valued parameter). Examples are the variation probabilities in

evolutionary algorithms or the temperature parameter in simulated annealing.
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• Categorical11: a parameter φi is said to be categorical if its domain Dφi = {νi}, where each νi
is a discrete option and no ordering relation can be used for Dφi . For instance, a set of different

neighborhood operators can be available for a local search algorithm.

It is also important to distinguish between the two similar concepts below:

• Parameter interaction: two (or more) parameters are said to interact when the effect of simul-

taneous changes to these parameters differs from the effects of individually changing them. For in-

stance, crossover and mutation rates in evolutionary algorithms jointly regulate the balance between

intensification and diversification. Parameters that interact cannot be configured independently.

• Parameter dependency: some parameters are only used when specific values for other parame-

ter(s) is (are) selected. For instance, choosing k-means as a clustering approach requires specifying

another parameter k. Parameters such as k are known as conditional parameters.

Experimental design. Given the configuration space Θψ of an algorithm ψ, the experimental design

literature has several different proposals for its analysis. The most important concepts related to this

field are define below.

• Latin hypercube sampling (LHS) [165] is an example of partially factorial design, selecting a

subset of the configuration space to be evaluated while trying to maximize its representativeness.

Specifically, a factorial design amounts to the exhaustive12 evaluation of the configuration space,

which is generally infeasible in practice even for a moderate number of parameters. By contrast,

LHS is a sampling technique based on the properties of latin hypercubes. More precisely, a latin

hypercube is a generalization of latin squares, i.e., square grids where there is only one point in

each row and in each column. In LHS, given n parameters φi and a numerical value m used to

divide each domain Dφi in equal intervals, a set of k configurations is generated while ensuring that

no parameter value is repeated across different configurations. Clearly, k and m define both the

computational complexity and the representativeness of this approach.

• Response surface models (RSMs) [41] are an important algorithmic approach used as under-

lying model in some algorithm selection and configuration techniques. In a nutshell, these approxi-

mative models learn from the performance patterns of a given algorithm on a set of instances with

particular features, and are able to predict how the algorithm will perform on an unseen instance.

Its practical applicability is large, ranging from algorithm selection and configuration to under-

standing what features of a given problem pose extra hardness for algorithms in general. The most

important elements for devising an RSM are (i) feature extraction and selection; (ii) regression

approaches, and; (iii) the performance metric one wants to predict.

One important remark about the analysis of heuristic optimizers is that these algorithms are generally

stochastic, and hence any experimental design approach must consider repetitions, i.e., multiple runs

using different random seeds. While some approaches are naturally equipped to deal with repetitions, in

some cases aggregative approaches are used, such as mean, quartiles, median, or rank sums [51].

Artificial intelligence. Algorithm configuration shares characteristics of both an optimization prob-

lem and a machine learning (ML) problem. From an optimization approach, the parameters of an

algorithm are the decision variables of a problem, the configuration space is the decision space, and the

11Categorical parameters have also been called symbolical in the literature [211].
12Since it is impossible to evaluate all possible values for continuous-valued parameters, a discretized configuration space

is often used instead.
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performance metric is the optimization function. From an ML perspective, tuning benefits from mod-

eling feature-performance interactions, such as instance-configuration correlations. The most relevant

concepts originated from the AI community are listed below.

• Training/test set separation: machine learning algorithms are subject to overfitting, i.e., being

too specific to the previously observed training data and thus being little generalizable to unseen

data. To prevent this, the problem instances one has at hand are typically divided into a training set

and a test set [35]. The training instances are only used for learning, whereas the test set is used to

evaluate how generalizable the learning of the algorithm is. In addition, it is also possible to evaluate

the prediction performance of an algorithm during training by using cross-fold validation, i.e.,

partitioning the training set into subsets that are interchangeably used as in the overall training/test

separation.

• Racing [168] is an approach used to reduce the computational cost of running configurations on

instances. Specifically, a set of configurations is run on an incremental instance set, and poor-

performing solutions are discarded along the race. In general, statistical tests are used to determine

whether configurations can be considered to show worse performance than others. Since racing is

based on discarding poor configurations, it is a safer approach than trying to lower the computational

overhead by reducing the instance set size.

As we will later see, all of the above concepts are central in AI-based algorithmic configuration, re-

gardless of using a search optimization or a machine learning approach. It is also important to remark

that tackling algorithm configuration as a meta-optimization problem as done by the AI community

establishes a recursive pattern of having configurators with their own parameters to be configured, with

no base case. Nonetheless, using configurators rather than traditional optimizers is interesting because

configurators (i) are custom-tailored to the algorithm configuration experimental setups, landscape char-

acteristics, and parameter types, and (ii) present less parameters than most heuristic optimizers, with

some having been shown to be robust to different parameter settings [117, 190].

Additional concepts. The most important concepts that have originated as a result of the research

on automatic algorithm configuration are listed below, and are instrumental to our later analysis.

• Cardinality of Π⊂: the clear goal of automatic algorithm configuration is to maximize the perfor-

mance of an algorithm on an instance set. This can be accomplished in a general way, when a single

configuration is returned to be used for the whole instance set (multi-instance), or on a per-instance

basis, when the configurator returns a configuration for each instance subset it identifies.

• Model use: configurators that are search-based or that rely on clustering are called model-free. By

contrast, some configurators use model-based search. In this case, some use models as a surrogate

configuration evaluation technique, whereas others use models to bias the search in the direction

of promising configurations. Finally, model-based configurators can either build (i) a single, global

model, like in RSM-based configurators, or; (ii) a set of local models that only concern individual

candidate configurations, like in EDA-based configurators.

• Instance-parameter correlations: per-instance and some multi-instance configurators are able

to account for instance-parameter correlations. This is particularly important for further anal-

ysis conducted post-tuning, since one can try to understand the effects of specific instance fea-

tures/classes in the selected parameter ranges.

• Sharpening: since configurators are iterative learning approaches, configurations sampled in later

iterations tend to be better performing than configurations produced earlier. For this reason, a
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more accurate comparison methodology is required at later iterations to distinguish between con-

figurations. Sharpening can be implemented in different ways, such as increasing the number of

(i) instances or (ii) repetitions used to test configurations in later iterations. In addition, configu-

rators that adopt racing naturally enforce sharpening as surviving candidates are tested on more

instances than configurations discarded early.

• Capping: when runtime is used as performance metric, it is not interesting to wait for poor per-

forming candidates to finish their run, potentially wasting tuning budget. Capping is a mechanism

used to terminate runs from candidates that extrapolate a given runtime. This capping runtime is

usually either (i) a pre-defined configurator parameter, or (ii) dynamically defined as a function of

the runtime required by the best-performing candidate for the given instance.

• Tuning budget: an automatic algorithm configuration process is generally terminated based on

pre-defined stopping criteria. In general, this means exhausting a tuning budget, i.e., a maximum

runtime the configurator is allowed to run for or a maximum number of experiments it is allowed to

perform. In some configurators, though, it is also possible to terminate when either no improvements

are observed over a series of iterations or when a minimal number of configurations can no longer

be distinguished between.

Practical guidelines

Based on the concepts from the previous section, we detail a set of practical guidelines that help end users

select among different configurators. In particular, we base our configurator choice for the remainder of

this thesis upon these guidelines.

As a rule of thumb, the first consideration a practitioner needs to have in mind when selecting a

configurator is instance set cardinality. Defining between a single parameter configuration or a set of

instance-class configurations depends directly on the application domain of the end user. In academia,

for instance, per-instance parameter settings are not an acceptable standard when comparing a novel

algorithm to existing ones if existing algorithms have been tuned on a multi-instance scenario. In real-

world applications, however, such concern is not a problem, with customization being desirable as long

as it produces better results.

The second most important consideration concerns the goal of the automatic algorithm configuration

process. More precisely, some practitioners are only interested in ad-hoc configurations regardless of

understanding why such parameter values have been selected. This can be the case, for instance, when

comparing a novel algorithm to existing ones, since one assumes a detailed analysis has already been

conducted by the proposers of existing algorithms. Conversely, when one is more interested in under-

standing parameter effects, e.g., when using tuning within the algorithm engineering process, model-

based approaches can be instrumental, or at least certainly more straightforward. In addition, this kind

of analysis can greatly benefit from models that encompass instance features. It is also possible to use a

per-instance approach and for each cluster use a model-based approach.

A third important consideration regards the type of parameters the problem requires. Discretizing

numerical parameters for categorical-only configurators is an approach that discards potentially valuable

information from the configuration space. In addition, it is also important to consider whether configu-

rators that accept numerical parameters allow different tolerance levels for each parameter, as this can

vary considerably depending on the given parameter.

Finally, racing, sharpening, and capping are desirable features configurators should present since they

have the potential of maximizing the effectiveness (or at least the efficency) of an automatic algorithm

configuration campaign. In particular, capping can make the difference between two high-performing

configurators when using runtime as performance metric.
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configurator
Π⊂ numer. catego.

model parameter inst.-param.
racing sharp. capping

cardinality use interaction correlation

ParamILS [113] multi 7 3 free 7 7 3 3 3
GGA [8] multi 3 3 free 7 7 3 3 3

REVAC [182, 211] single 3 7 local 7 7 3 3 7
irace [14, 159] multi 3 3 local 7 7 3 3 7

SPO [16, 17] single 3 7 global 7 7 7 3 7
SMAC [115] multi 3 3 global 3 3 3 3 7

GGA++ [10] multi 3 3 global 7 7 3 3 3

ISAC [130] per-instance * * * * 3 * * *

Table 2.5: Non-exhaustive description of configurators. We refer to the text for an explanation on ISAC.

Configurator overview

A broader summary of configurators and their characteristics according to the conceptual definitions

introduced in the previous sections are provided in Table 2.5. However, an in-depth analysis of all

automatic algorithm configuration tools available would not fit this section and escapes the goal of

this thesis, and so the reader is referred to [75, 107] for this purpose. In this section, we review the

configurators that best fit the context of this thesis according to the previously discussed guidelines,

being either the most recent or the most cited from the automatic configuration literature.

ParamILS [113] is a local-search based algorithm that automates the sequential trial-and-error method.

For ParamILS, the quality of a parameter configuration φ is given directly by an estimate measure

ĉ(φ), such as mean runtime or median solution quality. Starting from an initial parameter config-

uration, ParamILS iteratively alters the current incumbent solution by modifying only one of its

parameter values at a time. The modified parameter configuration φ′ is considered better than

the original configuration φ if ĉ(φ′) ≤ ĉ(φ) (considering a measure to be minimized). Since it is a

local-search based algorithm, ParamILS uses a perturbation procedure to prevent getting trapped

in local optima, consisting of simultaneously altering several parameter values of the incumbent

solution. Moreover, a restart mechanism ensures the algorithm explores different regions of the pa-

rameter search space. The main advantages of ParamILS are that it uses racing, sharpening, and

capping. As drawbacks, real-valued parameters need to be discretized and, since models are not

used, it is not straightforward to analyze parameter interactions nor correlations between specific

instances and parameter configurations.

irace [14, 159] is an estimation of distribution algorithm (EDA) that encodes its learning as probability

distributions that are used to sample configurations and race them. More specifically, a solution

in irace comprises a configuration and a set of parameter-wise probability distributions. At each

iteration, offspring configurations are sampled as follows. Given a parent and its parameter-wise

probability distributions, a configuration is sampled and inherits the distributions from its parent.

These offspring configurations are then tested on a subset of instances by means of racing. Although

any racing procedure could be used by irace, F-Race is the typical approach adopted. Statistical

methods adopted are Friedman’s non-parametric statistical test or Student’s t-test, to be selected

by the user according to the characteristics of the data [51]. Once racing is concluded, irace learns:

given a surviving solution s, it updates the probability distributions of s to add bias in favor of the

parameter values presented by φ(s), its associated configuration. Effectively, the parameter-wise

distributions of s are biased towards the regions of the configuration space where the performance

of the configuration associated to s according to ĉ is maximized. If a new iteration is to be started,

a new set of offspring is sampled based on these updated probability distributions. Else, the

configurations of the surviving candidates are returned.

The major advantages of irace is dealing with multiple instances and with all parameter types. In
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addition, racing and sharpening are used, and a number of application works have demonstrated

its effectiveness in comparison to manual tuning. By contrast, the main drawback of irace are that

it does not (i) implement capping, since its primary use is for solution quality tuning scenarios,

and; (ii) explicitly model instance-configuration correlations.

GGA [8] is a gender-based genetic algorithm that uses an AND/OR tree to encode parameters as

chromosomes, depicting the dependencies they display. The population comprises individuals from

two different genders: (i) a competitive one that is raced on instances to evaluate their quality,

and (ii) a non-competitive one that is only used for diversity preservation. Specifically, the mating

selection procedure of GGA selects the best competitive individuals and mates them with non-

competitive individuals. The environmental selection is age-based, i.e., individuals are removed

from the population within a given number of iterations after their creation. The main advantages

of GGA are that its tree-based representation and operators can deal with numerical and categorical

parameters in a straightforward way. In addition, racing, sharpening, and capping are used. The

major drawbacks of GGA are that it does not explicitly account for parameter interactions nor for

instance-configuration correlations.

SMAC [115] uses the idea of sequential model-based optimization (SMBO), in which RSMs are con-

structed/refined at each iteration. More precisely, SMBO approaches initially sample configurations

using a given method (LHS, for instance) and fit an RSM. During consecutive iterations, novel con-

figurations are sampled (using LHS, for instance) and evaluated according to the RSM. Selected

configurations expected to be high-performing are raced against the best-so-far configuration found.

At the beginning of each iteration, the RSM is refined to learn from the performance of the novel

configurations. By the end of the iterative process, a high-performing configuration is returned.

SMAC extends previous SMBO approaches by allowing (i) different machine learning methods to fit

the RSM, (ii) the inclusion of categorical parameters, and; (iii) using instance sets instead of a single

instance. Concerning machine learning methods, the authors proposed adaptations to use random

forests or Gaussian processes. The first deals naturally with categorical parameters, whereas the

latter is adapted using a Hamming distance-based kernel. To be applicable to instance sets, SMAC

includes instance features as part of the model fitting procedure. Besides these generalizations, the

most significant difference between SMAC and previous SMBO approaches is the intensification

process used by authors to sample configurations. First, SMAC maintains a single incumbent

solution all along the algorithm configuration process, and races it against a novelly sampled

candidate solution on the same instances on which the incumbent solution has been evaluated to

reduce variance. Second, rather than simply using randomized sampling of candidates at each

iteration, SMAC employs a local search to retrieve a set of high-performing configurations for the

current model. To avoid getting trapped in local optima, the algorithm intertwines high-quality

and randomly sampled candidate solutions for every instance considered in the intensification

procedure.

The main advantages of SMAC are its ability to (i) deal with numerical and categorical parameters,

and (ii) explicitly account for instance features and parameter interactions. In addition, SMAC

uses racing, sharpening, and has been tested with several different machine learning methods and

shown to work well on most scenarios [117]. As a drawback, the major bulk of the research on

SMAC is restricted to runtime as performance metric, and its effectiveness is based on the quality

of instance features, not readily available for all NP-hard problems.

GGA++ [10] is a model-based version of GGA, where the crossover operator is guided by a ran-

dom forest model to target promising regions of the configuration space. More precisely, authors

proposed a random forest model focused on splitting the configuration space between high- and
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poor-performing parameter configurations. This way, offspring individuals are generated with more

chances of being high-performing. The main advantages of GGA++ are the same previously dis-

cussed for GGA. The major drawbacks of GGA, however, were not addressed by GGA++, namely

explicitly modeling the possible interactions between parameters or instance-configurations.

Experimental analyses

Two types of experimental evaluations are of interest to automatic algorithm configuration, namely

(i) evaluating the efficacy of a configurator when compared to manual tuning, and (ii) comparing different

configurators on similar benchmark problems. In the former case, the large number of citations each

of the different configurators considered in this work has received over a short span of time confirms

their effectiveness. More importantly, the total number of configurator citations evidences the practical

demand for high-performing automatic configuration tools.

Works of the second type are scarce for two main reasons. Firstly, a representative analysis of this

kind would require a set of considerably different benchmark problems and algorithms. An initiative in

this direction is AClib [116], a benchmark library recently proposed for evaluating algorithm configura-

tors. A second challenge is to consider different scenarios, such as (i) multi- and per-instance setups,

(ii) benchmarks comprising different parameter type combinations, (iii) different performance metrics

to be optimized, and (iv) using manually-tuned configurations as initial candidates. The last and most

significant challenge to an experimental assessment of tuners is the computational cost of such an un-

dertaking. In particular, we strongly believe that this is the kind of research work that will require a

significant collaboration from several research groups, and require massive cluster or cloud computation.

In addition, before discussing experimental analyses, we remark an issue that is critical for any

automatic configuration campaign, namely the proper separation between training and test set. In

particular, this division should try to generate sets that are representative of each other concerning

factors such as homogeneity and instance structural characteristics. For instance, tuning only for easy

or hard problems may lead to a configuration that is poor performing on the other type. One particular

concern is the situation where few instances are available. In this case, the cross-fold validation approach

is recommendable since it can effectively multiply the seen/unseen data ratio.

Below, we individually address the experimental works we identify in the literature:

• SMAC versus GGA [115]: The authors considered two SAT solvers (SAPS and SPEAR) and

IBM-ILOG-CPLEX, both to minimize runtime. Training and test set separation was respected, and

experiments were split into single- and multi-instance. On multi-instance scenarios, SMAC outper-

formed GGA as configuration space size growed. Interestingly, authors also considered scenarios

where the configuration space was discretrized, and showed that original SMAC outperformed

discretized-space SMAC for several scenarios. This is further empirical evidence that confirms the

importance of adopting configurators suited to the application domain parameter types.

• GGA++ versus SMAC and GGA [10]: The authors compared GGA++ with its predecessor

GGA and with SMAC for tuning two SAT solvers13 based on runtimes on a set of industrial SAT

instances. For a small configuration space size, all configurators improve over default settings and

rank as follows: GGA++, SMAC, and GGA last. For a larger configuration space size, however,

neither GGA nor SMAC were able to improve over default settings, whereas GGA++ was. We

remark though, that SMAC is reportedly known to be poor-performing on the industrial SAT

instances as a function of the instance features currently available for this set. In addition, only

two solvers were used as algorithms to be configured. We then believe that, although these results

depict a possible and real scenario, they should not be generalized regarding the poor performance

of SMAC.

13glucose 4.0 and lingeling. For solver references, we refer to [10].
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As it can be seen, the experimental analyses addressing more than one configurator are few and

generally restricted. In addition to the works discussed above, we also mention the analyses that have

demonstrated the parameter robustness of irace [190] and SMAC [117].

Configurator choice and discussion

Overall, the analyses reviewed in the previous section evidence that little comparison between different

configurators on tuning scenarios that consider solution quality as performance metric have been con-

ducted so far. In fact, we could not identify any published experimental work of such kind, although

the effectiveness of configurators in general on these scenarios is beyond question. Moreover, GGA++

was proposed when this thesis was already nearly completed, and ParamILS requires discretization of

numerical parameters. For these reasons, we restrict our decision to SMAC, irace, and GGA. Concerning

the choice between GGA and SMAC, we select the latter over the former given the direct experimental

comparison previously discussed for runtime prediction scenarios. Regarding the choice between irace

and SMAC, the latter is highly dependent on a rich feature set available for the application problems

one wants to target, but no feature proposal concerning the problems we consider in this thesis can be

found in the literature. In particular, we remark that we regard this as an interesting research direction

in which the work described in this thesis should be extended. For this investigation, though, targeting

both the feasibility of automatic MOEA design and the delimitation of problem-wise feature sets would

either slow down or even hinder the practicality of our work.

2.3.3 Automatic algorithm design

Beyond the challenges of automated algorithm selection and configuration, a yet more ambitious research

area concerns the automatic algorithm design. Although approaches in the literature differ as to the final

product and the procedure to design this product, the overall goal of automatic design is to automate the

design process of algorithms, particularly when dealing with specific problems or experimental setups.

Obviously, a completely human-free algorithm design is still out of reach, with automatic algorithm design

approaches automating specific parts of the design process and in many cases relying on existing human

knowledge. However, given the numerous potential applications of automatic design, the challenge it

poses is currently being addressed by an ever-growing number of researchers. In fact, there has been

an incipient but steadily developing research effort on automatically designing complex algorithms, such

as SAT solvers [133], multi-objective meta-heuristics [70, 157], machine learning tools [217], or even

algorithm portfolios [208, 226] and selectors [154]. Overall, results are promising yet demonstrate that

the effectiveness of automatic algorithm design is tightly coupled with making proper use of human-

crafted knowledge. More precisely, from a high-level perspective automatic design approaches can be

categorized as (i) bottom-up, where heuristics are crafted using little human insights and heavily relying

on automatically-discovered knowledge, or (ii) top-down, where human knowledge provides a structural

basis (e.g., a template or a grammar) and the automated design process attempts to design the best

possible algorithm based on this structure. While a number of bottom-up approaches exist with genetic

programming [141] being the most consolidated bottom-up automatic design research field, the scope

of that research has been traditionally restricted to the design of heuristics. By contrast, top-down

approaches have been increasingly proven effective whether for designing simple heuristics or complex

algorithm portfolios.

Since automatic algorithm design is a primary focus of this thesis, we review the most important

subfields within this research area. In particular, we start our discussion with the research on a field of

genetic programming that has been used as a top-down automatic design approach to hyper-heuristics,

namely grammar-based genetic programming. Although works of this type are generally restricted to the

design of heuristics, the notion of grammar-based automatic design is important for the main discussion
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of this section, which we detail next. Specifically, we review and discuss the most promising top-down

automatic algorithm design approaches found in the literature, categorized in this work as augmented

automatic configuration.

Grammar-based GP

Although hyper-heuristic genetic programming (GP) algorithms are inherently bottom-up, one partic-

ular type of GP algorithm can be considered top-down, namely grammar-based GP (gGP [173], for

short). More specifically, gGP algorithms define a grammar to determine how the genotype of a solution

will be translated into its phenotype. In tree-based gGP, for instance, the genotype of a solution is

a derivation (tree) from the grammar, whereas its phenotype is the expression-tree one obtains when

only terminal symbols from this derivation are considered. The major benefits of using grammars on

hyper-heuristic GP algorithms are that they (i) embed human knowledge, and (ii) allow more complex

heuristics/algorithms to be created. More generally, the major advantage of grammars is providing a

structure way to navigate the search space size while maintaining a high expressivity, allowing, for in-

stance, recursive rules. By contrast, it is also possible that this advantage becomes a drawback, either if

the optimal solution cannot be represented using the grammar adopted, or if recursion is allowed to go

too deep.

Notwithstanding the potential benefits of grammars, tree-based gGPs still present the same indirect

encoding drawbacks from tree-based GPs. For this reason, linear gGPs were proposed a few years later.

Within this context, grammatical evolution (GE) [185] has stirred a few works and has been adapted

for the context of generating heuristics. In principle, GE algorithms differ from tree-based gGPs in

that grammar derivations are represented as variable-length chromosomes, where each gene is an integer

depicting a derivation choice, referred to as a codon. In particular, a grammar derivation in a GE

algorithm starts from the top-most derivation rule and explores symbols from left to right. When a

non-terminal symbol with a derivation rule presenting multiple choices is found, a codon is consumed.

More precisely, given k alternatives for expanding a non-terminal symbol and a codon i to be consumed,

alternative k% i is selected (where % represents the integer modulo operation). A few remarks concerning

this solution representation deserve special attention. First, the number of codons required to conclude

a derivation is not ensured to match the solution size. In the case when a derivation is concluded but

codons are still available, GE algorithms traditionally disregard the remaining ones. By contrast, when

codons have all been consumed and the derivation has not yet been concluded, wrapping is generally

allowed, i.e., reusing codons from the start of the solution. Clearly, the coupling between grammars and

this encoding is loose, one of the major disadvantages of GE. Another example of this loose coupling is the

integer modulo operation required for choosing derivation alternatives, since there is no clear connection

between the integer range and the number of derivation choices available. In fact, a single codon may be

used for the expansion of several different non-terminal symbols in case wrapping is adopted. Despite

these potential drawbacks, several gGP hyper-heuristics works can be identified in the literature [45].

More importantly, the notion of grammar-based automatic algorithm design is central to the next set of

approaches we discuss.

Augmented algorithm configuration

Applying automatic configuration tools to the context of automatic design is a natural consequence of

exposing parameters that were previously hardwired into the code [108]. In particular, an augmented

algorithm configuration approach expands the configuration space to be searched by configurators such

that design choices can also be considered. More precisely, the design space of an augmented algorithm

configuration approach is defined with the help of a human-designed structural pattern, e.g. a template

or a grammar, delimiting how low-level components can be combined to produce reasonable algorithmic

designs. It is also important to remark the blurry difference between categorical parameters and design
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choices. On one hand, the latter is generally represented as the former, and the traditional examples

of categorical parameters such as the choice of a local search or a crossover operator can be considered

design choices. On the other hand, augmented automatic configuration approaches propose a much more

high-level perspective to existing algorithms from a given field. In particular, the process of crafting a

template or a grammar depends on finding design patterns in the existing literature on a given topic, and

proposing flexible ways of recombining these components in human-reasonable ways. Often, these works

propose novel unified models, revealing the equivalence and interchangeability of components that had

been independently proposed. For instance, GAs and DEs are traditionally seen as intrinsically different

algorithms, but in this thesis we show how to consider these two approaches as categorical design choices

for a configurator to select between.

Since template- and grammar-based approaches differ considerably as to their nature, we next review

the main insights and proposals from each group individually.

Template-based approaches comprise the union of configurators with flexible, template-based algo-

rithmic frameworks. Specifically, it is implemented by adding the configurable algorithmic compo-

nents of the framework to the parameter space to be searched by the configurator. In a template-

based approach, a design choice derives from deconstructing existing algorithms into algorithmic

component patterns, thus providing different categorical choices to be selected by the configura-

tor. A few applications of template-based approaches deserve to be mentioned due either to their

historical relevance or to their connection to this thesis, which we review next.

• SATenstein [133] was the first proposal of template-based augmented algorithm configura-

tion, used for automatically building a stochastic local search (SLS) SAT solver. In partic-

ular, authors identified that the literature on SLS SAT solvers comprised four major al-

gorithmic groups, three of which were used during the deconstruction stage to assemble

the SATenstein-LS framework. The template comprising the design choices provided by

SATenstein-LS was used to define the augmented configuration space (design space) to

be searched by the configurator (ParamILS [113]). Results were remarkable, with the auto-

matically produced SLS SAT solvers outperforming all the other 11 SAT solvers considered,

selected due to their good performance on SAT competitions.

• The MOACO framework [157] was the first proposal of template-based augmented al-

gorithm configuration applied to a multi-objective optimization scenario. In particular, au-

thors expanded an existing ant colony optimization (ACO) framework [214] to deal with a

bi-objective optimization problem, namely the TSP. More importantly, the different design

choices used to assemble this framework were gathered by deconstructing the most relevant

multi-objetive ACO (MOACO) proposals from the literature. The augmented configuration

space was defined based on the MOACO template that underlies this framework. In addition,

this was also the first work to consider a separation between multi-objective components and

underlying algorithms, with the two most used ACO algorithms from the literature begin

available as design choices14. Results were once again remarkable, with the automatically

designed MOACO algorithms outperforming by a large margin the MOACO algorithms from

which the framework components were gathered. Later, this work was extended to tackle

combinatorial problems differing in nature to the TSP [22]. In Appendix D of this thesis, we

describe such a work applied to the bi-objective bidimensional knapsack problem.

• The TP+PLS framework [70] was the first proposal of template-based augmented al-

gorithm configuration that considered hybrid metaheuristics. In particular, the two most

14Ant colony system (ACS) andMAX -MIN ant system (MMAS). For further reference on ACO, the reader is referred
to Dorigo and Stützle [65].
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commonly adopted SLS methods for bi-objective optimization were selected15, and the most

relevant proposals for each method were identified and deconstructed to provide components

for a hybrid framework. We remark that, although algorithm design was done automatically,

the hybridization between metaheuristics was an a priori human-designed stage, represented

by the given template. Authors considered the bi-objective PFSP as application problem and

irace as configurator. Results once again showed the improved performance of automatically

designed algorithms when compared to manually designed ones. In Appendix E of this thesis,

we describe a work that was inspired by this one, in particular the automatic design of PLS

algorithms applied to the bi-objective bidimensional knapsack problem.

• AutoFolio [155] uses the previously discussed Claspfolio 2 framework to automatically

design algorithm portfolio selectors16. More precisely, authors have identified a general pat-

tern used by algorithm selectors and have assembled a framework from these constituent

algorithmic components. Hence, given a set of training instances and a set of algorithms

to comprise a portfolio, Autofolio automatically designs algorithm portfolio selectors, and

evaluates them based on the algorithm portfolios they produce. The experimental evaluation

conducted by the authors considered several decision problems such as SAT, ASP, CSP, and

QBF. Overall, the performance of Autofolio was significantly better than the performance

of all other algorithm selectors considered, even given their already good performances. In

addition, AutoFolio also ranked first in an algorithm selection competition, reinforcing the

quality of the automatically designed algorithm selectors.

• Auto-WEKA [217] uses the well-known WEKA machine learning toolkit as framework and

considers its parameter space as a design space for automatically designing effective machine

learning classification algorithms. Specifically, WEKA offers a set of different classification

algorithms, both atomic and ensemble. In addition, many classifiers present their own param-

eter settings that must be properly set. Authors than considered this augmented configuration

space and two different model-based configurators. Given a large classification dataset, au-

thors showed that the produced Auto-WEKAs consistently outperformed the existing classi-

fiers considered, demonstrating the effectiveness of augmented algorithm configuration on this

application domain that is intrinsically very different from algorithms for NP-hard problems.

Grammar-based approaches While template-based approaches directly provide a set of algorithmic

components that can be used to define the augmented configuration space, it can be argued that

templates lack expressivity when one considers concepts such as recursive design components. An

alternative to template-based approaches relies on grammars to provide this increased expressivity

power. More precisely, in grammar-based augmented algorithm configuration the design space

searched by the configurator is defined in function of a (context-free) grammar. However, instead

of using genetic programming or any sort of evolutionary approach to grammars, the automatic

algorithm design is tackled directly by configurators as follows. First, the exhaustive set of possible

derivations allowed by the grammar is computed and then translated into a parametrical space in an

automated way. Therefore, any parameter instantiation selected by the configurator corresponds to

a valid grammar derivation and can be evaluated on the target problem. Overall, grammar-based

approaches provide both benefits and drawbacks. As major advantage, algorithm designers are

given enhanced expressivity, being able to produce complex algorithmic designs based on recursive

rules, the most prominent being hybridization. By contrast, the maximum height of the (implicit)

derivation trees produced from the selected grammar must be kept small to prevent the augmented

15Pareto local search (PLS) and Two-phase local search (TPLS). For further reference on SLS methods for bi-objective
optimization, the reader is referred to Paquete and Stützle [188].

16We remark that the goal of AutoFolio is not to design the algorithms used within the portfolio, but rather the
algorithm selector that assembles a portfolio when given a set on existing algorithms.
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parameter space from growing beyond practicality. In other words, the maximum recursion level

allowed by a grammar is an important parameter that should be set accordingly.

We next review the most relevant grammar-based augmented algorithm configuration approaches

identified in the literature.

• Recursive IG algorithms [170, 172]: authors proposed a grammar for defining recursive

iterated greedy (IG) algorithms, i.e., allowing an IG algorithm to use another IG algorithm

within it. To assess the effectiveness of the proposed representation, as well as the perfor-

mance of augmented algorithm configuration compared to GE, authors used three different

methods17 to automatically design algorithms for the one-dimensional bin packing problem

and for the PFSP with weighted tardiness minimization. In most scenarios, the proposed

approach outperformed GE-based approaches, confirming the effectiveness of grammar-based

augmented algorithm configuration in the context considered. Concerning recursion, authors

demonstrated that it indeed improved the quality of the automatically designed IG algorithms,

but that increasing the maximum allowed recursion level did not improve results further.

• Hybrid SLS algorithms [167, 171]: authors proposed a grammar for producing both pure18

and hybrid SLS algorithms. In particular, the grammar models the overall structure used

by SLS algorithms such as tabu search, variable neighborhood search, simulated annealing,

iterated greedy, and many others [110]. As a result, the configurator is allowed to produce

(i) pure SLS algorithms from one of these families, or (ii) hybrid approaches that combine

algorithmic components from different families. To evaluate the proposed grammar, authors

have compared the effectiveness of automatically designed (i) pure SLS algorithms using the

derivation rules that apply only to a given algorithmic family; (ii) pure SLS algorithms using

all derivation rules, or; (iii) hybrid methods using all derivation rules. More precisely, the

difference between (i) and (ii) is that in the latter the configurator must first select which

pure SLS algorithm to use, and then select its components/parameters. The configurator

adopted was irace, and overall results confirmed the effectiveness of automatically designed

SLS algorithms, with hybrid methods always outperforming pure ones.

As demonstrated in all works described above, augmented algorithm configuration is both a feasi-

ble and effective approach to automatic design. More importantly, a number of insights are produced

throughout the deconstruction, assembling, and design phases. For instance, during deconstruction it is

common to identify equivalent algorithms or algorithmic components that had been independently pro-

posed by different research groups. During assembling, it is not uncommon to envision novel applications

of existing components once a more high-level template has been identified. Finally, the automatically

designed algorithms are much more reasonable from a human perspective, and hence it is possible to

analyze why these designs work well and how they could be further fiddled with to produce yet more

insights or become more effective.

Concluding remarks

As demonstrated in this section, the research on automating algorithm engineering has led to a rich

literature with numerous examples of effective approaches that can further empower algorithm engineers

in the task of creating better performing algorithms. Nonetheless, many of the proposed approaches

reviewed in this section have only been applied to specific problems, requiring that researchers from

different areas join this effort that can change the way algorithms are engineered in a near future. This

17An evolutionary GE approach, a GE approach using irace, and the proposed approach. The same grammar was used
by all methods.

18We use the term pure here in contrast to hybrid to denote an algorithm from a given SLS family that does not use
components originally proposed for other SLS families.
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thesis provides a number of concrete contributions to both the literature on MOEAs and on automated

algorithm engineering, as we detail over the next chapters.

2.4 Summary

In this chapter, we have reviewed the core concepts and most relevant literature concerning the research

areas directly connected to this thesis. To start, we have concisely reviewed the most important concepts

concerning multi-objective optimization, a field that offers problem modeling with higher accuracy at

the cost of increased computational complexity. In particular, we have discussed the challenges faced by

the research on multi-objective optimization, ranging from simple issues as solution comparison to the

more complex task of evaluating the performance of different heuristic multi-objective optimizers. In

addition, we have formally defined the application problems we consider in this thesis, and have provided

discussion about the characteristics of these problems.

Next, we have presented an overview of the method of choice that has been enabling the successful

applications of multi-objective optimization, namely metaheuristic algorithms. Specifically, we have first

provided a general overview of the metaheuristic literature focused on the concepts that aggregate or dif-

ferentiate these algorithms. More importantly, we have presented the most significant challenges faced by

algorithm engineers who wish to adapt metaheuristic algorithms to tackle multi-objective optimization

problems, such as the difficulty to approximate a possibly infinite set of incomparable solutions by means

of a finite population or archive. Finally, we have presented a comprehensive, detailed historical review of

how EAs have become the predominant metaheuristic within multi-objective optimization. In particular,

we have analyzed how the most relevant algorithmic concepts used in the general multi-objective meta-

heuristic literature were proposed, and how the recent challenges of many-objective optimization have

been pushing researchers to devise new such concepts. Last but not least, we have concisely reviewed the

most relevant MOEA algorithmic frameworks that have been enabling practitioners to apply MOEAs to

their target domains, and over which the proposed work improves, as we detail in the next chapter.

Finally, we have discussed the field of automated algorithm engineering, a recent yet promising

research field that enables algorithm designers to deal with the plethora of algorithms and algorithmic

components one comes across when facing a new application domain or a much studied one such as

MOEAs. Among the different automated engineering techniques, we have first presented a practical yet

comprehensive review of the most important algorithm configuration concepts and tools. In particular,

we have conceptually justified the configurator choice we make in this thesis. To conclude, we have

reviewed the most promising approaches in algorithm design, in particular the augmented automatic

algorithm configuration approaches, to which this thesis belongs.





CHAPTER 3

An initial feasibility investigation

A
s previously discussed, the component-wise view of MOEAs consists in identifying individual algo-

rithmic components in different MOEAs that have the same function and, thus, could be replaced

by alternative procedures taken either from different MOEAs or newly devised. Examples are the

fitness and diversity components that appear in many MOEAs (see Section 2.2.4). This component-wise

view has two main benefits. First, it allows algorithm designers to identify the various options available

for each algorithmic component and whether a particular combination of components, i.e., an algorithm

“design”, has already been proposed. Second, it allows algorithm users to adapt the design of MOEAs

to their particular application scenario.

One motivation for the component-wise view of MOEAs is the development of software frameworks

that help practitioners apply and adapt MOEAs to their own application scenarios. As discussed in the

previous chapter, the design of most MOEA frameworks focuses on applying existing MOEAs to new

scenarios, rather than on flexibly combining their components to produce new designs [38, 39, 120]. Even

MOEA frameworks that allow the combination of algorithmic components from different MOEAs [153]

are limited to MOEAs that are structurally similar, for example, based on the traditional fitness and

diversity components. More recent MOEAs that differ from this template, such as HypE [13] and

SMS [19], cannot be instantiated from algorithmic components through such frameworks. We see two

reasons behind this lack of flexibility. First, the analysis of MOEA components has relied on how the

algorithms were described by their original authors, and only few works try to generalize functionally

equivalent concepts of MOEAs into broader concepts [146, 153, 220, 236]. Second, a high degree of

flexibility in a software framework may be deemed undesired, since some configurations may produce

unreasonable algorithm designs or the number of possible configurations may be too large for human

designers.

In this chapter, we propose a new conceptual view of MOEA components that allows instantiating,

from the same algorithmic template, a larger number of MOEAs from the literature than existing MOEA

frameworks. For example, we are able to instantiate at least six well-known MOEAs from the literature:

MOGA [80], NSGA-II [60], SPEA2 [234], IBEA [232], HypE [13], and SMS [19]. More importantly, our

framework allows to produce a large number of novel MOEA designs that are, in principle, reasonable

from a human designer point of view. This is achieved by reformulating the traditional distinction

between fitness and diversity components [153, 220] as preferences composed by set-partitioning, quality
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and diversity metrics [236]. In addition, different preferences may be used for mating and environmental

selection. Our proposal also formalizes the distinction between internal and external populations and

archives, which allows us to describe, using alternative options for the same components, algorithms as

different as SPEA2 and SMS. Our proposal is implemented in a software framework from which novel

MOEA designs can be instantiated by properly selecting the values of the various algorithmic components

and numerical parameters.

Following previous work on automatic design (see Section 2.3.3), we apply the offline automatic con-

figuration method irace [159] to our proposed framework, considering the various algorithmic components

as categorical parameters to be set. In this sense, the augmented configuration space searched by irace

is actually a design space, where different MOEA components can be combined to generate unique and

possibly novel MOEA designs. We automatically design several MOEAs, called here AutoMOEAs, for

several application scenarios. Our scenarios were selected to provide insights on several questions about

MOEA design. The first question is whether the benchmark that guides the design process has a strong

influence in the performance of the resulting design. Thus, we consider continuous optimization prob-

lems, in particular, two benchmark sets, DTLZ [61] and WFG [112], with two, three, and five objectives,

since MOEAs have been primarily designed for these problems. Our results indicate the best MOEA

design depends strongly on which benchmark is used for the automatic design. A second question in

MOEA design is the trade-off between computationally expensive components and the quality of the

results. Thus, we consider two different stopping criteria for the MOEAs: maximum number of function

evaluations (FEs) and maximum runtime. By using these two setups, we are able to represent prob-

lems with computationally demanding function evaluations as well as problems where the computational

overhead of MOEA components is relevant. Although the former is the typical setup considered in the

MOEA literature, the conclusions obtained may not apply to the latter setup. This is demonstrated by

the fact that the AutoMOEAs produced for each setup show remarkable differences. In most cases, for

both setups, the AutoMOEAs are able to match, and often significantly surpass, the results obtained by

the MOEAs from the literature, even after tuning their numerical parameters.

Finally, we study the differences between the AutoMOEAs obtained for the continuous optimization

benchmarks and those obtained for various multi-objective combinatorial optimization problems. In a

preliminary version of this work [27], we considered four multi-objective variants of the permutation

flow shop problem (PFSP), varying the number and nature of the objectives. Since MOEAs from the

literature were not originally devised for such problems, it is not surprising that we were able to generate

AutoMOEAs that outperformed them. Nonetheless, the best MOEA designs differ enough from what is

considered the state-of-the-art in the MOEA literature that we briefly comment the results here. These

results and the remarkable differences between the MOEAs designed for continuous optimization and

those designed for combinatorial optimization provide further motivation for the automatic design of

MOEAs.

The overall goal of this chapter is to empirically demonstrate that it is possible to find novel MOEA

designs that outperform the MOEAs from the literature by means of automatically configuring the

components of our proposed MOEA template. Another objective of this chapter is to reformulate diverse

MOEAs into a common conceptual view that generalizes functionally-equivalent algorithmic components

and describes the available design choices. A final objective is to investigate which design choices (instead

of which monolithic MOEAs) are more appropriate for the various scenarios described above.

The remainder of this chapter is structured as follows. Section 3.1 presents in detail our component-

wise MOEA framework. We present empirical results and discussion for continuous and combinatorial

problems in Sections 3.2 and 3.3, respectively, and conclude in Section 3.4.
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Algorithm 5 AutoMOEA template proposed in this work.

1: pop ← Initialization ()
2: if type (popext) 6= none
3: popext ← pop

4: repeat
5: pool ← BuildMatingPool (pop)
6: popnew ← Variation (pool)
7: popnew ← Evaluation (popnew)
8: pop ← Replacement (pop, popnew)
9: if type (popext) = bounded then

10: popext ← ReplacementExt (popext, popnew)
11: else if type (popext) = unbounded then
12: popext ← popext ∪ pop

13: until termination criteria met
14: if type (popext) = none
15: return pop

16: else
17: return popext

3.1 A template for designing MOEAs

The AutoMOEA template we propose for instantiating and designing MOEAs is shown in Algorithm 5.

As we will explain below, from this template we can not only instantiate many well-known MOEAs, but

also many new ones that have never been explored so far. The proposed template is based on the view

that MOEAs can be seen as extensions of traditional single-objective EAs such as genetic algorithms [13,

60, 80, 232, 234], evolution strategies [19, 137], or differential evolution [228], extended by algorithm

components that deal with the multi-objective aspects. In our template, we encapsulate the lower-level

procedures in components such as Variation, which applies variation operators to the mating pool (pool).

Additional components for tackling multi-objective problems in the Pareto sense are encapsulated in

the BuildMatingPool and Replacement procedures (see lines 5 and 8 of the template, respectively). In

addition, MOEAs often use their internal population (pop) as a bounded-size approximation to the

Pareto front (i.e., as an archive) and many of them add the possibility of keeping an external (bounded

or unbounded) archive (popext).

Next, we describe the multi-objective components, how to instantiate some well-known MOEAs from

our template, and how our approach differs from existing frameworks.

3.1.1 Preference relations in mating selection and replacement

The mating and environmental selection procedures performed by MOEAs depend on ranking solutions

according to a preference relation. In general, given two solutions s1 and s1 and a metric Ψ to be

minimized (without loss of generality), a relation ≺Ψ is defined as s1 ≺Ψ s2 ⇐⇒ Ψ(s1) < Ψ(s2).

In our MOEA template, solutions are ranked according to general preference relations [236] defined as

a sequence of three lower-level preference relations: a set-partitioning relation, a quality metric and a

diversity metric. First, a set-partitioning relation ranks solutions in a Pareto-compliant way, but does

not distinguish between nondominated solutions. These correspond to traditional fitness components

such as dominance depth (NSGA-II) and dominance strength (SPEA2). Because of the nature of these

metrics, multiple solutions are often equally ranked. Therefore, at a second step, we use refinement

relations based on Pareto-compliant quality indicators to discriminate between equally ranked solutions.

We apply these refinement relations to the equally ranked partitions, but we do not alter the cross-

partition ranks. This means that if a solution θ1 is ranked better than another solution θ2 according

to a set-partitioning relation, then a refinement relation would never contradict this. The third type of

relation is based on diversity metrics. These metrics do not focus on Pareto dominance, but rather on

allowing MOEAs to maintain a population that represents different trade-offs between the objectives.
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Table 3.1: Main algorithmic components of AutoMOEA.

Component Parameters

Preference 〈 Set-partitioning, Quality, Diversity 〉
BuildMatingPool 〈PreferenceMat, Selection 〉

Replacement 〈PreferenceRep, Removal 〉
ReplacementExt 〈PreferenceExt, RemovalExt 〉

Table 3.2: Algorithmic component options available for AutoMOEA.

Component Domain

Set-partitioning



none (—)

dominance count

dominance rank

dominance strength

dominance depth

dominance depth-rank (DR)

Quality


none (—)

binary indicator (Iε+ or I−H)

exclusive hypervolume contribution (I1
H)

shared hypervolume contribution (IhH)

Diversity


none (—)

niche sharing (σshare)

k-th nearest neighbor (kNN)

crowding distance

Component Domain

Selection


deterministic tournament (DT)

stochastic tournament (ST)

random

Removal

{
sequential

one-shot

type (pop) { fixed-size, bounded }
type (popext) { none, bounded, unbounded }

The structure for these general preference relations is encapsulated in component Preference (Table 3.1).

Additionally, any of the three components of Preference might be empty (none), which means that the

next component takes effect. If all three components are empty, the ranking is random.

The options available for composing preference relations in our template are given in Table 3.2.

This formulation of preference relations provides flexibility when designing MOEAs for different real-

world optimization scenarios. For instance, set-partitioning relations may provide enough convergence

given a problem with few objectives and for which the computation overhead of quality metrics may

be deemed excessive. On the other extreme, given a problem with a large number of objectives, the

number of incomparable candidate solutions may be too large such that set-partitioning relations do

not provide enough convergence pressure. In other cases, the time required for computing the quality

metrics may be negligible compared with the cost of evaluating candidate solutions. We also remark

that the original proposal by Zitzler et al. [236] allows for more complex preference models (e.g. using

multiple refinement relations based on quality indicators in a sequence), but our proposal here suffices to

replicate most MOEAs from the literature and allows defining new preference relations in a flexible and

consistent way. Furthermore, the general preference relations we adopt overcome the problems faced by

existing frameworks when instantiating some recent MOEAs such as SMS and HypE. In particular, these

algorithms include components that simultaneously account for convergence and diversity, and hence do

not fit the traditional separation between fitness and diversity metrics [153, 220].

The mating and environmental selection procedures (BuildMatingPool and Replacement) are defined in

dependence of the general preference relations described above. BuildMatingPool comprises a preference

relation PreferenceMat and a selection method Selection as shown in Table 3.1. The methods for selection

we implement for this work are listed in Table 3.2. In particular, the tournament selection method can

be used either deterministically or stochastically. While deterministic tournaments always favor the best

individual according to PreferenceMat, stochastic tournaments choose, with a probability γ, the solution
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Table 3.3: Different types of archives available for AutoMOEA.

Archive Type µ0 FS MC DS EP Replacement

type (pop) = fixed-size µ + µ + + Replacement

type (pop) = bounded µ · µr − µ − + Replacement

type (popext) = bounded |pop0|≺ − Next − − ReplacementExt
type (popext) = unbounded |pop0|≺ − ∞ − − —

FS: fixed-size; MC: maximum capacity ; DS: dominated solutions; EP: part of the

evolutionary process; |pop0|≺: size after removing dominated solutions

preferable according to PreferenceMat. Random selection chooses individuals with uniform probability, and

so no preference relation is used. Component Replacement is composed of a preference relation PreferenceRep

and a removal policy Removal. Table 3.2 lists the removal policy options we implement. Sequential (or

iterative [13]) removal [160] discards one solution at a time and recomputes the preference relation

before the next solution is discarded. One-shot removal [13] computes preference relations once and

discards the worst solutions altogether. Although the information provided by the sequential removal

policy is more accurate, this policy is computationally more demanding, which may compromise its

performance in time-constrained scenarios. Additionally, if the number of offspring per generation λ is

set to 1 (steady-state selection), the different alternatives for component Removal become equivalent.

The ability of using different preference relations for mating and environmental selection is, in fact,

another novel feature of our template over the templates implemented by existing MOEA frameworks.

Although earlier MOEAs did not foresee the benefits of this design choice, more recent algorithms such

as SMS and HypE already make use of it to minimize the computational overhead of quality metrics

such as the hypervolume. From a more general point of view, the flexibility provided by this design

choice can be used to improve the effectiveness of the algorithm in several other ways, e.g., by combining

exploitative and explorative strategies.

3.1.2 Population and archives

A population is a set of individuals, dominated and nondominated alike, that are subject to the evolu-

tionary process. By contrast, an archive is an auxiliary set used for storing nondominated solutions found

during a single run of the algorithm. In our template, we model an archive as a generalized population

that may (i) only keep nondominated solutions, (ii) have unbounded capacity, and/or (iii) take part in

the evolutionary process. We provide two archives for MOEAs to use: an internal archive pop that takes

part in the evolutionary process and can be used as a regular population or as a bounded-size archive,

and an external archive popext that does not participate in the evolutionary process.

All options implemented here for pop and popext are listed in Table 3.2, and we present a summary

of their characteristics in Table 3.3. If pop is set to have a fixed size (type (pop) = fixed-size), then

pop behaves like a regular population of size µ and may contain dominated solutions. Otherwise, pop

is used as a bounded internal archive (type (pop) = bounded), accepting only nondominated solutions

until its maximum capacity µ is reached. Once the maximum capacity is reached, a replacement is

carried out by component Replacement mimicking an archive bounding method [138]. When used as a

bounded internal archive, pop presents two other important characteristics. First, the initial number of

solutions µ0 in pop is controlled by a numerical parameter µr ∈ [0.1, 1], i.e., µ0 = µr · µ. Second, the

preference relation used by this bounded internal archive does not use set-partitioning relations, since

all solutions kept by this archive are nondominated. These characteristics make pop flexible enough to

allow us instantiate archive-based algorithms such as PAES [137], as well as algorithms such as SPEA2,

which are population-based but use an archive that interferes in the evolutionary process [220].

By contrast, the external archive popext can be used by MOEAs in three different ways. First, as
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traditionally used in the literature, the archive can be bounded to a maximum capacity Next and once

the maximum capacity is reached, a replacement is carried out (see also line 10 of Algorithm 5). Com-

ponent ReplacementExt is defined analogously to Replacement, but with its own PreferenceExt and RemovalExt

options (see Table 3.1). Since all solutions kept by the archive are nondominated, PreferenceExt does not

use a set-partitioning relation. For application scenarios where the number of nondominated solutions is

low, MOEAs can either use an archive without capacity constraints, i.e., type (popext) = unbounded , or

not use an external archive at all, i.e., type (popext) = none. The ability of using a different preference

relation for maintaining the external archive opens a number of possibilities for MOEA designers. For

example, the preference relations used for mating selection and replacement of the (internal) population

could lack the limit-stable property (see Section 2.2.2) in order to promote exploration, while the exter-

nal preference relation could be both limit-stable and limit-optimal such that, eventually, the external

archive will converge to an optimal (bounded) archive.

3.1.3 Differences from existing frameworks

A number of MOEA frameworks can be found in the literature, as reviewed in Section 2.2.4. Together,

they have made the application of MOEAs to new scenarios much easier by establishing a clear separa-

tion between problem-dependent and independent components. However, as previously discussed these

software frameworks include implementations of the most popular MOEAs but their algorithmic com-

ponents are often not directly inter-changeable. Thus, designing a novel MOEA by combining existing

components in novel ways using most of these frameworks is not a straightforward task that can be done

in an automatic manner, since they were not created with this goal in mind.

The framework that most closely resembles our proposed template is ParadisEO-MOEO [153], which

provides a “unified model” for MOEAs that allows both the instantiation and the design of novel MOEAs

using a template. However, the generality of the template used by ParadisEO-MOEO is limited when

compared to the template we present here in at least four major aspects. First, ParadisEO-MOEO uses

the traditional approach of preference relations built solely from fitness and diversity components, which

is insufficient to represent complex preference relations as we do in this work. Second, these fitness

and diversity components cannot be used with different behaviors for mating selection and replacement.

This is highlighted by the fact that the default implementation of SPEA2 in ParadisEO-MOEO is not

instantiated via their template, but requires an external archiver specifically designed for SPEA2 to

work. Moreover, using the template provided by ParadisEO-MOEO, one cannot instantiate or design

algorithms that use different preference relations for mating selection and replacement, such as HypE or

SMS. Third, our internal population definition is a unique contribution, since it allows us to instantiate

both population-based and archive-based MOEAs, such as PAES. Finally, many of the components we

use in this work are not available in ParadisEO-MOEO, such as the I1
H and IhH quality indicators, or are

only partially available, such as the sequential removal policy. Altogether, these aspects limit the number

of MOEAs that can be represented using the template provided by ParadisEO-MOEO, and hence the

number of possible designs one can instantiate through it.

The novelty of our proposal lies in the algorithmic template and the definition of its components,

rather than in the software implementing them. In fact, the implementation of most of our algorithmic

components is taken from the ParadisEO-MOEO [153], PISA [39], and PaGMO [38] frameworks, although

we substantially modified them to work together within our algorithmic template. Nonetheless, it would

be feasible to implement our proposed template within any of these frameworks, and we would like to

encourage others to do so.
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Table 3.4: Instantiation of MOEAs from our proposed template.

BuildMatingPool Replacement

Algorithm Selection SetPart Quality Diversity SetPart Quality Diversity Removal

MOGA [80] DT rank — sharing — — — generational
NSGA-II [60] DT depth — crowd. depth — crowd. one-shot
SPEA2 [234] DT strength — kNN strength — kNN sequential

IBEA [232] DT — bin. indicator — — bin. indicator — one-shot
HypE [13] DT — IhH — depth IhH — sequential

SMS-EMOA [19] random — — — depth-rank I1
H — —

(All MOEAs above use type (pop) = fixed-size and type (popext) = none; in addition, SMS-EMOA uses λ = 1)

3.1.4 Standard MOEAs instantiated via the AutoMOEA template

By carefully selecting the values of each algorithmic component, we can instantiate many well-known

MOEAs from the literature using the proposed template. Table 3.4 shows how to instantiate the six

MOEAs we consider in this work, which we have selected because of their relevance in the literature. In

particular, we remark that, being one of the earliest MOEAs, MOGA does not use elitism, which can be

implemented as a generational removal policy. Although we do not include this option for component

Removal in our experiments with the framework, we use it in MOGA for fidelity to the original proposal.

To ensure the correctness of our implementation, we have empirically verified that its performance

matches the original implementations of the MOEAs provided by the authors (or when not available,

by third-party ones). In the following experiments, we compare these six standard MOEAs with novel

MOEAs instantiated from our template. Our analysis covers several scenarios, ranging from continuous

to combinatorial, presented in Sections 3.2 and 3.3, respectively.

3.2 Automatically designing MOEAs for continuous problems

Our experimental investigation has two main goals. The first is to assess how automatically designed

MOEAs (hereafter called AutoMOEAs) perform compared to several standard MOEAs that can be instan-

tiated from our framework. Second, we want to investigate how much the structure of the AutoMOEAs

vary depending on the benchmark and the number of objectives considered. The benchmark problems

that have been considered at the design time of an algorithm may implicitly or explicitly bias the algo-

rithm design. Here we study this effect by considering two different benchmark sets, the DTLZ set [61]

and the WFG set [112], reviewed in Section 2.1.5. More precisely, we use the unconstrained DTLZ1–

DTLZ7 problems from the former, and the WFG1–WFG9 problems from the latter. Following [112], we

set the ratio between position and distance variables to 1/6. Each benchmark set is used with two, three

and five objectives. We separate between different number of objectives as it is known before running an

algorithm and, obviously, an algorithm configuration that performs well for a low number of objectives

(e.g. 2 or 3) need not perform well for more objectives (e.g. 5). We then design AutoMOEAs for each of

the six scenarios obtained from the combinations of benchmark set (DTLZ and WFG) and number of

objectives (2, 3, and 5), as we discuss next.

3.2.1 AutoMOEA design setup

The parameter space we use for the automatic design of the MOEAs is given in Tables 3.1, 3.2 and 3.5,

where pc and pm ∈ [0, 1] respectively stand for the probability of applying crossover to a given pair of

individuals, and the probability of applying mutation to a given individual. We use the SBX crossover

operator and polynomial mutation, which have associated numerical parameters ηc and ηm (the distri-

bution indices). Furthermore, different mutation schemes can be used by MOEAs for real-parameter
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Table 3.5: Parameter space for tuning all MOEAs for continuous optimization.

Parameter µ = |pop| λ = |popnew| pc, pm ηc, ηm

Domain {10, 20, . . . , 100} 1 or λr · µ [0, 1] {1, . . . , 50}
λr ∈ [0.1, 2]

Condition Additional parameter Domain

type (pop) = bounded µr [0.1, 2]

type (popext) = bounded Next {100, 300, 500}
mutation scheme = fixed pv [0.01, 1]

Selection = DT tournament size {2, 4, 8}
Selection = ST γ [0.6, 0.9]

Quality = binary indicator indicator Iε+, I−H

Diversity = sharing σshare [0.1, 1]

Diversity = kNN kmethod {default, k}
(as part of Mating) k ∈ {1, . . . , 9}

optimization [58]. Here, we implement two options: (i) bitwise, which sets the mutation probability per

variable such that on average one variable is mutated per individual chosen for mutation; and (ii) fixed,

where the mutation probability per individual mutated is set by the user as a parameter pv ∈ [0.01, 1].

We do not include more evolutionary operators and schemes to focus on the high-level multi-objective

components that characterize MOEAs.

As the automatic offline parameter configuration tool we use irace [159], which has been adapted to

handle multi-objective algorithms by using the hypervolume indicator as follows. First, the candidates

generated by irace are given a maximum number of function evaluations (FE). Following [13], we set this

number to 10 000 FEs. Then we assess the quality of the approximation fronts produced by each candidate

by computing their hypervolume relative percentage deviation (IrpdH , see Section 2.1.4). To compute the

IH metric, we discard all solutions with objective values worse than the upper bound1 u = [10]M , and

use the reference point r = [11]M . Concerning the reference fronts we use in this work, we have initially

generated 1 000 random Pareto optimal solutions for each problem size using the methodology described

in the original papers where the benchmarks were proposed. However, we noticed that many of these

initial sets presented poor hypervolume since solutions were not well spread. We improved these reference

sets by adding nondominated solutions found by running traditional MOEAs for 100 000 FEs using their

default parameters 10 times on each problem instance, for all problems where we identified this issue

(WFG1–9 and DTLZ4).

Experiments are run on a single core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB cache

size under Cluster Rocks Linux version 6.0/CentOS 6.3. To keep our experiments feasible in time, we

limit the maximum runtime of a single run to 10 minutes. For all configurations that correspond to the

standard MOEAs, this time limit is high enough to perform all 10 000 FEs. In fact, we have empirically

verified that, on average, 85% of the candidates produced by irace use all FEs allowed within this time

limit. The few configurations that do not use all available FEs are typically the ones that combine many

computationally costly components at once, e.g., an external archive replacement based on the shared

hypervolume contribution, nearest neighbor diversity, and sequential removal. For these configurations,

we assess their performance based on the approximation fronts they return when reaching the time limit.

Given the large search space for designing the AutoMOEAs, we give irace a tuning budget of 20 000 runs.

In our computational setup, the wall-clock time used by irace is equivalent to designing a MOEA over

the weekend.

1The upper bound is used to prevent the effects of strong outliers.
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3.2.2 Performance comparison setup

In the context of continuous optimization, benchmark sets try to be as heterogeneous as possible in order

to capture as many potential features of unknown real-world problems as possible. As a consequence of

how such benchmarks are designed, partitioning them into disjoint sets of functions would result in a

training set for tuning that is not representative of the test set. Here, we go a step further of what is the

standard in continuous optimization benchmarking, and the functions used in the tuning and test always

differ in the number of variables (nvar). Concretely, we use nvar ∈ {20, . . . , 60} \ ntesting for tuning, where

ntesting = {30, 40, 50} are the sizes we reserve for testing. We also take the precaution of differentiating the

effect of tuning the numerical parameters of MOEAs from the effect of designing novel MOEAs. Although

the literature proposes default numerical parameters per benchmark [13, 19, 61, 112], we have found that

major performance improvements can be achieved by tuning these numerical parameters2. Hence, in the

remainder of the chapter, all standard MOEAs have been tuned for the corresponding scenario, using the

same numerical parameter space as for AutoMOEA (Table 3.5)3. We prefer this approach of comparing

standard MOEAs to the AutoMOEAs as there may be interactions between numerical and structural

parameters that change the MOEA design and therefore transferring numerical parameter settings from

one to another algorithm may bias the algorithm comparisons. For each of these tunings, we also give

irace a tuning budget of 20 000 runs.

To compare different algorithms, we first run each algorithm 25 times on the testing benchmarks.

In addition to the IrpdH , we also compute the additive ε-indicator (Iε+) of the approximation sets w.r.t.

the reference fronts. The comparison is done visually by means of boxplots, and analytically through

rank sums. To assess statistical significance, we adopt Friedman’s non-parametric test and its associated

post-hoc method at 99% confidence. For brevity, we omit the Iε+ results when they agree with the IrpdH

ones. The full set of results is provided as supplementary material [28]4.

3.2.3 Results and discussion

The designs of the AutoMOEAs selected by irace for each of the scenarios we consider are shown in Ta-

ble 3.6. All AutoMOEAs use replacement preference relations comprising set-partitioning and indicator-

based components (very often the I1
H), as well as large external archives. Surprisingly, the only exception

to this pattern is AutoMOEAW5, which does not use any set-partitioning metric for replacement. Concern-

ing the external archive, the number of nondominated solutions in these problems is large, demanding an

external archive, but prohibiting an unbounded one. In particular, most AutoMOEAs use a PreferenceExt

that combines quality and diversity metrics, a combination that has been shown to work well in some

cases [236]. One pattern we also observe in these external archives is that the exclusive hypervolume

contribution (I1
H) indicator is always coupled with sequential removal, while the remaining indicators

are used with one shot replacement. This is likely explained by the increased computational overhead

incurred by the computation of the hypervolume and our use of a maximum time limit.

Two other design choices have been frequently selected, namely steady-state replacement (λ = 1)

and the BuildMatingPool component. Steady-state replacement has been shown to lead to effective results

when runtime is not too limited [73]. As for BuildMatingPool, all AutoMOEAs use eight-ary deterministic

tournament (except for AutoMOEAW3 which uses four-ary tournaments), reflecting the need for conver-

gence pressure that the problems demand. In addition, all MOEAs use crowding distance as diversity

metric, the most extreme case being AutoMOEAD2, which relies solely on this metric when selecting for

mating.

2For brevity, this analysis is provided as supplementary material [28], together with the tuned configurations of all
MOEAs.

3Configurations that would change the MOEA design as defined by Table 3.4 are not allowed when tuning numerical
parameter settings.

4The supplementary material containing extended results of the original paper used as the basis for this chapter.
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Table 3.6: Parameters selected by irace for the AutoMOEAs designed for continuous optimization problems.

BuildMatingPool Replacement ReplacementExt Numerical

Selection SetPart Quality Diversity SetPart Quality Diversity Removal Quality Diversity Removal µ µr λ λr pc pm ηc ηv

DTLZ 2-obj DT (8) — — crowd. DR Iε+ sharing — — crowd. seq. 100 0.85 1 — 0.63 0.67 35 25

DTLZ 3-obj DT (8) DR Iε+ kNN rank I1
H sharing — I1

H — seq. 80 0.77 1 — 0.58 0.63 2 15

DTLZ 5-obj DT (8) rank I1
H crowd. depth I1

H — — Iε+ crowd. 1-shot 40 — 1 — 0.35 0.62 42 5

WFG 2-obj DT (8) rank — crowd. DR I1
H — — IhH crowd. 1-shot 20 — 1 — 0.11 0.33 31 11

WFG 3-obj DT (4) count I1
H crowd. strength I1

H sharing seq. I1
H kNN seq. 10 — — 0.86 0.11 0.49 39 13

WFG 5-obj DT (8) count IhH crowd. — I1
H — seq. IhH crowd. 1-shot 30 — — 1.07 0.71 0.66 34 12

(All AutoMOEAs use the bitwise mutation scheme, and type (popext) = bounded with Next = 500, except for AutoMOEAW2, for which Next = 300. In addition,

all but AutoMOEAD2 and AutoMOEAD3 use type (pop) = fixed-size, and all but AutoMOEAW3 and AutoMOEAW5 use steady-state replacement, i.e., λ = 1)

Table 3.7: Parameters selected by irace for the AutoMOEAs for combinatorial optimization problems. All designs use an internal archive instead of
a regular population.

BuildMatingPool Replacement Numerical

Selection SetPart Quality Diversity SetPart Quality Diversity Removal µ µr λr pc pmut pX

Cmax-TFT DT (2) — I1
H crowding — Iε+ crowding one-shot 80 0.3 1.5 0.38 0.82 0.71

Cmax-TT random — — — — IhH crowding one-shot 30 0.94 1.63 0.34 0.95 0.81

TFT-TT ST (0.9) — — crowding — Iε+ sharing (0.87) sequential 70 0.94 1.47 0.77 0.99 0.63

Cmax-TFT-TT DT (2) — — crowding — IhH crowding one-shot 40 0.26 1.68 0.36 0.85 0.74

All variants (PFSP) random — — — — IhH — one-shot 60 0.73 1.53 0.17 0.76 0.40
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Figure 3.1: Performance boxplots for all algorithms on selected 30-variable DTLZ benchmark problems.
Top: IrpdH for problems with 2, 3, and 5 objectives (from left to right, respectively). Bottom: Iε+ for
5-objective problems.

Despite these patterns, it is hard to establish general guidelines for selecting components when we

consider a specific benchmark or a specific number of objectives. However, as we will discuss in more

detail below, the IrpdH rank sum analysis given in Table 3.8 shows that each of these AutoMOEA variants

perform very well on the scenarios for which they were designed. This result is consistent with our

expectations that different scenarios should demand different components, and that the component-wise

design proposed here provides enough flexibility to meet this need. Next, we discuss the performance of

the algorithms for each of the benchmarks considered in detail.

DTLZ benchmark

Although this benchmark has been extensively used in the literature, most of the results can be considered

novel, as the number of variables we use is larger than traditionally adopted. For DTLZ2 and DTLZ5,

this increase in the number of variables is not enough to make these functions difficult, and all MOEAs

find approximation sets with IrpdH very close to zero. Conversely, functions DTLZ1 and DTLZ3 become

so difficult that no MOEA is able to find solutions within the bounds we set. The IrpdH of the remaining

functions are shown in Figure 3.1 (top), and we examine them individually. We remark that we zoom

these boxplots on the [0,0.4] range as this is the actual area of interest for this indicator. For brevity, we

show only boxplots of the 30-variable functions, but we remark that the results for the other problem

sizes are consistent with these ones.

DTLZ4 is a function that presents bias, and MOEAs are sometimes unable to find well-spread ap-

proximation fronts. This explains the variance we observe on the 2-objective boxplots. Still, algorithms

like SMS and MOGA are able to perform well on most runs. Function DTLZ6 presents a different kind

of bias, making it difficult for several MOEAs to converge to the actual fronts, specially as the number of

objectives grows. This time the only MOEAs that maintain good performance in all scenarios are IBEA

and the AutoMOEAs. Finally, DTLZ7 is a disconnected function that MOEAs are able to solve with two

objectives, but that becomes much harder with five objectives. SMS and the AutoMOEAs are the only

algorithms that present high performance in all scenarios, but once more the AutoMOEAs find approxima-

tion fronts with lower IrpdH more often than SMS. Overall, the rank sums achieved by the AutoMOEAs are

much lower than those of the remaining algorithms as shown in Table 3.8, which considers all problems

and all test sizes.

The results given by the Iε+ indicator are mostly consistent with the ones provided by the IrpdH , except

for the 5-objective problems shown in Figure 3.1 (bottom). As discussed for the IrpdH , the performance of

all MOEAs in DTLZ1 and DTLZ3 is so poor that solutions lie outside the boundaries we pre-established.

Only SMS and AutoMOEAD5 are able to reach results on DTLZ1 inside these boundaries. Concerning
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Table 3.8: Sum of ranks depicting the performance of MOEAs on continuous sets according to the IrpdH .
∆R is the critical rank sum difference for Friedman’s test with 99% confidence.

DTLZ WFG

2-obj 3-obj 5-obj 2-obj 3-obj 5-obj
∆R = 126 ∆R = 127 ∆R = 107 ∆R = 169 ∆R = 130 ∆R = 97

AutoMOEAD2 AutoMOEAD3 AutoMOEAD5 AutoMOEAW2 AutoMOEAW3 AutoMOEAW5

(1339) (1500) (1002) (1692) (1375) (1170)

SPEA2D2 IBEAD3 SMSD5 SPEA2W2 SMSW3 SMSW5

(1562) (1719) (1550) (2097) (1796) (1567)

IBEAD2 SMSD3 IBEAD5 NSGA-IIW2 IBEAW3 IBEAW5

(1940) (1918) (1867) (2542) (1843) (1746)

NSGA-IID2 HypED3 SPEA2D5 SMSW2 SPEA2W3 SPEA2W5

(2143) (2019) (2345) (2621) (2600) (2747)

HypED2 SPEA2D3 NSGA-IID5 IBEAW2 NSGA-IIW3 NSGA-IIW5

(2338) (2164) (2346) (2777) (3315) (3029)

SMSD2 NSGA-IID3 HypED5 HypEW2 HypEW3 MOGAW5

(2406) (2528) (2674) (2851) (3431) (4268)

MOGAD2 MOGAD3 MOGAD5 MOGAW2 MOGAW3 HypEW5

(2970) (2851) (2915) (4320) (4540) (4373)
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Figure 3.2: Hypervolume RPD on selected WFG benchmark problems with 30 variables. From top to
bottom, 2, 3, and 5 objectives.

DTLZ2, DTLZ4, and DTLZ5, even though all MOEAs find approximation sets with IrpdH close to zero, the

Iε+ tells us that only AutoMOEAW5, SMS, and IBEA are able to converge to the actual fronts in functions

DTLZ2 and DTLZ5, and only AutoMOEAW5 in DTLZ4. Another function where the performance of the

MOEAs is worse according to the Iε+ than according to the IrpdH is DTLZ6, which is explained by the

difficulty of converging we have previously discussed. Finally, the general performance of all MOEAs

according to the Iε+ for DTLZ7 are actually better than according to the IrpdH ones, which can be

explained by the disconnectedness of this problem. Overall, the Iε+ rank sum analysis is consistent with

the IrpdH analysis given in Table 3.8.
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WFG benchmark

The performance of all MOEAs in the WFG problems is shown in Fig. 3.2. For brevity, we omit functions

WFG4–WFG7 and WFG9 as we have noticed that the performance of all MOEAs is very similar on

the WFG concave functions (WFG4–WFG9). We also remark that the boxplots of the IrpdH and the Iε+
indicators are very similar, and for this reason we omit the latter. Concerning the functions depicted in

Fig. 3.2, one can clearly see a separation between WFG1 and WFG2 from the remaining functions. These

two convex problems pose difficulties for MOEAs to converge regardless of the number of objectives. As

for the other group of problems, MOEAs are able to perform well both on 2 and 3 objectives, with

the exception of MOGA. Looking into the 5-objective problems in more detail, we notice that MOGA,

NSGA-II, and HypE are unable to converge to the actual fronts, and so is SPEA2 for WFG3, WFG5,

WFG7, and WFG9. IBEA, SMS, and AutoMOEAW5 show the best performance on all problems except

WFG3, where no MOEA is able to match the performance of AutoMOEAW5.

The rank sum analysis of the IrpdH results given in Table 3.8 confirms that the AutoMOEAs designed for

the WFG benchmark display the best performance among all MOEAs considered, and so does the rank

sum analysis of the Iε+ indicator (see [28]). As for the remaining MOEAs, the rank sums of the algorithms

are not consistent across different metrics, which indicates that some MOEAs favor convergence while

others favor keeping a good trade-off between solutions (or are simply unable to find/preserve extreme

solutions).

3.2.4 Experiments with a different stopping criterion

As shown by the results discussed above, standard MOEAs tend to perform better on the scenarios

for which they have been properly tuned. Besides the benchmark set and the number of objectives

considered, another major factor that affects the performance of algorithms is the stopping criterion used

to terminate their runs. In continuous optimization, a maximum number of function evaluations (FE)

is typically used because some applications present computationally costly FEs. As a result, algorithm

designers tend to devise algorithms that are able to reach high-quality solutions with as few FEs as

possible. Moreover, the time spent by the algorithms computing metrics or discarding solutions is

not considered an issue in these scenarios and, hence, very fast and very slow algorithms are often

considered equal. For instance, SMS-EMOA requires almost 10 minutes for executing 10 000 FEs in our

computer environment, while IBEA terminates in seconds. However, in many practical situations the

computational cost of the FEs may not be high enough to justify large computation times. In such

scenarios, fast algorithms such as IBEA or NSGA-II could likely outperform slow ones such as SMS-

EMOA by seeing many more solutions within a maximum runtime. By contrast, our design approach

should be able to deal with such changes naturally. In this section, we investigate the structure of the

AutoMOEAs generated and their performance relative to other MOEAs when all algorithms are given a

maximum time limit of one minute CPU time. For brevity, we focus only on the AutoMOEAs designed

and tested on the WFG benchmark for two, three and five objectives:

WFG, 2-objective (W2) AutoMOEA1min
W2 uses a intermediate population size, a high number of off-

spring, and a large external archive based on crowding. Mating selection relies solely on crowding

distance, whereas replacement is done based on dominance depth and the Iε+ indicator. Both the

external archive and the population removal are sequential. The structure of this algorithm is quite

interesting because it combines computationally expensive components (large external archive with

sequential removal) with computationally cheap ones (crowding distance, dominance depth, and

the Iε+), adapting to the maximum runtime it is given. The IrpdH performance of AutoMOEA1min
W2 is

shown in Fig. 3.3 (top left). We notice that the problem with most significant changes is WFG1,

where the IrpdH of all algorithms is greatly improved. Although all MOEAs perform similarly, the

rank sum analysis given in Table 3.9 indicates that AutoMOEA1min
W2 performs better on a larger num-
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Figure 3.3: Performance of all MOEAs tuned for a maximum runtime on selected 30-variable WFG
problems. On the top, IrpdH results for two (top) and three (bottom) objectives. On the right, IrpdH (top)
and Iε+ (bottom) results for five objectives.

ber of problems, both according to the IrpdH and the Iε+. Concerning the remaining MOEAs, IBEA

and NSGA-II rank equivalently according to the IrpdH , but IBEA performs better than NSGA-II

more often according to the Iε+.

WFG, 3-objective (W3) AutoMOEA1min
W3 uses a large bounded internal archive, default number of off-

spring (λr = 1.0), and no external archive. The PreferenceMat component is based on nearest neigh-

bor density, while PreferenceRep uses the exclusive hypervolume contribution (I1
H) and sequential

removal. This combination of components is coherent with this scenario, as the bounded internal

archive and the I1
H provide convergence pressure at a low computational cost, and the nearest neigh-

bor diversity has shown good results for SPEA2. Performance-wise, we see from Fig. 3.3 (bottom

left) that again many algorithms present good performance according to the IrpdH . Overall, the rank

sum analysis given in Table 3.9 indicates IBEA displays better IrpdH performance more often than

AutoMOEA1min
W3 , but the opposite happens for Iε+. This is actually surprising, since AutoMOEA1min

W3

has been tuned for the IrpdH and uses the I1
H indicator as its replacement mechanism, when IBEA

uses the Iε+ instead.

WFG, 5-objective (W5) As the previous scenarios have indicated, IBEA is quite effective when fac-

ing a runtime-constrained scenario. The structure of AutoMOEA1min
W5 confirms this, as this algorithm

presents the same exact components from IBEA, but can be considered a refinement of that algo-

rithm as AutoMOEA1min
W5 uses crowding diversity both for mating and environmental selection. The

similarity between these algorithms reflects on the boxplots shown in Fig. 3.3 (right-most plots),

and is confirmed by the rank sums given in Table 3.9. We see that the crowding distance metric

is unable to improve the Iε+ performance of a MOEA, but the IrpdH performance of AutoMOEA1min
W5

is greatly improved. Concerning the performance of the remaining algorithms on the non-concave

WFG problem (WFG1–WFG3), we see a discrepancy between the IrpdH and the Iε+ results, as

expected (see Section 2.1.4). This effect is greatly reduce on the concave functions, represented by

WFG8. Concretely, the hypervolume-based SMS-EMOA and HypE present better performance on

the IrpdH than on the Iε+, and so does SPEA2.

Overall, the results shown in this section have confirmed that the overhead incurred by MOEA com-

ponents can greatly impair their efficiency when facing a problem that is not computationally expensive,

but requires a constrained runtime. Next, we investigate the effect of the benchmarks used for tuning.
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Table 3.9: Sum of ranks depicting the performance of MOEAs tuned for a maximum runtime. Algorithms
in boldface present rank sums not significantly higher than the lowest ranked.

W2

IrpdH
AutoMOEAW2 NSGA-II IBEA SMS SPEA2 HypE MOGA
(1700) (1909) (1912) (2678) (3082) (3360) (4259)

Iε+ AutoMOEAW2 IBEA NSGA-II HypE SMS SPEA2 MOGA
(1402) (1868) (2158) (2995) (3050) (3190) (4237)

W3

IrpdH
IBEA AutoMOEAW3 SMS HypE NSGA-II SPEA2 MOGA
(1363) (1651) (2328) (2566) (2986) (3445) (4561)

Iε+ AutoMOEAW3 IBEA SMS SPEA2 NSGA-II HypE MOGA
(1184) (1380) (2240) (2959) (3109) (3658) (4369)

W5

IrpdH
AutoMOEAW5 IBEA SMS NSGA-II SPEA2 MOGA HypE
(1192) (1446) (2072) (2676) (2857) (4274) (4383)

Iε+ AutoMOEAW5 IBEA SMS NSGA-II SPEA2 MOGA HypE
(1052) (1084) (2717) (2721) (2932) (4075) (4319)

(∆R values from top to bottom: 157, 155, 136, 122, 102, 97)

Table 3.10: Sum of ranks depicting the performance of MOEAs for the cross-benchmark setup. ∆R is
the critical rank sum difference for Friedman’s test with 99% confidence.

DTLZ WFG

2-obj 3-obj 5-obj 2-obj 3-obj 5-obj
∆R = 118 ∆R = 126 ∆R = 118 ∆R = 165 ∆R = 119 ∆R = 118

AutoMOEAW2 AutoMOEAW3 AutoMOEAW5 SPEA2D2 AutoMOEAD3 AutoMOEAD5

(1142) (1292) (1420) (1376) (1491) (1420)

SPEA2W2 IBEAW3 SMSW5 NSGA-IID2 IBEAD3 SMSD5

(1692) (1692) (1485) (2334) (1663) (1485)

IBEAW2 SMSW3 IBEAW5 IBEAD2 SMSD3 IBEAD5

(1858) (1937) (1774) (2409) (1739) (1774)

NSGA-IIW2 SPEA2W3 NSGA-IIW5 HypED2 SPEA2D3 NSGA-IID5

(1929) (2067) (2279) (2666) (2395) (2279)

SMSW2 NSGA-IIW3 SPEA2W5 SMSD2 NSGA-IID3 SPEA2D5

(2443) (2451) (2291) (2904) (3360) (2291)

MOGAW2 MOGAW3 HypEW5 AutoMOEAD2 HypED3 HypED5

(2791) (2547) (2625) (2966) (3702) (2625)

HypEW2 HypEW3 MOGAW5 MOGAD2 MOGAD3 MOGAD5

(2844) (2712) (2824) (4245) (4550) (2824)

3.2.5 Cross-benchmark setup

One may suspect that the better performance of the AutoMOEAs for the specific benchmark sets towards

which they are tuned comes at the price of poorer performance on other benchmark sets. To examine

whether this happens in our case, we applied the various MOEA algorithms tuned for one benchmark

set to the respective other one, that is, the algorithms tuned on the WFG training set of functions to the

DTLZ benchmark set and vice versa. We did this analysis only for the setup where MOEAs are given a

maximum number of FEs to use, and we focus on the rank sum analysis of the IrpdH . The results of this

analysis are given in Table 3.10. In most cases, the relative order among the algorithms remains very

similar to the one encountered in Table 3.8. In five out of six cases the AutoMOEA algorithms remain the

best performing ones, AutoMOEAD2 being the only exception. The results for the Iε+ are consistent with

these ones for all scenarios, despite minor differences. The full analysis of this cross-benchmark setup is

provided as supplementary material [28].
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3.2.6 Concluding remarks

The experiments conducted in this section have confirmed the importance of the automatic design

methodology for developing MOEAs for continuous optimization, highlighting both its effectiveness and

flexibility. Under all application scenarios and setups considered here, the AutoMOEAs were able to

present a robust behavior and often outperform all standard MOEAs. At the same time, the perfor-

mance of these standard MOEAs varied considerably. Although IBEA performed well on both setups we

adopted, the AutoMOEAs designed here were able to consistently outperform it in the majority of cases.

3.3 Automatically designing combinatorial MOEAs

In this seciton, we apply the automatic MOEA design for tackling four multi-objective permutation flow

shop problems (MO-PFSP), a well-known class of multi-objective combinatorial problems. Although

many MOEAs have not been designed with combinatorial optimization problems in mind, many of

the MOEAs we considered in Section 3.2 have been adapted to such problems using problem-specific

variation operators [178]. Our results with the component-wise approach we propose here led to much

better performance than standard MOEAs, and therefore we discuss the insights they produced.

As reviewed in Section 2.1.5, the multi-objective PFSP is a widely studied, practically relevant

problem [69, 178] that is structurally different from continuous problems. Thus, we expected that

the AutoMOEA designs for the MO-PFSP use different components when compared to those we have

previously discussed in Section 3.2. We considered four variants of the MO-PFSP that combine the three

most used objective functions from the PFSP literature, namely makespan (Cmax), total flow time (TFT),

and total tardiness (TT). In particular, we considered three bi-objective variants, Cmax-TFT, Cmax-TT,

and TFT-TT, and the three-objective variant Cmax-TFT-TT. All problems are NP-hard as already the

underlying single-objective PFSPs are. We used irace to devise five AutoMOEAs: a variant specific for

each of the four variants, and a general one that tackles all four MO-PFSP variants (PFSP).

3.3.1 Experimental setup

The experimental setup for the MO-PFSP experiments follows runtime-constrained scenarios as presented

in Section 3.2 but with some differences to be mentioned. First, following [69], we allow algorithms to run

for a maximum of t = 0.1·n·m seconds, where n and m are the number of jobs and machines, respectively.

Second, the MO-PFSP literature has already shown that the number of nondominated solutions for these

problems is low, and hence we run all algorithms with an unbounded external archive. Third, we use

the regular IH indicator instead of the previous metrics we used for continuous optimization. For

tuning, irace was given a budget of 20 000 algorithm runs for designing the general AutoMOEAPFSP, and

5 000 for designing each of the variant-specific AutoMOEAs and for tuning the standard MOEAs. The

parameter space used for tuning the standard MOEAs and all AutoMOEAs is the same as presented in the

previous section, except for the problem-dependent ones. The parameter space used for the numerical

parameters is the same from the previous section, except for the PFSP-specific evolutionary operators.

In particular, all MOEAs use random initial solutions, two-point crossover5 and two problem-specific

mutation operators, namely insert and exchange. These variators have associated numerical parameters

tuned using the [0, 1] domain, namely: (i) pc, the probability of applying crossover to a given pair

of individuals; (ii) pm, the probability of applying mutation to a given individual, and; (iii) pX the

probability of using the exchange operator if mutation is performed6. For testing, each algorithm was

run 10 times on each test instance, and the results presented here are the average hypervolume over these

10 runs. Following [69], all test instances are different from the instances used in the tuning. In addition,

5Used alongside a repair procedure to ensure the feasibility of the offspring solutions.
6Effectively, the insertion operator is applied with probability 1− pX .



73

the testing set considers instances with 5, 10, and 20 machines, while the tuning set uses only instances

with 20 machines. Next, we discuss the main experimental results and insights from this analysis.

3.3.2 Experimental results and discussion

The goals of this section are to (i) analyze the design automatically selected for the different variants of the

PFSP and for the general version; (ii) to compare these designs with the previously discussed AutoMOEA

designs for continuous optimization, and; (iii) to assess the performance of the PFSP AutoMOEAs. We

next address each of these goals.

AutoMOEA designs for the PFSP. The tuned designs of the AutoMOEAs are shown in Table 3.7, and

present two commonalities. First, all AutoMOEAs use a bounded internal archive, which reflects the

need for convergence pressure for solving combinatorial problems such as the MO-PFSP. Second,

all algorithms use a high value for the offspring factor (λr), which is always larger than 1.4. This

is explained by the time-constrained setup used for combinatorial optimization since the number

of offspring per generation influences the trade-off between the number of solutions seen versus the

time spent computing metrics [26]. More precisely, if an algorithm produces too few solutions per

generation, it will spend most of its time computing selection metrics rather than evaluating new

solutions. Conversely, the number of offspring cannot be set to a very high value or this would

reduce the number of generations, hindering the evolutionary process.

Besides these two components that are used by all AutoMOEAs, we also highlight other design choices

that were often selected by irace. For mating, the crowding diversity operator was used by three of

the five AutoMOEAs. Interestingly, the more general AutoMOEAPFSP uses the same BuildMatingPool

components from AutoMOEACmax-TT. Also, the only design that uses a quality indicator in compo-

nent PreferenceMat is AutoMOEACmax-TFT. For replacement, three components are again used by most

of the designs: the binary ε-indicator or the shared hypervolume contribution as quality indicators,

crowding distance as diversity metric, and one-shot removal. In fact, the only design that contra-

dicts this pattern is AutoMOEATFT-TT, which uses fitness sharing for diversity and sequential removal.

Concerning numerical parameters, an interesting (and apparently contradictory) observation is the

fact that all variant-specific AutoMOEA designs favor the exchange mutation operator (pX > 0.5),

but AutoMOEAPFSP favors the insertion mutation operator. This is likely explained by the differ-

ent tuning budgets used, since larger budgets are particularly beneficial for fine-tuning numerical

parameters.

Design comparison with previous AutoMOEAs. When compared to the AutoMOEAs devised for con-

tinuous optimization, we noticed that most design choices differ considerably with the switch in

application domain. For instance, while all continuous AutoMOEAs use deterministic tournament

for mating, three out of five AutoMOEAs for the MO-PFSP use some form of randomized selec-

tion. In addition, nearly none of the AutoMOEAs designed for the MO-PFSP use quality metrics

in PreferenceMat, while almost all continuous AutoMOEAs did. We do remark, though, the number

of AutoMOEAs that use crowding diversity, both for continuous and combinatorial domains. Con-

cerning component Replacement, we first remark that all PFSP use a bounded internal archive and

none are steady-state, the opposite of what often happened with the continuous AutoMOEAs. As for

PreferenceRep, both continuous and combinatorial AutoMOEAs consider dominance, quality metrics,

and (very often) the crowding distance diversity metric. Finally, if we compare the external archive

removal policy used by continuous AutoMOEAs with the internal archive ones used by the PFSP

AutoMOEAs, we notice a much clearer pattern here, pointing to the effectiveness of the one shot

policy for the PFSP.
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Table 3.11: Sum of ranks depicting the overall performance of MOEAs on combinatorial problems. All
algorithms have been tuned for the scenarios considered. ∆R is the critical rank sum difference for
Friedman’s test with 99% confidence. Algorithms in boldface present rank sums not significantly higher
than the lowest ranked. CTT stands for variant Cmax-TFT-TT.

Cmax-TFT AutoMOEA AutoMOEA IBEA NSGA-II SPEA2 HypE MOGA SMS
∆R = 68 PFSP (249) Cmax-TFT (301) (398) (472) (479) (585) (687) (788)

Cmax-TT AutoMOEA AutoMOEA NSGA-II SPEA2 IBEA HypE SMS MOGA
∆R = 55 Cmax-TT (209) PFSP (253) (357) (464) (547) (574) (770) (786)

TFT-TT MOGA IBEA AutoMOEA HypE NSGA-II AutoMOEA SPEA2 SMS
∆R = 85 (304) (371) TFT-TT (475) (499) (499) PFSP (553) (615) (644)

CTT AutoMOEA AutoMOEA IBEA SPEA2 HypE NSGA-II SMS MOGA
∆R = 55 Cmax-TFT-TT (161) PFSP (251) (417) (525) (528) (541) (735) (802)
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Figure 3.4: Mean hypervolume on 10 instances of TFT-TT. Left: 50 jobs, 20 machines. Right: 200 jobs,
20 machines. Each vertical line depicts one instance.

Overall performance comparison We analyzed the performance of all algorithms and variants us-

ing the rank sum analysis given in Table 3.11. In general, the AutoMOEAs perform much better

than the standard MOEAs. Among these, IBEA is the algorithm that most often outperforms

the others, while SMS-EMOA presents a particularly poor performance. The only scenario that

contradicts this pattern is TFT-TT. Regarding the comparison between the variant-specific and

the general AutoMOEAs, for most of the variants considered these two algorithms can be qualified

as equally good. The difference in their rank sums is due to the fact that AutoMOEAPFSP performs

particularly well for the 20-machine instances (the size used for the tuning), but for the remaining

instances the variant-specific AutoMOEAs consistently outperform it. This indicates that the repre-

sentativeness of the tuning set with respect to the test set is limited due to the different instance

sizes present on each. The only variants where results differ slightly from this pattern are Cmax-TFT,

where AutoMOEAPFSP obtains a lower rank sum than AutoMOEACmax-TFT, and Cmax-TFT-TT, where the

performance of AutoMOEACmax-TFT-TT is statistically significantly better than that of AutoMOEAPFSP.

Concerning the TFT-TT, it is a problem with an increasing objective correlation as instance sizes

grow (see Section 2.1.5). As a result, for large instances the number of nondominated solutions be-

comes particularly small and MOEAs sometimes return non-dominated sets with very few solutions.

This heterogeneity of the testing set limits the representativeness of the tuning set affecting irace, as

it cannot select a configuration that performs well across the whole set. To illustrate, we show the

performance of all algorithms on two sets of 20-machine instances in Fig. 3.4. For smaller instance

sizes like the ones given in Fig. 3.4 (left), all algorithms perform similarly, with AutoMOEATFT-TT

performing best in several instances. For the larger instance sizes given in Fig. 3.4 (right), how-
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ever, all algorithms perform poorly, but MOGA is the one clearly less affected. When we limit the

rank sum analysis to the testing instances with 20 machines, no significant difference is found for

MOGA, AutoMOEATFT-TT, IBEA, and NSGA-II, the algorithms that present better performance.

3.3.3 Concluding remarks

As seen in this section, the designs of the AutoMOEAs devised for the PFSP differed in many aspects from

those devised for continuous optimization problems. Nonetheless, the performance of the AutoMOEAs

proves the efficacy of the automatic MOEA design also for combinatorial optimization. This further

highlights the importance of having a flexible and representative MOEA framework. The good per-

formance of the variant-specific AutoMOEAs reinforce this, showing that designing MOEAs for specific

problem variants can lead to promising improvements. A comparison to a current state-of-the-art algo-

rithm for the three bi-objective PFSPs is given in the supplementary material for interested readers [28].

However, reaching state-of-the-art results would require AutoMOEAs to incorporate fine-tuned local search

algorithms [69, 178], which is beyond the scope of this chapter.

3.4 Conclusions

In this chapter, we have proposed a novel conceptual view of MOEAs to improve the way such algorithms

are designed or applied to new scenarios. By considering MOEAs as combinations of lower-level com-

ponents, such as preference relations and archives, our approach allows tailoring algorithms according

to the characteristics of the target application. We have empirically demonstrated the efficacy of this

component-wise view by automatically designing novel, efficient MOEAs for several application scenarios

comprising continuous and combinatorial optimization problems. Concretely, we have proposed a flexible

framework that extends both the number of algorithms that can be instantiated from a single template

and the number of novel MOEA designs that can be produced from it. To navigate this large design

space, we have used an offline parameter configuration tool, irace, following similar research work on

other multi-objective metaheuristics [157]. An important focus of our work is the generalization aspect

of the automatic design process. More precisely, a critical attribute of automatic configuration is the

separation between training and testing scenarios, as highlighted in Section 2.3.2. In the context of

continuous optimization, we have implemented this separation by using different dimensions of the func-

tions within a benchmark set for training and testing, and additionally by conducting cross-benchmark

experiments. For the MO-PFSPs studied, we have training instances that are different from the testing

instances.

The applications of the conceptual view we propose here are numerous. First, by designing novel

MOEAs to specific problem classes, one could identify particularly effective components for a given class.

For instance, continuous benchmark sets often include disconnected problems. Using the methodology

proposed here, one could create a benchmark set of disconnected problems and analyze AutoMOEAs

specifically devised for this benchmark. Moreover, by comparing designs devised for several characteristic-

driven benchmark sets like this one, patterns could likely be found, helping in future MOEA design when

the characteristics of a given application are known in advance. A second and promising application is to

couple the component-wise and/or the automatic design approaches with iterative design-space analysis

tools such as ablation analysis [76]. This method generates intermediate configurations between pairs

of algorithm designs, and hence can provide important insights about the contribution of individual

components. For instance, Appendix A describes a preliminary work in this direction, where we consider

several component-wise abstractions to compare different MOEAs on the PFSP. Another example of

integrating ablation and our proposed approach would be to ablate between the continuous optimization

AutoMOEAs devised for three and five objectives, and see how the intermediate configurations perform

in these scenarios. One could then possibly reduce the number of components used by some of these
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AutoMOEAs and understand better why they work so well. In fact, we conduct such an investigation in

Chapter 5.

In the next chapters, we extend this work in order to automatically devise state-of-the-art MOEAs

for continuous optimization. For starters, the next chapter describes our effort to identify the current

state-of-the-art for this field, even though we reckon that the work presented in this thesis is still a first

step towards this goal. In particular, although we are strong advocates of the component-wise method-

ology, the most urgent approach to such an experimental assessment requires a different component-wise

approach to MOEAs, where the multi-objective components are considered a monolithic unit coupled

with different underlying EAs, as we will discuss. Nonetheless, we attempt to analyze individual multi-

objective components of the MOEAs to a certain extent, and an in-depth component-wise analysis for

continuous optimization is one of the main contributions of the last chapter.



CHAPTER 4

A comprehensive performance assessment

The literature on multi-objective evolutionary algorithms (MOEAs) is extensive and MOEAs are one

of the most wide-spread approaches to tackle multi-objective optimization problems (MOPs). Over the

decades of MOEA research, a great number of algorithms were proposed in the literature, as reviewed

in various surveys [46, 50, 149, 176] and also in Section 2.2.4. More recently, the interest in problems

with (many) more than three objectives has raised, making the study of algorithms for many-objective

problems (MaOPs) one of the currently most active fields within MOEA research in general [3]. Besides

algorithmic advances, the MOEA community has been a driving force in the advancement of the per-

formance assessment of multi-objective algorithms [61, 140, 233, 235]. In particular, those works were

instrumental to help shape the research on MOEAs, defining problem benchmarks, performance metrics,

and experimental setups to be reused in most of the subsequent MOEA research. However, the rate

with which new MOEAs were proposed and the advancements related to the performance assessment of

such algorithms is not well matched by the extent of the experimental analyses performed. In particular,

no work has clearly identified the state-of-the-art for continuous MOPs, the default application domain

used for evaluating novel MOEAs. As a result, many of the algorithms proposed in the literature were

only compared to a handful of other MOEAs believed to be high-performing.

Besides the algorithm-wise developments, a large-scale experimental analysis should consider other

experimental factors. Although some of these factors were addressed in the previous chapter, the analysis

presented in this chapter is even more rigorous given our approaches to different stopping criteria,

performance metrics, and underlying EAs. In particular, we consider a large set of the most prominent

and diverse MOEAs proposed in the literature (see more details below). Considering other factors,

we use a benchmark set comprising both the DTLZ and WFG benchmarks, with different numbers

of variables (20 to 60), objectives (2, 3, 5, and 10), and stopping criteria (2 500, 10 000, and 40 000

FEs). In particular, the three different levels of FE budgets allow us to simulate different levels of

computational overhead posed by function evaluations, as we explain later. In addition, we use an

automatic configuration tool to properly tune the numerical parameters of each MOEA on each of the

setups we consider. Finally, to evaluate the approximation sets produced by MOEAs, we consider a set

of diverse performance metrics (IrpdH , I1
ε+ and IIGD).

In addition to all the experimental factors discussed above, we consider MOEAs from a component-

wise perspective by separating between the high-level algorithmic components specifically related to

77
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multi-objective optimization (MO), and the traditional algorithmic components related to search in

optimization problems, i.e., the underlying evolutionary algorithm (EA). We do so for two main reasons.

First, clearly identifying the underlying EA used by a MOEA makes assessments fair, preventing a

common mistake of comparing MOEAs that use different underlying EAs. Second, many of the papers

where MOEAs were proposed concentrated solely on the MO components, regarding that the underlying

EA would play a less important role. Later, when differential evolution (DE)-based versions of existing

MOEAs were proposed [143, 201, 216, 219], some researchers assumed that it would be the best underlying

EA choice for any MOEA. However, in recent papers [30, 31] and also in Appendix C, we show that

this is not necessarily the case, with interactions between MO components and underlying EAs playing

a critical performance role.

In this work, we select the group of MO components we consider the most relevant from the literature,

namely the ones proposed for MOGA [80], NSGA-II [60], SPEA2 [234], IBEA [232], SMS [19], HypE [13],

MOEA/D [150], and NSGA-III [59], and the two EAs most commonly used in the MOEA literature,

i.e., genetic algorithms (GA) and differential evolution (DE). In particular, these MO components stem

from different MOEA design paradigms and, thus, provide a comprehensive set of possibilities. To

ensure that the most fit underlying EA is selected for the scenario considered, we use the automatic

configuration tool to make the best choice. In addition, we include in our comparison a MOEA that uses

neither of the underlying EA choices previously described, but that is very relevant in the literature,

MO-CMA-ES [119]. In total, our analysis encompasses 15 algorithms independently proposed in the

literature [13, 19, 59, 60, 80, 119, 143, 150, 201, 228, 232, 234].

Several relevant and interesting insights are drawn from the experimental results. First and foremost,

we notice a pattern between results on two-, three- and five- objective problems, where the indicator-

based SMS and IBEA perform best. By contrast, on ten-objective problems no MOEA is able to rank

first according to all metrics, reinforcing the importance of using a diverse set of metrics in an assessment

of many-objective optimization algorithms. In particular, NSGA-III and MOEA/D rank first according

to given metrics, and IBEA is the only MOEA to be consistently good according to all metrics. Second,

we show that some algorithms proposed more recently are unable to improve over their immediate

predecessors. In fact, except for ten-objective problems, NSGA-III is one such example, with NSGA-II

often presenting equivalent or better performance than it on the other experimental scenarios. We

present additional investigation to explain these results, such as the effects of properly tuning algorithms

before evaluating them. Finally, we notice that the difficulty levels of the problems considered depend

on interactions between their structural characteristics and the increase in the number of objectives. We

then conduct a brief follow-up investigation on the most important features these problems present.

The main contribution of this chapter can then be summarized as being a concrete first step to-

wards identifying the state-of-the-art MOEAs for continuous optimization on two-, three-, five- and

ten-objective problems, while producing a number of important insights, such as the impact of problem

characteristics, underlying EA choices, and the remaining experimental factors considered. However, we

also highlight a second important contribution concerning the experimental data produced. In particular,

the number of insights that could be drawn from the campaign conducted in this work far extends the

analysis we are able to fit in a chapter. In fact, this data is likely too large to be mined by a single research

group, and for this reason we make it available to the MOEA community. Our goal is to stir a collective

effort that can help draw further insights, either due to manual statistical analysis or to automated tech-

niques. In particular, we strongly believe that this assessment can be a first step towards the application

of machine learning approaches to better understand the nuances of many-objective optimization that

have not yet been fully grasped.

The remainder of this chapter is organized as follows. In Section 4.1, we highlight the particular

MOEAs we use in this study grouped by the design paradigm to which they belong. We also discuss

the conceptual separation we adopt in this thesis. Next, we detail our performance assessment setup

in Section 4.2, detailing how our work extends over others. In Sections 4.3 to 4.5, we present our
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experimental results, starting by an overall analysis and moving on to further detailed insights. Finally,

we conclude and discuss future work in Section 4.6.

4.1 MOEAs and underlying EAs

As discussed in Chapter 2, MOEAs have been traditionally categorized in the literature into one of the

three following families (or design paradigms). To make our assessment comprehensive, we select at least

two algorithms from each paradigm, which we highlight in boldface.

1. Pareto-based approaches. The best known examples from Pareto-based approaches are

NSGA-II [60] and SPEA2 [234]. In addition, we also consider MOGA [80], due to its his-

torical relevance and as a baseline to put other results in perspective.

2. Indicator-based approaches. We consider the three most relevant MOEAs from this paradigm,

namely IBEA [232], SMS [19], and HypE [13]. In particular, we remark that HypE was the first

indicator-based algorithm designed specifically for MaOPs.

3. Decomposition-based approaches. To represent the decomposition-based paradigm we con-

sider MOEA/D and NSGA-III. In particular, we consider the MOEA/D version that won

the IEEE CEC 2009 competition on unconstrained multi-objective continuous optimization [150],

which uses a dynamic resource allocation (DRA) approach. Concerning NSGA-III, we remark it

was also proposed specifically for MaOPs.

More importantly, one feature that is typically overlooked when designing and comparing MOEAs

concerns the underlying evolutionary algorithm used. As previously discussed, MOEAs can be seen as a

combination of high-level MO components, responsible for dealing with the particular aspects of multi-

objective optimization such as dominance, convergence, and diversity, coupled with an underlying EA

responsible for selection and variation operators. In general, MOEA authors have focused their efforts

on devising effective MO components, and reused the same underlying EA choices traditionally adopted

in the literature, i.e., GAs or evolution strategies (ESs) typically using SBX crossover and polynomial

mutation. As a result, the literature exploring different underlying EAs is limited, and the role variation

operators of the underlying EAs have on performance is still rather poorly understood for both multi- and

many-objective optimization. Below, we discuss some works that have tried to extend MOEA research

in this direction:

Differential evolution (DE). During the maturing years of the MOEA design evolution, a few propos-

als using differential evolution as underlying EA arised, however, often re-using existing approaches

as to MO components. For instance, many of the first DE-based MOEAs were fairly similar to

NSGA-II concerning mechanisms to deal with convergence and diversity [1, 143, 166, 201]. The

positive results by these DE-based MOEAs, however, motivated researchers to test other existing

MO components with DE as underlying EA [219]. Table 4.1 shows a set of algorithms that are

essentially equal as to their MO components, but differ mainly as to the underlying EA. We remark

that not all of these algorithms pairs had been previously recognized as equivalent (e.g., SMS and

IBDE [216]), most likely because of the different ways they were described by their authors.

In this work, we consider that MOEAs that differ only as to the underlying EA should be treated

as one. More precisely, a given MOEA such as SPEA2 might use GA or DE as underlying EA

depending on the performance they display on the experimental scenario considered. The choice

of which underlying EA to use is made by the automatic algorithm configurator at the same

time it tunes numerical parameters. Furthermore, if the configurator selects GA as underlying

EA for a given algorithm, the SBX crossover and polynomial mutation operators are used. By
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Table 4.1: MOEAs that differ only as to the underlying EA used.

Underlying EA

MO components GA/ES DE

dominance depth
NSGA-II [60] DEMO [201], GDE3 [143]

crowding distance

dominance strength
SPEA2 [234] DEMOSP2 [219]

k-nn density estimator

binary indicator IBEA [232] DEMOIB [219]

dominance depth
SMS [19] IBDE [216]

hypervolume contribution

contrast, when the configurator selects DE as underlying EA, the differential mutation operator

and binomial crossover are used by the MOEA. By doing so, we also prevent comparing algorithms

that use different underlying EAs without ensuring that these are the best configurations for each

MOEA. In addition, we remark that some algorithms such as MOGA, HypE, and NSGA-III had

not yet been investigated coupled with DE, but we extend this EA choice also to these MOEAs.

Covariance matrix adaptation (CMA-ES). Although it would be possible to use CMA-ES as an

underlying EA option for all MOEAs, as done with DE, we choose not to do so. Our main mo-

tivation is that there is currently no other work in the literature that considers CMA-ES as an

underlying EA for MOEAs, and the goal of this chapter is not to propose novel algorithms. Further-

more, adapting the learning mechanism from CMA-ES to be coupled with other MO components

is not a trivial task but rather a major research contribution in itself. Instead, in this work we rep-

resent this underlying EA using the MO-CMA-ES algorithm, and we model its different variants

as parameters to be tuned, as explained in Section 4.2.3.

4.2 Assessment setup

In this section, we first explain the experimental factors we consider. Next we present the setup and the

parameter space used for the automatic configuration process, followed by the testing setup we adopt.

Finally, we discuss how our assessment differs from other existing analysis. We remark that all our

experiments are run on a single core of Intel Xeon E5410 CPUs, running at 2.33GHz with 6MB cache

size under Cluster Rocks Linux version 6.2/CentOS 6.2. In addition, MOEAs were implemented in C++

and compiled using gcc version 4.7.2 and the O3 optimization flag. When official implementations were

not available, we verified our implementation against results from the papers where algorithms were

originally proposed.

4.2.1 Experimental factors

To make our performance assessment as complete as possible, we consider several factors, detailed below.

Benchmark problems. In this work, we consider the 16 box-constrained functions that comprise the

DTLZ [61] and WFG [112] benchmarks. We do not include the CEC 2009 competition bench-

mark [229] as one cannot scale the number of objectives presented by these functions.

Number of objectives (M). We consider four different values for the number of objectives, namely

M ∈ {2, 3, 5, 10}. This allows us to conduct in-depth analysis for each of the values considered as

well as to observe trends that arise as the number of objectives increases significantly. In fact, we

choose to represent MaOPs using five and ten objectives to analyze the effect of this large increase
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in the number of conflicting objectives. More precisely, we strongly believe that MOEAs will

have considerable difficulty dealing with the large dominance resistance effect on MaOPs with ten

objectives. Differently, based on the experiments from the previous chapter we believe that some

MOEAs not specifically designed for MaOPs will be able to cope with the dominance resistance of

five-objective problems.

FE computational cost. Traditionally, MOEAs have been designed and tested having as stopping cri-

terion a maximum number of function evaluations. The rationale behind using this approach rather

than actual computation times is that real-world problems (and specially MaOPs) present compu-

tationally and/or financially expensive to compute function evaluations, which is much higher than

the time required by the algorithm itself. We see three potential drawbacks with this approach.

First, many MOEA designers have created algorithmic components that present high computa-

tional complexity, considering that the overhead posed by such components would be compensated

by the overhead presented by the function evaluations. In the literature, however, many of the

assessments conducted have used a very large number of function evaluations, contradicting this

basic assumption [61, 112, 229]. Second, some MOEAs present a very aggressive intensification

behavior at early evolution stages under the assumption that not many function evaluations would

be available. However, the optimization literature is rich on examples of drawbacks caused by such

behavior [109], in particular the propensity of getting stuck in locally optimal solutions (in this

case, local Pareto fronts). Finally, changes to this stopping criterion favor MOEAs in different

levels, as we have demonstrated in the previous chapter.

In this work, we simulate different computational cost levels by using several budgets, i.e., different

maximum numbers of function evaluations given to each run (FEmax). Concretely, we consider

FEmax ∈ {2500, 10000, 40000}, which respectively represent function evaluations that present high,

medium, and low computational cost. More precisely, our experimental scenarios are defined as

combinations ofM and FEmax. This way, although the same benchmark functions are used in all ex-

periments, scenarios where MOEAs are given a low number of function evaluations (FEmax = 2 500)

represent real-world problems that are expensive to compute, and hence not many evaluations can

be used. By contrast, scenarios where FEmax is high (FEmax = 40 000) represent real-world prob-

lems for which function evaluations are relatively cheap to compute. By doing so, we are able to

analyze the performance of the MOEAs in all these different situations, assessing their flexibility

and scalabity w.r.t. the stopping criterion.

Problem sizes. An experimental factor often not considered in the MOEA literature is the problem

size, i.e. the number of variables present in the benchmark problems. For instance, most of the

studies that use the DTLZ benchmark attain to the original number of variables suggested by the

benchmark proposers, which can be considerably low (nvar = 7 for the three-objective DTLZ1). In

this work, we also assess MOEAs as to their scalability w.r.t. problem sizes (nvar), considering the

range nvar ∈ {20, 21, . . . , 60}.

4.2.2 Tuning setup

Since we consider a number of different experimental factors, re-using numerical parameters proposed

in other works for the MOEAs or even from the experiments conducted in the previous chapter is not

advisable. Instead, we use irace to determine optimized parameter settings for each scenario. Our

reasoning is that the number of objectives and the number of feasible function evaluations are usually

known in advance before executing the algorithm, and that they may demand very different numerical

parameter settings.1 For instance, MOEA designers have traditionally tried to devise effective algorithms

1Even if the precise setting for a scenario is only available short time before actually executing the algorithm, one can
easily imagine that MOEAs may have been previously tuned for many different scenarios and tuned settings are available
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Table 4.2: Parameter space concerning variation operators for all MOEAs but MO-CMA-ES.

Underlying GA DE

Parameter tsize pc, pm, pv ηc, ηm CR F

Domain {2,4,8} [0, 1] {1, . . . , 50} [0.01, 1] [0.1, 2]

regardless of the number of objectives presented by the problem. Based on the current insights available

in the literature, however, we believe that such a goal is too high to be attained. The same reasoning

goes for FEmax, as previously discussed.

For fairness, we use a common tuning setup for all algorithms and scenarios. The configurator is

given a maximum budget of 20 000 experiments per scenario, i.e. executions of the MOEA to be tuned.

In particular, we remark that in this chapter the tuning targets both DTLZ and WFG benchmarks

altogether, i.e., a single set of parameters is produced for each scenario. Primarily, each candidate

configuration is allowed to run until it has used all given FEs. However, we set cutoff times (tmax)

for each run to keep the feasibility of the study. For scenarios where FEmax ∈ {10000, 40000}, tmax

is set to 10 minutes. When FEmax = 2500, tmax is set to 1 hour. Once a candidate configuration

reaches either stopping criteria, it is evaluated based on the IrpdH if M ∈ {2, 3, 5}, and the I1
ε+ when

M = 10. In particular, our decision to use the Iε+ indicator when M = 10 was motivated by the

practical and theoretical limitations of the IrpdH metric (see Section 2.1.4). However, in other tuning

tasks it has been shown that hypervolume-based and ε-based metrics both lead to high-performing

algorithm configurations [157].

In order to compute the quality metrics mentioned above, we first pre-process both reference fronts

and approximation fronts produced by all candidates. Concerning reference fronts, we initially randomly

generated 1 000 Pareto-optimal points using the methodology described in the original DTLZ [61] and

WFG [112] papers. To improve these fronts, we followed a three-step approach. First, we used the

randomly generated reference sets to tune selected MOEAs for scenarios with FEmax = 10 000, obtaining

high-quality parameter settings for these algorithms. We then ran these algorithms for 100 000 FEs

using the parameter settings obtained in the previous step. Finally, we merged the approximation fronts

from all MOEAs with the randomly generated reference sets, and filtered out the dominated solutions.

Regarding the pre-processing of approximation fronts produced by candidates, we took precautions to

avoid skewed results due to normalization in the presence of strong outliers. Concretely, we have filtered

out solutions that were dominated by an upper bound point u, determined based on the extreme solutions

found in the improved reference sets:

u =


[10]M , if M ∈ {2, 3}
[15]5, if M = 5

[25]10, if M = 10

(4.1)

This upper bound is also used to determine the reference point r used to compute the IrpdH metric.

In particular, we set r = α · u, where α is a factor used to ensure that extreme solutions are valued

accordingly; we use α = 1.1.

Finally, the last precaution we take regarding tuning concerns the separation between a training set

and a test set, following the same approach from the previous chapter. We follow this approach as an

alternative to the leave-one-problem-out as in cross-validation since that would incur a computational

cost 16 times higher than the current tuning cost, which would make this assessment close to infeasible.

from a database.
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Table 4.3: Parameter space for tuning specific MOEA/D parameters.

Parameter ρ δ φ tsize ν

Domain [0.1, 1] [0, 1] [0.01, 1] {1, 2, . . . , 20} {2, 3, . . . , 10}

Table 4.4: Parameter space for MO-CMA-ES learning parameters.

σ0 d ptarget pthresh cp cc c′cov u′cov

[0, 1] {1, 2, . . . , 50} [0, 0.5[ [0, 0.5[ [0, 1] ]0, 1] [0, 1[ [0, 1[

4.2.3 Parameter space for tuning

Due to the very diverse set of MOEAs we consider, we use a flexible parameter space to meet their

characteristics. For the parameters that apply to the majority of the algorithms, we define domains as

follows:

Population size (µ): For the Pareto- and indicator-based algorithms, we consider µ ∈ {10, 20, . . . , 100}.
For MOEA/D, the population size cannot be too small otherwise its weight set might lose repre-

sentativeness. More precisely, the traditional methods used for generating weights make it so that

a small number of weights on a large number of objectives might miss large regions of the objective

space. We therefore tune MOEA/D considering µ ∈ {100, 200, . . . , 500}. Concerning NSGA-III,

the population size and the number of weights used are tightly related parameters, so we detail

them later.

Underlying EA: As previously explained, we give algorithms a choice between two different underly-

ing EAs: (i) GA, using the traditional deterministic tournament, SBX crossover and polynomial

mutation operators; or (ii) DE, using the differential mutation operator and the binomial crossover

in the DE/rand/1/bin fashion. Additional parameters associated with each variation operator are

given in Table 4.2, namely tournament size (tsize) and the crossover and mutation probabilities and

distribution indices (pc, pm, ηc, and ηm, respectively) for the GA variation operators, and crossover

rate and scaling factor (CR and F , respectively) for the DE operators. As previously explained,

these parameters do not apply to MO-CMA-ES.

In addition, the MOEAs we include in this comparison that were not considered in the previous

chapter present additional parameters which we briefly list below. We refer to the original papers for a

better understanding of all parameters.

MOEA/D. The DRA strategy used by MOEA/D requires a number of additional parameters, which we

tune using the domains given in Table 4.3. Furthermore, the decomposition part of the algorithm

can be selected from three options: weighted sum aggregation (WS), Tchebycheff aggregation (TA),

or penalty-based boundary intersection (PBI). When PBI decomposition is used, an additional

penalty parameter ξ ∈ {1, 2, . . . , 10} has to be tuned.

MO-CMA-ES. Concerning learning-related parameters, MO-CMA-ES presents a set of default formu-

lae that self-adjust in function of the number of variables the given MOP presents. In this work,

we preserve this approach, but also give irace the option of tuning a parameter using the tuning

domains given on Table 4.4. More precisely, for each of the parameters listed, irace first decides

whether it will use the default formula or tune the parameter using its given domain2. Two pa-

rameters constitute an exception to this pattern: (i) the initial step size σ0, for which no default

2We use surrogate parameters to tune the covariance matrix learning and unlearning rates and ensure they are always
smaller than cc. Concretely, ccov = c′cov · cc and ucov = u′cov · cc.



84

formula is used, and; (ii) the covariance matrix unlearning rate u′cov, which is not a parameter

of the original MO-CMA-ES but we use it because it is part of the most widely adopted MO-

CMA-ES implementation [120]. In fact, for this parameter irace can select between three different

options: (i) the original approach, i.e., u′cov = c′cov; (ii) the formula used in Shark [120], or; (iii) tun-

ing this parameter according to the domain given in Table 4.4. Concerning the multi-objective

components of MO-CMA-ES, we consider three parameters to be tuned: (i) the quality indicator,

which can be epsilon or hypervolume; (ii) using steady-state replacement or not; and (iii) the notion

of success, which can be population or individual -based [221].

NSGA-III. The authors of NSGA-III proposed a particular weight-generation methodology, meant to

prevent the objective space gaps we previously discussed for MOEA/D. The domains we set for

these parameters are dependent on the number of objectives M , following the original NSGA-III

paper. For M ∈ {2, 3, 5}, we set H1 ∈ {2, . . . ,Ω}, where Ω is set as follows:

Ω =


100, if M = 2

30, if M = 3

10, if M = 5

(4.2)

When M = 10, we use the {1, . . . , 3} domain for both H1 and H2. The population size is then

calculated as a function of the number of weights generated. Concretely, µ = µ′ · |W |, where |W |
is the cardinality of the weight set W and µ′ ∈ [0.5, 1.5].

4.2.4 Testing setup

Once all algorithms have been properly tuned for each scenario, we run them 25 times on the test set.

In particular this set is unique w.r.t. tuning set since we reserve a set of problem sizes specifically for

testing, namely ntesting ∈ {30, 40, 50}. The stopping criterion for all runs is the same used for tuning:

primarily, MOEAs are allowed to use FEmax function evaluations, but the cutoff times tmax are used

to ensure the feasibility of our investigation. Once algorithms finish running, the same pre-processing

performed for approximation fronts generated by candidates during tuning is repeated during testing. In

particular, the same definitions for the bounds and reference points (i.e., same u, α and r) are used. The

processed fronts are then evaluated according to three quality indicators previously discussed, namely

the IrpdH , I1
ε+, and IIGD metrics (see Section 2.1.4).

4.2.5 Improvements over other assessments

Compared to other recent works that attempted to assess the performance of MOEAs on many-objective

problems [98, 151], our work can be considered an improvement for two main sets of reasons. Algorithm-

wise, we select at least two relevant MOEAs from each paradigm, and so we are able to draw conclusions

within each paradigm, as we will later see. In addition, the conceptual separation between MO compo-

nents and underlying EA allows us to analyze how the latter interacts with the former. Moreover, our

work is the first to include a CMA-ES-based algorithm to a large performance assessment. In particular,

by directly comparing the results of SMS and MO-CMA-ES we are able to draw conclusions about the

efficacy of this underlying EA in the circumstances considered in this work.

The second set of improvements concern the carefully designed experimental setup described in

this section. Concretely, this is one of the first MOEA assessments where an automatic algorithm

configuration is used to properly tune numerical parameters. Furthermore, we take additional precautions

concerning (i) the separation between tuning and test sets, (ii) assembling and improving the reference

fronts, and (iii) using a set of diverse performance metrics. Finally, we also consider consider a rich set
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algo = hype,ibea,moead,sms,spea

nobj = 2,3,5

algo = hype,ibea,sms

nobj = 2,5

fes = 40000

algo = moead,sms,spea
DE

28%

DE

12%

GA

6%

DE

5%

DE

6%

GA

4%

GA

38%

yes no

Figure 4.1: Classification tree depicting the choices of the underlying EA selected by irace for all MOEAs
except MO-CMA-ES. Cluster cardinalities are given as percentages in leaf nodes.

of experimental scenarios and select problem sizes that are more representative of real-world situations

than the ones traditionally used in the literature.

4.3 Preliminary insights

Given the large amount of experimental results produced, we split our discussion in three sections. In this

first one, we conduct a high-level analysis, detailing observed insights that are critical for understanding

results.

Underlying EA choices. We start our analysis discussing the choice of the underlying EA by the

automatic configurator, using the classification tree given in Figure 4.1, generated using the rpart

R library. In the tree, the left subtree of a node represents the subset of scenarios that satisfy the

condition stated by the node. For instance, the root of the classification tree shows that the most

important factor affecting the choice between the different underlying EAs is the MOEA considered.

The left subtree refers to HypE, IBEA, MOEA/D, SMS, and SPEA2, while the right subtree refers

to MOGA, NSGA-II, and NSGA-III. In fact, the first insight from this analysis is that for the three

latter MOEAs, using GA as traditionally adopted in the literature is a proper choice regardless of the

specific experimental factors. This is a remarkable observation, considering that previous literature

insights would suggest DE as a more effective choice in general, both for single- and multi-objective

optimization.

Moving along the left subtree, we see that for the remaining MOEAs DE is a more fit choice for

most of the scenarios considered. Nonetheless, for specific MOEAs, the decision may depend on the

particular scenarios. For example, for HypE or IBEA in most scenarios DE is the preferred choice but,

when solving ten-objective problems given a low or moderate number of FEs, both algorithms perform

best when coupled with GA. In fact, when we sum the percentages of different EA choices (given in

leaf nodes), we see that DE was selected in 52% of the scenarios, with GA being selected in the

remaining 48%. Although we remark that the differences in performance between using DE or GA

varies significantly according to the MOEA considered, this result is strong evidence showing that the

underlying EA choice should be taken into account at design time.

Parameter tuning effects. As previously discussed, we used irace as a configurator to fine-tune the

parameters of the MOEAs for each experimental scenario. Our motivation was to avoid using sub-

optimal parameter settings, either due to tuning via the trial-and-error approach or by transferring
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Figure 4.2: Scatter plots comparing tuned (x-axis) and default (y-axis) performances of MOEAs accord-

ing to the (i) IrpdH (left), (ii) I1
ε+ (center), and (iii) IIGD (right) metrics. Results have been averaged over

each of the 25 run sets, paired by all the experimental factors considered.
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Figure 4.3: IrpdH performance of IBEA using DE as underlying EA with different numerical parameter
settings on WFG8 (M = 3, nvar = 30).

settings across different experimental scenarios. To illustrate the effects of tuning, Figure 4.2 shows

scatter plots comparing results obtained by MOEAs using default settings versus tuned ones. In

particular, the points depicted in the plots are pairs (t, d), where t and d are the mean results over 25

runs according to the given metric of the tuned and the default version of a MOEA, respectively. The

only algorithm left out of this analysis was MOGA, since the original work does not provide default

parameter settings. Each point corresponds to the test result of one MOEA on a specific MOP (for

each, three different numbers of variables) and a specific scenario. In total, our sample size for each

plot totalizes 4032 pairs (3 nvar, 14 MOPs, 3 FEmax, 8 MOEAs, and 4 M). In addition, we provide the

ratio of pairs where t ≤ d, given in parenthesis. As it can be seen, the metric where improvements are

more significant is the IrpdH , a consequence of having used it as the tuning metric on most scenarios.

Benefits can also be observed for the remaining metrics, although clearly the contradicting natures of

the IrpdH and the IIGD reduce the tuning benefits for the latter.

To further illustrate the effects of tuning, Figure 4.3 shows the development of IrpdH over the number

of function evaluations (averaged across 25 runs) of IBEA with DE as underlying EA on problem

WFG8 (M = 3, nvar = 30), using four different numerical parameter settings. The first one, labeled

IBEA, uses the parameter settings proposed in the original DEMOIB paper [219]. The remaining three

curves refer to runs using the parameter settings selected by irace for the different FEmax values, and

are labeled IBEA FEmax. For this plot, however, the algorithm was allowed to use FEmax = 50 000.
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Figure 4.4: IrpdH performance of different MOEAs using parameter settings tuned for a common stopping
criterion on WFG3 (M = 3, nvar = 50).

Table 4.5: Spearman’s correlation coefficient between MOEA rankings for different FEmax values.

2 500 × 10 000 2 500 × 40 000 10 000 × 40 000

tuned 0.77 0.7 0.89

default 0.74 0.66 0.96

As one can see, the better performance presented by IBEA 2500 on lower FE budgets contrasts

with its poor performance on larger budgets. The same pattern is observed in all curves: their best

performance w.r.t. the other curves is obtained around the number of FEs for which the algorithm

was tuned. Concerning the default settings, this plot clearly shows that tuning via the trial-and-error

approach can lead to sub-optimal performance.

The importance of FEmax. To illustrate the effects of using different values for FEmax, Figure 4.4

shows the performances of different MOEAs that were tuned for one of the selected FEmax values when

allowed to run until FEmax = 50 000. As one can see, the performance curves intertwine at several

points of the plot, meaning that different stopping criteria would favor different algorithms. For more

general conclusions, we compute the correlations between the MOEA rankings grouped by FEmax

values. More precisely, we take all the rank sums computed (all MOEAs according to each metric on

each scenario) and group them by FEmax value, paired according to the remaining factors. Table 4.5

gives the Spearman correlation coefficients, considering both results from tuned and from default

versions of the MOEAs. For brevity, scatter plots of this analysis are provided as supplementary

material [33].

The correlation coefficients for the combinations of FEmax values provide some interesting insights.

First, values neither indicate a perfect nor an absence of correlation. A more in-depth analysis of

the scatter plots show that this correlation is stronger for the extreme results than for the central

ones. In other words, the best- and worst- performing MOEAs are far more clearly defined than the

relative order of an intermediary-performing group of algorithms. Furthermore, correlations between

FEmax = 2 500 and the other values are always the lowest ones, reinforcing that the idea of designing an

algorithm that can be simultaneously suited for low and high FEmax scenarios is difficult to accomplish.

Dominance resistance. As previously discussed, the most difficult issue related to the increase in the

number of objectives is dominance resistance, and hence we make two observations about it. First,
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Figure 4.5: Parallel coordinate plot depicting the dominance resistance affects problems in different rates.
Each point is the aggregation of all IrpdH results, grouped by indicator, M , and problem.

we see a clear trend in results confirming that the performance of MOEAs in general decreases as

the number of objectives grow. In fact, the performance of algorithms on ten-objective problems

is poor for many problems, showing that MOEAs still need major theoretical improvements to deal

with dominance resistance. We remark, though, that not all algorithms are affected by dominance

resistance in the same degree, as we will detail later. The second observation concerns the effect of

particular problem characteristics on how much increases the difficulty of benchmark problems. In

particular, the increase in M affects the performance of the algorithms in very different ways, as we

illustrate in Figure 4.5. Each point is the aggregation (mean) of all IrpdH results, grouped by the

number of objectives M , and the MOP. For brevity, the plots depicting the remaining indicators are

provided as supplementary material [33]. Clearly, some problems such as DTLZ7 are far more affected

by dominance resistance than others. In addition, for particular problems and indicators one can see

the opposite effect. For instance, IrpdH results for DTLZ4 get better as M increases, and the same

happens when we observe both IrpdH and I1
ε+ results for WFG2. Further analysis on this topic is given

in Section 4.5.

Performance metric correlations. As previously discussed, each performance metric values specific

characteristics that approximation fronts should present. For this reason, we make a few comments

on the correlations between these metrics on selected scenarios. First, it is common to see different

rankings for the same MOEAs depending on the metric given whatever the scenario one considers.

To illustrate this, we use as case study the WFG8 function with M = 2 and nvar = 30. Boxplots for

the IrpdH and IIGD for SMS and IBEA are given in Figure 4.6 (left), the IrpdH values (top) indicating

better performance for IBEA while IIGD (bottom) indicates the opposite. As previously discussed, on

concave problems the IrpdH values spread over distribution, while the IIGD does the opposite. This is

confirmed by the empirical attainment function (EAF) difference plot where IBEA finds more solutions

on the extremes of the objective space, although it is clear that the differences between these fronts

are subtle.

Despite the difference in rankings depending on the metric considered, the best and worst performing

MOEAs are clearly defined on most scenarios when M ∈ {2, 3, 5}. It is only when M = 10 that one

sees major variations in the rankings of the algorithms from metric to metric. In particular, we noticed

that MOEAs tend to display better performance according to the metric used for their assessment on

its original proposal time. To corroborate our conclusions, Table 4.6 shows Spearman’s correlation
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Figure 4.6: Contradictions between IrpdH and IIGD considering SMS and IBEA performances on function

WFG8 (M = 2, nvar = 30, FEmax = 10 000). On the left, boxplots depicting IrpdH (top) and IIGD (bottom)
performances. On the right, EAF difference plot of the fronts produced by IBEA (left box) and SMS (right
box).

Table 4.6: Spearman’s correlation coefficient depicting MOEA ranking similarities for pairs of perfor-
mance metrics.

M 2 3 5 10

IrpdH × I1
ε+ 0.95220 0.94121 0.89684 0.78321

IrpdH × IIGD 0.86382 0.86173 0.76142 0.56793

I1
ε+ × IIGD 0.90959 0.93441 0.81812 0.73905

coefficients between the rankings assigned by the performance metrics to MOEAs on different M

scenarios. The first column, for instance, gives correlation coefficients between different metrics on

scenarios with M = 2. As one can see, correlation levels are considerably high for M ∈ {2, 3},
decreasing significantly for M = 10. In particular, we remark that the lowest correlation observed

concerns the IrpdH and IIGD indicators when M = 10. These indicators have recently been shown to

consistently disagree on concave problems [129], and, as we will discuss in Section 4.5, this is the type

of problem that becomes considerably harder with increasing M .

4.4 MOEA assessment

We now move on to discuss of the performance of the MOEAs across all scenarios considered. We

group our discussion for scenarios where M ∈ {2, 3, 5} since the previously discussed agreement between

performance metrics allow us to clearly identify the best-performing MOEAs on these scenarios, and

we discuss results for M = 10 separately. Moreover, we show only results for FEmax = 10 000 for

brevity, although we remark that our conclusions are general enough to account for all scenarios. The

complete set of results as well as a more detailed analysis concerning each specific scenario are provided

in Appendix B.
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4.4.1 Performance patterns when M ∈ {2, 3, 5}
A rank sum analysis is given in Table 4.7 from which we extract a few performance patterns in this

section. From the rank sum analysis, we can cluster algorithms into four different groups according

to their performance on scenarios with M ∈ {2, 3, 5}. In general, SMS and IBEA are the algorithms

that present the best and most robust performance, regardless of the experimental factors considered.

The second group is formed exclusively by MOGA, which consistently, as expected, presents the worst

performance among all MOEAs. The remaining two groups comprise algorithms whose performance

is sensitive to specific problem characteristics and to the FE budget they are given, but also to the

number of objectives considered. The first of these two groups contains NSGA-II, SPEA2, and HypE,

which present ranks that worsen with increasing number of objectives. By contrast, the rank sums of

MOEA/D, NSGA-III, and MO-CMA-ES are particularly high for low number of objectives, but improve

for more conflicting objectives.

The performance patterns observed raise some interesting insights. First and most important, IBEA

and SMS prove that it is possible to design MOEAs that can be applied for a wide range of number of

objectives, even if their effectiveness lowers in face of dominance resistance. Differently, the algorithms

we consider that are designed specifically with many-objective problems in mind, HypE and NSGA-III

are unable to meet this challenge. This is also the case for MOEA/D and MO-CMA-ES, which have

been applied to different M values in the literature, but rank worse than many algorithms when M = 2.

The second insight we observe is that algorithms are nearly perfectly clustered according to their under-

lying design paradigm, with only few exceptions. We now summarize the most important conclusions

concerning each paradigm below.

Indicator-based. The performance displayed by SMS and IBEA is remarkable with both algorithms

being particularly robust to all the experimental factors considered in this work. More importantly,

these MOEAs rank best not only for the indicator that is used to drive their search but for essentially

all indicators. By contrast, the performance of HypE is considerably dependent on the scenario

under analysis. In fact, the only scenarios where HypE ranks immediately after SMS and IBEA

are the ones with M = 3. In particular, we remark that the explanation for the low performance

of HypE in M = 5 scenarios is not straightforward. At a first glance, one may consider that

the IhH estimation for M > 3 is to blame, so we have tested this algorithm with (i) different

numbers of samples to increase the estimation accuracy, and (ii) the exact computation instead of

the estimation on a restricted setup. The changes in the number of samples produced no significant

differences in the rank sums. In additon, although the exact computation improved the performance

curves of HypE by a large margin on most problems considered, it was still not enough for it to

match the remaining indicator-based algorithms. More importantly, during those experiments we

noticed that, for many of the problems considered, the performance of HypE worsened over time

after an initial improving stage. Although no theoretical proof concerning this issue has been

published so far, these results make us believe that the IhH metric lacks Pareto-compliance.

Dominance-based. The performance trends of these algorithms are highly dependent on M . When

M ≤ 3, the performance differences between dominance- and indicator-based algorithms are rela-

tively small. In fact, SPEA2 is sometimes able to outrank IBEA as a consequence of the previously

reported particularly good performance of SPEA2 on the WFG benchmark [42]. When M = 5,

the gaps to the indicator-based become larger, but overall the performance of these MOEAs is still

reasonable. The poor performance observed occasionally is related to the specific problem charac-

teristics we will later discuss. The only dominance-based MOEA that presents poor performance

all along is MOGA. In part, this is explained by its lack of elitism, although exploratory experi-

ments we conducted have shown that a simple elitist MOGA is unable to match the performance

of NSGA-II, for instance.
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Decomposition-based. The two decomposition-based algorithms we assess in this work are outranked

by most MOEAs on M = 2, including many indicator-based and dominance-based algorithms. On

M ∈ {3, 5}, the rankings of MOEA/D improve considerably, sometimes to the point of being con-

sidered the best MOEA under specific scenarios. By contrast, the overall performance of NSGA-III

differs very little from the performance of NSGA-II. In fact, we conduct a set of additional ex-

periments specifically targeted at comparing these two algorithms. Moreover, we include in that

comparison the default versions of both algorithms to test whether tuning could be a factor. Rank

sums of IrpdH results for selected scenarios are given in Table 4.8 to illustrate our conclusions. First,

in low M scenarios like M = 2 both NSGA-II versions, i.e. default and tuned, outrank the NSGA-III

versions. On scenarios with M = 5, we see that the tuned versions become equivalent, although

the default version of NSGA-III outranks the default version of NSGA-II. This result reinforces

the importance of proper parameter tuning when specific experimental scenarios are used. Finally,

we remark that these conclusions are consistent with a recent discussion about the effectiveness of

NSGA-III for a low number of objectives w.r.t. NSGA-II conducted by their authors [207].

MO-CMA-ES. Concerning its parameters, we remark that irace always selected the exclusive hypervol-

ume contribution as quality metric. In addition, except for cc, c
′
cov, u

′
cov, irace often selected learning

parameter settings different from the default ones. Performance-wise, we observe two main factors

that affect this algorithm. First, the performance displayed by MO-CMA-ES in FEmax = 2 500

scenarios is much worse than that of the remaining MOEAs. Requiring a large number of function

evaluations is a known behavior of the original CMA-ES algorithm, and as we show it can also

be observed by its multi-objective version. When given enough FEs to run, however, we see that

the performance of MO-CMA-ES improves with the increase in M , as previously mentioned. In

fact, for M = 5 scenarios it is often similar to that of SMS and IBEA, although its performance

on WFG1 is always particularly poor.

4.4.2 Ten-objective results

The large increase in the number of objectives to ten leads to many important changes we individually

address in this section. First, we notice that MOEA results show that much improvement regarding

both the number of nondominated solutions and the spread of the Pareto fronts could still be achieved,

especially for concave WFG problems. In fact, IrpdH values for most problems and MOEAs were in the

[−2, 0] range and, in many problems, MOEAs were able to find over 30 000 additional nondominated

solutions. For this reason, the analysis we conduct in this section considers metrics computed using

reference sets assembled from an aggregation of the approximation fronts produced by all MOEAs and

the Pareto fronts we had initally assembled as described in Section 4.2.

A second important observation concerns the previously discussed disparity between the rankings

given in Table 4.7, i.e., the different performance some MOEAs present depending on the metric con-

sidered. As previously discussed, these results are largely due to the contradictions the performance

metrics present, leading to rather different results between IrpdH and IIGD, particularly on the concave

WFG problems. These results reinforce two known premises in multi-objective optimization that are

typically overlooked in the literature. First, there is a strong indication that devising a single MOEA to

optimize a diverse set of metrics is a challenging task on many-objective scenarios. Second, using a single

performance metric to evaluate MOEAs during their design as traditionally done is an approach prone

to major drawbacks, as an algorithm might excel in some characteristics while compromising others.

Concerning the overall performances observed, a few MOEAs are able to stand out. First, the only

algorithm to be well-ranked according to all metrics is IBEA, being considered the best both according

to IrpdH and IIGD. By contrast, MOEA/D and NSGA-III also rank first for particular metrics, but not

as well according to others. Finally, SMS and MO-CMA-ES display very good performance according to

IrpdH and I1
ε+ in many problems, but rank worse according to IIGD.
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Table 4.7: Rank sum difference (in parenthesis) between the given MOEA and the lowest ranked (FEmax = 10 000). MOEAs highlighted in boldface
present rank sums statistically significantly lower than the others according to Friedman’s nonparametrical test.

M = 2

I rpdH IBEA SMS (113) SPEA2 (1149) NSGA-II (1846) MOEA/D (2819) HypE (3593) CMA (3731) NSGA-III (4017) MOGA (6682)

Iε+ SMS IBEA (425) SPEA2 (894) NSGA-II (1993) MOEA/D (3091) HypE (3401) CMA (3749) NSGA-III (4231) MOGA (6740)

IIGD SMS SPEA2 (717) IBEA (1386) HypE (2391) NSGA-II (2787) MOEA/D (4235) NSGA-III (5076) CMA (5247) MOGA (7302)

M = 3

I rpdH SMS IBEA (556) MOEA/D (1805) HypE (2290) SPEA2 (2302) CMA (3616) NSGA-II (4378) NSGA-III (4627) MOGA (7029)

Iε+ SMS IBEA (494) SPEA2 (2516) CMA (2968) HypE (3132) MOEA/D (3552) NSGA-III (4253) NSGA-II (4885) MOGA (7323)

IIGD IBEA SMS (710) SPEA2 (885) MOEA/D (1375) HypE (2932) NSGA-II (3452) NSGA-III (4148) CMA (4198) MOGA (6797)

M = 5

I rpdH SMS MOEA/D (1471) IBEA (1535) SPEA2 (3295) CMA (3374) NSGA-III (3897) NSGA-II (4130) HypE (5811) MOGA (7562)

Iε+ SMS IBEA (1713) MOEA/D (2569) CMA (2588) NSGA-II (4086) NSGA-III (4124) SPEA2 (4701) HypE (5907) MOGA (7664)

IIGD SMS IBEA (1936) MOEA/D (1945) NSGA-II (2555) CMA (2594) SPEA2 (3720) HypE (5171) NSGA-III (5204) MOGA (7446)

M = 10

I rpdH IBEA SMS (222) CMA (1116) NSGA-III (2326) SPEA2 (2532) NSGA-II (3241) HypE (4846) MOEA/D (5114) MOGA (6919)

Iε+ MOEA/D IBEA (1258) SMS (2794) CMA (3250) NSGA-III (3347) NSGA-II (4045) SPEA2 (4562) HypE (5214) MOGA (6922)

IIGD NSGA-III IBEA (36) SPEA2 (646) NSGA-II (1776) SMS (1828) CMA (1987) HypE (2557) MOEA/D (4424) MOGA (5151)



93

Table 4.8: Rank sum difference (in parenthesis) between tuned and default versions of NSGA-II and
NSGA-III.

M FEmax = 10 000

2 NSGA-IIt NSGA-IId (1270) NSGA-IIIt (1424) NSGA-IIId (2257)

5 NSGA-IIt NSGA-IIIt (11) NSGA-IIId (901) NSGA-IId (1212)

We now proceed to a more detailed analysis of these algorithms.

IBEA. The overall performance of IBEA is remarkable given that it is robust w.r.t. all experimental

factors and to the different performance metrics as well. In fact, the only exceptions to the good

performance of IBEA concern (i) the concave WFG problems and (ii) the DTLZ6 and DTLZ7

problems. However, most MOEAs perform poorly on these problems, indicating that this is a

general MOEA limitation rather than specific IBEA issues. Two other facts are worth mentioning.

First, the performance of IBEA is consistently good across the different FEmax values considered,

but its top-performance is observed when FEmax = 40 000, where it is considered the best MOEA

according to all metrics. Second, the computational complexity of this algorithm is low even for

M = 10 scenarios, making it suited for any kind of application.

MOEA/D. Results for the different metrics show that MOEA/D becomes the best ranked algorithm

according to I1
ε+, but at the same time it becomes the second worst MOEA according to IrpdH and

IIGD. Given the characteristics of the metrics, these results mean that MOEA/D is unable to main-

tain a good search diversity. Although a more in-depth analysis targeting the complex algorithmic

design of MOEA/D would be required to fully understand how this algorithm can modify its be-

havior to such extent, we conducted some exploratory investigation targeting a particular feature.

Traditionally, this algorithm has been used coupling DE with polynomial mutation, a choice that

is never used in other DE-based MOEAs. For fairness, in this work polynomial mutation is not

used when the tuner selects DE as underlying EA. To evaluate the effects of this choice, we have

tuned an alternative version of MOEA/D allowing polynomial mutation to be used alongside DE.

However, our experiments on the M = 10 and FEmax = 40 000 scenario have shown that adding

polynomial mutation to MOEA/D rather reinforces the improved convergence at the cost of more

diversity loss.

A second hypothesis we tested is whether MOEA/D would still suffer from such diversity issues

when tuned for a different metric. Since tuning for the IrpdH is infeasible, we have tuned MOEA/D

for the IIGD metric, again on the M = 10 and FEmax = 40 000 scenario. Results show that tuning

for the IIGD has improved search diversity, reflected by the much better IIGD rank sums (fourth

best ranked MOEA). Concerning the remaining metrics, however, the rankings from MOEA/D

do not improve for the IrpdH , and worsen considerably for I1
ε+. In fact, MOEA/D becomes one

of the worst algorithms according to the latter. Concerning IrpdH , we notice that no rank sum

improvements can be noticed due to the contradictions between it and IIGD. More precisely, on

the problems where both metrics agree we are able to see IrpdH performance improvements, but

these gains are counterbalanced by performance losses on the remaining problems, and hence rank

sums remain roughly unaltered.

NSGA-III. The performance of NSGA-III varies greatly depending on the given metric. Its best per-

formance is observed according to IIGD, largely due to the results on the concave WFG functions.

In particular, NSGA-III is the algorithm less affected by the large number of objectives in this type

of problem. We then focus our analysis on comparing NSGA-III and the two algorithms that share

similarities with it, NSGA-II and MOEA/D. Concerning the former, the performance of NSGA-III
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Table 4.9: Summarized results from a problem-wise comparison between MO-CMA-ES and SMS (M =
10, FEmax = 10 000). Problem and MOEA names have been shortened for brevity.

D5 D6 W1 W2 W4 W6 W7 W8

IrpdH SMS SMS CMA = SMS CMA = SMS
I1
ε+ = SMS = SMS SMS CMA = CMA

IIGD = CMA CMA = CMA CMA CMA =

represents a significant improvement, demonstrating that the diversity measure of this algorithm is

much more suited for scenarios with many objectives than the crowding distance used by NSGA-II.

Regarding MOEA/D, NSGA-III does not face the same issue of having a single solution replicated

for multiple weights, and hence diversity is not an issue to this algorithm.

SMS. Differently from scenarios with less objectives, SMS is not able to maintain its top-ranking

performance with ten objectives, although it still gets the best results according to IrpdH when

FEmax = 2 500. Since this scenario is the one that presents the largest cutoff time and SMS is

known to get ever more computationally expensive with the increase in M , the most logical expla-

nation is that SMS cannot be explored to its full potential in these scenarios. To corroborate this

conclusion, we compute the average number of function evaluations used by SMS across different

M scenarios. While for all scenarios with 2, 3, and 5 objectives SMS is able to fully use the budget

on function evaluations, on the 10 objective problems this is not anymore the case due to the max-

imum time limits we have imposed. In particular, it uses on average 2478.82, 8858.32, and 32723.9

function evaluations in the scenarios with FEmax equal to 2500, 10000, and 40000, respectively.

Furthermore, we highlight that the population size selected by irace also decreases on the scenarios

where the drops are observed, confirming that the algorithm tries to adapt towards using the given

FE budget, but SMS is just not the best choice for the given setup.

MO-CMA-ES. The performance of MO-CMA-ES on M = 10 is particularly similar to that of SMS,

indicating that the exclusive hypervolume contribution as a search-guiding metric is determinant

for the performance of these two algorithms. For this reason, we focus the analysis of MO-CMA-ES

on a direct comparison to SMS.

Overall, SMS gets better results than MO-CMA-ES when the testing benchmark is considered as

a whole and FEmax = 10 000, but the opposite happens according to IIGD when FEmax = 40 000.

A problem-wise analysis reveals that for particular problems some metrics can favor MO-CMA-ES

over SMS. For brevity, rank sums for all scenarios are provided as supplementary material [33].

Summarized results for FEmax = 10 000 are given in Table 4.9. In particular, an equality sign

means no statistical difference could be found between rank sums for the given problem according

to the given metric. The first observation we make concerns the previously reported agreements

and contradictions between the performance metrics. On the convex problems (WFG1–2), the

I1
ε+ disagrees with the remaining indicators, whereas on the concave problems it is the IIGD that

disagrees with the others. In fact, the only exceptions to these patterns are WFG6, where all

metrics agree that MO-CMA-ES outperforms SMS, and WFG8, where metrics disagree.

The second observation we make refers to the IIGD. For this indicator, MO-CMA-ES often ranks

better or at least equivalently to SMS on most WFG problems and on DTLZ5–6. These results are

largely due to the robustness w.r.t. the different numbers of variables presented by MO-CMA-ES

when evaluated by IIGD. By contrast, we notice that MO-CMA-ES faces considerable difficulties

with the particular geometry of WFG3, and on the deceptive WFG problems (WFG5 and WFG9).

In addition to the algorithms we individually addressed above, an important observation that yet
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Figure 4.7: IIGD performances of MOEAs given 10 000 FEs on selected problems with 40 variables and
M = 2 to M = 10 objectives. Top: WFG1 having convex Pareto-optimal fronts; bottom: WFG4 having
concave Pareto-optimal fronts.

had not been reported in the literature is the relatively good ranking of NSGA-II and SPEA2 in all ten-

objective scenarios. Two precautions taken in this work are directly related to this good performance.

First, both algorithms benefit directly from proper tuning, as the numerical parameters selected by irace

differ considerably from the default adopted in the literature. Second, SPEA2 uses DE as underlying

algorithm when given 10 000 and 40 000 FEs, reinforcing the need to consider different underlying EA

algorithms when proposing a MOEA.

4.5 Problem feature analysis

The analysis conducted in the previous section raised some interesting observations we make in this

section. In particular, the expected dominance resistance increase was seen in different rates according

to the features presented by particular problems. We then address the most important features we have

identified.

Geometry of Pareto-optimal fronts. On scenarios with M ∈ {2, 3}, having concave Pareto-optimal

fronts does not affect the overall difficulty of the problems. However, we notice that all these

problems become considerably harder as the number of objectives is increased, regardless of the

other characteristics they present. By contrast, several MOEAs face difficulties on problems with

convex Pareto-optimal fronts such as WFG1–3 already in scenarios with M ∈ {2, 3}, but the

difficulty level of these problems is not significantly increased by the addition of more conflicting

objectives. As a result, when M ∈ {5, 10} MOEAs face less difficulty on convex problems than on

the concave ones. We illustrate this with the IIGD boxplots shown on Figure 4.7. The IGD values

of MOEAs given FEmax = 40 000 on the (convex) WFG1 problem with nvar = 40 and increasing

M are shown on the top, and the IGD values on the (concave) WFG4 problem with the same

experimental factors are given at the bottom.

Local Pareto-optimal fronts. MOEAs face considerable difficulties on problems that present local

Pareto-optimal fronts, namely DTLZ1, DTLZ3, and DTLZ6. In fact, DTLZ1 and DTLZ3 pose

such a challenge when used with the number of variables we consider in this work that none of the

MOEAs are able to find solutions within the bounds we set, no matter the number of objectives.

To illustrate the challenge faced by some MOEAs on problems that present this characteristic,

we run NSGA-II on several modified versions of the DTLZ6 problem, which we parameterize to

regulate the number of local Pareto-optimal fronts. In the original DTLZ6 formulation, an auxiliary
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Figure 4.8: IrpdH performance of NSGA-II (tuned for M = 3, FEmax = 10 000) on different versions of the
DTLZ6 problem (M = 3, nvar = 50).

function g(x) =
∑
x∈xM xρ with ρ = 0.1 is used to introduce local Pareto-optimal fronts. The plot

given in Figure 4.8 shows the development of the average IrpdH value across the 50 000 FEs for

NSGA-II (tuned for M = 3 and FEmax = 10 000) over 25 runs on the DTLZ6 problem (nvar = 50,

ρ ∈ {0.01, 0.1, 1.0, 5.0}). In particular, the smaller ρ values lead to larger numbers of local fronts.

As it can be seen, the shift in the curves follows the increase in ρ, confirming that for M = 3 the

difficulty of this problem is strongly dependent on the number of local Pareto-optimal fronts.

Density bias. Two of the benchmark problems considered (DTLZ4 and WFG1) present bias, i.e., a shift

in the density of the objective space meant to test whether MOEAs can maintain a well-spread

search. When M ∈ {2, 3}, these problems pose difficulties for many MOEAs due to this feature.

To illustrate the effect of bias, Figure 4.9 shows the development of the average IrpdH across the

number of function evaluations for SPEA2 (tuned for M = 3 and FEmax = 10 000) across 25 runs

on the DTLZ4 problem with M = 3, nvar = 50, and several different bias levels. More precisely, we

test different values for the α parameter that regulates the level of bias presented by this problem,

which was originally set to 100. We remark that larger α values lead to a stronger bias in the

search space, and we test variants of this problem with α ∈ {1, 10, 100, 1000}. As one may see, the

performance of some MOEAs such as SPEA2 is greatly affected by the bias level chosen. However,

the difficulty introduced by bias to both DTLZ4 and WFG1 does not increase with the addition

of more objectives. In fact, the results for DTLZ4 are in general better for larger M values, as we

had previously discussed.

As discussed in this section, understanding problem characteristics and their role on dominance resis-

tance is critical for designing better-performing MOEAs. It is likely that tuning MOEAs in dependence

of specific problem features would improve overall results, but the precise problem features are often

not known in advance when dealing with real-world problems. We also remark that we refrain from

further investigation on other problem features for two main reasons. First, fiddling with features from

the DTLZ benchmark problems is not a trivial task, since this benchmark was not proposed for this

goal. Second, we believe that the more rigorous approach to this investigation would be to create a set

of feature-targeted benchmark problems, in order for one to have enough statistical evidence to draw

definite conclusions, which we intend to do in future work.
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Figure 4.9: IrpdH performance of SPEA2 (tuned for M = 3, FEmax = 10 000) on different versions of the
DTLZ4 problem (M = 3, nvar = 50).

4.6 Conclusions

In this chapter, we have conducted a comprehensive performance assessment of multi-objective evolution-

ary algorithms (MOEAs) both on multi- and many-objective optimization problems (MOPs and MaOPs,

respectively). Our work goes beyond other comparisons given the number of algorithms and the number

of different experimental factors we consider, namely: (i) different problem benchmarks, (ii) numbers of

objectives, (iii) stopping criteria, (iv) numbers of variables, and (v) performance metrics. More impor-

tantly, this is the first work to clearly establish a separation between high-level multi-objective (MO)

algorithmic components and the underlying evolutionary algorithm (EA) with which they are coupled, in-

creasing both the fairness and extent of the comparison. In addition, we have used a rigorously designed

experimental setup, taking precautions such as tuning numerical parameters and producing/refining

high-quality reference fronts. Given the large amount of data produced in this work, we have focused

the discussion on the most important insights we could observe. To cite a few, we have empirically

demonstrated the importance of designing MOEAs with a set of diverse performance metrics in mind, as

well as selecting at design time which underlying EA suits the given MO components best. In addition,

we have shown that designing a single algorithm to simultaneously optimize problems with different

numbers of objectives and different stopping criteria is a challenging task. Nonetheless, SMS shows the

best and most robust performance across a number of objectives M ∈ {2, 3, 5}. By its turn, IBEA is the

most robust algorithm concerning the full range of objectives we tested, even if SMS performs better for

a significant number of problems.

In addition to all the insights discussed in this chapter, the extensive experimental campaign con-

ducted in this work serves as a first step towards machine learning approaches that can further empower

MOEA researchers. As previously discussed, all the data produced in this work is provided both as a

detailed supplementary material analysis as well as raw data that can be used for mining by interested

researchers. Our hope is that this initiative stirs a collective research effort from the MOEA community

towards further analysis that can help us both better understand correlations between problem features

and algorithmic component effectiveness, as well as devise prediction tools that can be used to improve

MOEA performance on unseen real-world problems. Moreover, in the next chapter we further explore

the knowledge obtained from this work in order to automatically generate state-of-the-art AutoMOEAs

for multi-objective continuous optimization.





CHAPTER 5

Designing and understanding the state-of-the-art

In the context of many-objective optimization, the small performance improvements from more recent

MOEAs over existing ones observed in the previous chapter can be explained by many different factors.

A critical one concerns the difficulty of analyzing the vast literature on MOEAs, to understand which

existing algorithmic components are effective and how to combine them. In particular, the number of

different algorithm proposals is too large for researchers to properly assess their (dis)advantages in a

practical way, a fact reinforced by the few experimental analyses available. More importantly, MOEAs

are in general proposed as monolithic blocks, assuming that their components are equally effective and

need to be jointly used. The assessment of MOEAs, however, seldom investigates how these individual

components interact, or if other components proposed for existing MOEAs could provide more perfor-

mance benefits to an algorithm than some of the ones being proposed. This is further evidenced by

the number of MOEA frameworks currently available that consider algorithms from a monolithic view,

rather than from a composable perspective [38, 39, 120].

In Chapter 3, we have proposed a component-wise template from which a researcher can easily in-

stantiate several existing MOEAs, but also create novel MOEAs by freely combining the algorithmic

components available in a repository. Clearly, the number of possible combinations of algorithmic com-

ponents is even larger than the number of existing MOEAs, a fact that would reinforce the practicality

issue already faced by researchers. However, we have also demonstrated that it is possible to use this

component-wise template to apply an automatic algorithm design methodology that has been proven

successful in other optimization fields [70, 133, 157]. In fact, results demonstrated similar effectiveness

also for the application to MOEAs, with the AutoMOEAs created in Chapter 3 consistently outperform-

ing the MOEAs from where the framework components had been gathered, both on continuous and

combinatorial optimization problems.

Notwithstanding the very good results from our initial feasibility study, we strongly believe that this

methodology can still be pushed further. More specifically, MOEAs proposed for the field of multi-

objective continuous optimization are generally compared to a handful of other MOEAs believed to be

high-performing. This way, the initial selection of MOEAs used to assemble our framework had to rely

on the trends observed in the literature, rather than on sound, large-scale experimental assessments

identifying a state-of-the-art in this field. In the analysis conducted in the previous chapter, for instance,

we have seen that using a different underlying operator more suited to the context of continuous opti-
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mization can significantly boost the performance of MOEAs. In addition, we have noticed that some

recently proposed MOEAs do not present an empirical performance matching what their proposers had

expected. In a large part, this is explained by the contradictions between performance metrics, which

become further evidenced in the context of many-objective optimization.

In this chapter, we push the automatic MOEA design to further improve the state-of-the-art identi-

fied in the previous chapter. In particular, we believe that our proposed methodology has the potential

to devise MOEAs with state-of-the-art performance for given application domains, as long as properly

enriched with components that are reportedly effective for those domains. The primary goal of this

chapter is, hence, to automatically devise state-of-the-art MOEAs for multi- and many-objective contin-

uous optimization. Given the insights obtained from the assessment conducted in the previous chapter,

we see that this is a challenging task for two main reasons. First, continuous optimization is the main

application domain for MOEAs, having been studied for nearly three decades. Second, the inherent

challenges from many-objective optimization are still open issues that the MOEA community has not

been able to properly solve.

To accomplish this goal, we extend our AutoMOEA template in a number of directions. First, we

integrate a further level of composability that allows us to separate between the multi-objective related

aspects of the search, and the underlying evolutionary algorithm adopted, like we proposed in Chapter 4.

Effectively, this composability refinement greatly expands the design space provided by our framework,

as any existing MOEA can be coupled with the most relevant EAs from the literature. Second, we extend

our template to comprehend decomposition-based algorithms [59, 100, 124, 228, 230], in addition to the

originally included dominance- [60, 234] and indicator-based [13, 19, 232] ones. Concretely, we imple-

ment components from relevant decomposition-based MOEAs, such as MOPSO [124] and NSGA-III [59],

allowing the free hybridization between all three design paradigms considered. In fact, this is the first

work to consider such possibility, and it is one of the major contributions of our study. Third, we extend

the repository of available algorithmic components to include one of the most relevant archive trunca-

tion techniques found in the literature, namely the adaptive grid originally proposed for PAES [137].

Moreover, our modeling of this truncation procedure allows it to be used as a component of preference

relations, being reusable for other selection procedures such as mating and environmental selection.

We empirically demonstrate the effectiveness of the AutoMOEA+ algorithms produced in this chapter

by comparing them to the results of the investigation on the state-the-of-art in MOEAs for continuous

optimization, conducted in Chapter 4. Overall, the AutoMOEA+ algorithms are able to consistently

outperform the 15 MOEAs used for that investigation. More importantly, the designs of the AutoMOEA+

algorithms vary considerably according to the experimental scenario given, i.e., the number of objectives

of the problems and the function evaluation (FE) budget provided to the algorithms. In addition, all

novel components implemented in this chapter are selected by irace, and in many cases in ways that

are very different from what human designers would tend to do. These results further evidence the

need for flexible approaches that can be explored in a systematic, automated, and effective way, as we

propose in this chapter. On a couple scenarios, though, the challenge posed by performance metric

contradictions lead irace to select designs that are high-performing according to some metrics, but not

according to others. To overcome this issue, we test alternative metrics to guide the automatic design

process, and demonstrate that a multi-objective formulation of the tuning problem can be instrumental

for the effectiveness of the selected designs.

Besides designing state-of-the-art MOEAs, a secondary goal of this chapter is to help improve the

pace with which novel better-performing MOEAs are proposed. Our template-based automatic design

methodology is certainly a means for this purpose, and we make it available for researchers and prac-

titioners in general. Another step in this direction is the complementary investigation we conduct,

deconstructing the AutoMOEA+ algorithms generated in this chapter to help understand why their de-

signs are effective. Concretely, we select a subset of experimental scenarios and ablate [77] between the

AutoMOEA+ algorithms and existing MOEAs. Our primary goal with these analyses is to understand
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which algorithmic components from the AutoMOEA+ design contribute the most to its effectiveness, and

whether such components could help improve other existing algorithms. Results show that some existing

state-of-the-art algorithms can be improved by changing few components. In addition, we identify a

number of alternative designs for each experimental scenario considered that are statistically equivalent

to the AutoMOEA+ designed in this chapter. Finally, we also ablate between AutoMOEA+ algorithms to

understand the interactions between experimental factors and components, an investigation that pro-

duces several relevant insights. Among the most interesting, we observe the existence of design space

false plateaus, meaning that an algorithmic component can be considered indifferent by a given metric

but improve/worsen performance according to another. More importantly, we empirically observe the

benefits of the multi-objective tuning formulation, which is considerably robust w.r.t. these plateaus.

The main contributions of this chapter can be summarized as follows:

1. An augmented template for instantiating MOEAs that comprehends the most relevant underlying

EAs, and design paradigms, namely dominance-, indicator-, and decomposition-based.

2. An empirical demonstration that state-of-the-art MOEAs can be automatically designed for multi-

and many-objective optimization on several experimental scenarios, and that these designs combine

elements from different design paradigms.

3. An iterative design-space analysis that helps understand the contribution of the individual com-

ponents used by the automatically designed MOEAs, as well as interactions between experimental

factors and the performance of these components.

The remainder of this chapter is organized as follows. In Section 5.1, we review the original AutoMOEA

template and detail how we augment it in this chapter. In Section 5.2, we automatically design a set

of MOEAs that display state-of-the-art performance. Next, Section 5.3 details the ablation analysis we

conduct, and the most relevant insights are discussed in detail. Finally, we conclude and discuss future

work in Section 5.4.

5.1 An augmented MOEA template

In this chapter, we augment our previously proposed AutoMOEA template in several directions. The

first concerns the possibility of considering decomposition-based algorithmic components such as the

ones proposed for MOPSO [124] and NSGA-III [59]. More importantly, our modeling of these compo-

nents allow designers to combine, in a single algorithm, components originally proposed for dominance-,

indicator-, and decomposition-based MOEAs. The second improvement over the original template con-

cerns adopting the separation between multi-objective related components and the underlying EAs used,

as proposed in Chapter 4. Concretely, our template allows the same set of MO components to be coupled

with different EAs by simply changing the value of categorical parameters. By doing so, we increase

the representativeness of the AutoMOEA template, since one can now instantiate many MOEAs that are

based on differential evolution [1, 2, 143, 166, 201, 219], for instance. Finally, we also include in our

framework one of the most relevant archive truncation approaches, originally proposed for PAES [137].

Next, we first review our original proposal, and then describe how we implement these improvements in

more detail. We remark that, rather than requiring major structural changes to the existing template,

the improvements we propose in this chapter benefit from its originally high flexibility, as we later discuss.

5.1.1 Original template

The main components of the original AutoMOEA template proposed in Chapter 3 can be briefly summa-

rized as follows:
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Preference is a composite component that encapsulates a sequence of three atomic components used

in the following order. The first, SetPart, partitions solutions into dominance equivalent. The second

component, Refinement, ranks solutions within each partition, in general by means of quality indicators.

Finally, component Diversity is used to keep the population well-spread across the objective space. A

Preference component can also contain less than three atomic components since SetPart, Refinement, and

Diversity can be set to none.

BuildMatingPool uses traditional Selection operators to assemble a mating pool. In the case of tourna-

ments, solutions are compared based on a preference relation PreferenceMat.

Replacement and ReplacementExt components respectively define environmental selection and external

archive truncation (if an archive is used). Both Replacement components ensure elitism, and com-

prise two other components: a preference relation (PreferenceRep and PreferenceExt, respectively), used

to compare solutions, and Removal, a policy that determines the frequency with which Preference is

computed.

Initialization and Variation encapsulate problem-specific components, respectively how to generate an

initial population and the variation operators used to produce novel solutions.

5.1.2 Deconstructing decomposition

Decomposition [59, 100, 124, 228, 230] is a search paradigm originally considered by the decision making

community and adapted for MOEA research already in its earliest years. The basic principle behind this

paradigm is to decompose the original MOP into subproblems and then optimize them in parallel. In

particular, each subproblem is a single-objective projection of the original MOP, obtained by the different

methods discussed in Section 2.1. A deconstructive analysis of the decomposition-based MOEA literature

reveals that most proposals can be classified as Refinement components. Specifically, most decomposition-

based algorithms are able to simultaneously evaluate convergence and diversity, with the latter being

ensured by the existence of multiple subproblems and the former by optimizing each subproblem. More

importantly, decomposition approaches are able to distinguish between dominance-equivalent solutions,

the baseline definition for our Refinement components. One exception to this pattern is NSGA-III [59],

an algorithm that uses decomposition solely for diversity purposes. In particular, the convergence of

NSGA-III is ensured by the same SetPart component as used by NSGA-II [60].

In this version of our template, we select two components to represent decomposition-based MOEAs.

The first one is aliased weighted ranking, originally proposed for MOPSO [124], which is provided as an

option for component Refinement. The second is the diversity approach proposed for NSGA-III, referred

to as referece lines and provided as an option for component Diversity. We detail both components below:

Weighted ranking. Given a set of weights Λ, solutions are ranked according to their performance

on the subproblems defined by each λ ∈ Λ. Overall, the quality of a solution equals its aggregated

performance considering the ranks from each subproblem. In particular, several different functions

to aggregate the performance on the subproblems can be used, and in this chapter we adopt the

algebraic sum. Effectively, this refinement method corresponds to the rank sum analysis typically

done in statistics, with individuals as treatments and subproblems as blocks.

Reference lines. This diversity approach uses reference lines to keep the population spread. Concretely,

each weight vector λ ∈ Λ represents a reference point, and the line intersecting this point and the origin

of the axes is its associated reference line. In a three-step approach, the procedure first computes the

distances between solutions and reference lines, and associates each solution with its nearest reference

line. Next, the algorithm computes niche counts for each reference line considering only solutions
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Table 5.1: Novel atomic components implemented in this chapter for the AutoMOEA template.

Component Domain

Quality
{

weighted ranking∗

Diversity

{
adaptive grid∗

reference lines∗

Component Domain

Variation∗ { GA, DE }
OnlineReplacement∗ { none, Pareto, WeakPareto }

Λdist
∗ { uniform, dichotomic, two-layer }

Table 5.2: Novel composite components implemented in this chapter for the AutoMOEA template.

Component Parameters

UnderlyingEA∗ 〈BuildMatingPool, Variation 〉

(*) Novel component implemented in this chapter.

already selected for the next iteration by previous preference components1. Effectively, this step

identifies which reference lines are already represented in the next iteration. Finally, the procedure

iteratively selects the reference line with lowest niche count and adds one of its associated solutions

to the next generation population.

A second feature concerning decomposition-based MOEAs that is as important as the components

we model above are the cardinality and distribution of the weight set Λ used by these approaches.

Concerning cardinality, a numerical parameter Λr is used to set an upper bound Λr ·µ to the cardinality of

Λ, where µ is the population size. However, the actual number of weights generated by a distribution may

exceed this upper bound, in which case exceeding weights are discarded at random. In this chapter, we

implement as baseline option the uniform distribution traditionally used in the literature [53]. However,

for specific scenarios some alternative distribution approaches have been proposed and may be more

suited depending on the given application. These alternatives are summarized in Table 5.1, and comprise

(i) the dichotomic approach proposed by Aneja and Nair [7] for bi-objective scenarios, and (ii) the two

layer approach proposed for many-objective scenarios by the authors of NSGA-III. In particular, this

latter approach uses two numerical parameters H1 and H2 to determine how many weights will be

generated using a uniform distribution in the outer and inner layers, respectively. In this chapter, we

propose an automatic way of setting these parameters depending on the search focus a designer wants

to use, as follows:

Peripheral focus favors the outer layer. More precisely, the algorithm sets H1 to the maximum value

feasible so that there exists an H2 value for which |Λ| ≤ Λr · µ.

Central focus favors the inner layer, and is the opposite of peripheral focus. In more detail, the algorithm

sets H2 to the maximum value feasible so that there exists an H1 value for which |Λ| ≤ Λr · µ.

Balanced focus favors neither layer. Concretely, H1 and H2 are set to their maximum feasible values

so that |Λ| ≤ Λr · µ. If, however, it is still possible to increase either H1 or H2, that parameter is

increased to prevent wasting weights.

5.1.3 Underlying EAs

The literature on the application of different underlying EAs to the context of multi-objective opti-

mization is rather restricted, as most of the studies on MOEAs have concentrated on devising MO

1For instance, in the case of dominance depth used as SetPart by NSGA-III, the solutions from the lowest depth fronts
that fit in the next population.



104

components. In this chapter, we extend our template to encompass the possibility of freely combining

MO components and different underlying EAs. In particular, we consider the two most relevant EAs used

for continuous optimization, namely genetic algorithms (GAs, [96]) and differential evolution (DE, [193]).

We model the underlying EA as a composite component UnderlyingEA, which comprises composite com-

ponents BuildMatingPool and Variation (see Table 5.2). In particular, we do so as EAs differ not only as to

the operators used for variation, but also on how to select individuals to undergo variation. Below we

further describe how different EAs are modeled.

Genetic algorithms are the default option in the original AutoMOEA template, so they are instantiated

in a straightforward way. Specifically, a mating pool is built as described by component BuildMatingPool.

Variation comprises the sequential application of crossover and mutation operators, represented by

option GA variation (see Table 5.1). Domain-specific operators are used as in the literature, in this

case the SBX crossover and the polynomial mutation operators.

Differential evolution proposals for multi-objective optimization traditionally adopt the DE/rand/1

scheme [1, 2, 143, 166, 193, 201, 219]. To instantiate this option, one only needs to configure component

BuildMatingPool to use random selection and component Variation to DE variation. In more detail,

differential mutation and binomial crossover are applied, and vectors are selected at random. Besides

the traditional DE/rand/1 scheme, we also propose a preference-based selection scheme, which can be

understood as an adaptation of the DE/target-to-best/1 scheme [193]. Concretely, we allow designers

to use any of the Selection options available in the template for selecting vectors to be used by DE,

coupled with a PreferenceMat component. Effectively, such a scheme differs from the default used by

multi-objective DE algorithms in that vectors that rank well according to PreferenceMat will more likely

be used in the variation process, either as trial or donor vectors.

Another DE-related component we implement in the AutoMOEA template has been proposed specif-

ically for multi-objective optimization and can be understood as an online replacement strat-

egy [143, 166, 201]. More precisely, when this strategy is used a newly created trial solution can

immediately replace the target vector in case a given acceptance criterion is satisfied. For instance,

the most relevant DE algorithms differ exactly by this acceptance criterion, as DEMO [201] considers

Pareto dominance and the GDE3 [143] considers weak Pareto dominance. When online replacement

is not used or when trial and target vectors are nondominated, the trial vector is added to the popula-

tion and may only be discarded at the end of the generation by the environmental selection procedure

Replacement. Available acceptance criteria are listed in Table 5.1. Finally, we remark that online

replacement cannot be used (i) when preference-based mating selection is adopted, since preferences

are only computed before mating starts, nor (ii) when steady state selection (λ = 1) is adopted, since

it becomes equivalent to the environmental replacement.

5.1.4 Archiver-specific truncation techniques

As discussed in Section 2.2.4, many different archiver truncation techniques have been proposed. In our

original framework, two of the techniques considered in the review conducted by López-Ibáñez et al.

[160] can already be instantiated: (i) the dominating archiver, the baseline archive we consider, and

(ii) the hypervolume archiver (AAs, [135]), that can be obtained if one considers a Preference component

comprising only the I1
H as refinement metric. In this chapter, we add to the AutoMOEA framework the

archive truncation method proposed by PAES [137], namely the adaptive grid approach. Specifically,

this archiver discretizes the objective space into grid cells that are dynamically computed as a function of

the extreme solutions found during the run, and of a discretizing numerical parameter that regulates the

number of divisions per objective. Solutions are compared based on the crowdedness of the grid cell to

which they belong, with less crowded regions being favored. Given its characteristics, we implement the

adaptive grid approach as a diversity component. We remark that, due to the flexibility of our template,
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Table 5.3: Experimental factors used for the design of the AutoMOEA+ algorithms.

Factor Domain

Benchmark set DTLZ1–7 ∪ WFG1–9

M {2, 3, 5}
FEmax {2 500, 10 000, 40 000}
ntesting {30, 40, 50}
nvar {20, 21, . . . , 60}

ntuning nvar \ ntesting
tmax 1h (FEmax = 2 500), 10min (otherwise)

u


[10]M , if M ∈ {2, 3}
[15]5, if M = 5

[25]10, if M = 10

Factor Domain

r α · u
α 1.1

Tuner irace [159]

Tuning budget 20 000 experiments

Tuning metric Iε+ (M = 10), IrpdH (otherwise)

Statistical test Friedman non-parametric test and post-hoc

Test metrics IrpdH , Iε+, IIGD

Test repetitions 25

it is possible to use the adaptive grid approach in different preference components, such as the one used

for mating or for the internal archive replacement. In addition, it is possible to combine an internal

archive using the adaptive grid approach of PAES with an external archive using a decomposition-based

diversity component such as the one proposed for NSGA-III. Altogether, the representativeness and

expressivity of our template is greatly improved by the changes we propose in this chapter, translating

into effective MOEAs as we discuss next.

5.2 Automatically designing effective MOEAs

The experimental investigation we describe in this section has three main goals. The first is to analyze

patterns in the structure of the automatically designed MOEAs (hereon called AutoMOEA+ algorithms)

to understand to what extent their designs match what human designers would choose as effective.

Second, we compare the structure and performance of the AutoMOEA+ algorithms with the structure

and performance from the AutoMOEAs proposed in Chapter 3. Third, we assess how the AutoMOEA+

algorithms perform compared to the state-of-the-art in MOEAs identified in Chapter 4. Finally, we

propose improved tuning approaches to design better-performing AutoMOEA+ algorithms for specific

scenarios, analyzing their structure and assessing their effectiveness. Next, we detail the experimental

setup we adopt in the rest of the section.

5.2.1 Design setup

Since we are comparing to the state-of-the-art in MOEAs previously identified in Chapter 4, we follow the

same experimental settings, briefly summarized in Table 5.3. In particular, we remark that experimental

scenarios are obtained by the combinations of M and FEmax values, and are referred to using the

〈M, FEmax〉 notation2. Since MOEAs have been tuned for each scenario, we design an AutoMOEA+ for

each scenario, totalizing 12 AutoMOEA+ algorithms. Experiments are run on a single core of Intel Xeon

E5410 CPUs @ 2.33GHz with 6MB cache size under Cluster Rocks Linux version 6.2/CentOS 6.2.

The parameter space we use for designing each AutoMOEA+ is given in Tables 3.1, 3.2, 5.2, 5.1, and 5.4.

In particular, parameters depicted in Table 5.4 under column GA are only used when GA variation is

selected, whereas parameters under column DE are used otherwise. Concerning GA variation, parameters

pc and pm ∈ [0, 1] respectively stand for the probability of applying the SBX crossover to a given pair

2For short, the FEmax value is presented in thousands of FEs. More precisely, a scenario 〈2, 2.5〉 means M = 2 and
FEmax = 2.5× 103 = 2 500.
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Table 5.4: Parameter space for tuning numerical parameters of the AutoMOEA template.

GA DE

µ = |pop| λ = |popnew| pc, pm ηc, ηm CR F

{10, 20, 1 or λr · µ [0, 1] {1, . . . , 50} [0.01, 1] [0.1, 2]
. . . , 100} λr ∈ [0.1, 2]

Condition Additional param. Domain

type (pop) = bounded µr [0.1, 2]

type (popext) = bounded Next {100, 300, 500}
mutation scheme = fixed pv [0.01, 1]

Selection = DT tourn. size {2, 4, 8}
Selection = ST γ [0.6, 0.9]

Refine = binary indicator indicator Iε+, I−H

Diversity = sharing σshare [0.1, 1]

Diversity = adaptive grid l {1, . . . , 4}
DiversityMat = kNN kmethod {default, k}

k ∈ {1, . . . , 9}
Refine = weighted ranking Λparams = 〈Λr,Λdist〉 Λr ∈ [0.5, 2]
or Diversity = axial dist.

Λdist = two-layer Λfocus


peripheral,

central,

balanced

of individuals, and the probability of applying polynomial mutation to a given individual. In addition,

these operators have associated distribution indices ηc and ηm that must also be configured. Finally,

different mutation schemes have been used in the GA literature for real-parameter optimization [58],

two of which are implemented here: (i) bitwise, which sets the mutation probability per variable pv to

1/nvar; and (ii) fixed, where pv must be configured with domain [0.01, 1]. Conversely, when DE variation

is selected, only two parameters must be set, namely CR and F, respectively representing the crossover

probability and the scaling factor of the DE operators.

5.2.2 Structural analysis

The designs of the automatically designed AutoMOEA+ algorithms are given in Table 5.53. Given the

similarities between the designs of the AutoMOEA+ algorithms devised for M ∈ {2, 3, 5} scenarios, we

first discuss this pattern, grouped by the most relevant components:

UnderlyingEA: Preference-based DE variation is always adopted. This is a remarkable fact since no work

on multi-objective differential evolution had considered an adaptation of the DE/target-to-best/1

scheme so far. Concerning numerical parameters, the ranges of CR and F vary slightly but it is clear

that lower values provide better results. Finally, the online replacement strategy is never selected

since preference-based selection is always used.

type (pop): The choice between using a regular population or a bounded internal archive greatly depends

on the experimental scenario, as shown by the nearly even division between AutoMOEA+ algorithms

3For brevity, some design choices are represented implicitly, as follows. First, if DE is used as underlying EA, its
numerical parameters are depicted under column UnderlyingEA. In addition, the DE/target-to-best/1 scheme is adopted
unless Selection = random. Second, if µr is set to a numerical value, type (pop) = bounded. Finally, λ = 1 indicates
steady-state selection.
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Table 5.5: Parameters selected by irace for the AutoMOEA+ algorithms.

BuildMatingPool Replacement ReplacementExt Numerical UnderlyingEA

Selection SetPart Refine Diversity SetPart Refine Diversity Removal Next Refine Diversity Removal µ µr λ λr CR F Online

〈2, 2.5〉 DT(8) strength Iε+ — — IhH — — 300 IhH kNN 1-shot 60 — 1 — 0.57 0.56 —

〈2, 10〉 DT(4) depth I1
H kNN DR IhH — — — — — — 100 0.44 1 — 0.39 0.49 —

〈2, 40〉 ST(0.79) — — sharing — Iε+ sharing seq. 500 IhH crowd. 1-shot 60 0.84 — 0.61 0.28 0.51 —

〈3, 2.5〉 DT(8) DR I1
H crowding rank I1

H kNN — 500 IhH ref. lines 1-shot 60 — 1 — 0.19 0.73 —

〈3, 10〉 ST(0.77) — I1
H grid(1) — I1

H grid(2) seq. 500 — grid(3) seq. 40 — — 1.64 0.28 0.44 —

〈3, 40〉 DT(2) — I1
H — — I1

H — seq. 500 — sharing seq. 90 0.76 — 0.88 0.19 0.3 —

〈5, 2.5〉 DT(4) depth w-rank crowd. rank I1
H crowd. — 300 — grid(2) 1-shot 30 — 1 — 0.37 0.65 —

〈5, 10〉 DT(4) DR w-rank grid(1) depth I1
H sharing — — — — — 70 — 1 — 0.26 0.46 —

〈5, 40〉 ST(0.82) — I1
H kNN(8) — I1

H crowd. seq. — — — — 60 — — 0.51 0.05 0.47 —

〈10, 2.5〉 random — — — — Iε+ kNN — 500 w-rank ref. lines 1-shot 50 — 1 — 0.49 0.24 —

〈10, 10〉 random — — — rank Iε+ sharing — 500 IhH ref. lines 1-shot 90 — — 0.9 — — —

〈10, 40〉 ST(0.84) count — sharing DR — ref. lines 1-shot — — — — 20 — 1 — — — —

(All AutoMOEA+ algorithms use DE as underlying EA. Λparams(DiversityExt) = 〈1.15, uniform〉 for AutoMOEA+〈3, 2.5〉,
Λparams(RefineMat) = 〈1.54, two-layer, peripheral〉 for AutoMOEA+〈5, 2.5〉, and Λparams(RefineMat) = 〈0.98, uniform〉 for AutoMOEA+〈5, 10〉.

σshare values for given AutoMOEA+ algorithms are provided as supplementary material.)
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that use each type. In particular, we notice that µ values do not depend directly of this choice, as the

range of the selected values for this parameter is considerable.

BuildMatingPool: Tournament Selection is always chosen, although much more often deterministic than

stochastic. One possible explanation is that in our template deterministic tournaments can be n-ary,

and can hence provide more convergence pressure. Concerning PreferenceMat, nearly all AutoMOEA+

algorithms use relations comprising SetPart, Refinement, and Diversity components, except when an

internal archive is used instead of a regular population. In particular, we remark that for M = 5

two AutoMOEA+ algorithms use preference relations that contain elements from both dominance- and

decomposition-based MOEAs. In addition, the adaptive grid component from PAES is used for mating

selection twice. Overall, it is difficult to find a pattern in the components that comprise the selected

preference relations, the only exception being the I1
H often used for refinement. This absence of a more

clearly defined mating preference pattern reinforces our argument for flexible approaches to MOEAs.

Replacement: In contrast to BuildMatingPool, it is far easier to find patterns in component Replacement.

We first remark the number of AutoMOEA+ algorithms that use steady-state selection combined with

a hypervolume-based Refinement. This combination was originally proposed by SMS to reduce the

overhead posed by this indicator and proves successful once again here. In addition, the overhead

posed by this indicator is further reduced by the use of a set-partitioning relation, a design choice only

disregarded when an internal archive is selected over a regular population. Concerning component

Removal, sequential replacement is adopted whenever steady-state selection is not used. Finally, the

only component for which no clear pattern can be observed is Diversity, although we remark that it is

interesting that the decomposition-based option is never selected.

ReplacementExt: Most AutoMOEA+ algorithms use a large external archive, the most notable exception

being the scenarios with M = 5. The most straightforward explanation concerns the overhead posed by

the archive, a fact reinforced by the PreferenceExt component often comprising only Diversity. Concerning

Diversity, all algorithmic options available are adopted, corroborating the need for a diverse repository

that can adapt to different scenarios. This time, however, the decomposition-based reference lines

approach is selected for scenario 〈3, 2.5〉, coupled with the IhH indicator. We remark that such a

combination of an indicator-based refinement with a decomposition-based diversity metric had never

been proposed in the literature. Finally, we remark that the IhH indicator is often selected as Refinement,

but always coupled with one-shot Removal due to its computational complexity. Moreover, whenever

PreferenceExt comprises solely a Diversity component, sequential removal is selected since the overhead

of this preference relation is minimal.

In contrast to the design patterns discussed above, the designs of the AutoMOEA+ algorithms for

scenarios with M = 10 can be summarized as follows. First, most designs are GA-based, a fact that

can be explained the by computational overhead posed by the DE-based designs previously observed. In

more detail, the DE/target-to-best/1 scheme combined with hypervolume-based refinements proved an

effective combination for other scenarios. When the number of objectives is increased to ten, however,

the I1
H poses a significant computational overhead, and hence the whole design of the AutoMOEA+ algo-

rithms changes accordingly. A second design choice that is often adopted by these algorithms concerns

decomposition-based diversity, which is used for environmental selection by AutoMOEA+〈10, 40〉 and for

archive truncation by the other scenarios. Regarding PreferenceExt, it is interesting to observe how two

components from the decomposition paradigm are selected for AutoMOEA+〈10, 2.5〉, and how quality in-

dicators and decomposition-based components are once again combined in AutoMOEA+〈10, 10〉. Finally,

the design of AutoMOEA+〈10, 40〉 is the one that differs the most from all other AutoMOEA+ designs.

Specifically, this algorithm resembles NSGA-III in its randomized mating selection, absence of refine-

ment metrics, and use of GA. However, given that no external archive is used, the population size is
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rather small for a many-objective scenario. As we will later discuss, this design suffers from the same

issues observed in MOEA/D, conducting a search that is too restricted in the objecive space and hence

can only be considered good according to the Iε+ indicator.

We next discuss the similarities and differences in the structure of AutoMOEA+ algorithms focusing

on the experimental factors that constitute scenarios:

M : besides the previously discussed differences between M = 10 and the remaining scenarios, the only

remarkable pattern in the structure of the AutoMOEA+ algorithms grouped by M concerns component

Refinement. More precisely, the IhH component is clearly a suitable component for replacement on

bi-objective scenarios. By contrast, on M ∈ {3, 5} scenarios the I1
H indicator becomes a more suitable

choice. The most likely explanation concerns the computational overhead of the IhH indicator since,

when M = 3, no Refinement component is used for the external archives except for the scenario with a

larger cutoff time. When M = 10, Iε+ becomes the standard refinement option for PreferenceRep, but

further investigation would be required to determine whether this is a consequence of changing the

tuning metric. Finally, we highlight that for M = 5 component weighted rank is the most selected

Refinement option for mating selection, and is also used by AutoMOEA+〈10, 40〉.

FEmax: concerning the effects of FEmax, the most evident insight we observe is that external archives

tend to become prohibitive when this budget is increased but the maximum runtime is kept con-

strained. This is initially observed for scenarios with M = 3, where only Diversity components are used

when FEmax ∈ {10 000, 40 000}, and made worse on scenarios with M = 5, where external archives are

not used at all. The extreme situation is observed for AutoMOEA+〈10, 40〉, where no refinement metrics

nor external archives are used. Overall, when one analyzes solely scenarios with FEmax = 2 500, it is

clear that the external archives selected for these AutoMOEA+ algorithms are far more computationally

demanding than the options selected for the remaining scenarios.

5.2.3 Comparison to the original template

To assess the improvements provided by the extensions proposed in this chapter, we compare the

AutoMOEA+ algorithms designed in this chapter to the AutoMOEAs designed in Chapter 3. In par-

ticular, those AutoMOEAs were created for scenarios with FEmax = 10 000 and M ∈ {2, 3, 5}, and for

this reason only these scenarios are considered in this comparison. In addition, those AutoMOEAs are

benchmark-specific, and hence benefit from tuning much more than the AutoMOEA+ algorithms or the

state-of-the-art MOEAs. For this reason, we disregard the conclusions that could be drawn from a com-

parison between the AutoMOEAs and the state-of-the-art. Moreover, we remark that results in favor of

the AutoMOEA+ algorithms are yet more remarkable for that matter.

Concerning the structural comparison of the two AutoMOEA sets, we group this discussion by the

most relevant components:

UnderlyingEA: As previously discussed, DE is always used in the AutoMOEA+ algorithms. This design

choice highlights the importance of providing different underlying EAs for a component-wise design.

type (pop): The bounded internal archive is selected far more often for the AutoMOEA+ algorithms than

for the original AutoMOEAs. In particular, this design choice had only been selected for a few DTLZ

scenarios and denotes that different benchmark sets may require different designs.

BuildMatingPool: Selection approaches are similar between AutoMOEA sets, since tournaments are always

used. However, the tournaments from the original AutoMOEAs are deterministic and enforce greater

convergence pressure since eight-ary tournaments are adopted. This design difference is likely ex-

plained by the different underlying EAs used. Concerning PreferenceMat, the original AutoMOEAs often

used crowding diversity, whereas the AutoMOEA+ algorithms use several different diversity metrics. In
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addition, while the I1
H was always adopted in the AutoMOEAs, we notice that AutoMOEA+〈5, 10〉 uses a

decomposition-based Refinement instead.

Replacement: Environmental selection from both AutoMOEA sets are very similar. In fact, the only

remarkable difference is that in the original AutoMOEAs niche sharing was adopted when a Diversity

component was selected, whereas in the AutoMOEA+ algorithms we see the adaptive grid component

being selected for scenario 〈3, 10〉.

ReplacementExt: The biggest difference between the two AutoMOEA sets. While AutoMOEAs always use

external archives, only AutoMOEA+〈3, 10〉 uses this design choice.

The rank sum analysis given in Table 5.6 shows that the rank sums achieved by the AutoMOEA+

algorithms is statistically significantly better than the sums achieved by the original AutoMOEAs when

M ∈ {2, 3}, whichever the metric considered. In particular, we see from Figure 5.1 that the original

AutoMOEAs are only able to improve over the AutoMOEA+ algorithms on the concave WFG problems.

When M = 3, we see a similar pattern on Figure 5.2 (left), but only for the IrpdH metric. For all other

metrics, the performance of the AutoMOEA+ algorithms is far better than that of the original AutoMOEAs.

The scenario where results differ the most is the 〈5, 10〉 scenario. In part, the lower rank sums achieved

by the AutoMOEAs are explained by the previously remarked disagreements between the performance

metrics. On the other hand, the overall good performance of the original AutoMOEAs indicate that for

larger M values the benchmark set used for tuning plays a critical role. On Figure 5.2 (right), we see that

the original AutoMOEAs outperform AutoMOEA+ on DTLZ7 and also on the concave WFG problems when

one considers the IrpdH and the IIGD metrics. Regarding the Iε+, we notice that the performance of the

AutoMOEAs is considered better than that of the AutoMOEA+, a difference explained by the disagreement

between the Iε+ and the remaining metrics on convex problems with large M values.

5.2.4 State-of-the-art comparison

A rank sum analysis depicting the comparison of the AutoMOEA+ algorithms with state-of-the-art algo-

rithms is given in Table 5.6. In particular, we first analyze results for FEmax = 10 000, and next we make

a more general analysis on other FEmax settings. In addition, Table 5.6 includes the original AutoMOEAs

but, as previously discussed, this comparison should be disregarded.

Concerning the comparison of the performances of the AutoMOEA+ algorithms with the state-of-the-

art in MOEAs for continuous optimization, we notice different results depending on the given perfor-

mance metric. Concerning the IrpdH , used for tuning, the performance of the AutoMOEA+ algorithms is

always equivalent to that of the best-performing MOEA, which varies depending on the given scenario.

Concerning the remaining metrics, the AutoMOEA+ algorithms are always statistically significant better

than the best-ranked MOEA. The only exception to this pattern is seen for the Iε+ when M = 5, where

no statistically significant difference can be observed between the AutoMOEA+ and SMS. This fact is

explained by the divergences between metrics previously reported that becomes more significant with

the increase in M . Although these divergences affect all MOEAs, the automatic design approach is far

more sensitive to this issue.

Boxplots depicting the performance of MOEAs on selected problems and different M scenarios are

given in Figures 5.1 and 5.2. In particular, we remark that the problems selected are representative of

problem subclasses, summarized as follows. DLTZ2 represents the easier functions, comprising DTLZ2,

DTLZ4, and DTLZ5, although DTLZ4 can be considered moderate for scenarios with M = 3. DTLZ6

and DTLZ7 comprise the hardest DTLZ functions, although the difficulty level of the latter is only

substantially increased as M grows. Regarding WFG functions, the non-concave WFG functions are

represented by WFG1, whereas the remaining functions are represented by WFG4. For brevity, we

remark that only nvar = 40 problems are depicted, although these are representative of other nvar sizes.
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Table 5.6: Rank sum difference (in parenthesis) between the given MOEA and the lowest ranked (FEmax = 10 000). MOEAs highlighted in boldface
present rank sums statistically significantly lower than the others according to Friedman’s nonparametrical test.

M = 2

I rpdH Auto+ IBEA (37) SMS (56) Auto (92) SPEA2 (99) NSGA-II (113) CMA (193) HypE (194) MOEA/D (196) NSGA-III (237)

Iε+ Auto+ SMS (59) IBEA (64) SPEA2 (99) NSGA-II (129) Auto (141) HypE (186) CMA (210) MOEA/D (220) NSGA-III (248)

IIGD Auto+ SMS (48) SPEA2 (75) IBEA (104) HypE (139) NSGA-II (157) Auto (160) CMA (268) NSGA-III (268) MOEA/D (277)

M = 3

I rpdH Auto+ SMS (34) IBEA (75) Auto (79) SPEA2 (143) HypE (158) MOEA/D (159) CMA (204) NSGA-II (248) NSGA-III (253)

Iε+ Auto+ SMS (70) IBEA (96) Auto (166) SPEA2 (177) CMA (208) HypE (223) MOEA/D (252) NSGA-III (267) NSGA-II (293)

IIGD Auto+ IBEA (88) SMS (118) Auto (129) SPEA2 (139) MOEA/D (187) HypE (213) NSGA-II (252) CMA (278) NSGA-III (280)

M = 5

I rpdH Auto+ SMS (3) Auto (26) MOEA/D (99) IBEA (109) CMA (165) SPEA2 (172) NSGA-II (201) NSGA-III (218) HypE (267)

Iε+ Auto Auto+ (10) SMS (31) IBEA (104) MOEA/D (138) CMA (146) NSGA-II (209) NSGA-III (231) SPEA2 (241) HypE (283)

IIGD Auto Auto+ (17) SMS (65) IBEA (146) NSGA-II (163) MOEA/D (167) CMA (177) SPEA2 (225) HypE (280) NSGA-III (300)

M = 10

I rpdH IBEA (0) SMS (13) Auto+ (39) CMA (63) SPEA2 (123) NSGA-III (124) NSGA-II (164) MOEA/D (230) HypE (234)

Iε+ MOEA/D (0) Auto+ (39) IBEA (67) SMS (148) CMA (150) NSGA-III (158) NSGA-II (176) SPEA2 (206) HypE (244)

IIGD Auto+ (0) NSGA-III (65) IBEA (67) SPEA2 (96) CMA (140) NSGA-II (140) SMS (142) HypE (173) MOEA/D (230)
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Figure 5.1: Performances of MOEAs given 10 000 FEs on selected two-objective problems with 40 vari-
ables according to the IrpdH .

Moreover, when M = 2 metrics are very consistent and so only IrpdH results are given. The full set of

results is provided as supplementary material [34].

Concerning results for M = 2, we notice that most algorithms are able to display good performance

on the DTLZ problems. The most significant difference concerns DTLZ6, where the AutoMOEA+, SMS,

and HypE perform best. Regarding the WFG problems, the performance of the AutoMOEA+ is clearly

better than the performance of the remaining state-of-the-art MOEAs. In fact, we identify that the

best performance of the AutoMOEA+ algorithms is seen for the WFG set, an observation related to the

predominance of WFG functions on the test benchmark set considered. When M = 3, we again see a

very good performance of the AutoMOEA+ algorithm. Concerning DTLZ problems, the only state-of-

the-art MOEA that displays performance equivalent to that of the AutoMOEA+ is HypE. However, when

one analyzes the WFG functions we notice that none of the state-of-the-art MOEAs is able to display

a performance as good as that of the AutoMOEA+. The only exception concerns SMS, which is able to

seldom outperform the AutoMOEA+ on non-concave functions according to IrpdH . We also remark that

the good performance of the AutoMOEA+ is even more evident for metrics for which it was not tuned.

As previously discussed, this is explained by the strong agreement between metrics on scenarios with few

objectives.

Finally, results on scenario 〈5, 10〉 are depicted in Figure 5.2 (right). On DTLZ problems, we notice

two different situations. For the problems represented by DTLZ2 and for DTLZ6, we notice that some

state-of-the-art MOEAs are able to present performance equivalent to AutoMOEA+, but according to

the IIGD the performance of the latter cannot be matched. On DTLZ7, the AutoMOEA+ performs

much worse than the remaining MOEAs. This drawback is understandable when one observes that the

automatic design methodology considers benchmarks as a whole, and specific functions may constitute

exceptions to a broader picture, as in this case. Regarding WFG problems, the improvements achieved

by AutoMOEA+ over other MOEAs is remarkable in two situations. The first concerns the IrpdH for

non-concave problems. Although the same exceptional situation is not observed for the other metrics,

AutoMOEA+ is only outperformed by SMS. The second remarkable result concerns the concave problems,

for which the performance of AutoMOEA+ is far better than that of the remaining MOEAs according to

the Iε+ and IIGD metrics. For the IrpdH , differences are not so high, but only IBEA is able to present a

nearly equivalent performance to that of the AutoMOEA+ algorithm.

We next discuss the effects of the other FEmax values:

2 500 FEs. When only a limited number of FEs is given to MOEAs, the differences between the best-

performing algorithms are reduced. In fact, in many scenarios it is not possible to identify statisti-

cal significant differences between the performances of the AutoMOEA+ algorithms, SMS, and IBEA.

Nonetheless, for M = 3 and M = 5 scenarios we observe that the IIGD performance of the AutoMOEA+

algorithms is considered statistically significantly better than that of the remaining MOEAs. Alto-

gether, these results indicate that it is possible to design more robust MOEAs w.r.t. different perfor-

mance metrics, even for scenarios where few FEs are available. However, it is clear that MOEAs still

require the development of algorithmic components that are better suited for these scenarios, as done
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Figure 5.2: Performances of MOEAs on the 〈3, 10〉 (left) and the 〈5, 10〉 (right) scenarios for selected

problems with 40 variables. From top to bottom, IrpdH , Iε+ and IIGD.

on the rich literature on this topic for single-objective EAs [136].

40 000 FEs. When a larger FE budget is considered, the best-performing MOEAs are able to solve

most problems when M = 2. Nonetheless, the rank sums analysis demonstrates that the performance

of the AutoMOEA+ is statistically significantly better than that of the state-of-the-art MOEAs for all

metrics. By contrast, when M = 3, the only algorithm to approximate the actual fronts reasonably

is the AutoMOEA+. However, when the overall benchmark is considered, no statistically significant

difference can be seen between the AutoMOEA+ and the best-performing state-of-the-art MOEAs.

Results on the M = 5 scenario differ from the remaining scenarios in that the disagreements between

performance metrics become significant. This way, the best-performing MOEAs vary depending on

the given metric. In particular, since the IrpdH and the IIGD metrics are the most contradicting

ones, the AutoMOEA+ ranks first according to the former as it was tuned for this metric, but ranks

fourth according to the latter. Finally, when M = 10 the AutoMOEA+ is unable to outperform the

best-performing MOEAs for any of the metrics. In fact, the performance of AutoMOEA+ resembles the

performance observed for MOEA/D, being competitive on Iε+ but much worse on IIGD. As previously

discussed, this is explained by the disagreement between metrics, and is an expected result given the

design of this AutoMOEA+.

5.2.5 Alternative metrics to guide design

Given the strong disagreement between performance metrics on scenarios with M = 5 and, specially,

M = 10, the good results obtained by the AutoMOEA+ algorithms for all metrics in most scenarios is

remarkable. Nonetheless, in this section we conduct further investigation to understand whether using

different metrics could affect the automatic design process. Specifically, we use alternative metrics for

designing AutoMOEA+ algorithms for the 〈5, 40〉 and 〈10, 40〉 scenarios, as we detail below. The structure

of the AutoMOEA+ algorithms designed in this section are given in Table 5.7.

〈5, 40〉: given the good performance of the AutoMOEA+ algorithms designed for scenarios with M = 10,

we test the effectiveness of adopting the Iε+ as guiding metric to design an AutoMOEA+ for this scenario.
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Table 5.7: Parameters selected by irace for the AutoMOEA+ algorithms.

BuildMatingPool Replacement ReplacementExt Numerical EA

Selection SetPart Refine Diversity SetPart Refine Removal Refine Diversity Removal µ µr λ λr CR F

〈5, 40〉 DT(2) depth I1
H kNN strength I1

H seq. Iε+ ref. lines 1-shot 80 — — 0.73 0.37 0.26

〈10, 40〉 DT(4) count Iε+ crowd. rank Iε+ 1-shot Iε+ kNN seq. 90 0.77 — 1.78 0.24 0.67

(All AutoMOEA+ algorithms use DE as underlying EA, and an external archive with Next = 500.

Λparams(DiversityExt) = 〈0.74, two-layer, balanced〉 for AutoMOEA+〈5, 40〉.)

The most significant structural changes concern (i) BuildMatingPool, which now uses deterministic

tournament and dominance depth for set-partitioning, (ii) PreferenceRep, which now includes dominance

strength for set-partitioning but does not use a diversity metric, and (iii) the use of an external

archive. In particular, adding set-partitioning relations to both PreferenceMat and PreferenceRep reduces

the computational overhead posed by the I1
H indicator, and allows this AutoMOEA+ to use an external

archive that is complementary to the remaining components. More precisely, PreferenceExt uses Iε+ for

refinement, whereas the other preference relations use the I1
H indicator.

The rank sum analysis given in Table 5.8 shows that the AutoMOEA+ algorithm designed to optimize

the Iε+ (Auto-ε) is statistically equivalent to the best-performing algorithms according to the IrpdH , but

is the only algorithm to display low rank sums also for the remaining metrics. In fact, the statistically

equivalent performance of both AutoMOEA+ algorithms according to the IrpdH is remarkable. More

importantly, results from Auto-ε evidence that the effect of the performance metric contradictions

over the automatic design methodology can be alleviated when M = 5.

〈10, 40〉: as previously discussed, the Iε+ was used for the design of the AutoMOEA+ algorithms on

scenarios with M = 10. This way, it seems hardly possible to design an effective AutoMOEA+ algorithm

according to all metrics for the 〈10, 40〉 scenario using a single metric as guide. Instead, in this section

we propose a multi-objective formulation of the tuning problem, where performance metrics represent

different, contradicting objectives to be simultaneously optimized. As tuning metric, we consider the

IH of the metric space comprising the three indicators, and we use a two-stage normalization approach

to ensure all metrics contribute equally. Concretely, we first use bounds4 for each of the metrics to

avoid strong outliers, and then normalize the metrics to the [1, 2] interval. The IH metric is computed

using point 2.2 as reference.

The structure of the AutoMOEA+ algorithm designed using the proposed multi-objective formula-

tion (hereon called Auto-IH) is given in Table 5.7. Compared to the AutoMOEA+ algorithm designed

to optimize the Iε+, we notice significant structural differences, evidenced by the use of (i) refinement

metrics for all preference relations, and (ii) a large-size external archive, and; (iii) a Replacement com-

ponent with one shot removal instead of steady-state. Altogether, one can understand these structural

changes as a trade-off between computationally demanding components, with irace favoring the com-

bination of refinement metrics and an external archive over steady-state replacement. The rank sum

analysis depicted in Table 5.8 confirms the effectiveness of this design choice, as Auto-IH is able to

rank first for all metrics considered, and is considered statistically significantly better than all other

MOEAs according to the IIGD.

5.2.6 Concluding remarks

In this section, we have demonstrated that the extended AutoMOEA template we propose in this chapter

can be used to automatically design algorithms that demonstrate state-of-the-art performance for con-

4For Iε+ and IIGD, bound is set to 100. For the IrpdH , bound is set to 1.0.
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Table 5.8: Rank sum difference (in parenthesis) between the given MOEA and the lowest
ranked (FEmax = 40 000). MOEAs highlighted in boldface present rank sums statistically significantly
lower than the others according to Friedman’s nonparametrical test. For brevity, only the seven best-
performing MOEAs from each scenario are shown.

M = 5

I rpdH Auto+ (0) SMS (1) Auto-ε (31) IBEA (58) MOEA/D (103) SPEA2 (138) CMA (140)

Iε+ Auto-ε (0) SMS (39) IBEA (44) Auto+ (61) CMA (129) MOEA/D (134) SPEA2 (202)

IIGD Auto-ε (0) IBEA (89) MOEA/D (106) SMS (113) Auto+ (142) SPEA2 (173) CMA (194)

M = 10

I rpdH Auto-IH (0) IBEA (48) SMS (104) SPEA2 (114) CMA (143) Auto+ (143) NSGA-III (164)

Iε+ Auto-IH (0) MOEA/D (40) IBEA (55) Auto+ (98) NSGA-III (149) SMS (163) NSGA-II (179)

IIGD Auto-IH (0) IBEA (67) NSGA-III (103) SPEA2 (115) NSGA-II (185) HypE (201) CMA (237)

tinuous optimization. In particular, we remark that all novel components implemented in this chapter

have been selected by the automatic configurator for an AutoMOEA+, except for the online replacement

component. Appendix C details an investigation specifically targeting the effectiveness of this compo-

nent, where we show that its use seldom provides performance gains to the MOEAs considered. Finally,

we have also demonstrated the performance improvements of the AutoMOEA+ algorithms designed in

this section over the original AutoMOEAs, further corroborating the benefits of the extensions we propose

in this chapter.

Although the automatic design methodology adopted initially considered a single guiding perfor-

mance metric, we have demonstrated that, for nearly all scenarios, the performance of the AutoMOEA+

algorithms is consistently equivalent and often superior to that of the other MOEAs. For the only sce-

narios where this was not observed, we have demonstrated that it is possible to overcome the challenge

posed by the contradicting metrics. When M = 5, using the Iε+ instead of the IrpdH was enough to

design a state-of-the-art AutoMOEA+ algorithm. By contrast, the strong contradiction between metrics

when M = 10 demanded a different approach, and we have proposed a multi-objective formulation of the

tuning problem that proved effective. In fact, the AutoMOEA+ algorithm devised using this methodology

demonstrated state-of-the-art performance for all metrics considered, being the only MOEA to do so.

Finally, we have demonstrated that many of the design choices selected for the AutoMOEA+ algorithms

differ considerably from what human designers have so far considered. More importantly, we have seen

that components from design paradigms that have so far been regarded entirely different can be coupled

to produce a high-performing MOEA design, namely the indicator- and decomposition-based paradigms.

Furthermore, we have highlighted the differences in the designs from the AutoMOEAs produced from the

original template and the AutoMOEA+ algorithms proposed in this extended version. In particular, we

have seen how components differ in function of alternative underlying EAs, sometimes in a complex way.

For instance, the need for a stronger convergence pressure from GAs demands a reduced-size population,

larger tournaments, and the use of external archives, whereas DE allows a completely opposite design.

5.3 Understanding MOEA effectiveness with ablation analysis

One of the major challenges in MOEA research is to identify effective algorithmic components and design

patterns that can help propose a novel generation of algorithms that improves over the previous one. For

instance, MOEA research experienced major breakthroughs when dominance sorting was proven effective

by several algorithms that adopted it, even if differing as to their concrete implementation. Later, elitism

was recognized as a component that could radically improve MOEA performance, and shortly after it

became default practice in MOEA design. Since those early years, many algorithmic components have
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been proven effective, but their combined used has been rather restricted. As previously discussed, the

integration between the different design paradigms is at best incipient.

In this section, we conduct an investigation to understand why the designs selected for the AutoMOEA+

algorithms introduced in the previous section are high-performing. In particular, we want to assess

the actual performance contribution of specific design choices, and whether they present interactions

that provide insights to be reused by the MOEA community in general. More importantly, since our

experimental setup considers a number of scenarios and algorithms, a broad analysis can be performed

if carefully designed. Next, we describe the analysis methodology we choose for this investigation, and

the setup we employ in this section.

5.3.1 Ablation analysis

As mentioned in Chapter 3, ablation analysis [77] is an automated methodology that can be used to assess

the contribution and interactions of individual algorithmic components, as done in the proof-of-concept

investigation on the PFSP described in Appendix A. In a nutshell, ablation is an iterative technique

that greatly resembles the path-relinking metaheuristic and that was originally proposed for the context

of automatic algorithmic configuration. Given source and target configurations, ablation searches the

intermediate configuration space that results from individual parameter changes, replacing parameter

values from the source configuration with parameter values from the target configuration. Since the

number of combinations can be too large depending on the parameter space considered, ablation re-

stricts the set of intermediate configurations tested as follows. Iteratively, a given ablation step considers

all parameters from the current incumbent configuration that differ from the target configuration, and

tests the intermediate configurations that are obtained by switching each of these parameter values. In

the first step, the incumbent solution is the source algorithm, and the intermediate configurations tested

differ from the source by exactly one parameter value. Effectively, the performance of these intermediate

configurations indicate the contribution of the individual parameter values. The intermediate configu-

ration that leads to maximal performance change is selected as the new incumbent configuration, and

the process continues until the target configuration is reached. In effect, the ablation path formed by

the intermediate configurations rank the contributions of the parameter values and help identify possible

interactions between parameters.

In the context of algorithm design, source and target algorithms are MOEA designs, and ablation

investigates the contribution of design choices rather than parameter values. For this reason, an analysis

of algorithms that are structurally different has the potential to provide a number of interesting insights.

In addition, it is possible to ablate between algorithms that have been designed for different experimental

scenarios and understand how factors interact with the performance of the individual components, or

even more complex design choices comprising a sequence of component changes.

5.3.2 Ablation setup

To ablate between two algorithms, some experimental design issues must be properly defined, as we

discuss below.

Source/target definition. In the experiments we conduct in this section we test both using AutoMOEA+

as source and target algorithm. More precisely, when an AutoMOEA+ is used as target, the best-

performing state-of-the-art MOEA is used as source, and we investigate whether algorithmic compo-

nents selected for the AutoMOEA+ can help improve the performance of the existing MOEA. Con-

versely, when an AutoMOEA+ is used as source algorithm, our goal is to identify which components

contribute the most to its effectiveness. In this case, we test IBEA and SMS as target algorithms, since

they are both high-performing and structurally different, and can hence provide a rich set of insights.
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Figure 5.3: Intermediate configurations tested for 〈2, 10〉, considering SMS as source (Step 0) and
AutoMOEA+〈2, 10〉 as target (last step) algorithms, with different intermediate design numerical param-
eter approaches. (a): numerical parameters as part of the ablation; (b) and (c): numerical parameters
from source and target designs, respectively. The solid line connects the changes that caused the largest
performance improvement. Dashed lines represent the rank sums of source and target algorithms, and
rank sum threshold for statistically significant difference w.r.t. to the best ranked design.

Finally, we also conduct investigations where both source and target are AutoMOEA+ algorithms, in

an attempt to understand how experimental factors interact with their designs.

Intermediate design numerical parameters. We test three setup alternatives: (i) using numerical pa-

rameters as part of the ablation components, or reusing numerical parameters from (ii) source or (iii)

target algorithms.

Intermediate design assessment. We adopt the same experimental setup used by in Chapter 4 and

also adopted in the previous section. Specifically, we use the same benchmark sets, statistical tests,

number of repetitions, and performance metrics. In addition, we perform ablation for all experimental

scenarios we adopt in this chapter. For brevity, we only discuss here results for FEmax = 10 000, and

we omit results from different performance metrics when they agree. The full set of results is provided

as supplementary material [34].

5.3.3 Ablation insights

Next, we describe the most relevant insights observed from the ablation analyses conducted.

Numerical parameter effects. We illustrate the IrpdH performance of the different intermediate design

numerical parameter approaches in Figure 5.3, where SMS and AutoMOEA+〈2, 10〉 are respectively used

as source and target designs, and ablation is conducted on the 〈2, 10〉 scenario. In more detail, the

ablation depicted in Fig. 5.3a considers numerical parameters as part of the ablation space. By con-

trast, Fig. 5.3b and Fig. 5.3c depict ablations where intermediate designs use the numerical parameters

from source and target algorithms, respectively. As one can see, when numerical parameters from the

source design are used (Fig. 5.3b) the intermediate designs present higher rank sums than both source

and target designs. This is true also in the case where numerical parameters are considered as part of

the ablation space (Fig. 5.3a). More generally, we have observed that intermediate designs are better-

performing when the numerical parameters from the better-performing algorithm is used (Fig. 5.3c),

whether source or target.
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Figure 5.4: Intermediate configurations tested for 〈10, 10〉, considering IBEA as source (Step 0) and
AutoMOEA+〈10, 10〉 as target (Step 4) algorithms, evaluated according to different performance metrics.

From left to right, IrpdH , Iε+, and IIGD.

●

● ●
●

20
0

30
0

40
0

50
0

Ablation: MOP

Steps

R
an

k 
su

m
s

0 1 2 3 4 5 6

● BuildMatingPool
DiversityRep
RefineRep
SetPartRep

Auto+
IBEA
type(popext)

●

● ●

●

30
0

40
0

50
0

60
0

Ablation: MOP

Steps

R
an

k 
su

m
s

0 1 2 3 4 5 6

● BuildMatingPool
DiversityRep
RefineRep
SetPartRep

Auto+
IBEA
type(popext)

Figure 5.5: Intermediate configurations for 〈3, 10〉, evaluated according to the IrpdH (left) and IIGD (right).
Source: AutoMOEA+〈3, 10〉. Target: IBEA.

Interactions between components and performance metrics. As previously discussed, the in-

crease in the number of objectives results in a stronger contradiction between performance metrics,

with MOEAs being unable to excel for all metrics at once. An important insight we have observed

reveals that these interactions can be identified in a design choice level. We illustrate this in Fig-

ure 5.4, where IBEA and AutoMOEA+〈10, 10〉 are respectively used as source and target designs, and

intermediate configurations are evaluated by the three different metrics considered in this work. At

Step 2, adopting different DE mating schemes can lead to improvements for one metric but worsen for

another. In fact, this is a recurring pattern in all ablation analyses where DE schemes are considered

as an ablation option. In general, ablations revealed that many components present interactions with

performance metrics, explaining the difficulty of having a single MOEA perform well according to

multiple metrics when the design process uses a single metric, as traditionally done in the literature.

Existence of design space (false) plateaus. Similarly to other optimization problems, we have ob-

served that the landscape of the MOEA design space presents plateaus, i.e., components that could
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be interchangeably used with minor changes to performance. However, on scenarios where metrics

disagree consistently, we have noticed the existence of false plateaus, i.e., component changes that

do not affect the performance of the intermediate designs according to a given metric but that im-

prove or worsen performance according to another metric. The first type of plateau is illustrated in

Steps 2 and 3 of Figure 5.4, where no significant rank sum changes can be observed for any met-

ric. The second type is illustrated at Step 3 of the ablation analysis depicted in Figure 5.5, where

AutoMOEA+〈3, 10〉 and IBEA are respectively used as source and target designs, and experiments are

conducted on the 〈3, 10〉 scenario. Concretely, changing the Refinement component of PreferenceRep does

not affect the IIGD performance of the intermediate design (right plot), but significantly worsens its

IrpdH performance (left plot). The existence of these false plateaus help explain the effectiveness of

the multi-objective formulation adopted for the automatic design of the AutoMOEA+ algorithm on the

〈10, 40〉 scenario.

Contribution of AutoMOEA+ components to effectiveness. Two sets of analyses with AutoMOEA+

algorithms as source designs were conducted to determine the effectiveness of individual components

from these algorithms. The first used SMS as target design and considered scenarios with M ∈ {2, 3, 5}
and FEmax = 10 000, and is depicted in Figures 5.6a–5.6b (M = 3) and 5.6c–5.6d (M ∈ {2, 5}).
Overall, results demonstrate the importance of the external archive, the DE/target-to-best/1 scheme,

and the steady-state replacement. In addition, for M = 5 we see a clear symmetry between the plots

for the IrpdH (5.6c) and IIGD (5.6d), reinforcing the interactions between algorithmic components and

performance metrics. Similar results are observed for the ablations with IBEA as target. In this

case, however, PreferenceRep components also proved instrumental when M ∈ {2, 3, 5}. By contrast,

Figure 5.7 illustrates the ablation between AutoMOEA+〈10, 10〉 and IBEA on the 〈10, 10〉 scenario.

The most important component is the external archive, which leads to improvements for all metrics.

Conversely, metrics evaluate the DE/target-to-best/1 scheme in different ways, with the IrpdH and the

Iε+ evaluating this component oppositely. In addition, the IIGD performance of intermediate designs

does not change significantly with the change in the DE mating scheme.

Improving existing MOEAs with AutoMOEA+ components. In a set of ablations using the

AutoMOEA+ algorithms as target designs, we have noticed that it is possible to improve the best-

performing existing MOEAs with small modifications to their structure. Specifically, we have identi-

fied that both SMS and IBEA can benefit from external archives and the DE/target-to-best/1 scheme

proposed in this work. However, we have noticed that these performance improvements are much more

significant for the metrics that were not used for tuning. For instance, Step 1 of Figure 5.4c shows

the benefits of using an external archive for the IIGD performance of IBEA on the 〈10, 10〉 scenario.

Concerning the metric used for tuning (Iε+), we see that only a combination of external archive and

mating selection can lead to an intermediate design with statistically significant improvements over

the original IBEA design.

5.3.4 Effects of different experimental factors

Undoubtedly, the greatest degree of freedom one could consider for ablation is obtained using AutoMOEA+

algorithms as both source and target. In addition, such analyses can also help us understand interaction

between experimental factors that comprise scenarios. Below we conduct three sets of investigations of

this type, to understand the effects of M , FEmax, and the performance metric used for tuning.

M . We conduct two sets of ablations between AutoMOEA+ algorithms designed for scenarios with differ-

ent M . The first is given in Figure 5.8, where AutoMOEA+〈5, 10〉 is used as source and AutoMOEA+〈2, 10〉

as target designs, and only IrpdH results are shown since metrics agree. Not surprisingly, the component

change that would affect the most performance would be to replace the I1
H refinement of PreferenceRep
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Figure 5.6: Intermediate configurations tested for 〈3, 10〉 (a: IrpdH ; b: IIGD) and 〈5, 10〉 (c: IrpdH ; d: IIGD). Target: SMS.
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Figure 5.7: Intermediate configurations tested for 〈10, 10〉, considering AutoMOEA+〈10, 10〉 as source (Step 0) and IBEA as target (last step) algorithms,

evaluated according to different performance metrics. From left to right, IrpdH , Iε+, and IIGD.
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Figure 5.8: Intermediate configurations of the ablation between AutoMOEA+〈5, 10〉 (source) and

AutoMOEA+〈2, 10〉 (target) according to the IrpdH on the 〈5, 10〉 scenario.

with the IhH , since for more than three objectives the sampled IhH values are not accurate enough. A

second critical component is the regular population (instead of a bounded internal archive), a fact

related to the convergence pressure level required by this scenario. It is, however, interesting to notice

that at Step 6 the intermediate design that uses a bounded internal archive can still present state-of-

the-art performance. Effectively, this design could likely be used for different M scenarios and still

improve over the state-of-the-art in MOEAs for continuous optimization.

The second ablation, given in Figure 5.9, is performed on the 〈10, 10〉 scenario and considers

AutoMOEA+〈10, 10〉 as source and AutoMOEA+〈5, 10〉 as target designs. The different metrics mostly

agree as to the importance of the components, with the computationally expensive components such

as I1
H , external archives, or steady-state replacement being poor choices. More importantly, the in-

termediate configuration obtained at Step 3 is statistically significantly better than AutoMOEA+〈10, 10〉

for all but the metric used for tuning. In fact, this is an important example of a false plateau, and

reveals that yet better performing MOEAs could likely be found for the 〈10, 10〉 scenario using our

proposed multi-objective tuning formulation.

FEmax. Figure 5.10 depicts the ablation between AutoMOEA+ algorithms designed for different FEmax

scenarios. In particular, AutoMOEA+〈5, 10〉 is used as source and Auto-ε as target designs, and plots

are given for the IrpdH (left) and IIGD (right). We remark that Iε+ results are omitted as they are

consistent with IIGD results. The first important observation regards the difference in performance

from source and target designs depending on the metric considered. More precisely, each AutoMOEA+

algorithm is considered statistically significantly better than the other according to the performance

metric used for its design. In addition, we see that AutoMOEA+〈5, 10〉 could be made better-performing

if the external archive from Auto-ε were adopted, but this design was not found by irace because it

does not lead to a statistically significant improvement according to the IrpdH . Effectively, this result

suggests that the multi-objective formulation could also be helpful in scenarios with M = 5.

A second investigation concerning the effect of FEmax is given in Figure 5.11, where AutoMOEA+〈10, 10〉

is used as source and Auto-IHas target designs, and plots are given for all metrics. Overall, we see that

the most relevant components from AutoMOEA+〈10, 10〉 depend on the performance metric considered.
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Figure 5.9: Intermediate configurations of the ablation between AutoMOEA+〈10, 10〉 (source) and

AutoMOEA+〈5, 10〉 (target) according to the IrpdH (top left), IIGD (top right), and Iε+ (bottom) on the
〈10, 10〉 scenario.

Nonetheless, an important observation concerns the performance of the intermediate design depicted at

Step 7. This design only differs from Auto-IHon the numerical parameter settings adopted, indicating

the design of this algorithm is robust w.r.t. different stopping criterion. More importantly, this result

suggest that the automatic design of anytime MOEAs is a feasible task, as long as adaptive numerical

parameters are considered.

Different tuning metrics. Figure 5.12 shows the ablation results on scenario 〈5, 40〉 using Auto-ε as

source and the AutoMOEA+〈5, 40〉 designed to optimize the IrpdH as target. In particular, IrpdH results (left)

differ from the remaining metrics (right) to a remarkable extent. Specifically, all designs are considered

statistically equivalent according to the IrpdH , but very different according to the Iε+ and IIGD. We

notice that the external archive selected for Auto-ε is instrumental for the good performance of this

algorithm according to these metrics. Effectively, these observations explain why Auto-ε is able to

match the performance of AutoMOEA+〈5, 40〉 on the IrpdH , and significantly surpass it for the remaining

metrics.

Finally, Figure 5.13 shows the ablation results on scenario 〈10, 40〉 using Auto-IHas source and the

AutoMOEA+〈10, 40〉 designed to optimize the Iε+ as target. In particular, we show rank sums computed

according to the proposed multi-objective formulation (top left) or to the individual performance

metrics (remaining plots). Clearly, the multi-objective formulation is in general able to compensate

the contradictions between metrics. In fact, the only situation where we see a big difference between

the component selected by the multi-objective formulation and the component that a given metric is
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Figure 5.10: Intermediate configurations of the ablation between AutoMOEA+〈5, 10〉 (source) and Auto-ε (target) according to the IrpdH (left) and
IIGD (right) on the 〈5, 10〉 scenario.
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Figure 5.12: Intermediate configurations of the ablation between Auto-ε (source) and

AutoMOEA+〈5, 40〉 (target), according to the IrpdH (left), and IIGD (right) on the 〈5, 40〉 scenario.

observed at Step 6, specifically for the IIGD (bottom right). However, this is a natural consequence of

having the hypervolume being computed based on raw metric values, and indicates that the absolute

differences in the IIGD values are rather small for the intermediate designs considered at Step 6.

Concerning the contribution of individual components, we notice that the Refinement component of

PreferenceRep is the most critical to performance. Conversely, using a regular population or a regular

bounded archive does not really affect the performance of Auto-IH , and neither does using steady-state

selection.

5.3.5 Concluding remarks

In this section, we have conducted an extensive experimental campaign, demonstrating that the analysis

of the component-wise performance of MOEAs can be done in an automated way. In particular, we have

coupled our proposed framework with an automated analysis methodology originally proposed for the

context of automatic algorithm configuration, which we have adapted to the context of component-wise

algorithm analysis.

Several different ablation setups were considered. The first setups confirmed the importance of proper

parameter configuration, and revealed the existence of (i) interactions between components and metrics

and of (ii) plateaus. Specifically, the existence of false plateaus is consistent with the contradicting nature

of the performance metrics generally adopted for MOEA assessment, but had never been reported on a

component-wise level. The same setups also revealed the effectiveness of the adaptation of DE/target-

to-best/1 scheme we propose in this work, and confirms that external archives can be instrumental to

the performance of the algorithms. Nonetheless, even these components present interactions with the

performance metrics, specially the DE mating selection scheme.

Another set of ablation setups focused on the effects of experimental factors over component-wise

performance. Among the most important conclusions, we have observed that a single intermediate design

is sometimes able to prove effective for different M or FEmax scenarios, even if adaptive parameter

mechanisms are required for that end. In addition, we have clearly seen the strong interaction between

metrics and components on many-objective scenarios, but have shown that this effect can be alleviated

either by using different tuning metrics or by a multi-objective formulation of the tuning problem.
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Figure 5.13: Intermediate configurations of the ablation on the 〈10, 40〉 scenario between Auto-IH (source) and AutoMOEA+〈10, 40〉 (target), evaluated

according to the proposed multi-objective tuning formulation (top left) or the individual performance metrics: IrpdH (top right), Iε+ (bottom left)
and IIGD (bottom right).
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5.4 Conclusions

Multi-objective evolutionary algorithms (MOEA) have become the method of choice for tackling multi-

objective optimization problems (MOPs), and as a result a vast literature with a number of different

algorithm proposals can be identified. In general, a set of diverse algorithms is firstly proposed and

then commonalities are identified through unified model studies. More importantly, such studies help

evaluate the actual effectiveness of individual algorithmic components, which are later used for the

proposal of a novel generation of improved MOEAs. More recently, a number of diverse proposals of

MOEAs specifically designed for tackling many-objective optimization problems (MaOPs) has arisen due

the practical limitations faced by traditional MOEAs on MaOPs. In a recent state-of-the-art evaluation,

however, he have identified that more recent algorithms have not been able to properly improve over

existing ones, and that on truly many-objective scenarios it was not possible to select a single dominating

algorithm.

In this chapter, we have extended in a number of ways a component-wise unified model (a template)

we have recently proposed, improving it to comprehend (i) different underlying evolutionary algo-

rithms (EAs), (ii) the decomposition-based MOEA design paradigm, and (iii) archive-specific bounding

techniques. More importantly, all the novel components of our template can be freely combined in

human-reasonable ways, but its major application concerns the automatic design of MOEAs for MOPs

and MaOPs. In fact, we have empirically demonstrated that the AutoMOEA+ algorithms devised in

this chapter improve over the previously identified state-of-the-art in MOEAs for continuous optimiza-

tion. Specifically, we have designed AutoMOEA+ algorithms for each of the 12 experimental scenarios

considered, and in all scenarios they have either (i) outperformed existing MOEAs for all metrics, or

(ii) matched their performance for some metrics and significantly surpassed it for the remaining ones. In

particular, the biggest challenge concerned this contradiction between metrics, which were far stronger

for M = 10 or FEmax = 40 000 scenarios. However, we have shown that the multi-objective formulation

of the tuning problem we propose and adopt is an effective approach to this issue.

In addition to proposing novel algorithms, a second goal of this chapter was to demonstrate that it

is possible to automate the component-wise analysis of MOEAs. The primary contribution of such an

approach is to explain the actual performance contributions of individual algorithmic components high-

performing MOEAs present, i.e., to deconstruct their designs. Overall, we have shown that the original

components of the framework were instrumental to its performance, specially the DE/target-to-best/1

scheme proposed in this chapter and the possibility of using different preference relations for all main

components a MOEA presents. A secondary, but also very relevant contribution was to demonstrate

interactions between components and (i) components, (ii) performance metrics, (iii) experimental factors,

and (iv) numerical parameters. In particular, we have shown the existence of design space plateaus,

some of which can trick configurators and designers into wrongly believing that a given component is not

relevant if conclusions are based on a single performance metric. More importantly, this is compelling

evidence that explains why the improvements from more recent MOEAs specifically designed for many-

objective optimization have been either small or questionable. In addition, it shows that manually

designing an effective MOEA according to a set of diverse performance metrics is a challenging task, but

that the automatic design methodology coupled with the multi-objective tuning formulation we employ

here is able meet this challenge.



CHAPTER 6

Conclusions

Multi-objective optimization is a well-established research field that models real-world problems with

high accuracy at the cost of increased computational complexity. Among the main approaches to solving

a multi-objective problem (MOP) is the use of metaheuristics, and in particular the most mature research

work from this area concerns multi-objective evolutionary algorithms (MOEAs). The research on MOEAs

has provided a number of significant advances to the MO research itself as reviewed in this thesis,

ranging from performance assessment theory and practice, to devising a number of effective and relevant

algorithmic components reused by many other multi-objective metaheuristic approaches. In this thesis,

we have pushed the research on MOEAs and on multi-objective optimization in general even further. In

particular, the existing MOEA literature consists of many different proposals that have been considered

from a high-level perspective. More precisely, few are the works in the literature that try to analyze

MOEAs from a unified model perspective, identifying elements in these proposals that are either similar

or equivalent, and taking advantage of such insights. Furthermore, proposals towards a high-level unified

model are also instrumental to several advancements, such as a better understanding of similarities and

differences between algorithms, or if an effective algorithmic component from one MOEA could benefit

a different MOEA.

In fact, given the level of the MOEA research, it is rather strange that recent efforts in this direction

cannot be identified in the literature. We conjecture two main reasons for this. Firstly, there have rarely

been a number of proposals of frameworks to make MOEAs easier for practitioners to apply when dealing

with a novel scenario. However, the main emphasis of these works has been on problem reusability, with

very little advancements towards composability. Although regretable, this fact is understandable since a

flexible MOEA framework implementation is both (i) theoretically difficult, since the literature presents

many structurally different proposals, (ii) practically challenging, as implementing systems with a high

flexibility level while maintaining efficiency is difficult to accomplish, and; (iii) potentially undesirable,

given that many algorithmic component combinations would not make sense from a human perspective.

The second fact that helps explain the lack of a unified model is the constant evolution of MOEA design,

which is never properly matched by rigorous performance assessments that could help narrow down the

algorithmic components and MOEA designs that are indeed potentially effective. In fact, the advent

of many-objective optimization has made this task even more challenging, as many novel algorithmic

concepts have been proposed over a short span of time in an effort to improve MOEA effectiveness on
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this type of problems.

The work described in this thesis overcomes these challenges by (i) proposing a novel conceptual view

of MOEAs that is at the same time flexible, efficient, and representative; (ii) empirically demonstrating

that this approach can improve over current MOEA engineering, and; (iii) producing a set of relevant

insights that further increase the effectiveness of MOEAs on its main application domains, specially on

continuous optimization. In particular, in order to accomplish the goals of this thesis we have relied on

existing research on automatic algorithm design, to which we have also significantly contributed by refin-

ing the existing approaches in this field. More precisely, this thesis is among the first works identified in

the literature to apply either automatic algorithm configuration or design to multi-objective optimization

scenarios. During the course of this work, we have identified several unresolved practical issues arising

from MO complexities that other researchers had never reported. In fact, our work is instrumental to

further encouraging the adoption of automatic engineering in multi-objective optimization, and equally

important to machine learning MOEA research. Concretely, in this thesis we have both (i) produced

and made available a large amount of experimental data, and (ii) used this data in an effective way to

produce relevant contributions, such as the automatic design of state-of-the art MOEAs for continuous

optimization.

In the remainder of this chapter, we initially individually address the main contributions of this work.

Later, we discuss the potential future works that originate from the work described in this thesis.

6.1 Contribution summary

The main contributions of this thesis are listed below:

1. A component-wise MOEA algorithmic framework based on an unified template: We

have proposed a composable MOEA framework based on a representative, flexible, and practical

template. First, the proposed framework is the most representative currently available as it encom-

passes (i) different MOEA design paradigms, namely dominance-, indicator-, and decomposition-

based; (ii) different underlying evolutionary algorithms (EAs), with the most relevant for continuous

optimization being already integrated, and; (iii) the possibility of using archives either as part of

the evolutionary process or externally, a modeling that allows us to instantiate MOEAs as different

as PAES, SPEA2, and SMS. In fact, our framework allows from a single template the instanti-

ation of more MOEAs than any other existing framework or unified model. Currently, over 15

MOEAs can be instantiated, and we believe that an even greater amount will be instantiable as

more components are implemented.

Concerning flexibility, the proposed framework is built upon the notion of composability. Specif-

ically, our approach comprises a repository of algorithmic components (building blocks) and the

template that defines how they can be combined in a flexible, yet humanly-reasonable way to pro-

duce algorithmic designs (MOEAs). In particular, the flexibility of our approach is best evidenced

by the preference relation definition we adopt, as well as by the possibility of using different pref-

erence relations on the different components of the algorithms, as in more recent MOEAs. As

this thesis has shown, this possibility can be instrumental for the performance of MOEAs in given

application scenarios.

Finally, the proposed framework is practical since instantiating MOEAs becomes as trivial as setting

a few, command-line, categorical parameters. In addition, MOEA components are implemented

with a clear separation from problem-specific components, and so reusability is maximized from

a practitioner’s perspective. More importantly, coupled with automatic algorithm engineering

approaches, the proposed framework can be used on novel and existing application domains to
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(i) conduct experimental analyses, and (i) generate high-performing algorithms or portfolios with

little human effort.

2. The empirical demonstration that automatically designed component-wise MOEAs

can outperform manually designed MOEAs: To demonstrate the potential of our proposed

framework for template-based automatic algorithm design, we have conducted an initial feasibility

investigation where we automatically designed AutoMOEAs for several relevant application prob-

lems. In particular, we have considered (i) unconstrained continuous optimization, the primary

application domain for MOEAs, and (ii) several multi-objective variants of the permutation flow-

shop problem (PFSP), one of the most relevant scheduling problems found in the combinatorial

optimization literature. Besides differing as to structural characteristics, the MOPs selected also

range as to the number of objectives (2–5) and problem variables they present, making this assess-

ment yet more representative. Results have shown that the performance of the AutoMOEAs was both

better and more robust than the MOEAs from which their components have been gathered. More

precisely, AutoMOEAs were considered statistically significantly better for all application problems

considered, with the exception of a PFSP variant known to present very particular characteristics

and for which further investigation is required.

Besides generating novel, high-performing AutoMOEAs for the traditional setups commonly adopted,

we have also assessed the robustness of the template-based automatic design approach by consid-

ering other experimental setups that are also relevant. For continuous optimization, besides the

traditional setup where a maximum number of function evaluations (FEs) is given to algorithms, we

have also considered a runtime-constrained setup to evaluate whether the computational overhead

posed by components would affect the design of the AutoMOEAs and the performance of MOEAs

in general. Furthermore, we have also considered the possibility of using different benchmark sets

for tuning and testing, to assess the generality of the AutoMOEAs. For both setups, results demon-

strated that AutoMOEAs were able to consistently outperform existing MOEAs, and an analysis of

their structure produce relevant insights, such as the high cost-benefit ratio of the Iε+ to guide the

search, as this component presents little computational overhead but provides valuable information

to MOEAs. Regarding the PFSP, we have assessed the possibility of designing a single AutoMOEA

for optimizing multiple variants and have identified a high-performing, competitive MOEA design

that outperforms existing MOEAs.

3. A comprehensive performance analysis of multi- and many-objective EAs, a concrete

first step towards defining a state-of-the-art in MOEAs for continuous optimization:

In order to demonstrate that AutoMOEAs can improve over the state-of-the-art in MOEAs for

continuous optimization, we have conducted a large-scale, comprehensive performance assessment

encompassing several groups of MOEAs, ranging from historically relevant to specifically designed

for MaOPs. More importantly, we have considered the broadest experimental setup for an assess-

ment of MOEAs to date. Concretely, we have considered over 15 MOEAs independently proposed

from the different MOEA design paradigms, always selecting high-performing algorithms from each

paradigm. In addition, in this work we have originally proposed a conceptual separation between

the multi-objective components used by MOEAs and the underlying EAs with which they are cou-

pled, effectively expanding the representativeness of the algorithms considered. Finally, we have

considered 12 experimental scenarios comprising different number of objectives (2, 3, 5, and 10)

and stopping criteria (2 500, 10 000, and 40 000 FEs). In particular, the different stopping crite-

ria we have adopted allowed us to analyze how MOEAs rank in different real-world situations,

simulating problems with computationally expensive FE computation, as well as problems where

the computational overhead posed by MOEA components matter. Even more important, we have

used automated algorithm configuration tools to jointly select the underlying EA and numerical
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parameters for the MOEAs considered, as well as a diverse set of performance metrics.

Given the broad scope of our work, a number of relevant insights were produced. Concerning ex-

perimental factors, we have (i) assessed the importance of tuning, specially when different stopping

criteria are used; (ii) analyzed how different problem characteristics respond at different rates to the

effects of dominance resistance, and (iii) empirically verified the correlations between performance

metric contradictions and the number of objectives considered. Regarding MOEA performance, we

have observed a pattern in results for scenarios with less than ten objectives, where SMS and IBEA

have consistently outperformed the other algorithms for all metrics. By contrast, the remaining

MOEAs presented great variability w.r.t. performance metrics, problem features, and number of

objectives. More importantly, for these scenarios we have seen that recently proposed MOEAs such

as HypE and NSGA-III displayed little improvement (if any) over their immediate predecessors. In

contrast to the pattern seen for scenarios with up to five objectives, ten-objective results showed

that (i) no single MOEA could be simultaneously considered best for all metrics; (ii) the com-

putational overhead posed by SMS components greatly reduced its performance, whereas IBEA

remained effective and robust, and; (iii) NSGA-III is a very competitive algorithm, but only ac-

cording to the metric it was designed for. Nonetheless, the overall performance of MOEAs on

this scenario was rather poor for concave problems, a fact that reinforced the need for alternative

approaches.

4. The automatic design of state-of-the-art multi- and many-objective EAs for continuous

optimization: We have demonstrated that the proposed framework can be used for the automatic

design of state-of-the-art MOEAs. Specifically, our investigation targeted the primary application

domain of MOEAs, namely unconstrained continuous optimization. The AutoMOEA+ algorithms

produced in this work proved robust and effective, outperforming MOEAs in many scenarios across

all metrics. More importantly, we have analyzed how the AutoMOEA+ designs differed from the

original AutoMOEAs, effectively demonstrating how the structure of high-performing application-

specific algorithms can only be achieved if enough flexibility is provided. In particular, we have

observed that all but the ten-objective AutoMOEA+ algorithms were DE-based, and that several

algorithmic components were changed to suit this different underlying EA.

Concerning the performance comparison to the state-of-the-art, the few scenarios where

AutoMOEA+ algorithms were not the top-performing algorithms for all metrics comprised large

FE budgets and number of objectives. For these scenarios we have refined the automatic design

methodology, effectively investigating the role of the performance metrics used for tuning. In the

scenario with five objectives, using the Iε+ instead of the IrpdH metric led to a novel AutoMOEA+

that proved competitive against all MOEAs for all metrics, and outperformed them according to

specific metrics. The same approach could not be adopted for the scenario with ten objectives,

since the original AutoMOEA+ had already been designed to optimize the Iε+ indicator. We have

then proposed a novel tuning metric, namely the hypervolume of the performance metrics consid-

ered. Effectively, this metric allows the configurator to search the design space in a multi-objective

way, without favoring specific performance metrics. Results showed that the novel AutoMOEA+

algorithm devised for this scenario outperformed all other algorithms for all metrics considered.

More importantly, these results reinforce the view that the performance assessment of MOEAs is

also a multi-objective problem, and that expecting a single performance metric to account for all

the desirable characteristics an approximation front should produce is possibly unfeasible.
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5. Experimental analyses concerning the effectiveness and interactions of individual

MOEA components on a set of relevant benchmark problems: We have used the proposed

framework to demonstrate that automated algorithm analysis is possible when a component-wise

template is adopted. More precisely, we have used ablation, an automated analysis technique

originally proposed for the context of automatic algorithm configuration to assess the effective-

ness of individual algorithmic components of different MOEAs. Concretely, we have deconstructed

MOEAs and AutoMOEAs into their building blocks, and tested algorithmic designs obtained from

altering individual components. Besides the natural advantage of being automated, such an anal-

ysis can also be relevant for the investigation of component interactions and how experimental

factors affect the design of MOEAs. The first investigation of this kind was conducted for the

PFSP and is provided as an appendix. In particular, we have performed an ablation analysis for

each problem variant between two high-performing MOEAs, namely IBEA and NSGA-II. In ad-

dition, we have considered different template abstractions to investigate whether the traditional

approaches of modifying component bundles led to different conclusions compared to our approach

of dealing with individual components. We have also investigated how to solve the question of

what numerical parameters to use for the intermediate designs produced during ablation. Results

have shown that the individual component approach we adopt in this work leads to more insights

and better-performing intermediate designs, and that these designs tend to be more effective when

the numerical parameters from the best-performing algorithm are reused.

The other two investigations using ablation we have conducted concern multi-objective continuous

optimization. The first, provided as an appendix, assesses the effectiveness of different DE-based

MOEAs. Specifically, our investigation demonstrated that one of the default components used

by many high-performing DE algorithms did not contribute to their effectiveness, and in some

cases rendered their performance worse. The second investigation considered the designs of the

AutoMOEA+ algorithms, to assess (i) whether their components could help improve the performance

of existing, high-performing MOEAs, (ii) the actual contribution and the possible interactions

between their components, and; (iii) the effects of different experimental factors on the performance

of components, specifically the number of objectives, the function evaluation (FE) budget MOEAs

were given, and the tuning metric used for the automatic design process. Results have shown that

the application-specific components were instrumental for the performance of the AutoMOEA+, but

that a single component could contribute positively according to a metric but negatively according

to another. Regarding component interactions, ablation identified how the use of DE changed

the need for external archives, given the possibility of using larger population sizes and selection

operators that provided less convergence pressure than when GAs were adopted. Finally, we have

empirically assessed the challenge of designing a MOEA that is robust for metrics as contradicting

as the ones typically used in multi- (and specially many-) objective optimization, a fact that makes

the performance of the AutoMOEA+ algorithm yet more remarkable.

6.2 Future work

The research described in this thesis opens a broad horizon for future work. Below, we discuss the ones

we find to be most promising ones.

1. Establishing an open source community: One appealing feature of open source software

frameworks is that many people can simultaneously collaborate to improve these frameworks.

In academia, such communities are also important to increase the flow of research works on a

given topic, maximizing its impact. For this reason, besides making the tools proposed in this

work available for the MOEA research community, we intend to create an open source community

of AutoMOEA users and collaborators that can help extend the number of available algorithmic
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components and problem-specific representations and operators. Being a practical methodology,

we also intend to narrow the gap to the real-world industrial applications that could directly benefit

from this research.

2. Feature-specific benchmark sets for performance assessment and machine learning:

Although many relevant insights were produced in this thesis, an in-depth investigation of the

correlations between problem features and individual MOEA components could not be carried out

due to the characteristics of the existing benchmark sets of multi-objective continuous problems.

In particular, these benchmark sets are limited in the number of functions they present, and even

more limited if one wants to have statistical soundness for a feature-wise analysis. A very pressing

future work topic for this thesis is to propose large feature-specific benchmark sets, with enough

problems that share a given feature, but vary as to the others can be identified. In particular,

such a benchmark set would be instrumental not only for performance assessments, but for the

application of many machine learning approaches such as algorithm selection to the research on

MOEAs.

3. Automatic MOEA selection to maximize robustness: The performance of the AutoMOEA

and AutoMOEA+ algorithms on the problems investigated in this thesis is undoubtedly remarkable,

but specific problem features have demonstrated that having a single MOEA optimize a set of

structurally different problems is not yet the best possible approach. By contrast, the research

on algorithm selection has shown that combining algorithm selection techniques with algorithm

portfolios is an effective approach to maximize robustness. Using the framework proposed in

this thesis and feature-specific benchmarks, one could automatically design MOEAs particularly

effective for each feature, and comprise a MOEA portfolio for algorithm selection.

4. Automatic MOEA design for anytime optimization: As demonstrated in the several exper-

imental analyses conducted in this thesis, MOEAs present little robustness to different stopping

criteria. In other words, one may say that MOEAs as traditionally designed present poor anytime

performance [196]. So far, the most common approaches to improving the anytime optimization

of multi-objective algorithms concerns online parameter adaptation. Another existing approach

is to model anytime optimization as a bi-objective tuning problem, where one of the objectives

refers to effectiveness (solution quality in single-objective optimization or quality indicators in

multi-objective optimization) and the other refers to efficiency (runtime or function evaluations).

Results from this approach are promising, and indicate that automatic MOEA design could produce

even better results. Specifically, while the parameter space of a traditional configuration problem is

restricted, the flexibility introduced by automatic design offers an increased potential for locating

anytime configurations (designs). Even more promising is an alternative research approach that

considers sequential algorithm portfolios. Coupled with the automatic design approach adopted

in this work, one could automatically devise a set of MOEAs to maximize time/FE windows, and

their sequential use would ensure anytime performance.

5. Designing state-of-the-art MOEAs for combinatorial optimization: The initial investiga-

tion on the feasibility of the automatic MOEA design for combinatorial optimization demonstrated

that AutoMOEAs can consistently outperform existing MOEAs on the PFSP. However, MOEAs

are not among the state-of-the-art for this problem, nor for the most relevant combinatorial opti-

mization problems from the multi-objective literature. Nonetheless, the performance of memetic

algorithms on single-objective combinatorial optimization suggests that MOEAs could become

state-of-the-art for these problems if properly designed. This belief is made stronger when one an-

alyzes the performance of population-based, multi-objective local search algorithms such as Pareto

local search. In more detail, PLS is a frequent component of the algorithms that comprise the state-

of-the-art for the most relevant combinatorial multi-objective optimization problems, such as the
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traveling salesman problem [162], the permutation flowshop problem [70], and the multi-objective

knapsack problem [164].

6.3 Concluding statement

The research on multi-objective evolutionary algorithms is central in the optimization literature, and

has produced a number of important contributions to the advancements of multi-objective metaheuris-

tics. Nonetheless, the algorithm engineering methodology adopted has gradually slowed down the pace

with which novel concrete contributions have been produced. The fact that best illustrates this issue

concerns the small, or even questionable, performance improvements from more recent algorithms over

well-established ones. In this thesis, we have taken concrete steps towards a novel MOEA algorithm en-

gineering approach. Specifically, we have proposed the currently most flexible and representative unified

model for MOEAs, and used it as the basis to implement a MOEA algorithmic framework from which

effective algorithms can be automatically designed and analyzed.

Our hope is that the arguments and results provided in this thesis stir a collective effort from the

MOEA community towards approaches that can make the most of the potential offered by the remarkable

proposals from this field. In addition, many of the future work possibilities discussed in this chapter

will require significant collaborations from research groups with different backgrounds and expertise. In

the future, we expect to see MOEA designers concerned solely with the proposal of effective algorithmic

components, knowing that the practical, experimental aspects of their research has been made easier as

a result of our work.





APPENDIX A

A proof-of-concept ablation analysis on the MO-PFSP

In this appendix, we conduct a proof-of-concept investigation to demonstrate the benefits of integrating a

component-wise view of MOEAs and iterative analysis tools such as ablation. To do so, we consider two

high-performing algorithms that share a similar structure but use rather different individual algorithmic

components, namely NSGA-II and IBEA. More precisely, both MOEAs are (i) based on GAs, (ii) use the

same preference relation for mating and environmental selection, and (iii) employ elitism. Conversely,

we remark two important differences in the components used by these algorithms, depicted in Table 3.4.

First, the preference relation used by NSGA-II is based on dominance depth and crowding distance,

whereas IBEA uses solely binary indicators to compute scores for each individual of the population.

Second, the elitism in NSGA-II follows a one-shot removal policy, whereas IBEA uses a sequential

approach. We next present the ablation analysis methodology and describe how we apply it in this

appendix.

A.1 Ablation analysis description and setup

We conduct an iterative analysis to understand which algorithmic components cause the main perfor-

mance differences between the selected MOEAs. More precisely, given a source and a target algorithms,

this analysis can be seen as a path relinking in the design space and it has been applied in the context

of automatic algorithm configuration before by Fawcett and Hoos [76]. The main motivation for this

analysis is to get insight into the contribution of specific components on algorithm performance. We do

so by generating intermediate algorithmic designs between the two algorithms. At each step, we modify

all individual algorithmic components in which the two algorithms differ, and follow the path that has

the maximum impact on performance. In this way, the analysis of the intermediate designs allows us to

understand the actual contribution of the individual components to the performance of the algorithm.

A number of important setup issues require attention when conducting an ablation analysis, which we

detail below.

Defining source and target algorithms is a task generally done in function of the performance of the

algorithms and what one expects to investigate during ablation. For instance, using the algorithm

with worse performance as source (worst-to-best approach) provides insights into which components

from the best performing algorithm could help improve the performance of poor performing designs

135
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Figure A.1: Different abstraction levels used for the ablation analyses conducted in this appendix.

and, more importantly, to what extent. By contrast, when the goal of the investigation is to

primarily identify high-performing intermediate designs that could possibly outperform the best-

performing algorithm, the best-to-worst approach is more suited, as evidenced by the literature of

path-relinking for combinatorial optimization [95]. In this appendix, we adopt the first approach

given that our goal is to better understand how components affect performance and how components

from high-performing algorithms could improve poor-performing ones. In three out of four PFSP

scenarios (Cmax-TFT, TFT-TT, and Cmax-TFT-TT) we use NSGA-II as source and IBEA as target

designs given that the former outperforms the latter1. On Cmax-TT, IBEA is used as source and

NSGA-II as target.

Component-wise template granularity refers to how the differences between source and target algo-

rithmic designs are treated. For instance, different abstraction models for the ablations conducted

in this appendix are depicted in Figure A.1. Using a little refined template granularity one could

see the differences between IBEA and NSGA-II as components BuildMatingPool and Replacement.

Refining the granularity of this model a bit further one sees that, in this particular case, changing

component BuildMatingPool equals changing component PreferenceMat, as Selection is equal for both

source and target algorithms. Conversely, Replacement can be further decomposed into two differing

components Removal and PreferenceRep. Considering preference relations, one could (i) regard that

components SetPart, Refinement, and Diversity should be changed altogether in both PreferenceMat

and PreferenceRep, as done in early MOEAs, or (ii) allow PreferenceMat and PreferenceRep to become

different as in more recent MOEAs.

In this appendix, we simultaneously consider different granularity levels to demonstrate how this

affects the ablation analysis. In particular, we consider all the components depicted in Figure A.1.

We refer to components that cannot be further decomposed as atomic, and the remaining as com-

posite. Moreover, a composite component may be discarded from the ablation options if at a given

ablation step it becomes equivalent to another composite or atomic component. For instance, if

Removal has already been used at some point in the ablation path, component Replacement becomes

equivalent to component PreferenceRep, and hence it is discarded to avoid redundancy. The same can

happen for component SetPart (or, analogously, for components Refinement or Diversity) in case the

SetPart component from either PreferenceMat or PreferenceRep has already been used in the ablation

path. Finally, the granularity refinement level also affects the convergence speed of the ablation

procedure. To prevent concealing potentially relevant insights, we move along the ablation path by

first identifying the statistically equivalent intermediate designs, and then selecting the one that

changes the least possible components in the current step2. For example, if at a given step the

1Or is equivalent to, but presents lower rank sums, as in Cmax-TFT-TT.
2In other words, we select the component that represents the most refined granularity model.
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ablation identifies the three most-promising intermediate designs are obtained by changing compo-

nents Replacement, PreferenceRep, or SetPart, we select the latter as it changes the least components

possible.

Parameter configuration is an important issue in ablation as the changes in the algorithmic designs

are likely to require different parameter settings. For instance, a component may be computation-

ally demanding and require a smaller population size than previously adopted. However, given the

number of intermediate designs produced during ablation, running a proper tuning campaign for

each design is in general prohibitive. Several approaches can be taken, such as (i) using the param-

eter settings from either source or target algorithms for all intermediate designs or (ii) re-tuning

each intermediate design with a limited tuning budget. In this work, we adopt the first approach,

and consider the numerical parameters from both source and target algorithms. In more detail, we

conduct two different ablation analyses for each scenario, the first using numerical parameters from

the source algorithm and the second using the parameters from the target algorithm. However,

we noticed that adopting numerical parameters from the target algorithm often produced more

interesting insights (and better-performing intermediate designs). For brevity, we only present the

results of this type of ablation. Nonetheless, when discussing the ablation results for a particular

scenario, we make brief remarks about the ablation differences observed between the two setups.

Intermediate design evaluation can consider the whole test set or more computationally efficient ap-

proaches such as racing. In this appendix we adopt the former approach as the runtime-constrained

setup we use for the PFSP makes this approach computationally cheap. The evaluation of an in-

termediate design is performed in the same way described in Section 3.3.

In the following section we present and discuss results for the different PFSP variants. In particular,

we remark that many similarities were observed between the ablation for the variants where IBEA was

used as target algorithm, as discussed next.

A.2 Ablation results

A general pattern can be observed when one analyzes the results from the three PFSP variants where

NSGA-II is used as source and IBEA as target, namely Cmax-TFT, TFT-TT, and Cmax-TFT-TT. First,

using parameters from IBEA provides much better performing intermediate designs. Concretely, many

intermediate designs are able to improve even over IBEA, a remarkable finding. In addition, in most

ablation steps the components that produce the most significant performance changes are atomic, pro-

viding further evidence for our claim about the importance of a refined component-wise approach to

MOEAs. Finally, for all three scenarios the best-performing intermediate design is obtained by removing

the dominance depth set-partitioning relation from the PreferenceMat component of NSGA-II. This result

is consistent with the PreferenceMat components selected by irace for the PFSP AutoMOEAs, and reveals

that a randomized mating selection approach is an effective strategy in the context of most PFSP vari-

ants. In particular, we believe this is explained by the computational overhead saved from not computing

set partitioning or refinement metrics, which results in more function evaluations in runtime-constrained

scenarios such as this one. More importantly, we observe a major performance difference between the

intermediate designs where only the SetPart component from PreferenceMat (hereon called SetPartMat) is

removed and the designs where the SetPart component from PreferenceRep (hereon called SetPartRep) is

removed. In particular, removing SetPartRep leaves the algorithm with a PreferenceRep component that

only accounts for diversity, and hence it cannot converge. However, the design choice of using an empty

SetPartMat component and a non-empty SetPartRep component as selected by ablation would not be pos-

sible if different template granularities were considered (if only SetPart was considered, for instance).
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Figure A.2: Intermediate configurations tested for Cmax-TFT, considering NSGA-II as source (step 0)
and IBEA as target (step 7) algorithms. The solid line connects the changes that caused the largest
performance improvement. Dashed lines represent the rank sums of source and target algorithms, and
the rank sum threshold for statistically significant difference w.r.t. the best ranked design.

As previously discussed, these experimental results further reinforce the need for fine-grained, flexible

component-wise MOEA frameworks. We next proceed to a variant-wise analysis.

Cmax-TFT: All intermediate configurations tested in the analysis of Cmax-TFT are shown in Fig. A.2.

The y-axis represents the rank sums. The x-axis contains the steps of the procedure. In step 0,

only the source algorithm is depicted, in this case NSGA-II. In step 1, we modify all possible

components that differ between NSGA-II and IBEA, according to the different granularity levels

previously explained, thus generating thirteen algorithms. In general, many components could be

changed leading to improvements in the performance of NSGA-II, but clearly the best-performing

intermediate design is obtained by altering component SetPartMat. As discussed above, the worst

performances in step 1 are observed when SetPartRep is changed (options SetPartRep and SetPart).

Over the following steps, it is not possible to further improve the performance of the interme-

diate design selected in step 1. On step 2, for instance, we notice the performance loss due to

removing DiversityMat (the Diversity component of PreferenceMat). Once again, this result is consistent

with the design of AutoMOEACmax-TFT, given that crowding distance was selected by irace. It

is also interesting to notice that changing DiversityRep leads to a performance similar to that of

changing DiversityMat, although changing both diversity components at once (option Diversity) leads

to a significant decrease in performance, since in this case the algorithm would be completely in-

sensitive to diversity. On step 3 it is also not possible to improve or to maintain an equivalent

performance when changing any components, but replacing DiversityRep is the change that least

affects the algorithm. At this step, we remark that this intermediate design is nearly a multi-start

approach, differing only from a complete random search by the SetPartRep component that enforces
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Figure A.3: Intermediate configurations tested for TFT-TT, considering NSGA-II as source (step 0)
and IBEA as target (step 7) algorithms. The solid line connects the changes that caused the largest
performance improvement. Dashed lines represent the rank sums of source and target algorithms.

convergence. However, the little computational overhead this intermediate design presents makes

it better performing than IBEA, which had previously been considered the best-performing tradi-

tional MOEA for this variant. Nonetheless, we see the great difference in rank sums between this

design and the more elaborate design selected at step 1.

At step 4, component RefinementRep from IBEA is added, slightly improving performance. The next

steps in the ablation procedure are only able to find worsening MOEA designs. At step 5, we notice

that changing component Removal is the modification that least worsens the performance of the

algorithm. In fact, this is an interesting example of how the benefits of the more accurate sequential

removal from IBEA can be counterbalanced by the computation overhead it poses on runtime-

constrained scenarios3. Finally, steps 6 and 7 show that using the RefinementMat approach for IBEA

or the SetPartRep approach from NSGA-II worsen results even further. Altogether, the ablation

path reveals that the best intermediate design for this variant is a combination of components

from NSGA-II and IBEA, and that many intermediate designs are able to outperform the best-

performing traditional MOEA used as target design.

TFT-TT: All intermediate configurations tested in the analysis of TFT-TT are shown in Fig. A.3, where

once again NSGA-II is used as source design (step 0) and IBEA as target design (step 7). As

previously discussed, SetPartMat is the component that leads to the most significant performance

improvement in step 1. In contrast to the Cmax-TFT, it is still possible to further improve the

configuration obtained at step 1 by replacing component Removal. In fact, for this variant the

3In particular, we remark that the sequential removal only affects SetPartRep as for dominance depth both removal
policies are equivalent.
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Figure A.4: Intermediate configurations tested for Cmax-TFT-TT, considering NSGA-II as source (step 0)
and IBEA as target (step 7) algorithms. The solid line connects the changes that caused the largest
performance improvement. Dashed lines represent the rank sums of source and target algorithms.

configuration obtained at step 2 is the best-performing of all ablation, obtaining considerably lower

rank sums than the target design. Given the design of step 1, this performance improvement is

explained by a more accurate computation of DiversityRep, that indeed compensates the additional

overhead posed by this removal policy. Next (step 3), no change to the current design leads to

performance improvements, but adding the RefinementRep component from IBEA is the change that

least affects performance. It is interesting to notice that the following modification (step 4) is

removing the DiversityRep component from the design selected at step 3. In particular, this indicates

that for this variant having crowding distance computed after using the binary epsilon indicator

does not compensate the computational overhead posed by this diversity metric.

The next steps in the ablation path comprise worsening designs, respectively obtained by removing

crowding distance from PreferenceMat (step 5), dominance depth from PreferenceRep (step 6), and

finally by adding the binary epsilon score computation for PreferenceMat (step 7). Once again, these

results demonstrate that some components from each MOEA are not effective for the TFT-TT, and

that a customized design is required to improve MOEA performance.

Cmax-TFT-TT: All intermediate configurations tested in the analysis of Cmax-TFT-TT are shown in Fig. A.4,

where once again NSGA-II is used as source design (step 0) and IBEA as target design (step 7)4.

Similar to the two previously discussed variants, SetPartMat is the component that leads to the

most significant performance improvement in step 1. Other similarities can be identified with the

4In particular, we remark that no statistically significant difference could be observed between IBEA and NSGA-II, and
hence IBEA was selected as target design due to its smaller rank sum. However, we notice from the final ablation plot that
the situation gets inverted when many similar intermediate designs are considered, with NSGA-II presenting lower rank
sum than IBEA. Nonetheless, this does not affect our analysis.
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NSGA-II as target (step 7) algorithms. The solid line connects the changes that caused the largest
performance improvement. Dashed lines represent the rank sums of source and target algorithms.

previous scenarios, in that (i) only worsening designs can be obtained after step 1, like in Cmax-TFT,

and; (ii) Removal is the component selected at step 2. At step 3, an interesting observation concerns

the very similar rank sums achieved by either removing DiversityMat or RefinementRep, although the

sequential changes of these two components lead to a significant performance loss, as observed in

step 4. At step 5, removing DiversityRep affects the performance of the algorithm very little since

RefinementRep has already been changed, a similar situation to what had been previously observed

for the TFT-TT. In this case, though, adding a RefinementMat component (step 6) does not alter the

performance of the algorithm, indicating that for this variant the binary indicator mating approach

of IBEA compensates the overhead it poses. Finally, removing SetPartRep leads back to the original

IBEA (step 7).

Cmax-TT: All intermediate configurations tested for this variant are shown in Fig. A.5, a plot that

differs considerably from the ablation plots discussed for the previous variants. This is partially

explained by the difference in source and target designs, as IBEA is used as source (step 0) and

NSGA-II is used as target (step 5). Nonetheless, this is the only variant where we observe that

changing composite components provides more significant performance differences than changing

atomic components. In addition, we are not able to identify any intermediate design that is better-

performing than the target design. More importantly, this is the only variant where adopting

numerical parameters from either source or target algorithms does not majorly influence the abla-

tion path. We then proceed to a step-wise analysis as done for the previous variants. At step 1,

the three ablation options that are considered equivalent are Replacement, PreferenceRep, and SetPart,

indicating that for this variant the environmental selection approach of IBEA can be improved in

a number different ways. As previously explained, we select SetPart as this is the composite option
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that affects the least atomic components (SetPartMat and SetPartRep). It is also interesting to observe

that, differently from the previous variants, introducing a set-partitioning relation to PreferenceMat

does not lead to performance losses (see the rank sum differences between SetPartRep and SetPart

at step 1). Next (step 2), we see that changing composite components would again lead to perfor-

mance improvements, but our selection criterion leads to changing only DiversityMat. It is important

to remark, though, that even changing composite components would not lead to an intermediate

design better-performing than the target algorithm. From this step on, the ablation path becomes

rather smooth, with selected changes of atomic components introducing small performance gains.

The first such change (step 3) concerns removing RefinementMat. In a sense, the combination of

changes selected at steps 2–3 are the analogous situation to what happened for previous variants,

where changes to a refinement and a diversity components were also conducted sequentially. At

step 4 component Removal is changed, revealing that its computational cost no longer justifies its

search benefits. Finally, at step 5 component DiversityRep is changed, once again followed by a

change in component RefinementRep. Overall, one sees that diversity and refinement components

are directly connected, and that other template granularity models proposed for ablation purposes

could try to consider them as a composite component, apart from set-partitioning.

A.3 Conclusions

Although restricted, the proof-of concept investigation conducted in this appendix demonstrated the

effectiveness of coupling a component-wise view of MOEAs, such as the one proposed in this thesis,

with iterative design-space analysis tools, such as the ablation analysis methodology. Concretely, we

have considered the four PFSP variants adopted in this thesis and two high-performing MOEAs, namely

IBEA and NSGA-II, deconstructing these algorithms into different composability models to investigate

the effectiveness and interactions of specific components. The number of insights obtained is significant,

the most important being (i) the need for algorithm customization required by an application domain

that is rather structurally different from the one for which MOEAs are generally proposed; (ii) the

effects of ablation setup factors, such as considering different granularity models and different numerical

parameters used by intermediate designs, and (iii) the contrast between algorithmic components that

interact and should be jointly modified, versus atomic components that should be individually changed

to maximize the performance of a given design. In particular, we have shown for three out of the four

variants considered in this investigation that it is possible to find algorithmic designs that improve over

traditional MOEAs by modifying even a single algorithmic component. More importantly, the major

contribution of this investigation is to demonstrate that flexible algorithmic engineering methodologies

such as the one proposed in this work have the potential to overcome the current drawbacks faced by

practitioners and researchers applying MOEAs to domains rather different from the ones they had been

designed for.



APPENDIX B

A scenario-wise analysis of MOEA performance

The performance assessment of the state-of-the-art in MOEAs conducted in Chapter 4 produced a number

of relevant insights that were discussed in that chapter. In this appendix, we conduct an in-depth analysis

of each of the experimental scenarios considered in that assessment. In more detail, we first group results

by the number of objectives, making comments on the overall results by means of a rank sum analysis.

We then proceed to boxplot analysis of all metrics grouped by the number of FEs given to MOEAs.

B.1 Two-objective problems

Results for two-objective problems are given in Table B.1. For each row, we sort algorithms according

to their rank sums when ran for the given number of FEs and assessed by the given performance metric.

Algorithms highlighted (boldface) present rank sums considered statistically significantly lower than

the others according to Friedman’s test with 99% confidence level. As we will shortly discuss in more

detail, we can observe three groups of algorithms according to their performance throughout scenarios.

In general, SMS and IBEA are the algorithms that present best performance. The second group of

algorithms comprises NSGA-II, SPEA2, HypE, MOEA/D and NSGA-III, which also present overall

good performance, but are affected by specific function characteristics or by the FE budget they are

given. Finally, the last group is formed by MO-CMA-ES and MOGA. The former often presents poor

performance, in part due to its necessity of large FE budgets; the latter is consistently worse than almost

all other MOEAs, both due to its lack of elitism and its lack of both limit-stability and limit-optimality.

We then proceed to a more detailed discussion grouping results by the number of function evaluations.

2500 FEs. Figure B.1 shows the performance of all MOEAs on selected problems when given 2 500

FEs. For brevity, we focus the discussion on the plots that better illustrate the rankings given

in Table B.1. Moreover, the benchmark problems we consider here can be grouped according to

similar characteristics or difficulty they pose for MOEAs, and the problems we depict in Figure B.1

are representative of each of these groups, as we will detail. Given the low budget of FEs, it

is not surprising that many MOEAs are unable to converge to the optimal front. In general,

MOEAs display good performance on the easiest DTLZ problems, namely DTLZ2 and DTLZ5. The

exception to this pattern are the worst-ranked MOEAs, i.e., MOGA, MO-CMA-ES, and MOEA/D.
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Figure B.1: Performances of MOEAs given 2500 FEs on selected two-objective problems with 40 vari-
ables. From top to bottom, IrpdH , Iε+ and IIGD.

In fact, we remark that for this couple problems MO-CMA-ES ranks far worse than all other

MOEAs according to all metrics. In addition, while MOEA/D performs slightly better than MOGA

according to the IrpdH and the I1
ε+, it is outperformed according to the IIGD. Another important

observation is that, except for MO-CMA-ES, the IrpdH performance of all MOEAs look fairly similar,

with differences being noticed mostly on the remaining indicators.

By contrast to the good performance displayed by nearly all MOEAs on the easiest DTLZ problems,

their performance on the hardest problems (DTLZ1, DTLZ3, and DTLZ6) is astonishingly poor.

In fact, DTLZ6 is the only problem where a few MOEAs are still able to get close to the actual

front. The number of local optimal fronts make these problems too difficult for MOEAs when

given a low budget of FEs, as we have discussed in Chapter 4. The only algorithms that are

able to display reasonable performance are the best-ranked ones, namely SMS and IBEA. The

moderately difficult DTLZ problems are the ones that present bias (DTLZ4) or a multi-modal,

disconnected front (DTLZ7). The performance patterns on each of these problems is unique, so we

address them individually. For DTLZ4, most MOEAs get trapped in biased regions of the search

space, with SMS and IBEA being the only algorithms that are able to properly approximate the

front on the majority of their runs. In addition, we remark that the performance of MO-CMA-ES

according to the distance-based metrics is very poor. Concerning DTLZ7, SMS and NSGA-III are

the algorithms that display best performance, being able to accurately approximate the Pareto

optimal front on most their runs. In addition, MOEA/D is also able to display considerably good

performance according to the IrpdH , but the distance-based metrics disagree. Again, MO-CMA-ES

presents rather poor performance, being far worse than MOGA.

As for the WFG problems, these can be grouped into two major difficulty levels. The first, and

harder, is formed by the two convex problems WFG1–2. As one can see from the plots for WFG1, no

MOEA is able to reach the actual front. Nonetheless, SMS is the best-performing algorithm for this

group of problems, followed by IBEA on WFG1 and by NSGA-III on WFG2. We also remark that

the performance metrics disagree on these convex problems: while the IrpdH and the I1
ε+ show a large

performance difference between MOEAs, the IIGD shows a much narrower scenario. Nevertheless,

all metrics agree that much improvement could be achieved by MOEAs in general. The second
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Table B.1: Sum of ranks (in parenthesis) depicting the performance of MOEAs on two-objective problems.

2500 FEs

I rpdH SMS IBEA (11) NSGA-II (456) SPEA2 (971) MOEA/D (1972) HypE (2124) NSGA-III (2396) CMA (5139) MOGA (5622)

Iε+ SMS IBEA (159) NSGA-II (1806) SPEA2 (2048) HypE (2071) NSGA-III (2446) MOEA/D (3976) CMA (5766) MOGA (6017)

IIGD SMS IBEA (490) NSGA-III (2979) SPEA2 (3025) HypE (3152) NSGA-II (3172) CMA (5494) MOEA/D (6026) MOGA (6386)

10000 FEs

I rpdH IBEA SMS (113) SPEA2 (1149) NSGA-II (1846) MOEA/D (2819) HypE (3593) CMA (3731) NSGA-III (4017) MOGA (6682)

Iε+ SMS IBEA (425) SPEA2 (894) NSGA-II (1993) MOEA/D (3091) HypE (3401) CMA (3749) NSGA-III (4231) MOGA (6740)

IIGD SMS SPEA2 (711) IBEA (1387) HypE (2382) NSGA-II (2774) MOEA/D (4237) NSGA-III (5068) CMA (5240) MOGA (7297)

40000 FEs

I rpdH SMS IBEA (453) SPEA2 (791) NSGA-II (1795) MOEA/D (2269) NSGA-III (3492) CMA (3818) HypE (3888) MOGA (6788)

Iε+ SMS SPEA2 (918) IBEA (1197) NSGA-II (2613) MOEA/D (3053) NSGA-III (3208) CMA (3393) HypE (4295) MOGA (7060)

IIGD SMS SPEA2 (731) IBEA (2404) MOEA/D (2833) NSGA-III (3039) NSGA-II (3409) HypE (4252) CMA (4446) MOGA (7364)

Table B.2: Sum of ranks (in parenthesis) depicting the performance of MOEAs on three-objective problems.

2500 FEs

I rpdH SMS IBEA (743) HypE (1516) MOEA/D (2421) SPEA2 (3464) NSGA-II (3950) NSGA-III (4068) CMA (4928) MOGA (6727)

Iε+ SMS IBEA (53) MOEA/D (2456) HypE (3102) NSGA-II (3420) NSGA-III (3580) SPEA2 (4421) CMA (5495) MOGA (6352)

IIGD IBEA MOEA/D (650) SMS (711) NSGA-II (1434) NSGA-III (2710) SPEA2 (3592) HypE (3944) CMA (4883) MOGA (5420)

10000 FEs

I rpdH SMS IBEA (556) MOEA/D (1805) HypE (2290) SPEA2 (2302) CMA (3616) NSGA-II (4378) NSGA-III (4627) MOGA (7029)

Iε+ SMS IBEA (494) SPEA2 (2516) CMA (2968) HypE (3132) MOEA/D (3552) NSGA-III (4253) NSGA-II (4885) MOGA (7323)

IIGD IBEA SMS (654) SPEA2 (1041) MOEA/D (1622) HypE (2960) NSGA-II (3640) CMA (4240) NSGA-III (4264) MOGA (6886)

40000 FEs

I rpdH SMS IBEA (715) MOEA/D (1575) SPEA2 (2715) HypE (3510) CMA (3604) NSGA-II (4269) NSGA-III (4276) MOGA (7163)

Iε+ SMS IBEA (994) CMA (2614) SPEA2 (2708) MOEA/D (3137) NSGA-II (4450) NSGA-III (4774) HypE (5284) MOGA (7610)

IIGD MOEA/D SMS (269) SPEA2 (763) IBEA (1668) NSGA-II (2780) CMA (3118) NSGA-III (3984) HypE (4815) MOGA (6686)



146

Hypervolume RPD

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●

●●●

●●●●●

●

●

●●

●●

●●

DTLZ2.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●●

DTLZ6.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●●

●●

●● ●●

●●●●

●●●●

DTLZ7.2.40

Hypervolume RPD

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●●

WFG1.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

WFG4.2.40

Hypervolume RPD

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●

●●●●●

●●●

●

●

DTLZ2.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●●●

DTLZ6.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●●●●●

●●●●

●

●●●●●

DTLZ7.2.40

Hypervolume RPD

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●●●

WFG1.2.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

WFG4.2.40

Figure B.2: Performances of MOEAs on selected two-objective problems with 40 variables. Since all
metrics agree, we display only the IrpdH . On top, performance for 10 000 FEs. On the bottom, performance
for 40 000 FEs.

group of WFG problems presents moderate difficulty for a few MOEAs. Although none is able to

reach the front with the reduced number of FEs, results presented by MOEA/D, MO-CMA-ES,

and MOGA are far worse than the ones presented by the remaining MOEAs. Once again, we

see a considerable performance difference for a few algorithms depending on the metric considered,

namely MO-CMA-ES and MOEA/D. For the IrpdH and the I1
ε+, the performance of MOEA/D is not

very worse than most MOEAs, while MO-CMA-ES is the worst-ranking algorithm. By contrast,

the IIGD indicates the opposite.

10 000 FEs. The performance of all MOEAs when given 10 000 FEs is shown on Fig. B.2 (top). In

particular, since the plots for all metrics are very similar, we only depict the results for the IrpdH .

The first important difference we notice concerns the group of easy DTLZ problems, represented

by DTLZ2. More specifically, the only MOEA that is still unable to reach the optimal front is

MOGA. Concerning the hardest problems, the performance of all MOEAs is now much better

on DTLZ6, but DTLZ1 and DTLZ3 remain unfeasible for all MOEAs. We also remark that the

performance of MO-CMA-ES and the decomposition-based algorithms are particularly affected by

the characteristics of this problem. Although the three MOEAs fail to correctly approximate the

front, NSGA-III shows much worse performance than the other two, and MOEA/D is outperformed

by a large margin by MO-CMA-ES. Finally, for the moderately difficult DTLZ problems (DTLZ4

and DTLZ7), most MOEAs are able to reach the optimal front, except for MOGA and MOEA/D

on both problems, NSGA-III on DTLZ4, and MO-CMA-ES on DTLZ7.

When we analyze the performance of the algorithms on the WFG problems, we see that all algo-

rithms benefit from the extra FEs on the hardest functions (WFG1–2). However, while SMS and

HypE are able to correctly approximate the optimal front of WFG2, no MOEA is able to so on

WFG1. Similarly to the previous scenario, SMS is the best-performing algorithm on this couple

problems. Once again, NSGA-III is outperformed by all MOEAs but MOGA, indicating that this

algorithms lacks robustness w.r.t. different problem characteristics. As for the remaining WFG

functions, the performance of all MOEAs is greatly improved, with most of the indicator- and

dominance-based algorithms performing nearly equivalently. The only exception to this pattern is

MOGA, which still performs poorly.

40 000 FEs. The substantial increase in the number of function evaluations given to MOEAs reflects in

performance improvements from most MOEAs which had failed to converge in previous scenarios, as

we can see in Fig. B.2. On the easiest DTLZ, all MOEAs but MOGA converge to the actual fronts

except for MOGA. On the moderate, MOEA/D and NSGA-III still face difficulties on DTLZ4,
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Figure B.3: Performances of MOEAs given 2 500 FEs on selected three-objective problems with 40
variables. From top to bottom, IrpdH , Iε+ and IIGD.

whereas MO-CMA-ES struggles on DTLZ7. On the hardest, no MOEA is able to reach the optimal

front for DTLZ1 and DTLZ3, indicating that these problems are probably unfeasible for MOEAs

when moderate number of variables are used. Another important observation is that even with

this increased FE budget, NSGA-III fails to accurately approximate the Pareto optimal front for

DTLZ6. The same happens to MO-CMA-ES and MOEA/D on the larger nvar values.

Concerning WFG functions, most MOEAs are able to converge to the actual fronts on the WFG3–

WFG9 functions, MOGA being the exception. The same performance improvements can be ob-

served for WFG1, with SMS, IBEA, and SPEA2 reaching excellent results. By contrast, a lot of

variability can be seen on the results of the best-performing MOEAs on WFG2 according to both

the IrpdH and the I1
ε+, HypE being the exception. Finally, the decomposition-based and MO-CMA-

ES display the worst performance on both these problems.

B.2 Three-objective problems

The rank sum analysis of the performance presented by all MOEAs on three-objective problems is given

in Table B.2. In general, the same patterns observed for the two-objective problems can be seen in this

case, i.e., algorithms can be clustered into three different groups according to performance. Once again,

SMS and IBEA comprise the best-performing group, but this time only MOGA comprises the worst-

performing one. In addition, overall performances of HypE, MOEA/D and MO-CMA-ES are greatly

improved. In the case of the MO-CMA-ES, we notice that both this algorithm and SPEA2 display much

worse performance when given a low FE budget. The opposite happens to HypE, as we discuss in more

detail next.

2 500 FEs. Figure B.3 shows the performance of all MOEAs on selected problems when given 2500

FEs. For the easiest DTLZ problems (DTLZ2 and DTLZ5), MOEAs are able to display good

performance according to the IrpdH , but the distance-based metrics favor SMS and IBEA over all

other algorithms. In particular, MO-CMA-ES is the worst-performing algorithm, although we

remark NSGA-III and performs as poorly as MOGA. The increase in the number of objectives
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Figure B.4: Performances of MOEAs given 10 000 FEs (left) and 40 000 FEs (right) on selected three-

objective problems with 40 variables. From top to bottom, IrpdH , I1
ε+, and IIGD performances.

poses more difficulty for MOEAs also for the moderate DTLZ functions (DTLZ4 and DTLZ7).

Once again, SMS and IBEA are the best-performing algorithms, although we see that, particularly

for DTLZ7, SPEA2 faces a significant challenge, whereas MO-CMA-ES appears to deal with its

characteristics quite favorably. In fact, this algorithm outperforms all other MOEAs on DTLZ7

when nvar = 30, but is not able to maintain its top-performing behavior on larger nvar values.

Concerning metrics, two very different patterns are observed. For DTLZ4, the distance-based

metrics agree and show that many MOEAs have much room to improve, whereas the IrpdH would

seem to indicate that all algorithms have successfully converged. By contrast, on DTLZ7 the

opposite happens, with IrpdH results being worse than the distance-based metrics. For the hardest

DTLZ problems, two different situations are observed. For DTLZ1 and DTLZ3, again no MOEA is

able to approximate the fronts. For DTLZ6, however, the performance of some MOEAs is actually

better than for the two-objective DTLZ6, in particular HypE, MO-CMA-ES, and SPEA2. In fact,

MO-CMA-ES is only outperformed by SMS regardless of nvar.

Concerning the WFG problems, the group comprising the hardest ones (WFG1 and WFG2) pose

a challenge similar to that observed on M = 2 scenarios. No algorithm is able present reasonable

results whatever the performance metric considered on both problems, although some algorithms

clearly perform better than others. The only exception to this pattern are SMS and IBEA, which

perform well according to all metrics on WFG2 with nvar = 30, and HypE which performs well on

the same problem but only according to the IrpdH . For the remaining WFG problems (represented

by WFG4) we notice that algorithms are unable to reach the Pareto optimal front, although

results can be considered reasonable given the limited FE budget MOEAs are allowed to use.

Nonetheless, the only algorithm that is not affected by specific problem characteristics from this

WFG subset is IBEA. In fact, the concave WFG problems are directly responsible for the good

ranking of MOEA/D according to the IIGD. In addition, the same indicator ranks SMS as the

third-best MOEA, a significant difference w.r.t. the rest of the metrics. This fact is explained by

the performance of SMS on the problems that present parameter-dependent bias, i.e., WFG7–9,

where this MOEA performs slightly worse than the top two ranked algorithms.

10 000 FEs. Boxplots depicting the performance of MOEAs when ran for 10 000 FEs are given in
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Fig. B.4 (left). We initially make a few remarks concerning performance metrics. On the DTLZ

benchmark, all metrics agree, although two important exceptions can be observed. Firstly, on

DTLZ6 the IrpdH agrees with the other metrics, although it seems to indicate a better performance

from MOEAs in general than the remaining metrics. The same pattern is observed on DTLZ7, but

now it is the IIGD that indicates a better performance than the other metrics. This also happens

on WFG2, the other disconnected problem, and on the concave WFG problems. On the remaining

convex WFG problems (WFG1 and WFG3), all metrics agree.

In general, the approximation fronts produced by MOEAs now present much better performance,

whatever the metric considered. For the easiest DTLZ problems, all MOEAs are now able to

accurately approximate the fronts. On the moderate ones, we see two different situations. On

DTLZ4, improvements are more clear on the distance-based metrics, whereas IrpdH improvements

are mostly seen when nvar = 50. Conversely, on DTLZ7 many MOEAs display major performance

gains. The most significant exception is SMS, which is not able to improve over its performance

when given FEmax = 2 500. In fact, on this particular problem SMS would outrank only MOEA/D,

which presents great variability, and MOGA. For the hardest DTLZ functions, over half of the

MOEAs is able to present reasonable results on DTLZ6, but none on DTLZ1 and DTLZ3. However,

even on DTLZ6 we remark that the MOEAs that display very good performance on smaller nvar

values face much more difficulties when this factor is increased. Concerning WFG problems, all

algorithms show performance improvements on all functions, but none is able to reach the actual

fronts. The major exception is WFG2, where some MOEAs improve their performances on extreme

nvar values at the cost of a worsened performance on nvar = 40.

40 000 FEs. The increase in the computational budget reflects in different performance improvement

rates that vary according to the group of problems considered, as shown in Fig. B.4 (right). On both

the easiest and the moderate DTLZ problems, most algorithms are able to properly approximate

the optimal fronts. The most surprising exception is SMS, which fails to converge on DTLZ7 even

when given this increased FE budget. On the hardest WFG problems, algorithms are also able to

display improved performances, although on the WFG2 problem this is only observed more clearly

on specific nvar values. Nonetheless, the only MOEAs that correctly approximate the optimal front

on this problem are SMS and IBEA, and none is able to do so on WFG1. Finally, on the concave

WFG problems all MOEAs show improvements, in particular according to the distance-based

metrics, and even more so according to the IIGD. Nonetheless, MOEAs are unable to converge to

the actual fronts, even though some algorithms get very close to that goal. Finally, we remark that

the lower relative performance of IBEA according to the IIGD is explained by the improvements

of other MOEAs on the WFG concave functions rather than by a worsening in the performance of

IBEA.

B.3 Five-objective problems

As discussed in Chapter 4, the increase in the difficulty level of the problems is much more substantial

for some problems than for others. For the DTLZ problems, we discard DTLZ1 and DTLZ3 from our

analysis, as no MOEA is able to produce reasonable results for any of them. We then re-categorize the

remaining DTLZ problems into two groups: (i) the hardest, comprising DTLZ6 and DTLZ7, which now

becomes more difficult than DTLZ6, and; (ii) the moderate, comprising DTLZ4 and the formerly easy

DTLZ2 and DTLZ5. Concerning the WFG benchmark, regardless of the number of function evaluations,

the performance metric and the MOEA considered, we notice that the convex problems, which before

posed significant difficulty for all algorithms, now become easier to solve than the concave ones. Initial

considerations aside, the rank sum analysis of the performance presented by all MOEAs on five-objective

problems is given in Table B.3. Based on their performance, MOEAs can be clustered into nearly the same
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Figure B.5: Performances of MOEAs given 2 500 FEs (left) and 10 000 FEs (right) on selected five-

objective problems with 40 variables. From top to bottom, IrpdH , Iε+ and IIGD.

three groups we highlighted for three-objective problems. The major exception concerns HypE, which

is now often the highest-ranked of the MOEAs that comprise the intermediate-performance group. In

addition, we notice that the rankings of NSGA-III vary considerably depending on the metric considered

on FEmax = 2 500 scenarios. We then proceed to a detailed discussion grouped by FE budget.

2 500 FEs. Boxplots depicting the performance of all MOEAs on three-objective problems when given

2 500 FEs are shown in Fig. B.5 (left). From the distance-related metrics one can confirm what we

previously discussed about DTLZ2, as clearly this problem becomes a challenge for most MOEAs

when a limited number of FEs is allowed. In fact, the only algorithms to converge to the actual

front of DTLZ2 are SMS and IBEA. We remark that this problem is a clear example of the

different metrics behavior, as the IrpdH would make it seem that this is an easy problem for all

MOEAs. The performance displayed by MOEAs on the other moderate DTLZ problems (DTLZ4–

5) is very similar to the one depicted for DTLZ2, confirming that the number of objectives affects

the difficulty level of the problems in different degrees. In general, the other MOEA that performs

nearly equivalently to the two best is MOEA/D. The most important exception concerns NSGA-III,

which ranks first according to the IIGD metric on DTLZ5.

For the hardest DTLZ problems (DTLZ6–7), we see two similar, yet slightly different situations. In

common, no MOEA is able to converge to the actual Pareto front with the limited number of FEs

they are given. However, while SMS, IBEA, and MO-CMA-ES are the algorithms that perform

best on DTLZ6, MOEA/D is best-performing algorithm on DTLZ7 when all metrics are considered.

Nonetheless, we make a few remarks concerning SMS. First, on DTLZ6 its performance is very

affected by the increase in nvar, and so is the performance of MO-CMA-ES. Second, while the IrpdH

indicates that the performances of SMS and MOEA/D are similar on DTLZ7, the distance-based

metrics show a big gap between these two algorithms.

Concerning the WFG benchmark, we start our analysis with the non-concave problems, i.e., the

convex WFG1–2 and the mixed linear-convex WFG3. In general, no MOEA is able to correctly

approximate the optimal fronts and that it is difficult to extract patterns from those plots, but we

focus on two important observations. First, on WFG2–3 SMS performs quite poorly according to

the IrpdH , but much better according to the distance-based metrics. Second, although many MOEAs
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Table B.3: Sum of ranks (in parenthesis) depicting the performance of MOEAs on five-objective problems.

2500 FEs

I rpdH SMS IBEA (1402) MOEA/D (1603) SPEA2 (3375) NSGA-II (4245) CMA (4274) NSGA-III (4731) HypE (4765) MOGA (7463)

Iε+ SMS IBEA (745) MOEA/D (1221) NSGA-III (2898) NSGA-II (3766) SPEA2 (3785) HypE (4108) CMA (4365) MOGA (5588)

IIGD SMS NSGA-III (57) IBEA (242) MOEA/D (610) HypE (1034) SPEA2 (1052) NSGA-II (1931) CMA (3214) MOGA (4503)

10000 FEs

I rpdH SMS MOEA/D (1471) IBEA (1535) SPEA2 (3295) CMA (3374) NSGA-III (3897) NSGA-II (4130) HypE (5811) MOGA (7562)

Iε+ SMS IBEA (1713) MOEA/D (2569) CMA (2588) NSGA-II (4086) NSGA-III (4124) SPEA2 (4701) HypE (5907) MOGA (7664)

IIGD SMS IBEA (1898) MOEA/D (2119) NSGA-II (2329) CMA (2515) SPEA2 (3579) HypE (5040) NSGA-III (5225) MOGA (7398)

40000 FEs

I rpdH SMS IBEA (1154) MOEA/D (1761) CMA (2915) SPEA2 (2995) NSGA-III (3325) NSGA-II (4188) HypE (5826) MOGA (7363)

Iε+ SMS IBEA (173) CMA (1610) MOEA/D (1650) SPEA2 (3310) NSGA-II (3988) NSGA-III (4436) HypE (5777) MOGA (7097)

IIGD IBEA MOEA/D (244) SMS (827) SPEA2 (1720) CMA (2074) NSGA-II (2737) NSGA-III (5087) HypE (5189) MOGA (6780)

Table B.4: Sum of ranks (in parenthesis) depicting the performance of MOEAs on ten-objective problems.

2500 FEs

I rpdH SMS IBEA (827) CMA (1919) NSGA-II (2965) NSGA-III (3543) SPEA2 (4257) HypE (5525) MOEA/D (6218) MOGA (7505)

Iε+ MOEA/D IBEA (370) SMS (2092) NSGA-II (2471) CMA (2791) NSGA-III (3315) SPEA2 (3498) HypE (4878) MOGA (6297)

IIGD IBEA NSGA-III (847) SPEA2 (1272) CMA (1289) SMS (1915) NSGA-II (2228) HypE (3315) MOEA/D (4441) MOGA (5562)

10000 FEs

I rpdH IBEA SMS (222) CMA (1116) NSGA-III (2326) SPEA2 (2532) NSGA-II (3241) HypE (4846) MOEA/D (5114) MOGA (6919)

Iε+ MOEA/D IBEA (1258) SMS (2794) CMA (3250) NSGA-III (3347) NSGA-II (4045) SPEA2 (4562) HypE (5214) MOGA (6922)

IIGD NSGA-III IBEA (36) SPEA2 (646) NSGA-II (1776) SMS (1828) CMA (1987) HypE (2557) MOEA/D (4424) MOGA (5151)

40000 FEs

I rpdH IBEA SMS (897) SPEA2 (1401) CMA (1878) NSGA-III (2416) NSGA-II (2576) HypE (4899) MOEA/D (5077) MOGA (7073)

Iε+ MOEA/D IBEA (220) NSGA-III (1836) SMS (2309) NSGA-II (2986) SPEA2 (3252) CMA (3705) HypE (4581) MOGA (6518)

IIGD IBEA NSGA-III (928) SPEA2 (942) NSGA-II (2710) HypE (2937) CMA (3725) SMS (4129) MOEA/D (5513) MOGA (6584)
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perform similarly across these functions, the overall best-performing MOEAs are SMS, IBEA, and

MOEA/D. As for the concave WFG problems, the patterns in the boxplots depend considerably

on the given metric. According to the IrpdH , NSGA-III shows the best performance, although many

MOEAs display similar performance when nvar = 50. By contrast, the distance-based metrics

favors SMS, followed by IBEA and NSGA-III on the I1
ε+, and by IBEA, MOEA/D, and SPEA2 on

the IIGD.

10 000 FEs. The increase in the number of function evaluations given to MOEAs reflects on performance

improvements in nearly all problems and according to all metrics, as shown in Fig. B.5 (right).

For all problems considered, no MOEA is able to properly approximate the optimal fronts. Con-

cerning the DTLZ functions, we notice that the same group of MOEAs is able to display the best

performance among all algorithms on problems DTLZ2 and DTLZ4–6 when all metrics and nvar

values are considered altogether, namely SMS, IBEA, MOEA/D and MO-CMA-ES. By contrast,

on DTLZ7 most algorithms perform similarly according to the IIGD, but the remaining metrics

favor MOEA/D considerably over the other MOEAs.

Regarding the non-concave WFG problems represented in Fig. B.5 by WFG1, we see different

performance patterns. For WFG1 and WFG3, all metrics agree and indicate that SMS is the best-

performing algorithm, followed by SPEA2 on WFG1 and by MOEA/D on WFG3. By contrast,

performance differences on WFG2 are very clear when one compares results on nvar = 30 and

nvar = 50. Overall, SMS, IBEA, and MOEA/D can be considered the best-performing algorithms

for this function, but the performance of SMS according to the IIGD is much worse than for the

other metrics. As for the concave WFG problems, we see again these three algorithms being

considered best, but we remark that NSGA-III would have made it into that group if not for its

performance according to the IIGD.

40 000 FEs. Boxplots depicting MOEA performances when given 40 000 FEs are shown in Fig. B.6.

Overall, the performance gains are clear for all MOEAs according to all metrics, except for the

concave WFG problems where no significant IrpdH improvements can be seen. Nonetheless, once

again no MOEA is able to successfully approximate the actual fronts, even though many MOEAs

get very close to it on DTLZ2. Concerning the moderate DTLZ problems, the best-performing

MOEAs get reasonably close to the actual fronts, namely SMS, IBEA, MOEA/D, and MO-CMA-

ES, although the latter two lose performance on DTLZ4 when nvar is increased. These same

four MOEAs repeats their good performance on DTLZ6. However, while other MOEAs were able

to show reasonable results on the moderate problems, this time the performance of the remaining

algorithms is quite poor. Finally, a peculiar result can be observed on DTLZ7: algorithms that dis-

played good performance on most other problems, namely SMS, IBEA, MOEA/D, and NSGA-III,

are outranked by other MOEAs such as SPEA2, NSGA-II, and HypE.

On the non-concave WFG problems, many MOEAs show significant performance improvements,

although it becomes clear that MOEAs are unable to converge to the actual fronts on these prob-

lems. Once again, results on WFG1 are fairly consistent across the different metrics. SMS ranks

well on all these problems and across all metrics, but while it is the best-performing MOEA for

WFG1–2, it is outperformed by MOEA/D on WFG3. In addition, IBEA also ranks well on WFG2.

As for the concave WFG problems, we notice major discrepancies between performance metrics.

For instance, SMS and NSGA-III rank very well according to the IrpdH , but on the distance-based

metrics the performance of NSGA-III is not as competitive, and the same happens for SMS ac-

cording to the IIGD. Similarly, MOEA/D performs well according to the IrpdH and to the IIGD, but

is not as competitive according to the I1
ε+. Overall, the only MOEA that can be considered as

well-performing according to all metrics is IBEA.



153

Hypervolume RPD

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●●●●●

●●●

DTLZ2.5.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●●●●●●

●

●●

●●●

● ●●

●

● ● ●

DTLZ6.5.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●●

●●

●

DTLZ7.5.40

Hypervolume RPD

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

WFG1.5.40

0.0 0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

WFG4.5.40

Additive Epsilon Indicator

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

DTLZ2.5.40

0 1 2 3 4

●

●

●

●

●

●

● ●●●●● ●●●●●

●

DTLZ6.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

●●●●● ●

●●●

●● ●

●

●

●

DTLZ7.5.40

Additive Epsilon Indicator

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●

WFG1.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●●●

●●

WFG4.5.40

Inverted Generational Distance

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●●●●

DTLZ2.5.40

0 1 2 3 4

●

●

●

●

●

●

●●

●●

● ● ●

DTLZ6.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

DTLZ7.5.40

Inverted Generational Distance

MO−CMA−ES
HypE
IBEA

MOEA/D−DRA
MOGA

NSGA−II
NSGA−III

SMS−EMOA
SPEA2

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●

●●

●

●

WFG1.5.40

0 1 2 3 4

●

●

●

●

●

●

●

●

●

●●

●

●

●

WFG4.5.40

Figure B.6: Performances of MOEAs given 40 000 FEs on selected five-objective problems with 40
variables. From top to bottom, IrpdH , Iε+ and IIGD.

B.4 Ten-objective problems

The large increase in the number of objectives leads to important changes in the rank sum analysis we

show in Table B.4. First, as previously discussed, the disparity in rankings according to the different

metrics becomes considerable. One could even say that selecting a best-performing MOEA becomes

itself a multi-objective task, since only IBEA is able to rank well according to multiple metrics. Even

so, other algorithms outrank it on specific metrics, corroborating that metrics play a critical role both

for design and assessment on truly many-objective scenarios.

A very important observation that yet had not been reported in the literature is the low rank sums

achieved by NSGA-II and SPEA2 in all ten-objective scenarios. Two precautions taken in this thesis are

directly related to this good performance. First, both algorithms benefit directly from proper tuning, as

the numerical parameters selected by irace differ considerably from the default adopted in the literature.

Second, SPEA2 uses DE as underlying algorithm when given 10 000 and 40 000 FEs, reinforcing the need

to consider different underlying EA algorithms when proposing a MOEA. Next, we detail our discussion

for each budget considered.

2 500 FEs. Results depicted in the boxplots given in Fig. B.7 (right) show that the increase in the

number of objectives makes several problems too difficult for MOEAs to solve when only a few FEs

are allowed. More precisely, the only problem groups for which we see reasonable results are the

moderate DTLZ problems (DTLZ2 and DTLZ4–5) and the non-concave WFG problems (WFG1–3).

However, we remark that results for the Iε+ on WFG3 in general are not as good as on WFG1–2. On

the selected problems depicted on Fig. B.7 (right), we see a contrast between metrics in opposite

directions. While on DTLZ2 the performance of MOEAs look perfect, but the distance-based

metrics show many differences between algorithms. In fact, the only MOEAs that consistently

demonstrate good performance on the moderate DTLZ problems are SMS, IBEA, and MOEA/D.

As for the hardest DTLZ problems, we see very poor performances from all MOEAs, with two

major exceptions. First, IrpdH results for DTLZ6 when nvar = 31 look promising for SMS, IBEA,

and MO-CMA-ES, but we remark that the distance-metrics disagree with this, except for SMS.

Second, IIGD results for SMS on DTLZ7 look reasonable, but the remaining metrics contradict
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Figure B.7: Performances of MOEAs given 2 500 FEs (left) and 10 000 FEs (right) on selected ten-

objective problems with 41 variables. From top to bottom, IrpdH , Iε+ and IIGD.

these results.

Concerning the non-concave WFG problems, we see three very different situations. First, on WFG1

the IrpdH and the IIGD agree that results are far from reasonable, but the I1
ε+ indicates otherwise. By

contrast, on WFG3 the indicator that suggests a good performance from MOEAs in general is the

IIGD. In this case however, the three metrics disagree completely, since the IrpdH would indicate a

reasonable performance and the I1
ε+ results are very poor. Finally, the only of these problems where

all metrics agree is WFG2. As a result, it is pretty difficult to select the best-ranked algorithm in all

these problems. As for the concave WFG problems, we notice yet again that all metrics disagree. In

particular, the distance-based metrics denote a very poor performance from all MOEAs, specially

the IIGD. In this context, it is more clear that some algorithms are unable to simultaneously satisfy

multiple metrics than to indicate the best MOEA. Overall, the major conclusion drawn from these

experiments is that, when faced with computationally expensive problems that present a large

number of objectives, MOEAs can only be expected to produce reasonable results for the ones that

present particular features.

10 000 FEs. Results shown in Fig. B.7 (right) are very similar to the results discussed on the previous

section, although improvements can be seen for most problems according to all metrics. On the

moderate DTLZ problems, most MOEAs now get much closer to the actual fronts, the negative

examples being the dominance-based algorithms. It is also important to remark that MOGA is

surprisingly better on these functions than the remaining MOEAs from its paradigm according to

the distance-based metrics. On DTLZ6, SMS and MO-CMA-ES now display good performance

according to both IrpdH and I1
ε+, although mostly on smaller nvar values. On DTLZ7, I1

ε+ results are

very poor for all MOEAs except for MOEA/D. By contrast, the only MOEA one could recommend

based on the IrpdH and the IIGD is SMS.

Concerning the non-concave WFG problems, results are again unique. For WFG1, the only metric

that points to a reasonable performance from MOEAs in general is the I1
ε+. As for WFG2, metrics

again consistently disagree, with IBEA, MOEA/D, and NSGA-III being the algorithm of choice

for each metric, respectively. Nonetheless, we remark that results from half of the MOEAs in this

problem are quite good, even if they are not able to fully approximate the actual front. Finally, on
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Figure B.8: Performances of MOEAs given 40 000 FEs on selected ten-objective problems with 41 vari-
ables. From top to bottom, IrpdH , Iε+ and IIGD.

WFG3 results are still far from good, but can be considered much better than the ones for WFG1.

Surprisingly, the MOEA of choice for this problem is NSGA-II. As for the non-concave problems,

once again it is not possible to recommend a single MOEA due to the disparity between different

metric rankings. Given the IrpdH , the I1
ε+, and the IIGD, the algorithms of choice would be SMS,

MOEA/D, and NSGA-III, respectively.

40 000 FEs. The increase in the number of FEs given to MOEAs this time results in several significant

performance improvements only for the IrpdH , as seen in Fig. B.8. In particular, we remark that

all MOEAs benefit from the increase FE budget on most problems. The only exception concerns

the WFG1, where IBEA, MOEA/D, and MO-CMA-ES are unable to improve over their previous

results. Concerning the distance-based metrics, improvements can be seen only on the moderate

DTLZ functions, although the IIGD also shows minor improvements for the hardest functions. We

remark, though, that we observe in a few occasions that an improvement according to a given

metric might result in a worsening on another. Such is the case with WFG1, for instance, where

the algorithms that improve the most on the IrpdH worsen on the IIGD.

Overall, results indicate that even given a large number of FEs no single MOEA is able to perform

consistently well on all problems. In addition, it happens very often that the best MOEA for a given

problem is only considered the best for that particular problem, or that MOEAs are only the best-

performing algorithms according to a given metrics. Altogether, these results suggest that the task of

a general-purpose MOEA for unconstrained continuous is probably unfeasible when dealing with truly

many-objective optimization.





APPENDIX C

Component-wise multi-objective differential evolution

Differential evolution (DE) [213] plays an important role in single-objective optimization and has led to

the development of a number of effective optimization algorithms for both constrained and unconstrained

continuous problems [54]. In particular, one of the most attractive features of DE is its simplicity and

its ability to outperform classical genetic algorithms (GAs) [193]. As a result, a number of research

proposals have extended DE algorithms to tackle multi-objective optimization problems (MOPs) in the

Pareto sense [54, 143, 201]. In general, extensions follow different paths on how to adapt DE to deal

with Pareto optimality, and these stand-alone algorithms have been compared to well-known GA-based

algorithms such as NSGA-II [60] or SPEA2 [234] to test their effectiveness. Interestingly, two research

groups independently proposed the same DE algorithm at about the same time: DEMO [201] and

GDE3 [143]. To highlight the effectiveness of this algorithm, we remark that it ranked among the top

five best-performing algorithms at the 2009 CEC competition on multi-objective optimization [229].

In the most comprehensive study conducted so far on DE for multi-objective optimization, Tušar and

Filipič [219] have considered DEMO as a template for instantiating DE algorithms. Concretely, DEMO

uses DE for exploring the decision space, but uses the environmental selection strategy of NSGA-II. The

authors then considered the possibility of using other environmental selection approaches, and compared

three top-performing GA-based algorithms, NSGA-II, SPEA2, and IBEA [232] with DE versions of these

algorithms, aliased DEMONS-II, DEMOSP2 and DEMOIB. By performing pairwise comparisons between

algorithms that differ only in the underlying search mechanism (GA or DE), the DE operators were

shown to obtain more accurate approximations of the Pareto front and DEMOSP2 was found to best

balance convergence and diversity [218].

We extend here this excellent earlier work by carrying out a more profound component-wise analy-

sis [26, 27] of the design of DE algorithms for MOPs. Our analysis shows that a more fine-grained view

of DE components can lead to new insights. In the original analysis only the environmental selection

strategy was a component to be set in the DEMO template. However, the DE-part of DEMO differs

from traditional GAs in more than one component. In addition to the DE variation operator, there is an

online replacement strategy, i.e., newly generated solutions are compared to existing solutions as soon as

they are created, enforcing a higher convergence pressure. In fact, the latter component was found to be

the key improvement of DEMO over earlier DE adaptations to MOPs [201]. However, when we consider

the DEMO versions that use environmental selection strategies from IBEA and SPEA2 instead of the

157
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Algorithm 6 componentWiseDE template

1: Initialize(pop)
2: repeat
3: Variate(pop)
4: Reduce(pop)
5: until termination criteria met
Output: pop

original DEMO algorithm that uses the environmental selection from NSGA-II, we show that the online

replacement strategy is not always beneficial to the effectiveness of the DEMO versions. In other words,

while DEMO was an improvement over existing NSGA-II based DE algorithms because of its online

replacement strategy, the other DEMO versions present the same (or, sometimes, worse) performance

than versions of IBEA and SPEA2 that simply use the DE variation operator.

Furthermore, we consider several factors that affect the conclusions in the original analysis. First,

in the original paper, the quality indicator used by IBEA and DEMOIB was the binary hypervolume

difference, whereas strong evidence points to a better performance of IBEA when using the binary ep-

silon indicator [25, 232]. Second, the analysis conducted in the original paper was done using the default

parameter settings traditionally adopted by the EMO community for the benchmarks considered. How-

ever, we have recently shown that tuning the numerical parameters of EMO algorithms can significantly

improve their performance [25], altering their relative performance. Finally, although the original paper

considered a representative number of benchmark functions, they all used the same number of variables.

In this work, we consider several different problem sizes to ensure scalability issues do not compromise

the generality of our results.

The remainder of this appendix is organized as follows. Section C.1 presents our component-wise

approach to differential evolution, and how we instantiate both DE-based and GA-based algorithms

using a flexible template. In addition, it also presents the intermediate algorithmic designs we use in this

work to understand the contribution of the individual DE components we consider. The experimental

setup used for this assessment is given in Section C.2. We split the discussion of the results in two parts.

In Section C.3, we compare algorithms grouped by environmental selection strategy. In Section C.4, we

compare all algorithms among themselves and to a well-known efficient EMO algorithm, SMS [19]. We

do so to put the results in perspective, since we have recently shown that SMS performs consistently

well for the experimental setup considered here [25]. Finally, we conclude and discuss future work in

Section C.5.

C.1 Differential evolution from a component-wise view

Several articles in the literature propose how to adapt DE algorithms to multi-objective optimization.

However, the differences among most of these algorithms are quite small. From a very high-level per-

spective, multi-objective DE algorithms can be represented using the template defined by Algorithms 6

and 7. The general template displayed in Algorithm 6 could actually represent any of the most used

evolutionary computation approaches (GA, DE or evolution strategies). Starting from an initial popu-

lation (line 1), variation operators and environmental selection are applied to a population to promote

evolution, until a given stopping criterion is reached.

In DE algorithms, the variation procedure is carried out as displayed in Algorithm 7. The DE

operator produces a trial vector from an existing target vector of the population. Although the single-

objective optimization literature presents many different strategies for this operation, the multi-objective

DE algorithms proposed so far use the DE/rand/1/bin approach [213]. The most significant difference

between the existing DE proposals is encapsulated in procedure OnlineReplace (line 3). In earlier algo-
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Algorithm 7 DE variation

Input: pop

1: repeat
2: trial ← DE operator(target)
3: OnlineReplace(pop, target, trial)
4: until #offspring produced

Algorithm 8 GA variation

Input: pop

1: pool ← Select(pop)
2: popnew ← GA operators(pool)
3: pop ← pop ∪ popnew

rithms, the trial vector ~xtrial only replaced the target vector ~xtarget if ~xtrial dominated ~xtarget. In this

case, no environmental replacement is necessary, since the population size is always constant. Later,

algorithms considered the option of adding the trial vector to the population in case both trial and

target vectors were nondominated. In this case, the population size might double at each iteration, and

hence environmental replacement strategies are employed after the variation is concluded, to reduce the

population to its original size. While this prevents algorithms from early stagnation, it may as well slow

down their convergence. We refer to these two replacement versions as online replacement strategies,

since trial solutions may replace target solutions during the variation stage, before the actual population

management represented by procedure Reduce happens. However, some multi-objective DE algorithms

do not consider online replacement at all. In this case, solutions are created by the DE operator, but are

only compared to the population altogether, when procedure Reduce is executed. These three different

options for online solution replacement are listed in the bottom part of Table C.1.

The three different DEMO versions considered by Tušar and Filipič [219] can be easily instantiated

using this template as follows (all three versions use DE variation and (non)dominance online solution

replacement):

DEMONS-II uses environmental selection strategy proposed for NSGA-II, i.e., nondominated sorting

with tie-breaking according to crowdedness.

DEMOSP2 uses the environmental selection strategy proposed for SPEA2, i.e., sorting according to

dominance strength and tie-breaking according to nearest neighbor density estimation.

DEMOIB uses the environmental selection strategy proposed for IBEA, i.e., sorting according to the

binary ε-indicator (Iε+).

In an analogous fashion, the original GA-based algorithms NSGA-II, SPEA2 and IBEA can be

instantiated using the same template. To do so, instead of a DE-based variation, we use a traditional

GA variation approach, outlined by Algorithm 8. The mating selection (line 1) is done according to the

fitness of the individuals, which is computed using the same strategies adopted for the environmental

replacement in the respective GA-based algorithms. Besides the previously discussed algorithms, the

component-wise template presented here could also be used to instantiate other algorithms. We will

discuss this in more detail in the next section.

As it can be seen, the three original DEMO versions [219] comprise more than a single atomic DE-

related algorithmic component. Concretely, it is a combination of the DE variation operator and an

online replacement strategy. Although the DEMO versions of NSGA-II, SPEA2, and IBEA have indeed

shown performance improvements over the original algorithms, it remains unclear how each of these

individual components contribute to these performance gains. To properly assess the effectiveness of

these components, we propose a set of intermediate algorithmic designs: DENS-II, DESP2, and DEIB

which are identical to the DEMO variants except that they do not use online solution replacement.

Moreover, the only difference between these DE versions and the original versions of NSGA-II, SPEA2

and IBEA is the use of the DE variation operator. For instance, considering the case of NSGA-II,

DENS-II, and DEMONS-II, the first uses traditional GA selection and variation, while the latter two use

DE variation. However, while DEMONS-II may replace solutions as soon as they are created, DENS-II
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Table C.1: Algorithmic options of a component-wise multi-objective DE template.

Component Domain Description

Variate

{
DE variation,

GA variation
Underlying variation options

Reduce


NSGA-II,

SPEA2,

IBEA

Environmental selection approaches

OnlineReplace


dominance,

(non)dominance

none

Online solution replacement criterion
(this component only takes effect when
DE variation is used)

replaces solutions only at the environmental selection stage (procedure Reduce of Algorithm 6). In the

next section, we present the experimental setup in which we use these intermediate designs to properly

investigate the effectiveness of the DE operators used by the different DEMO versions.

C.2 Experimental setup

The benchmark sets we consider here include all unconstrained DTLZ [61] and WFG [112] functions

(DTLZ1–7 and WFG1–9). Since both benchmark sets offer scalability as to the number of variables and

objectives, we explore this feature to increase the representativeness of our investigation. We consider

versions of these problems with three and five objectives. Concerning the number of variables n, we

consider problems with n ∈ {20, 21, . . . , 60}. Furthermore, to ensure that numerical parameters do not

affect our performance assessment of the DE components, we initially tune all algorithms, but we use

disjoint sets for tuning and testing to prevent overfitting. More precisely, we use problems with sizes

ntesting = {30, 40, 50} for testing, and problems with sizes n ∈ {20, 21, . . . , 60} \ ntesting for tuning. For

both testing and tuning, experiments are run on a single core of Intel Xeon E5410 CPUs, running at

2.33GHz with 6MB of cache size under Cluster Rocks Linux version 6.0/CentOS 6.3. The remaining

details about tuning and testing are given below.

Tuning setup. The automatic parameter configuration tool we use in this work is irace [159]. Although

it was originally proposed for configuring single-objective optimization algorithms, it can be adapted

for multi-objective optimization by using the hypervolume indicator [157]. Concretely, for each

problem considered by irace, candidate configurations are run for a maximum number of function

evaluations (10 000, following [25]). The approximation fronts they produce are then normalized to

the range [1, 2] to prevent issues due to dissimilar domains. Finally, we compute the hypervolume

for each front using ri = 2.1, i = 1, . . . ,M as reference point, where M is the number of objectives

considered.

The parameter space we consider for tuning all algorithms is given in Table C.2. Parameter µ

applies to both DE-based and GA-based algorithms. The following six parameters (λ, tsize, pc,

pm, ηc, ηm) only apply to GA-based algorithms. In particular, we highlight that all GA-based

algorithms use SBX crossover and polynomial mutation, as commonly done in the literature [19,

61, 112]. Parameter tsize controls the size of the deterministic tournament used for mating selection.

The probability of applying the crossover operator to a given pair of individuals is controlled by

parameter pc. Analogously, the probability of applying the mutation operator to a given individual

is controlled by parameter pm. In addition, we consider two different mutation schemes: (i) bitwise,



161

Table C.2: Parameter space for tuning all MOEAs for continuous optimization.

GA variation DE variation

Parameter µ = |pop| λ = |popnew| tsize pc, pm ηc, ηm CR F

Domain {10, 20, . . . , 100} 1 or λr · µ {2, 4, 8} [0, 1] {1, 2, . . . , 50} [0, 1] [0.1, 2]
λr ∈ [0.1, 2]

which sets the mutation probability per variable pv = 1/n; and (ii) fixed, where pv becomes a

parameter ∈ [0.01, 1]. Finally, ηc and ηm are the distribution indices for the SBX crossover and

polynomial mutation, respectively. The remaining two parameters (CR and F ) in Table C.2 concern

DE variation. They control the number of variables affected by the operator (parameter CR) and

the strength of the changes (parameter F ).

There are two additional parameters that concern only SPEA2 and IBEA. The original version of

SPEA2 contains an additional parameter k for its k-th nearest neighborhood density estimation

strategy in the mating selection. Here, besides the default value, which is computed according to the

population size and we denote with kmethod = default, we also give irace the possibility of configuring

k directly, with k ∈ {1, 2, . . . , 9}. For IBEA, as previously discussed, several different binary quality

indicators can be used. Here we allow irace to select between the two most commonly adopted [232],

the binary hypervolume indicator (I−H) and the binary ε-indicator (Iε+). Additionally, irace is given

the flexibility to set different quality indicators for mating and for environmental selection if that

leads the algorithm to better performance. Algorithms are tuned for each benchmark set (DTLZ

or WFG) and for each number of objectives (3 or 5); that is, for each algorithm X, we obtain

four tuned variants: XD3, XD5, XW3 and XW5. For brevity, the tuned settings for all algorithms

considered in this work are provided as supplementary material [29].

Testing setup. For comparing the tuned algorithms, we run each algorithm 25 times and evaluate them

based on the relative hypervolume of the approximation fronts they produce w.r.t. the Pareto

optimal fronts. Since the latter are typically infinite, we generate, for each problem instance,

a Pareto front with 10 000 Pareto-optimal solutions following the methodology described in the

papers where the benchmarks were proposed [61, 112]. Given an approximation front A generated

by an algorithm when applied to a problem instance and the Pareto front P of the same problem

instance, the relative hypervolume of A equals IH(A)/IH(P ). A relative hypervolume of 1.0 means

the algorithm was able to perfectly approximate the Pareto front for the problem considered.

The comparison is done visually by means of boxplots, and analytically through rank sums. Since

we generate a large set of results, we only discuss the most representative ones here. In particular,

we focus the discussion on the WFG benchmark and provide the analysis on the DTLZ benchmark

as supplementary material [29]. Additionaly, due to the large amount of results we produce, we

present here the results for n = 40. Similar results were found for n ∈ {30, 50}, and are also

provided as supplementary material.

C.3 Experimental analysis grouped by environmental selection

To investigate how each algorithm component individually affects the performance of the different DEMO

versions, we first conduct an analysis where algorithms are grouped by the environmental selection

strategy they employ.
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Figure C.1: IH% boxplots of the MOEAs using the selection strategy of NSGA-II (WFG problems, 40 variables). Top: 3-obj; bottom: 5-obj.
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Figure C.2: IH% boxplots of the MOEAs using the selection strategy of SPEA2 (WFG problems, 40 variables). Top: 3-obj; bottom: 5-obj.
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Figure C.3: IH% boxplots of the MOEAs using the selection strategy of IBEA (WFG problems, 40 variables). Top: 3-obj; bottom: 5-obj.
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Table C.3: Sum of ranks depicting the overall performance of algorithms grouped by environmental
selection strategy. Algorithms in boldface present rank sums not significantly higher than the lowest
ranked for a significance level of 95%.

3 objectives 5 objectives

DEMONS-II
W3 DENS-II

W3 NSGA-IIW3 DENS-II
W5 DEMONS-II

W5 NSGA-IIW5

(1259.5) (1321) (1469.5) (1257) (1393) (1400)

DEMOSP2
W3 SPEA2W3 DESP2

W3 DEMOSP2
W5 DESP2

W5 SPEA2W5

(1281) (1299.5) (1469.5) (1259) (1346.5) (1444.5)

DEIB
W3 DEMOIB

W3 IBEAW3 DEMOIB
W5 DEIB

W5 IBEAW5

(1212) (1246.5) (1591.5) (1215.5) (1225.5) (1609)

NSGA-II, DENS-II, and DEMONS-II: The boxplots of the relative hypervolume achieved by the

algorithms that use the environmental selection strategy proposed for NSGA-II are given in Fig-

ure C.1. For the 3-objective problems (top), we observe very heterogeneous results. For some

problems such as WFG7 and WFG8 there is almost no difference between the algorithms, indi-

cating that the DE components are unable to improve the performance of the original NSGA-II.

However, for problems such as WFG1, WFG2, WFG4, and WFG6, the performance of NSGA-II

can be improved, sometimes by a large margin, such as for WFG1 and WFG2. When we con-

sider the effectiveness of the DE components, we see that sometimes using both components (as in

DEMONS-II) is beneficial (e.g., WFG1, WFG5, and WF8), but for other problems it is better to use

the DE variation without the online replacement strategy as in DENS-II (e.g., WFG2, WFG6, and

WFG9). Particularly for WFG9, using both components simultaneously worsens the performance

of NSGA-II. When we aggregate results for all runs and sizes of 3-objective WFG problems in

a rank sum analysis (Table C.3), we see that both DE-based algorithms improve over NSGA-II,

but no significant difference can be found among DEMONS-II and DENS-II using Friedman’s test

at 95% confidence level.

The performance shown by NSGA-II, DENS-II, and DEMONS-II on the 5-objective WFG problems

(see Fig. C.1, bottom) is quite different. This time, using both DE components (DEMONS-II) is

only beneficial for problems WFG1, WFG4, WFG5, and WFG8. In the other problems, the online

replacement leads to results worse even than the ones achieved by the original NSGA-II. However,

when we consider only the DE variation (DENS-II), we see that the performance of NSGA-II is

improved for most functions, except for WFG2 and WFG5. When we aggregate results for all

5-objective problems, we see that DENS-II indeed ranks first, with significantly lower rank sums

than the remaining algorithms (Table C.3).

SPEA2, DESP2, and DEMOSP2: The boxplots of the relative hypervolume achieved by the algo-

rithms that use the environmental selection strategy proposed for SPEA2 are given in Figure C.2.

This time the 3-objective problems (top) show a more clear separation between problems for which

DE components lead to improvements and problems for which they worsen the performance of the

original SPEA2. For the first group (WFG1, WFG2, and WFG6), we see that there is no pattern

as to whether the online replacement is a suitable component for improving SPEA2. However,

for the problems where DE components do not lead to performance improvements, typically the

version that uses online replacement (that is, DEMOSP2) shows better results than the version that

does not use it (that is, DESP2). When we aggregate results for all 3-objective problems, we see

that SPEA2 and DEMOSP2 show equivalent results, while DESP2 shows significantly higher rank

sums than both.

For the 5-objective WFG problems (see Figure C.2, bottom), the online replacement component

plays a more important role than in the 3-objective problems. For most problems, the performance
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of DESP2 and DEMOSP2 is quite different: while DEMOSP2 outperforms SPEA2 for most problems,

DESP2 worsens the performance of SPEA2 for nearly half of the problems considered. The main

exception is WFG2, where DESP2 has the best performance among all algorithms. When all 5-

objective problems are considered (Table C.3), DEMOSP2 ranks first with rank sums significantly

lower than DESP2 and SPEA2, which respectively rank second and third. Despite its erratic

behavior, DESP2 also presents significantly lower rank sums than SPEA2.

IBEA, DEIB, and DEMOIB: The boxplots of the relative hypervolume achieved by the algorithms

that use the environmental selection strategy proposed for IBEA are given in Figure C.3. The re-

sults for the 3-objective problems (top) achieved by these indicator-based versions are far more

homogeneous than the results shown before for NSGA-II and SPEA2 environmental selection

strategies. In almost all situations, DEIB and DEMOIB perform nearly identically. Moreover, the

DE-based variants always outperform the GA-based version, except for problems WFG3–WFG5,

where the original IBEA was already very effective. These results indicate that, for 3-objective

problems, the online replacement component is not an effective component when combined with

the indicator-based environmental selection strategy proposed by IBEA.

The results for the 5-objective problems (see Figure C.3, bottom) are somehow consistent with

the results on the 3-objective problems. However, on the 5-objective problems, online replacement

leads to performance changes. For some problems, such as WFG2 and WFG7, DEIB finds better

results than DEMOIB. The opposite happens for problems WFG8 and WFG9. When we aggregate

across all problems (Table C.3), we see that these two algorithms get nearly the same rank sum,

and that IBEA gets significantly worse rank sums.

Overall, the DE operator leads algorithms to better results on problems WFG1, WFG2, WFG6, and

WFG9. As common characteristics, WFG1 and WFG2 present convex geometry, WFG1 and WFG9

present some form of bias, and WFG6 and WFG9 present a complex non-separable reduction [112]. As

for the online replacement component, the only problem for which we can say that it is beneficial is

the WFG8 problem. However, since the DE operator typically worsens the performance of the original

algorithms for this problem, we see that the online replacement is only weakening the effects of the

DE operator. Although these results might seem to contradict the results presented by the authors of

DEMO, we see that the environmental selection strategy from NSGA-II represents a special case here.

DEMONS-II in fact improves over DENS-II and NSGA-II, particularly for functions where NSGA-II faces

difficulties [112]. However, this is most likely explained by the poor performance of NSGA-II rather than

by the effectiveness of the online replacement strategy.

C.4 Comparison to SMS

In this section we compare all algorithms with SMS. For the3-objective problems (Figure C.4, top) we

see that, in general, the DE-based algorithms are never clearly worse than SMS, except for the WFG6

problem. Particularly for WFG1 and WFG2, the differential evolution operator leads to a significant

performance improvement. However, the online replacement is not effective for these two problems

regardless of the environmental selection strategy employed, and often worsens the performance of the

algorithms. When we aggregate across all 3-objective problems considered (Table C.4), we see that DEIB

and DEMOIB achieve significantly lower rank sums than all other algorithms. DEMOSP2 and SPEA2

rank second, along with SMS. These results confirm that DE algorithmic components can indeed lead to

significant performance improvements, but that the interactions between them and the environmental

selection are also significant.
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Figure C.4: Achieved IH% boxplots: 3-objective (top) and 5-objective (bottom) WFG problems with 40 variables.
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Table C.4: Sum of ranks depicting the overall performance of all algorithms. ∆R is the critical rank
sum difference for Friedman’s test with 95% confidence. Algorithms in boldface present rank sums not
significantly higher than the lowest ranked.

3 objectives (∆R = 271) 5 objectives (∆R = 265)

DEIB
W3 (2532) DEIB

W5 (2493)
DEMOIB

W3 (2535) DEMOIB
W5 (2506)

DEMOSP2
W3 (3738.5) SMSW5 (2891.5)

SPEA2W3 (3764.5) IBEAW5 (3930)
SMSW3 (3798) DEMOSP2

W3 (3932.5)
IBEAW3 (3924) DENS-II

W5 (4089)
DEMONS-II

W3 (3972.5) DESP2
W5 (4123.5)

DENS-II
W3 (4094.5) SPEA2W5 (4271.5)

DESP2
W3 (4325.5) DEMONS-II

W5 (4426.5)
NSGA-IIW3 (4440.5) NSGA-IIW5 (4461)

The comparison between all algorithms for 5-objective problems is given in Figure C.4 (bottom). This

time the environmental selection strategy becomes very important for the effectiveness of the algorithms.

As expected, dominance-based approaches (NSGA-II and SPEA2) are not as effective for many-objective

scenarios, and hence even the DE versions of these algorithms are not able to perform as well as the

indicator-based algorithms. However, the performance improvements provided by the DE variation to

IBEA is such that both DEIB and DEMOIB become the top-performing algorithms, even though IBEA

itself did not perform as competitively as SMS. These results indicate that, if coupled with proper

many-objective search mechanisms, DE algorithmic components can possibly improve state-of-the-art

algorithms, such as SMS.

C.5 Conclusions

This appendix has examined how the individual components of DE interact with the components of

various EMO algorithms. In particular, we studied the underlying variation operator (GA or DE), the

environmental selection strategy (NSGA-II, SPEA2, or IBEA), and the use of an online replacement

strategy. For the DTLZ benchmark, results presented a ceiling effect, and hence we focused our analysis

on the WFG benchmark. For both three or five objectives, results showed that the DE-operator improves

the algorithms in most problems and that there is a strong interaction between this component and

environmental selection. However, for the online replacement component, results almost always indicated

that this component is not effective, except when combined with NSGA-II environmental selection.

These results represent a significant contribution of our investigation. Before our work, it was be-

lieved that the online replacement component was critical to the effectiveness of multi-objective DE

algorithms [201]. Furthermore, this result reinforces the value of the component-wise design approach,

particularly the argument that components should be jointly investigated to account for interactions.



APPENDIXD

Automatic MOACO design for the bi-objective knapsack

Multi-objective ant colony optimization (MOACO) algorithms have been applied to multi-objective com-

binatorial optimization problems (MCOPs) since more than 10 years [5, 15, 63, 85, 121, 156]. The in-

terest in MOACO algorithms may be explained by the practical relevance of multi-objective problems

and by the positive results that have been achieved with these algorithms. The available MOACO

algorithms provide a large number of different design choices that allow the instantiation of a huge num-

ber of structurally different MOACO algorithms. Recently, López-Ibáñez and Stützle [157] proposed a

MOACO framework that implements most of those design possibilities. The automatic configuration

tool Iterated F-race (irace) [14, 159] was used to automatically generate MOACO algorithms for the bi-

objective traveling salesman problem (bTSP). The authors showed that the automatic configuration of

a generic MOACO framework produced better results than the MOACO algorithms from the literature

used to build the framework. In this appendix, we continue the investigation of the effectiveness of this

approach by extending the MOACO framework to deal with the bi-objective bidimensional knapsack

problem (bBKP).

The bBKP is a popular benchmark problem in multi-objective optimization [163, 233]. Moreover,

four different MOACO algorithms have been proposed for the bBKP [5]. The bBKP has also some

properties that make it interesting for further exploring the possibilities of the automatic design of

MOACO algorithms from a flexible framework. In particular, the representation of solutions is different

from the TSP, pheromone information is represented by a vector instead of a matrix, and the structure

of the solution space is quite different from the TSP. This chapter shows that the proposed method for

the automatic design of MOACO algorithms also works for the bBKP. The proposed method is able to

generate, with little effort from the human designer, MOACO algorithms that are clearly better than

those proposed earlier for the bBKP, even after tuning the ACO settings of the MOACO algorithms from

the literature and improving significantly their performance.

The remainder of this chapter is organized as follows. Section D.1 reviews the basic ACO concepts and

in particular the underlying ACO algorithms used by the framework. Section D.2 reviews the bBKP and

the existing MOACO algorithms for this problem. Next, Section D.3 describes the MOACO framework,

highlighting the extensions we implement for its application to the bBKP. Section D.4 describes the

experimental setup, while experimental results are discussed in Section D.5. We conclude in Section D.6.

167
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D.1 Ant colony optimization

Ant colony optimization (ACO) comprises a set of ant algorithms proposed for several different opti-

mization domains, such as combinatorial, continuous, dynamic and constrained. In common, all ACO

algorithms employ agents, namely artificial ants, that construct solutions at each iteration. The natural

inspiration of ACO algorithms lies in the informed constructive procedure they use. In nature, forag-

ing ants deposit a chemical substance called pheromone over the path they traverse. This pheromone

influences the movement direction of other ants: the greater the presence of pheromone, the greater the

chance an ant will follow that path. In optimization, besides pheromone information, ants also evalu-

ate heuristic information before making a decision. For the TSP, for instance, the probability p(eij) of

selecting an edge eij of the construction graph is given by:

p(eij) =


τ αij · η

β
ij∑

h∈Ni τ
α
ih · η

β
ih

if j ∈ Ni

0 otherwise

(D.1)

where α and β are numerical parameters that respectively control the influence of the pheromone

(τij) and the heuristic information (ηij), and Ni is the set of states reachable from state i. Moreover,

the pheromone information in ACO algorithms is also subject to evaporation and reinforcement. Since

algorithms differ on how to operationalize these characteristics, we detail them separately. Among the ant

algorithms devised for combinatorial optimization, three major proposals form a representative sample

of this metaheuristic, namely Ant System (AS) [66], Ant Colony System (ACS) [64] and MAX -MIN
Ant System (MMAS) [215]. As all discrete ACO algorithms, Ant System was originally proposed

for the traveling salesman problem (TSP), but the general idea of the algorithm is applicable to any

combinatorial problem. In AS, pheromone is only reinforced after all solutions have finished building

their solutions. More precisely, all ants perform a pheromone deposit, the value of which is calculated

as:

∆τkij =
1

Lk
(D.2)

where Lk stands for the length of the tour built by ant k1. Given a total of m ants, the global pheromone

update used at iteration t is defined as

τij(t+ 1) = (1− ρ) · τij(t) +

m∑
k=1

∆τkij(t, t+ 1) (D.3)

where ρ stands for the evaporation rate.

The original AS algorithm initially presented high-quality results for the TSP, but further experi-

mental analysis on larger instances showed it reached very poor results compared to the state-of-the-art

then [215]. Several improvements have since been proposed. The other two major ACO algorithms, ACS

andMMAS, differ from AS regarding the number of ants allowed to contribute to the global pheromone

update. Two strategies are commonly adopted: the ant that constructed the best solution of the iteration

(iteration-best) or the ant that constructed the best solution so far (best-so-far). Moreover, both algo-

rithms present unique distinctive features. In MMAS, pheromone limits are subject to bounds, τmax
and τmin, and are initialized to a very high number. To compute these bounds,MMAS first determines

the value of τmax. In their original proposal, Stützle and Hoos [215] demonstrate that the maximum

pheromone amount any edge can have, τmax, is given by Equation D.4, where Lopt stands for the tour

length of the optimal solution. Since this information is generally not known,MMAS uses an estimate,

τ̂max, given by Equation D.4, where Lbsf is the tour length of the best solution constructed so far. The

1Notice that only transitions used by the ants are actually reinforced.
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lower bound τmin is then computed according to Equation D.4, where ν is a numerical parameter of the

algorithm.

τmax =
1

ρ · Lopt
τ̂max =

1

ρ · Lbsf
τmin =

τ̂max
ν

(D.4)

The use of pheromone bounds in MMAS may lead the algorithm to a convergence situation. An

MMAS algorithm is said to have converged if, for each state of the construction graph, one neighbor

state presents a pheromone amount equal to τ̂max, while the information of all the others equals τmin.

At this stage, the pheromone bounds are recomputed and the pheromone information of all edges of the

construction graph is reinitialized to the new τ̂max.

The difference between ACS and AS is more subtle. Besides the global pheromone update used by

AS, ACS algorithms also use a local pheromone update, meant to prevent stagnation. After finishing

building its solution, each ant updates the pheromone information of the transitions it has traversed,

using the formula given by Equation D.5. Furthermore, a different state transition rule is used, allowing

the algorithm to behave greedily. At every step of the constructive procedure, the algorithm randomly

generates a number q and compares it to a numerical control parameter q0. If q ≤ q0, the best transition

is greedily taken. Else, Equation D.1 is used as in the original AS.

τij ← (1− ρ) · τij + ρ · τ0 (D.5)

D.2 ACO algorithms for the bBKP

In this chapter, we tackle the bBKP, which is a widely used bi-objective benchmark problem [163, 233].

The bBKP is a special case of the general multi-objective multidimensional knapsack problem (moMKP),

which is formalized as follows:

max fd(x) =
n∑
i=1

pdi xi d = 1, . . . , D s.t.
n∑
i=1

wjixi ≤Wj j = 1, . . . ,m

where each item i has D profits and m costs, fd is the d-th component of the D-dimensional objective

vector f , n is the number of items, pdi is the d-th profit of item i, wji is the j-th cost of item i, Wj is

the j-th capacity of the knapsack, and xi is a decision variable in {0, 1} that controls whether item i is

included in the knapsack (xi = 1) or not (xi = 0). The set of feasible solutions is X ⊆ {0, 1}n. The

bBKP is a special case of the moMKP where D = m = 2.

The consequence of the constructive aspect of ACO algorithms is that in order to apply an ant

algorithm to a given COP, the problem must first be modeled as a construction graph. For the TSP this

modeling is straightforward, since the original graph with cities and distances is already a compatible

construction graph. For other problems, this modeling has to be carefully conducted, since it is critical

for the performance of the algorithm. In order to apply ACO algorithms to the single-objective BKP, the

approach adopted here starts by considering that all items are initially out of the knapsack. At each step,

probabilities are computed and one item is chosen to be added to the knapsack. The knapsack capacity

is updated, and items which eventually do not fit the knapsack anymore are removed from the candidate

list. The solution construction ends when no more items can be added to the knapsack. Furthermore, the

pheromone information is defined as a vector, where each component τi gives the desirability of adding

item i to the knapsack. Each ant k constructs a solution by adding, at each step, item i to the knapsack
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with a probability pi

pi =


ταi ·η

β
i∑

j∈Nk τ
α
j ·η

β
j

∀i ∈ Nk,

0 otherwise,
(D.6)

where ηi is a heuristic estimation of the benefit of adding item i, and Nk is a set of candidate items. After

each step, the item added to the current solution and those items that do not fit anymore in the remaining

capacity of the knapsack are removed from the candidate set. The solution construction stops when the

candidate set is empty. After the constructed solutions are evaluated, the pheromone information is

updated in two steps. First, pheromone values are evaporated, that is, decreased by a factor ρ. A

stronger evaporation makes the ACO algorithm converge faster but may lead to stagnation. Second,

the pheromone values corresponding to items present in the best solutions are updated by depositing

an amount of pheromone ∆τ , thus increasing the probability that newly constructed solutions contain

those items. Alaya et al. [5] proposed four different algorithms that extend the ACO metaheuristic to

the bBKP.

mACO1 has one pheromone vector for each objective, that is, τ1 and τ2. Ants are divided in three

groups λ ∈ {0, 0.5, 1} according to the weight λ they use for aggregating the two pheromone vectors

when constructing solutions. The solution construction uses random aggregation, that is, at each step

the pheromone information to be used is chosen as τ1 with a probability (1 − λ), and as τ2, otherwise.

This means that ants using λ = 0 or λ = 1 use only τ1 or τ2, respectively. The heuristic information is

aggregated by means of weighted sum aggregation, that is, η = (1− λ) · η1 + λ · η2, where η1 and η2 are

the heuristic information corresponding to each objective.

The pheromone update method used by mACO1 is a particular case for λ ∈ {0, 0.5, 1} of a method

called best-of-objective-per-weight (BOW) [157]. In BOW, those solutions generated with the same weight

λ are kept in the same list. For the lists of λ 6∈ {0, 1}, the best solution according to each objective

updates the pheromone vector of the corresponding objective. For the list of λ = 0, only the best solution

according to the first objective updates τ1, whereas for the list of λ = 1, only the best solution according

to the second objective updates τ2.

Finally, mACO1 uses a particular pheromone deposit. Given the best solution constructed in the

current iteration and the best-so-far solution according to objective d (sdib and sdbf, respectively), the

amount of pheromone deposited is given by ∆τd = 1
1+fd(sdbf)−fd(sdib)

. We refer to this method as fobj-

mACO.

mACO2 is identical to mACO1 except for how the multiple pheromone vectors are aggregated. Instead

of a random aggregation, mACO2 uses a weighted sum aggregation, that is, τ = (1− λ) · τ1 + λ · τ2.

mACO3 uses only a single pheromone vector. The heuristic information is also a single vector, which

is statically computed at the start of the algorithm as ηi = η1
i + η2

i . Pheromone information is updated

using all nondominated solutions found since the start of the algorithm, that is, the best-so-far archive.

Every solution component is rewarded a constant ∆τ = 1 only once per iteration, regardless of how

many times it is present on different solutions.

mACO4 follows mACO1: one pheromone vector per objective, which are aggregated by weighted random

aggregation; BOW pheromone update, and pheromone deposit is fobj-mACO. However, there is only one

weight λ = 0.5, and one heuristic vector defined as in mACO3.

The mACO algorithms can be instantiated as described above by our MOACO framework [157].

which defines some terms differently from Alaya et al. [5]. For example, following Iredi et al. [121], we

define a colony as a group of ants that construct solutions using only their own pheromone information.

According to this definition, the four mACO variants are single colony, since the ants share the pheromone

information. Nonetheless, the above formulation is equivalent to the original algorithms, and we have

confirmed this approach is equivalent to the original [5].
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Algorithm 9 MOACO framework

1: for each colony c ∈ {1, . . . , Ncol} do
2: InitializePheromoneInformation()
3: Λc ← MultiColonyWeights()

4: InitializeHeuristicInformation()
5: Abf ← ∅
6: iter ← 0
7: while not termination criteria met do
8: Aiter ← ∅
9: for each colony c ∈ {1, . . . , Ncol} do

10: for each ant k ∈ {1, . . . , Na} do
11: λ← NextWeight(Λc, k, iter)

12: τ ←

{
Aggregation(λ, {τ1c , τ2c }) if multiple [τ ]

τc if single [τ ]

13: η ←

{
Aggregation(λ, {η1, η2}) if multiple [η]

η if single [η]

14: s← ConstructSolution(τ, η)
15: Aiter ← RemoveDominated(Aiter ∪ {s})
16: Abf ← RemoveDominated(Abf ∪Aiter)
17: Aupd ← ChooseUpdateSet(Aiter, Abf)
18: for each colony c ∈ {1, . . . , Ncol} do
19: Aupd

c ← MultiColonyUpdate(Aupd)
20: PheromoneUpdate(Aupd

c , Nupd)

21: iter ← iter + 1
22: Output: Abf

D.3 A flexible MOACO framework for the bBKP

In this chapter, we extend the flexible MOACO framework proposed for the bTSP by López-Ibáñez

and Stützle [157] to also tackle the bBKP and we automatically instantiate MOACO algorithms. The

MOACO framework is able to replicate most MOACO designs proposed in the literature and can generate

new MOACO designs by combining components in novel ways. However, its application to the bBKP

requires extending it concerning the solution representation and other problem-specific features. Here,

we briefly summarize the high-level structure of the framework and its components (see [157] for further

details).

The high-level algorithmic scheme of the MOACO framework is given in Algorithm 9. The MOACO

framework is a multi-colony algorithm, where each colony c of ants has its own pheromone information

and its own set of weights Λc for possibly aggregating information. The assignment of weights to

colonies is defined by MOACO component MultiColonyWeights. Within each colony, each ant constructs

a solution according to pheromone information τ and heuristic information η. Either τ or η may be

the result of aggregation. That is, if the pheromone information consists of multiple pheromone vectors,

one for each objective, these are aggregated into a single pheromone vector τ by means of MOACO

component Aggregation (line 12), using a particular weight λ. If multiple heuristic vectors are used, they

are aggregated in a similar way. Which weight is used by each ant may depend on the set of weights of

each colony, the particular ant, and the particular iteration. The different possibilities are encapsulated

by MOACO component NextWeight (line 11). Once all ants have constructed a solution, the resulting

iteration-best archive of nondominated solutions (Aiter) is merged into the best-so-far archive (Abf)

(line 16). After this step, the pheromone information of each colony is updated in two steps. First, the

set of solutions for update (either Aiter or Abf), is partitioned among colonies according to component

MultiColonyUpdate (line 19). Next, a number of solutions from each set is used to update the pheromone

information of each colony in a way defined by component PheromoneUpdate (line 20). The algorithm
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Table D.1: Algorithmic components of the MOACO framework

Component Domain Description

[τ ] { single, multiple } Num. pheromone vectors

[η] { single, multiple } Num. heuristic vectors

Nweights N+ Number of weights

Aggregation


weighted sum,

weighted product,

random

How weights are used to aggregate mul-
tiple [τ ] or [η]

NextWeight

{
one weight per iteration (1wpi),

all weights per iteration (awpi)
How weights are used at each iteration

PheromoneUpdate


nondominated solutions (ND),

best-of-objective (BO),

best-of-objective-per-weight (BOW)

Which solutions are selected to update
the pheromone information

Nupd N+ Num. solutions that update each [τ ]

ChooseUpdateSet


best-so-far (BSF),

iteration-best (IB),

mixed

Whether the solutions used for update
are taken from Abf, Aiter or using both
alternately

The following components have an effect only when using multiple colonies.

N col N+ Number of colonies

MultiColonyWeights


same (∩100%),

overlapping (∩50%),

disjoint (∩0%

Whether colonies share all, 50% or no
weights.

MultiColonyUpdate { origin, region } How solutions are assigned to colonies

New components added in this work for the bBKP.

τmax method { default, value } Method for calculating τmax

τmin method { default, value } Method for calculating τmin

∆τ { constant, fobj-mACO, fobj, MACS } Method for calculating ∆τ

ηi { profit
cost ,

∑
profits
cost , profit∑

costs } Heuristic information used

stops when a termination criterion is met, typically a maximum number of iterations or a time limit,

and returns the best-so-far archive.

The flexibility of the MOACO framework is given by the alternative definitions of the algorithmic

components that specify the key steps in the algorithm. Defining these components in particular ways

allows the framework to replicate most of the MOACO algorithms in the literature. A summary of

the available alternatives is given in Table D.1. The complete description of all components and their

alternatives can be found in the original publication [157]. For brevity, we restrict ourselves here to the

new extensions implemented for the bBKP.

Following [157], we useMAX -MIN Ant System (MMAS) [215] as the underlying ACO algorithm

that defines details such as the pheromone deposit ∆τ , and maximum and minimum pheromone levels

(τmax and τmin). Here, we have adapted MMAS to the bBKP, but making more flexible the definition

of ∆τ , τmax and τmin to be able to replicate faithfully the original mACO algorithms for the bBKP. The

alternatives implemented for the definition of the pheromone deposit (∆τ) are:

fobj, that is, ∆τd = fd(s), where τd is the pheromone information corresponding to objective d. If only

one pheromone vector is used instead of multiple, then ∆τ = f1(s) + f2(s). This method is the
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one used in the original MMAS.

constant, that is, ∆τd = 1− rd(s)−1
Nupd , where rd(s) is the rank of solution s ordered according to objective

d and Nupd is the number of solutions used to update τd. This method is inspired by rank-based

ant system [44].

fobj-mACO, this is the method used in mACO1, mACO2 and mACO4.

MACS, that is, ∆τ = f1(s) · f2(s), which is adapted from MACS [15].

For the definition of the pheromone levels we consider two possibilities. The first is the default setting

of MMAS, which uses τmax = maxiter(∆τ)
ρ , where maxiter(∆τ) is the maximum amount of pheromone

deposited at iteration iter for a single pheromone component, and τmin = τmax

ν·n , where ν ∈ R+ is a

parameter (ν = 2 in MMAS). The second is the value setting, where τmax and τmin are set to two

different constant values τmax > τmin. A value setting is used in all mACO algorithms.

In addition, we have implemented three alternatives for the heuristic information. For a given ob-

jective d and item i, the heuristic information can be either profit divided by cost (η1di ), which is the

one used in the mACO algorithms [5], sum profits divided by cost (η2di ), or profit divided by sum costs

(η3di ) [163], that is,

η1di =
pdi
wdi

η2di =

∑D
k=1 p

k
i

wdi
η3di =

pdi∑m
l=1 w

l
i

(D.7)

D.4 Experimental setup

Our experiments are divided in two stages. In a first stage, we automatically configure the ACO settings

of the mACO algorithms and compare the resulting configurations with the original settings. This is done

to avoid a bias by possibly poor ACO parameter settings of the mACO algorithms. In the second stage,

we compare the best configurations with an algorithm automatically instantiated from the MOACO

framework.

As the automatic algorithm configuration tool, we use irace [14, 159]. The input of irace is a definition

of the parameter space, which may contain categorical and numerical parameters, and a set of training

instances. irace was originally designed for single-objective algorithms, but it has been extended to handle

the multi-objective case by using the hypervolume quality measure [157] (IH). The hypervolume is a

well-known quality measure in multi-objective optimization [235]. It computes for each approximation

set, the volume in the objective space weakly dominated by the approximation set and bounded by a

reference point; hence, the larger the hypervolume the better. We use the hypervolume (concretely, the

implementation provided by Fonseca et al. [81]) not only in combination with irace, but also to compare

the various MOACO algorithms.

For the application of irace, we create a training set of 100 randomly generated instances of the

bBKP, following the method proposed by Zitzler and Thiele [233]. These instances have random sizes

in the range n ∈ {100, . . . , 750}. For comparing the algorithms, we generate a different test set of 50

bBKP instances for each size n ∈ {100, 250, 500, 750}. We include in our test set also the four instances

by Zitzler and Thiele [233] of sizes n ∈ {100, 250, 500, 750}, called ZTZ instances. All algorithms are

implemented in C and all experiments are run on a single core of Intel Xeon E5410 CPUs, running at

2.33GHz with 6MB of cache size under Cluster Rocks Linux version 4.2.1/CentOS 4.

The mACO algorithms were originally run with different termination criteria, that is, a different

number of iterations, for each variant [5]. To replicate the original mACO experiments, we consider four

different computation time limits in our experiments, which correspond to the mean time taken by each

of the four mACO variants measured across 25 independent runs on the four ZTZ instances using the

corresponding number of iterations (see Table D.2). Then, we compute a formula that approximates the
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Table D.2: Termination criteria used in our experiments.

TIME 1 TIME 2 TIME 3 TIME 4

Time (s) 0.00001 · n2 0.00003 · n2 0.0001 · n2 0.001 · n2

Equivalent to 9000 solutions 3000 solutions 30000 solutions 300000 solutions
of mACO2 of mACO1 of mACO3 of mACO4

Table D.3: Parameter space for tuning the ACO settings of the mACO algorithms.

Parameter α β ρ q0 af τmax method τmin method

Domain {0, . . . , 10} {0, . . . , 15} [0.01, 1] [0, 0.99] {1, . . . , 30} {default, value} {default, value}
value ∈ [6, 100] value ∈ [0.01, 6]

ν ∈ [1.5, 15]

computation time obtained for each termination criterion. The four resulting termination criteria are

given in Table D.2, sorted from the shortest to the longest time.

Comparisons are conducted using empirical attainment functions (EAFs), boxplots of the hypervol-

ume (IH) and the unary additive epsilon (Iε+) indicators [235], and the Friedman non-parametrical test.

In this appendix, only few representative results are given; for the complete set of results and the test

and training instances we generated, we refer to the supplementary material [23].

D.5 Experimental analysis

D.5.1 Improving the ACO settings of the mACO algorithms

In the first stage of our analysis, we automatically configure the ACO settings of the four mACO variants.

The parameter space given to irace is shown in Table D.3. Parameter af is a surrogate parameter of the

total number of ants, which is given by Na = af · (0.12 · n + 36). Na is rounded to the closest smaller

number divisible by three, because mACO1 and mACO2 divide the ants into three groups. We apply

irace with a budget of 5 000 independent runs in the tuning phase for each mACO algorithm and for

each termination criterion TIME i. Here, the mACO algorithms use their original heuristic information

η1 [5]. The resulting 16 configurations of mACO are provided as supplementary material [23]. Here, we

focus on the configurations obtained when using TIME 4, which are shown in Table D.4.

We compare all algorithms (original and tuned versions) in terms of the hypervolume. We run all

algorithms for all four termination criteria 10 independent times on each of the 200 randomly generated

bBKP instances (50 instances per instance size n ∈ {100, 250, 500, 750}). We normalize the objective

values per instance to the interval [1, 2], with 1 corresponding to the maximum value and 2 to the

minimum, and compute the hypervolume using the reference point (2.1, 2.1). To analyze the results, we

apply the Friedman test, and its associated post-hoc test for multiple comparisons [51], using the median

hypervolume obtained by each algorithm on each instance as values, the instances as the blocking factor

and the different mACO algorithms as the treatment factor. In all cases, the Friedman test rejects the

null hypothesis of equal performance at a significance level of 0.05. Those algorithms whose ranks differ

by more than the critical difference are considered to be significantly different. Table D.5 summarizes

the results of applying this statistical analysis for each termination criterion. Ranks obtained by each

algorithm are shown in parenthesis. The minimum significant rank difference is displayed between

parenthesis on the header of each column. The best algorithm and those that are not significantly

different from the best are marked in boldface.

From Table D.5, we observe that mACO2-tuned is the best performing algorithm for all different

TIMEi, whereas mACO4 performs the worst. This seems to contradict the results reported by Alaya
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Table D.4: Settings chosen by irace for mACOi-tuned under TIME 4.

Variant
α

{0, ..., 10}
β

{0, ..., 15}
ρ

[0.01, 1]
q0

[0, 0.99]
τmax method
{default, value}

τmin method
{default, value}

af
{1, ..., 30}

mACO1-tuned 8 1 0.03 0.03 value = 65 value = 0.33 27

mACO2-tuned 3 1 0.07 0.10 default default, ν = 6 26

mACO3-tuned 3 1 0.08 0.18 value = 49 value = 0.34 2

mACO4-tuned 2 1 0.19 0.19 default default, ν = 8 5

Table D.5: Friedman test results for IH obtained by the mACO algorithms.

IH TIME 1 (32.957) IH TIME 2 (31.793) IH TIME 3 (35.433) IH TIME 4 (40.745)

mACO2-tuned (293) mACO2-tuned (208) mACO2-tuned (220) mACO2-tuned (227)

mACO1-tuned (319) mACO1-tuned (402) mACO1-tuned (380) mACO1-tuned (373)

mACO2 (591) mACO2 (610) mACO2 (644) mACO3-tuned (757)

mACO4-tuned (958) mACO3-tuned (973) mACO1 (987) mACO2 (779)

mACO3-tuned (1005) mACO1 (1036) mACO3-tuned (1040) mACO4-tuned (1076)

mACO3 (1202) mACO4-tuned (1087) mACO4-tuned (1073) mACO1 (1238)

mACO1 (1268) mACO3 (1301) mACO3 (1287) mACO3 (1282)

mACO4 (1564) mACO4 (1583) mACO4 (1569) mACO4 (1468)

et al. [5], which considered mACO4 as the best performing variant. The different results are explained

because, in their case, mACO4 constructed 100 times more solutions than mACO2, which roughly requires

100 times more computational time (Table D.2). By contrast, we compare algorithms using the same

computation time limit.

The main conclusion we take from these results is that each tuned mACO algorithm clearly outper-

forms its corresponding original version for each stopping criterion. Hence, we use these tuned variants

for comparing against the automatically generated MOACO algorithm in the next section.

D.5.2 Automatically generating MOACO algorithms for the bBKP

In this second stage of our analysis, we automatically configure all parameters of the MOACO frame-

work. In particular, for the parameters specific to the underlying ACO algorithms, we use the same

parameter space as for the mACO algorithms (Table D.3). For the multi-objective components,

we consider all alternatives described in Table D.1, plus the following ranges: N col ∈ {1, 2, 5} and

Nupd ∈ {1, . . . , 10}. Since Na, the number of ants, has to be divisible by N col, and the result be divisible

by Nweights (when awpi is used), Na was always rounded to the largest smaller number divisible by 10.

The weights are defined as, Nweights ∈ {0.2, 5, Na}, when N col = 2, and Nweights ∈ {0.5, 2, Na}, when

N col = 5. For single colony versions, only two values were allowed: 0.2 and 0.5. As in the previous

section, we apply irace four times, once for each stopping criterion. The budget of each run of irace

is 5 000 runs of the MOACO framework. The four resulting configurations are given as supplementary

material [23]. Here, we focus on the configuration obtained for TIME4 (Table D.6).

The analysis of the AutoMOACO configurations shows several commonalities. First, heuristic η3 is

always chosen, which is different from the one used in the mACO algorithms. Second, the parameter

β is always close to the maximum value allowed, thus giving very high importance to the heuristic

information. Third, the parameter value of q0 is also high. This together with the high value of the

parameter β implies that most of the items are chosen greedily. Fourth, the number of ants is always

very large. For example, 1000 ants are used for instance size 750. As a result, the number of iterations

executed by the MOACO algorithm in the given time limits is rather small. It reaches from at most two

iterations for the shortest time limits (TIME1 and TIME2) to about 60 to 85 iterations for the larger

time limit (TIME4). In the first case, if very few iterations are executed, the algorithm actually behaves



176

Table D.6: Parameter settings chosen by irace for AutoMOACO: TIME4.

Parameter α β ρ q0 af τmax τmin N col Nweights MCWeights NextWeight MCUpdate

Value 1 12 0.12 0.57 8 83 2.49 5 Na ∩50% awpi origin

Parameter Nupd Selection Ref. ∆τ [τ ] [η] [τ ]-Aggreg. [η]-Aggreg. Heuristic

Value 10 BO BSF constant multiple multiple product sum η3

Hypervolume

AutoMOACO

mACO2−tuned−heu

mACO2−tuned

mACO2
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●
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Figure D.1: Boxplots of the IH indicator for several MOACO algorithms with TIME4.

Table D.7: Friedman test results for IH for various MOACO algorithms.

IH TIME 1 (14.74) IH TIME 2 (11.416) IH TIME 3 (7.635) IH TIME 4 (5.987)

AutoMOACO (236) AutoMOACO (228) AutoMOACO (212) AutoMOACO (204)

mACO2-tuned-heu (365) mACO2-tuned-heu (373) mACO2-tuned-heu (388) mACO2-tuned-heu (399)

mACO2-tuned (611) mACO2-tuned (599) mACO2-tuned (600) mACO2-tuned (597)

mACO2 (688) mACO2 (800) mACO2 (800) mACO2 (800)

as a greedy construction procedure that performs multiple scalarizations of the bi-objective problem. For

the longer time limits, we confirmed that excluding the pheromone information (that is, setting α = 0)

makes the performance become significantly worse (see supplementary material [23]). This implies that

for the larger computation time limits, despite the low number of iterations, the ACO component is

effective.

Finally, we compare the performance obtained by the automatically configured MOACO algorithms

and the mACO algorithms. Given the high impact of using heuristic information η3, we repeated the

tuning of each of the mACO variants as described above, but this time leaving open also the choice of

the heuristic information. In the following comparison, we consider only the original and the two tuned

variants of mACO2, which are the best mACO variants for each of the time limits. In Fig. D.1 we show

boxplots of the hypervolume distribution for the algorithm automatically instantiated from the MOACO

framework (AutoMOACO), the original mACO2, mACO2 tuned with η1 and mACO2 tuned leaving

open the choice of the heuristic information (mACO2-tuned-heu). The instances shown are the four ZTZ

instances. Finally, Table D.7 gives the results of the Friedman test, which is applied as described in

Section D.5.1. Clearly, the AutoMOACO algorithm is the top performer, outperforming significantly the

other variants. For complete results, we again refer to the supplementary material [23].

D.6 Conclusions

In this chapter, we have extended the MOACO framework [157] to the bBKP and automatically generated

MOACO algorithms. The results reported here for the bBKP confirm the previous conclusions obtained

in the bTSP, that is, the automatically configured MOACO algorithms outperform the MOACO algo-

rithms from the literature, even after the ACO parameters of the latter have been tuned with the same

effort. Interestingly, the MOACO algorithm tuned for very short time limit is rather a repeated stochastic
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greedy construction procedure than an ACO algorithm. Although this result may seem counter-intuitive

at first, it is, however, a strength of automatic configuration procedures, because they are not biased

towards our expectations. The fact that the resulting algorithm is better than the MOACO algorithms

proposed in the literature, indicates that the automatic design works as desired, that is, it provides a

high-performing algorithm for the given termination criterion. For higher computation time limits, the

ACO component of the finally configured algorithm works and contributes to its high performance. Fu-

ture work should extend the MOACO framework to deal with any number of objectives, and apply the

proposed automatic design method to new problems in order to further confirm the above conclusions.





APPENDIX E

Automatic PLS design for the bi-objective knapsack

The efficiency of many successful heuristic algorithms for combinatorial optimization problems is based on

the proper use of local search procedures. In fact, many metaheuristics have incorporated the possibility

of using local search for example as daemon actions in ant colony optimization and as improvement

procedures in genetic algorithms. Pareto local search (PLS) [189] is a straightforward but effective

extension of single-objective local search to multi-objective problems. Given a set of solutions, a PLS

algorithm consists of selecting one solution at a time and exploring its neighborhood, thus, generating new

solutions. These new solutions are added to the initial set, dominated solutions are eliminated, and the

algorithm continues until each of the solutions in the solution set has been explored. The performance of

PLS algorithms usually tends to depend on (i) the quality of the input solutions, (ii) the definition of the

neighborhood structure, (iii) the pivoting rule used for exploring of the neighborhood, and the possible use

of candidate lists, and (iv) restrictions on the set of solutions to keep the runtimes manageable. For such

reasons, PLS algorithms are well suited for analyzing the impact of design features on the performance

of local search procedures for multi-objective combinatorial optimization problems (MCOPs).

In this chapter, we describe and develop a PLS framework, and apply it for the bi-objective bidi-

mensional knapsack problem (bBKP), using the local search components commonly found in the liter-

ature. Three sets of experimental analysis are conducted. The first, using a subset of the implemented

components (due to the huge number of possible combinations) consists of full factorial designs used

to investigate factors and their eventual interactions when PLS is used as a stand-alone optimization

method. The experimental setup used aims at isolating the effect of the initial solution set, and the

effect of the neighborhood size. Results confirm the dependence of PLS on high-quality input solutions,

and that large neighborhoods have to be combined with candidate lists to limit exploration and keep

runtimes reasonable. In the second set of experiments, we analyze PLS as a post-optimization method.

Two algorithms are used for generating input solutions: (i) a simply greedy procedure, and (ii) Auto-

MOACO, the automatically generated MOACO algorithm devised in Appendix D for the bBKP. Results

show that PLS is able to significantly improve the quality and size of the approximation fronts generated

by both algorithms. Finally, the third set of experiments uses all of the implemented components, and

consists of automatically generating PLS-based algorithms. Moreover, we also consider the hybridization

with the MOACO framework described in Appendix D, thus allowing the automatic design methodol-

ogy to generate hybridizations of MOACO and PLS. Results show that pure PLS algorithms generate

179
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Algorithm 10 Pareto local search

Input: An initial set of nondominated solutions A0

1: explored(s) ← false ∀ s ∈ A0

2: A ← A0

3: repeat
4: s← NextSolution(A0)
5: for all s′ ∈ Neighborhood(s) do
6: if Acceptance(s, s′,A) then
7: explored(s′) ← false
8: A ← Update(A0, s

′)

9: explored(s) ← true
10: A0 ← {s ∈ A | explored(s) = false }
11: until A0 = ∅
Output: A

high-quality approximation fronts for the bBKP, whereas the hybridization is not an advisable strategy.

The remainder of this chapter is organized as follows. Section E.1 introduces the PLS metaheuristic.

Section E.2 presents the PLS framework implemented for the bBKP. Section E.3 explains the experi-

mental setup, while the experimental results are discussed in Sections E.4 to E.7. Finally, conclusions

and possibilities for future work are discussed in Section E.8.

E.1 Pareto local search

Pareto local search (PLS) is a stochastic local search method for tackling multi-objective problems based

on a natural extension of single-objective local search approaches [189]. PLS algorithms use the concept

of dominance to extend single-objective local search to multi-objective problems. Starting from an initial

set of solutions A0 (which can also be a singleton), PLS selects at each iteration an unexplored solution

s ∈ A, the current set of non-dominated solutions, and explores the neighborhood of s, generating

new solutions. If these new solutions satisfy an acceptance criterion, they are added to A. Once the

neighborhood of s is explored, s is flagged so it is not revisited. The algorithm stops when all solutions

in A have been flagged. The three main steps of PLS as shown in Algorithm 10 can be summarized as

follows:

Selecting a solution to be explored. The method NextSolution chooses the next solution to be

explored. The original PLS chooses the next solution uniformly at random. More recently, other

possibilities have been considered, such as selection based on the optimistic hypervolume improve-

ment [71], i.e., favoring the selection of solutions that present the best hypervolument contribu-

tions (I1
H) to the solution archive (see Section 2.1).

Exploring the neighborhood. Given a solution s, the method Neighborhood(s) generates the set of

neighbor solutions. Two pivoting rules are commonly used in the literature: (i) first, where the

neighborhood exploration stops at the first accepted neighbor, or; (ii) full, where the neighborhood

of s is explored fully and all possible neighbors of s are examined. It is also possible to use

combinations of both rules [71]: the first-exploration pivoting rule is used in the beginning to favor

intensification until a point is reached when PLS stagnates. Then, the full-exploration pivoting

rule is used until the end of the execution of the algorithm.

Accepting new solutions. Given a solution s and a neighbor solution s′, the method Accep-

tance(s, s′,A) determines whether s′ is considered an acceptable solution or not. Two common

possibilities are: (i) dominance, where s′ is only accepted if s′ dominates s, or; (ii) nondominance,

where s′ is accepted in case s′ is nondominated w.r.t. A. The first criterion generates a higher
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pressure towards good solutions but it may lead to early stagnation. When using nondominance,

the output is likely a well distributed set, but it may lead to high computation times. Again, it

is also possible to use combinations of both rules [71]: at the beginning, the archive only accepts

dominating solutions. If no acceptable neighbors are found for a given solution, the acceptance

condition is relaxed to nondominance and the solution neighborhood is revisited.

Dubois-Lacoste et al. [72] present a review of PLS, highlighting its use both as a stand-alone procedure

and in hybrid algorithms. Regarding stand-alone PLS, the authors identify studies focusing on time-

limited experiments [152], on anytime behavior [71] and on how to restart or continue the search after

PLS converges [6, 67, 89]. Regarding PLS as a post optimization procedure, Dubois-Lacoste et al. [69]

have proposed algorithms that are currently state-of-the-art for several bi-objective flowshop problems.

E.2 Applying PLS to the bBKP

In this chapter, a solution x for the bBKP is represented as a list s of size n, where the first ns ≤ n items

are considered to be in the knapsack1. Furthermore, each solution has as an associated profit vector

~ps = (p1
s, p

2
s), where pcs =

∑n
i=1 p

c
ix
s
i , c = 1, 2, and a load vector ~ws = (w1

s , w
2
s), where wjs =

∑n
i=1 w

j
ix
s
i ,

j = 1, 2.

Two methods have been implemented for generating the initial solution(s) for PLS: (i) random, where

one or more random solutions are generated, and (ii) greedy, where a set of greedy solutions is generated.

Random solutions are generated by choosing an item uniformly at random at each construction step,

until no more items can be added due to the capacity constraints. When using greedy solutions, a set of

uniformly distributed weights Λ = {λ1, . . . , λz} is generated, where z is the number of input solutions.

For each λ ∈ Λ, a greedy solution is generated using one of the following heuristic functions [163]:

η1(i) =
λ p1

i + (1− λ) p2
i

m∑
j=1

wji

η2(i) =
λ p1

i + (1− λ) p2
i

m∑
j=1

wji
Wj − wjs + 1

(E.1)

All actions related to neighborhood exploration are encapsulated in the procedure Neighborhood. This

procedure systematically explores the neighborhood of a solution s, returning a set of neighbors. The

neighborhood operator used is the r-remove operator, which removes up to r items from the knapsack.

In our solution representation, removing one item at the i-th position of the list means exchanging it

with the last selected item, i.e., the item at position ns of the list, and decreasing the value of ns by one.

Solutions are reconstructed by filling the knapsack with items found at positions i = ns + r, . . . , n

of the list, in the order they appear. Since biasing the search is important, in the beginning of the

algorithm items not selected in the input solution are ordered. Formally, given an input solution s, let

IN (s) = {i | si = 1} be the set of ns items inside the knapsack and OUT (s) = {i | si = 0} be the set

of items outside the knapsack. The procedure SolutionOrdering is used to order items xi ∈ OUT (s) in a

nondecreasing order according to their heuristic value. The heuristics used for this ordering are the same

presented in Eq. E.1. The weights used by the heuristic functions are generated on a per solution basis.

Given a solution s, we tested nine methods for computing λ (Table E.1). For efficiency, candidate lists

are used to constrain the set of items that are considered for removal; in other words, items that are not

member of the candidate list are never considered for removal in a current solution. Given a solution

s, the candidate list of items for removal contains the L last items of the list, i.e., items at positions

i, ns − L < i ≤ ns. Two methods have been used for determining parameter L: (i) all, where L = ns,

and (ii) input, where L is input by the user.

1Nonetheless, the implementation also keeps the Boolean vector x, allowing the algorithm to know if an item is in the
knapsack or not in O(1).
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Table E.1: Methods used for computing the weights used by SolutionOrdering.

Method Formula Description

equal λ = 0.5 equal weights

random-discrete λ ∈ {0, 1} uniformly randomly chosen

random-continuous λ ∈ [0, 1] uniformly randomly chosen

largest-gap λ = i, min(wis) privileges dimension with more free space

smallest-gap λ = i, max(wis) privileges dimension with less free space

highest-profit λ = i, max(f i(s)) privileges objective with the highest value

lowest-profit λ = i, min(f i(s)) privileges objective with the lowest value

proportional-same λ = w1
s/(w

1
s + w2

s) proportional to the loads

proportional-opposite λ = w2
s/(w

1
s + w2

s) inversely proportional to the loads

The pseudocode for Neighborhood can be seen on Algorithm 11. Cr stands for a combination of r

items, whereas C∗ stands for a combinations of any number of items. Accepted checks if the solution s′ is

acceptable according to the acceptance criteria selected. Finally, the search is controlled by the following

pivoting-rules:

1. remove-first : given that the first accepted neighbor is generated by the removal of the item found

at the i-th position of s, ns −L < i ≤ ns, Neighborhood does not explore the insertion possibilities

generated by the removal of items found at the j-th position of s, ∀j, ns − L < j < i;

2. remove-full : Neighborhood explores the insertion possibilities generated by the removal of each of

the items in the candidate list.

3. insert-first : given the insertion possibilities generated by the removal of an item xi, Neighborhood

stops at the first combination of items that produces an accepted neighbor.

4. insert-full : given the insertion possibilities resulting from the removal of an item xi, Neighborhood

generates all acceptable neighbors.

The pseudocode for the bBKP-PLS algorithm can be seen on Algorithm 12. Firstly, the algorithm

generates initial solutions if none are provided (line 1). Then, a weight λ is generated for each solution

s ∈ A0 (line 3), and used in the SolutionOrdering procedure (line 4). Finally, PLS is called (line 6). In

addition, when Neighborhood checks if a neighbor solution is acceptable regarding the original solution,

it also checks if its acceptable w.r.t. to the set A. This is done to ensure that A is extended by at least

one solution if such a solution exists in the neighborhood of s.

E.3 Experimental setup

For the analysis of PLS, we use the same 200 bBKP instances described in Appendix D as a test set. We

use a full factorial design, and each configuration is run 10 times per instance. All parameters are analyzed

both individually and for possible interactions through plots of the median IH of the approximation sets

they produce. When comparing two algorithms using boxplots of their IH or plots of the differences

of their empirical attainment functions (EAFs) [158], we use the four ZTZ instances previously used in

Appendix D, and we run the algorithms 25 independent times per instance. When more algorithms are

simultaneously compared, we use the boxplots of the IH for a sample of 4 instances of each size: the ZTZ

instances plus three instances from the test set used for the analysis of PLS. For automatically designing

the hybrid AutoMOACO+PLS algorithm, we use irace [14, 159], also with a budget of 5000 experiments.
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Algorithm 11 Procedure Neighborhood

Input: An input solution s
1: N ← ∅
2: for all Cr ∈ candlist(s) do
3: s′ ← Remove(s, Cr)
4: for all C∗ ∈ OUT (s) do
5: s′′ ← Insert(s′, C∗)
6: if Accepted(s′′, s′) then
7: N ← N ∪ s′′
8: if insertion-first then
9: found ← true; break;

10: if found and removal-first then
11: break
Output: A set of neighbor solutions N

Algorithm 12 bBKP-PLS

Input: An input method input ∈ {random, greedy}
1: A0 ← InitialSolutions(input)
2: for all s ∈ A0 do
3: λ← GenerateLambda(s)
4: SolutionOrdering(s, λ)

5: A ←PLS(A0)
Output: A

All algorithms are implemented in C and all experiments are run on a single core of Intel Xeon E5410

CPUs, running at 2.33GHz with 6MB of cache size under Cluster Rocks Linux version 6.0/CentOS 6.3.

In this chapter, only few representative results are given. The complete set of results are made available

as a supplementary page [24].

E.4 Experiments with stand-alone PLS

In this section, we present the results of the analysis of stand-alone PLS. For this set of experiments,

we consider random selection of solutions in PLS and acceptance based on nondominance. To properly

isolate the effect of the neighborhood operator, this analysis is divided in two stages: (i) experiments

removing one item (r = 1), and (ii) experiments removing more than one item (r > 1). The parameter

space used for this analysis comprises all possible values previously described, summarized in Table E.2.

Removing a single item. The different possibilities of choosing the weights (λ) and the heuristic

information (η) do not have a strong influence on the results, hence, we do not present here a detailed

analysis of these parameters. Instead, we analyze the initialization method, the length of the candidate

list, and the removal and insertion pivoting rules. The results presented here are aggregated across all

possible settings of λ and η. Detailed results can be found on the supplementary material. We first

analyze stand-alone PLS initialized with a single random solution. Fig. E.1 (left) shows the median

IH on the y-axis, and the instances grouped by sizes on the x-axis. The lines represent the median IH
obtained by different configurations, and are ordered according to performance on the larger instance.

It is clear that using candidate lists when r = 1 is a bad decision, since the IH quickly degenerates

as the instance size grows. However, as shown on Fig. E.1 (right), the runtimes of configurations that

do not use candidate list tend to grow very quickly (y-axis).

The analysis of PLS starting from greedy solutions requires an additional parameter, namely the

number of weights used for generating input solutions. Experiments were conducted for 2, 10 and 50
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Table E.2: Parameter values used for the analysis of stand-alone PLS.

Parameter Values

η η1, η2

λ equal, random-discrete, random-continuous, largest-gap, smallest-gap, highest-profit,
lowest-profit, proportional-same, proportion-opposite

candidate list all, L = 15, L = 30, L = 50

removal rule removal-first, removal-full

insertion rule insertion-first, insertion-full
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Figure E.1: Median IH (left) and runtime (right) of different combinations of pivoting rules for PLS
starting from a random initial solution and r = 1.

input weights, and this parameter proved critical for the performance of the algorithm. When only

two input weights are used, the performance of the algorithm is really poor and similar to when a

random initial solution is used. On the other hand, using 50 weights not only improves the final result

quality, but also helps the algorithm converge faster compared to other settings. Therefore, we focus

on the experiments using 50 initial weights for generating the greedy solutions. Also in this case, not

using candidate lists leads to long runtimes. However, the solution quality does not degenerate when

larger values of L are adopted. Fig. E.2 (left) shows the median IH (y-axis) grouped by instance

sizes (x-axis). The best performing versions are the ones that use L = {30, 50}, removal-full and

insertion ∈ {first, full} (L = 30 not shown here due to space reasons). When analyzing runtimes

(see also Fig. E.2, right), a candidate list of size 50 combined with removal-full and insertion-first is

a setting that takes computation times similar to those that are used as time limits in the analysis of

state-of-the-art algorithms [22, 163].

Removing more than one item. For the analysis of PLS with r > 1, the same parameter space used

in the previous experiments is adopted. However, given that in the previous experiments with r = 1

we observed that the parameters used for SolutionOrdering (that is, the heuristic and the values of λ)

behave very similarly, we narrowed down the number of configurations to be tested by selecting η1 as

the heuristic function and highest-profit as the method for defining λ. The experiments were limited

to a maximum runtime of 5 hours per run.

Figure E.3 shows the results for r = 2. In terms of solution quality, there is a big difference between

configurations that use removal-first and insertion-first and the ones that do not. Moreover, the best

configurations for small instance size become much worse with larger instance sizes. The reason is

that those configurations reach the CPU-time limit of 5 hours and were stopped before completion.

In fact, the only configurations with runtime lower than 1 000 seconds are the ones that either (i) use

a candidate list (L ≤ 50) combined with removal-first and insertion-first, or; (ii) use a candidate list

with L = 15 combined with removal-first and insertion-full.
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E.5 Experiments with PLS as a post-optimization method

To analyze PLS as a post-optimization method, we start by comparing PLS against the greedy procedure

used for generating its input solutions. The motivation for this comparison is to understand whether

PLS is actually significantly improving the input set or simply adding more nondominated solutions.

The greedy procedure is run with η1 and 2n weights, which is roughly the same number of solutions

expected to be found by stand-alone PLS. The parameters used by PLS are: η1, highest-profit, L = 50,

removal-full, insertion-first, and r = 1. Fig. E.4 shows that the difference between the greedy procedure

and PLS (using 2n weights for greedy solutions) is quite strong. The approximation set identified by

PLS dominates the output of the greedy procedure across the entire range of the front, which means PLS

is able to substantially improve all initial solutions. In addition, PLS finds a much larger approximation

set.

We also add PLS as a post-optimization procedure to AutoMOACO, which is run using the same

parameter setting and time limit described in Appendix D. The resulting approximation set is given as

input to PLS, which is then run until completion using the same parameters as above. Fig. E.5 shows

the EAF difference for ZTZ 750. Again, PLS is able to improve the approximation fronts over the entire

objective space, while the runtimes of PLS remain low (see Table E.3). Thus, PLS significantly improves

the approximation obtained by AutoMOACO, incurring only a reasonable computational overhead. To

conclude this analysis, we compare all four algorithms considered in this section. Figure E.6 shows the

boxplot of the hypervolume for all four ZTZ instances. As expected, the greedy procedure presents

the worst hypervolume values. Among the remaining algorithms, AutoMOACO and stand-alone PLS

perform similarly on most instances. Interestingly, although the number of solutions is greatly increased
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Figure E.4: EAF difference plot. Greedy solutions using 2n weights (Greedy) vs. PLS initialized with
greedy solutions using 2n weights (PLSgreedy). Instance ZTZ 750.
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Figure E.5: EAF difference plot. AutoMOACO vs. AutoMOACO+PLS. Instance ZTZ 750.

when PLS is used as post-optimization for AutoMOACO, the differences in the hypervolume are relatively

small. For the largest instance, the performance of AutoMOACO decreases considerably, but PLS is able

to compensate such loss.

E.6 Further SLS approaches

Besides the algorithmic components identified in the PLS literature, the AutoPLS framework we pro-

pose in the next section contains components from other SLS approaches, namely variable neighborhood

search (VNS) and iterated greedy (IG). For a better understanding of these components, we briefly
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Table E.3: Average number of solutions and runtime: ZTZ instances, 25 runs.

ZTZ 100 ZTZ 250 ZTZ 500 ZTZ 750

Greedy 13 (0.00s) 43 (0.01s) 69 (0.06s) 114 (0.12s)

PLSgreedy 98.81 (0.04s) 356.46 (1.08s) 742.38 (7.64s) 1502.2 (40.35s)

AutoMOACO 81.84 (1s) 287.84 (6.25s) 376 (26s) 273.08 (56.25s)

AutoMOACO+PLS 110.48 (1.03s) 382.76 (7.27s) 807.28 (33.48s) 1542.48 (114.6s)
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Figure E.6: IH boxplot for ZTZ instances.

review these two approaches.

Variable neighborhood search comprises a set of standard algorithms proposed by Hansen and

Mladenović [103] which try to escape local optima by using multiple neighborhood operators. The

underlying concept behind VNS algorithms is that the local optimum for a given neighborhood

operator σ1 is usually not a local optimum for another operator σ2. By systematically switch-

ing between different neighborhood operators, VNS algorithms are able to combine their search

power. The simplest version of the VNS metaheuristic is the variable neighborhood descent (VND)

procedure, which is often used in place of traditional local search procedures. VND procedures

make use of multiple neighborhood operators σi, i = {1, ..., k}, usually ordered according to their

computational cost. When an operator σi reaches a local optimum, the following operator, σi+1,

is used. If σi+1 is able to escape the local optimum, i.e., find an improving neighbor solution,

the algorithm switches back to σ1. Else, σi+2 is used. Typically, VND procedures use at most

two or three distinct operators, but are to able find results significantly better than traditional LS

procedures [104].

Iterated greedy is a simple but efficient algorithmic strategy based on the idea of very large neigh-

borhood search (VLNS). The concept of VLNS consists on exploring large neighborhoods, since

the larger the neighborhood, the greater the chance of it having a near-optimal local optimum.

However, since the search space defined by these large neighborhoods generally forbids systematic

explorations, heuristic exploration methods need to be employed. VLNS algorithms can be imple-

mented in several different ways as described by Pisinger and Ropke [191]. The iterated greedy

(IG) metaheuristic [127], also known as large neighborhood search [210] or ruin and recreate [205],

implements the VLNS concept by means of two algorithmic steps: (i) destruction, i.e., destroying

part of the incumbent solution, and; (ii) construction, i.e, reconstructing the solution through con-

structive procedures. The definition of each of these algorithmic steps is of major importance to IG

algorithms. First, the degree of destruction employed by the destruction phase must be carefully

set. This parameter is typically set as a ratio of the solution, but this can lead to huge search spaces

if large instances are considered. On the other hand, if fixed values are set, the absolute number

of solution components removed may be too small, causing the algorithm to stagnate by always

reconstructing the same solution(s). Regarding the construction phase, algorithm engineers may
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choose between optimal or heuristic procedures. Using optimal procedures, high-quality solutions

can be retrieved, but if the neighborhood is too large this can significantly reduce the performance

of the algorithm. When heuristic procedures are used, solutions will be reconstructed fast, but the

procedure may always generate the same solution if the partial solutions are too similar. For this

reason, the destruction phase should preferably remove solution components randomly [191].

E.7 Automatic design using the PLS framework

After collecting insights through the large experimental campaigns described in the previous sections, we

proceed to automatically generate PLS algorithms using the PLS framework. To do so, we allow irace to

choose all components described in Sections E.1 and E.2. We then use the automatic algorithm design

methodology as previously described. In particular, the remaining following algorithmic components

have been applied to the bBKP. The full parameter space given to irace can be seen on Table E.4.

Dynamic acceptance criterion: by default, PLS uses dominance as acceptance criterion. However,

when PLS is unable to find an acceptable neighbor for a solution s, the acceptance criterion is

automatically switched to nondominance.

Dynamic pivoting rules: applicable to both removal and insertion rules. By default, a first rule is

adopted. The algorithm only switches to a full rule when the archive stagnates. If both removal

and insertion rules are set to be dynamic, the algorithm adopts the following sequence of rule

combinations: (i) removal-first, insertion-first ; (ii) removal-first, insertion-full, and; (iii) removal-

full, insertion-first.

Variable neighborhood descent: PLS is allowed to increase the neighborhood size in case the archive

has stagnated and previous approaches have already been tried. If dynamic pivoting rules are being

used, they are reseted to their initial states.

Iterated-greedy initialization: an iterated-greedy approach is used to generate initial solutions. The

size of the part of the solution to be destroyed is set according to a specific parameter, which can

be defined as absolute or relative to the instance size.

Insertion candidate list: when exploring the neighborhood of a solution, the local search procedure

may use a candidate list also for the items to be inserted in the knapsack.

Randomized/inverted local search: when choosing which items to remove from a solution, the

local search procedure may start from the beginning of the permutation rather than from its end

(inverted search direction). Moreover, it may also start from a randomly chosen starting point.

The configuration selected by irace for AutoPLS can be seen on Table E.5. Several important obser-

vations can be made from the analysis of the selected parameters. First, contrarily to what we expected,

the iterated-greedy component was not selected. This is due most likely to the fact that our current

implementation of this component is still incipient, lacking more powerful selectable subcomponents for

irace. Moreover, the number of input weights is set to an absurdly high value (1000). This remains yet

to be investigated, but one possible explanation is that the largest instance sizes demand more initial

solutions. The second important group of observations is that the components which had been manually

pointed out as best-performing through an extensive full factorial analysis are selected by irace. This

means that even among so many design possibilities the automatic design allows the generation (and

selection) of a complex layout such as (i) using nondominance since initial solutions are already high-

quality solutions; (ii) using a faster removal pivoting rule to make the VND component feasible; and

(iii) using roughly the same candidate list size for insertion and removal, which is a critical component

of the current state-of-the-art.
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Table E.4: Parameter space used by irace for the generation of AutoPLS.

Parameter Values

input set random, greedy, iterated-greedy

|Λ| {2, 5, 10, 50, 100, 250, 500, 1000, 1500, 2000, 2500}

iterated-greedy {10, . . . , 50}
destruction size

η η1, η2

λ equal, random-discrete, random-continuous,
largest-gap, smallest-gap, highest-profit,
lowest-profit, proportional-same, proportion-opposite

acceptance dominance, nondominance, dynamic

removal rule removal-first, removal-full, dynamic

removal candidate all, L = 15, L = 30, L = 50
list (RMC)

r0 1, 2

rmax 2, 3

insertion rule insertion-first, insertion-full, dynamic

insertion candidate proportional, fixed-size, none
list (ICL)

ICL ratio {5%, . . . , 30%} (when a proportional candidate list is used)

ICL size {5, . . . , 50} (when a fixed size candidate list is used)

Table E.5: Parameter settings chosen by irace for AutoPLS: TIME4.

Parameter input set |Λ| η λ acceptance removal rule

Value greedy 1000 η1 highest-profit nondominance first

Parameter RMC r0 rmax insertion rule ICL ICL size

Value L = 30 1 2 dynamic fixed-size 33

We also attempted to automatically generate a hybrid algorithm combining MOACO and PLS (the

latter as post-optimization). The parameter space provided to irace was the union of the parameter

space of each individual framework, plus an extra parameter used to define the ratio of time PLS

would be allowed to run. Under the given experimental setup, though, irace chooses not to use PLS.

This behavior is most likely explained by the fact that AutoMOACO needs most of the runtime for

generating high quality solutions, and hence the hybridization is not beneficial to the output quality.

Although the experimental evaluation of the algorithms devised in this section in still ongoing work, the

EAF difference plot depicted on Figure E.7 shows results are promising as expected.

E.8 Conclusions

In this chapter, we have proposed a Pareto local search (PLS) framework and applied it to the biobjec-

tive bidimensional knapsack problem. We have analyzed the impact of common local search components

found in the literature, and empirically investigated by how much it can improve over existing algo-

rithms. Our results show that the performance of stand-alone PLS strongly depends on high-quality

input solutions. However, such solutions can be generated without significant computational overhead

using greedy (meta)heuristics. Large neighborhood sizes proved prohibitive w.r.t. computation time
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Figure E.7: EAF difference plot. PLS started from greedy solutions (PLSgreedy) vs. AutoPLS. Instance
ZTZ 500.

even when combined with a candidate list. Nevertheless, archiving mechanisms that constraint the size

of the approximation set remain to be tested.

Moreover, once again the automatic design methodology has proved effective, showing us that (i) au-

tomatic generated PLS algorithms are a promising research path, and (ii) for the experimental setup used

here MOACO algorithms require a lot of computational runtime to generate high-quality solutions and

hence hybridizing it with PLS is not advisable. The research on automatic design using the PLS frame-

work is still ongoing work. The most important next steps are: (i) investigate efficient methodologies

for generating high-quality initial solutions at a small computational cost, and (ii) perform experimental

evaluations on more problems, and also with more objectives.
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for the bi-objective bidimensional knapsack: Supplementary material. http://iridia.ulb.ac.

be/supp/IridiaSupp2012-016/, 2013.
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[36] Mauro Birattari. Tuning Metaheuristics: A Machine Learning Perspective, volume 197 of Studies

in Computational Intelligence. Springer, Berlin/Heidelberg, Germany, 2009.

[37] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-race and iterated
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hood Search. In Gendreau and Potvin [91], pages 61–86.

[105] Daniel P Heyman and Matthew J Sobel. Stochastic models in operations research: stochastic

optimization, volume 2. Courier Corporation, 2003.

[106] J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

[107] Holger H. Hoos. Automated algorithm configuration and parameter tuning. In Y. Hamadi, E. Mon-

froy, and F. Saubion, editors, Autonomous Search, pages 37–71. Springer, Berlin, Germany, 2012.

[108] Holger H. Hoos. Programming by optimization. Communications of the ACM, 55(2):70–80, Febru-

ary 2012.



199
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algorithm configuration framework. Journal of Artificial Intelligence Research, 36:267–306, October

2009.

[114] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Automated configuration of mixed

integer programming solvers. In A. Lodi, M. Milano, and P. Toth, editors, Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 7th

International Conference, CPAIOR 2010, volume 6140 of Lecture Notes in Computer Science,

pages 186–202. Springer, Heidelberg, Germany, 2010.

[115] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization

for general algorithm configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent

Optimization, 5th International Conference, LION 5, volume 6683 of Lecture Notes in Computer

Science, pages 507–523. Springer, Heidelberg, Germany, 2011.
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based generation of stochastic local search heuristics through automatic algorithm configuration

tools. Computers & Operations Research, 51:190–199, 2014.

[173] Robert I. Mckay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and Michael O’Neill.

Grammar-based genetic programming: A survey. Genetic Programming and Evolvable Machines,

11(3-4):365–396, September 2010.

[174] A. Menchaca-Mendez and Carlos A. Coello Coello. GDE-MOEA: A new MOEA based on the gen-

erational distance indicator and ε-dominance. In Proceedings of the 2015 Congress on Evolutionary

Computation (CEC 2015), pages 947–955, Piscataway, NJ, 2015. IEEE Press.

[175] Adriana Menchaca-Mendez and Carlos A. Coello Coello. GD-MOEA: A new multi-objective evo-

lutionary algorithm based on the generational distance indicator. In António Gaspar-Cunha, Car-

los Henggeler Antunes, and Carlos A. Coello Coello, editors, Evolutionary Multi-criterion Opti-

mization, EMO 2015 Part I, volume 9018 of Lecture Notes in Computer Science, pages 156–170.

Springer, Heidelberg, Germany, 2015.

[176] E. Mezura-Montes, M. Reyes-Sierra, and Carlos A. Coello Coello. Multi-objective optimization

using differential evolution: a survey of the state-of-the-art. In Uday K. Chakraborty, editor,

Advances in differential evolution, pages 173–196. Springer, Heidelberg, Germany, 2008.

[177] Kaisa Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, 1999.



204

[178] Gerardo Minella, Rubén Ruiz, and M. Ciavotta. A review and evaluation of multiobjective al-

gorithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20(3):451–471,

2008.

[179] Atefeh Moghaddam, Farouk Yalaoui, and Lionel Amodeo. Lorenz versus Pareto dominance in a

single machine scheduling problem with rejection. In R. H. C. Takahashi et al., editors, Evolutionary

Multi-criterion Optimization, EMO 2011, volume 6576 of Lecture Notes in Computer Science, pages

520–534. Springer, Heidelberg, Germany, 2011.

[180] Gilberto Montibeller and Hugo Yoshizaki. A framework for locating logistic facilities with multi-

criteria decision analysis. In R. H. C. Takahashi et al., editors, Evolutionary Multi-criterion Opti-

mization, EMO 2011, volume 6576 of Lecture Notes in Computer Science, pages 505–519. Springer,

Heidelberg, Germany, 2011.

[181] R. Nagy, M. Suciu, and D. Dumitrescu. Exploring Lorenz dominance. In Symbolic and Numeric

Algorithms for Scientific Computing (SYNASC), 2012 14th International Symposium on, pages

254–259, 2012.

[182] V. Nannen and Agoston E. Eiben. Relevance estimation and value calibration of evolutionary

algorithm parameters. In Manuela M. Veloso, editor, Proceedings of the Twentieth International

Joint Conference on Artificial Intelligence (IJCAI-07), pages 975–980. AAAI Press, Menlo Park,

CA, 2007.
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irace. In Proceedings of EvoCOP 2014 – 14th European Conference on Evolutionary Computation

in Combinatorial Optimization, volume 8600 of Lecture Notes in Computer Science, pages 37–48.

Springer, Heidelberg, Germany, 2014.

[191] David Pisinger and Stefan Ropke. Large neighborhood search. In Gendreau and Potvin [91], pages

399–419.

[192] Kata Praditwong and Xin Yao. A new multi-objective evolutionary optimisation algorithm: the

two-archive algorithm. In Computational intelligence and security, 2006 international conference

on, volume 1, pages 286–291. IEEE, 2006.

[193] Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential Evolution: A Practical

Approach to Global Optimization. Springer, New York, NY, 2005.

[194] Luca Pulina and Armando Tacchella. A self-adaptive multi-engine solver for quantified Boolean

formulas. Constraints, 14(1):80–116, 2009.

[195] Robin C. Purshouse and Peter J. Fleming. On the evolutionary optimization of many conflicting

objectives. IEEE Transactions on Evolutionary Computation, 11, 2007.
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