
Libretro - Implementing the core

Hans-Kristian Arntzen, Daniel De Matteis

December 3, 2012

Contents
1 Background 2

2 Portability 2

3 Features 3
3.1 Frame-by-frame rewind . 3
3.2 FFmpeg lossless recording . 3
3.3 Advanced GPU shader support 3
3.4 Peer-to-peer netplay . 4
3.5 Audio DSP plugins . 4

4 Implementing the API 4
4.1 Startup . 4

4.1.1 retro_api_version() . 4
4.1.2 retro_init() . 4
4.1.3 retro_set_*() . 5
4.1.4 Environment callback . 5
4.1.5 retro_set_controller_port_device() 5
4.1.6 retro_get_system_info() 5
4.1.7 retro_load_game() . 5
4.1.8 retro_get_system_av_info() 6

4.2 Running . 6
4.2.1 retro_run() . 6
4.2.2 Video/Audio synchronization considerations 6
4.2.3 Audio callback considerations 7
4.2.4 Input device abstraction 7
4.2.5 retro_serialize_size() . 8
4.2.6 retro_serialize() . 8
4.2.7 retro_unserialize() . 8

4.3 Tear-down . 9
4.3.1 retro_unload_game() . 9
4.3.2 retro_deinit() . 9

Abstract

1

This document explains how to successfully implement a library based
on the libretro API. Several reasons for why more emulators and game
engines should run in libretro are outlined.

1 Background
RetroArch is a project that aims to be a center for “retro” gaming experiences.
For your quick fix of 2D gaming goodness, RetroArch aims to provide a simple,
featureful uniform interface for many different gaming systems.

Libretro is an API that abstracts the inner functionality of a gaming system.
RetroArch can load a library that implements this API, give it a ROM, and
play. A key design is that libretro implementations are loaded as libraries. This
ensures great modularity, and flexibility for a developer of a core.

Due to its simple and open API, other frontends can just as easily utilize
libretro implementations.

While “retro” would often imply an emulator of a classic system, libretro
can also abstract a game engine. Classics such as Cave Story (NXEngine) and
DOOM (PrBoom) have already been ported over.

2 Portability
Most emulator authors write both the backend and frontend to their project.
The question of portability inevitably rises when the frontend is developed.
Should one target a single platform with high level of integration or take a
multi-platform approach with libraries like Qt? Backends for essentials like
video, audio and input take a lot of time and effort to get right, especially on
multiple platforms.

By implementing for libretro, one can target standard C/C++ (or any lan-
guage that can export a C API), and achieve instant portability across tons of
platforms.

In 2012, we would argue that portability has never been more relevant.
There are three major operating systems on the desktop, two major smart
phone platforms, and three gaming consoles. If your system is implemented
with software rendering, your implementation can run on all systems supported
by the frontend, without writing any platform specific code. In the case of
RetroArch these are currently:

• Windows

• Linux

• OSX

• GameCube

• PlayStation 3

2

• XBox 1

• XBox 360

• Wii

• Android

3 Features
RetroArch has been in development for about two years. During this time, some
features have shown to be quinessential to retro gaming systems. Implementing
the libretro API correctly, these features can be utilized without any additional
work.

3.1 Frame-by-frame rewind
A libretro implementation that implements serialization and unserialization of
internal state is able to transparently support rewind mechanics. While many
emulators support coarse grained rewind, RetroArch supports rewind at the
frame level, i.e., frames can be rewound one frame at a time, similar to the
indie-title Braid.

3.2 FFmpeg lossless recording
RetroArch can utilize the libavcodec library to encode video and audio output
from a libretro implementation. The data is encoded losslessly, with FLAC as
audio codec, and cutting-edge H.264/RGB (libx264) encoding, with a fallback
to FFV1 for older playback systems that don’t support the modern H.264/RGB
variant. The recorder is multithreaded, and easily performs real-time.

3.3 Advanced GPU shader support
Classic 2D games have the advantage that their video output is very flexible,
that is, it can be post- processed easily. Before the advent of programmable
GPUs, video filters had to be performed on the main CPU, which cut directly
into performance, and severely limited the types of filters possible to acheive in
real-time. RetroArch aims to move this processing to the GPU by using shaders.
A vast amount of shader effects are written already, and the shader format used
is documented and implemented independently by other frontends as well.

RetroArch’s shader support is more advanced than most emulators. It sup-
ports an arbitrary amount of shader passes, look-up textures (borders), script-
able shaders that can react dynamically to input or game content.

RetroArch still supports use of traditional CPU filters, however, it should
be considered a fallback if GPU support is broken.

3

3.4 Peer-to-peer netplay
RetroArch supports two-player action over the network. It employs a rollback
technique that aims to hide latency as much as possible, similar to the method
employed by GGPO.

In addition to head-to-head multiplayer, a spectator mode is implemented.
This mode allows a host to live stream playback to several watchers in real-time.
The bandwidth required for this mode is near- zero as only raw input data is
transferred over the network.

3.5 Audio DSP plugins
RetroArch supports plugins that allows post-processing of audio data, similar to
post-processing of video data. It supports use of on-the-fly configurable plugins
with aid of a GUI.

4 Implementing the API
The libretro API consists of several functions outlined in libretro.h, found in the
RetroArch source package. A libretro implementation should be compiled into
a dynamically loadable executable (.dll/.so/.dylib) or a static library (.a/.lib)
that exports all the functions outlined in libretro.h. These will be called by the
frontend. Implementations are designed to be single-instance, so global state
is allowed. Should the frontend call these functions in wrong order, undefined
behavior occurs.

The API header is compatible with C99 and C++. From C99, the bool type
and <stdint.h> are used.

The program flow of a frontend using the libretro API can be expressed as
follows:

4.1 Startup
4.1.1 retro_api_version()

This function should return RETRO_API_VERSION, defined in libretro.h. It
is used by the frontend to determine if ABI/API are mismatched. The ver-
sion will be bumped should there be any non- compatible changes to the API.
Changes to retro_* structures, as well as changes in publically visible functions
and/or their arguments will warrant a bump in API version.

4.1.2 retro_init()

This function is called once, and gives the implementation a chance to initialize
data structures. This is sometimes implemented as a no-op.

4

4.1.3 retro_set_*()

Libretro is callback based. The frontend will set all callbacks at this stage,
and the implementation must store these function pointers somewhere. The
frontend can, at a later stage, call these.

4.1.4 Environment callback

While libretro has callbacks for video, audio and input, there’s a callback type
dubbed the environment callback. This callback (retro_environment_t) is a
generic way for the libretro implementation to access features of the API that
are considered too obscure to deserve its own symbols. It can be extended
without breaking ABI. The callback has a return type of bool which tells if the
frontend recognized the request given to it.

Most implementations of libretro will not use this callback at all.

4.1.5 retro_set_controller_port_device()

By default, joypads will be assumed to be inserted into the implementation. If
the engine is sensitive to which type of input device is plugged in, the frontend
may call this function to set the device to be used for a certain player. The
implementation should try to auto-detect this if possible.

4.1.6 retro_get_system_info()

The frontend will typically request statically known information about the core
such as the name of the implementation, version number, etc. The information
returned should be stored statically. If dynamic allocation must take place, the
implementation must make sure to free this storage in retro_deinit() later.

4.1.7 retro_load_game()

This function will load a ROM that the implementation will use to play the
game. If the implementation is an emulator, this would be a game ROM image,
if it is a game engine, this could be packaged upassets for the game, etc. The
function takes a structure that points to the path where the ROM was loaded
from, as well as a memory chunk of the already loaded file.

There are two modes of loading files with libretro. If the game engine requires
to know the path of where the ROM image was loaded from, the need_fullpath
field in retro_system_info must be set to true. If the path is required, the
frontend will not load the file into the data/size fields, and it is up to the
implementation to load the file from disk. The path might be both relative and
absolute, and the implementation must check for both cases.

This is useful if the ROM image is too large to load into memory at once. It
is also useful if the assests consist of many smaller files, where it is necessary to
know the path of a master file to infer the paths of the others. If need_fullpath
is set to false, the frontend will load the ROM image into memory beforehand.

5

In this mode, the path field is not guaranteed to be non-NULL. It should point
to a valid path if the file was indeed, loaded from disk, however, it is possible
that the file was loaded from stdin, or similar, which has no well-defined path.

It is recommended that need_fullpath is set to false if possible, as it allows
more features, such as soft- patching to work correctly.

retro_load_game_special() is a special case of retro_load_game(). It is
designed to allow the loading of several ROMs together. This is needed for
certain odd cases like Super Nintendo with e.g. Super GameBoy, Sufami Turbo,
etc that consist of a "BIOS" + Game(s). The function takes the type of game
as an argument, and if a new game type is to be added, it needs to be reserved
in the libretro.h header. Almost any libretro implementations should simply
implement this as return false;. If a game consist of many smaller files it is
encouraged to load a single zipped file, or something similar.

Each ROM image can take an optional meta-argument, a string that gives
extra metadeta to the implementation. The metadata is implementation spe-
cific, and can be ignored completely in almost any implementation.

4.1.8 retro_get_system_av_info()

This function lets the frontend know essential audio/video properties of the
game. As this information can depend on the game being loaded, this info will
only be queried after a valid ROM image has been loaded. It is important to
accuractely report FPS and audio sampling rates, as FFmpeg recording relies
on exact information to be able to run in sync for several hours.

4.2 Running
4.2.1 retro_run()

After a game has been loaded successfully, retro_run() will be called repeatedly
as long as the user desires. When called, the implementation will perform its
inner functionality for one video frame. During this time, the implementation
is free to call callbacks for video frames, audio samples, as well as polling input,
and querying current input state. The requirements for the callbacks are that
video callback is called exactly once, i.e. it does not have to come last. Also,
input polling must be called at least once.

4.2.2 Video/Audio synchronization considerations

Libretro is based on fixed rates. Video FPS and audio sampling rates are always
assumed to be constant. Frontends will have control of the speed of playing,
typically using VSync to obtain correctspeed. The frontend is free to "fast-
forward", i.e. play as fast as possible without waiting, or slow- motion. For
this reason, the engine should not rely on system timers to perform arbitrary
synchronization. This is common and often needed in 3D games to account for
varying frame rates while still maintaining a playable game. However, libretro

6

targets classic systems where one can assume that 100 % real-time performance
will always be met, thus avoiding the need for careful timing code.

By default, the libretro implementation should replace any arbitrary sleep()/time()
patterns with simply calling video/audio callbacks. The frontend will make sure
to apply the proper synchronization.

This is mostly a problem with game ports, such as PrBoom. For the libretro
port of PrBoom, which heavily relied on timers and sleeping patterns, sleeping
was replaced with simply running for one frame, and calling the video callback.
After that, enough audio was rendered to correspond to one frames worth of
time, 1 / fps seconds. All sleeping and timing patterns could be removed, and
synchronization was correct.

4.2.3 Audio callback considerations

The libretro API has two different audio callbacks. Only one of these should be
used; the implementation must choose which callback is best suited.

The first audio callback is per-sample, and has the type void (*)(int16_t,
int16_t). This should be used if the implementation outputs audio on a per-
sample basis. The frontend will make sure to partition the audio data into
suitable chunks to avoid incurring too much syscall overhead.

If audio is output in a "batch" fashion, i.e. 1 / fps seconds worth of audio
data at a time, the batch approach should be considered. Rather than looping
over all samples and calling per-sample callback every time, the batch callback
should be used instead, size_t (*)(const int16_t *, size_t).

Using the batch callback, audio will not be copied in a temporary buffer,
which can buy a slight performance gain. Also, all data will be pushed to audio
driver in one go, saving some slight overhead. It is not recommended to use the
batch callback for very small (< 32 frames) amounts of data.

The data passed to the batch callback should, if possible, be aligned to 16
bytes (depends on platform), to allow accelerated SIMD operations on audio.
RetroArch implements SSE/AltiVec optimized audio processing for conversions
and resampling.

4.2.4 Input device abstraction

Abstracting input devices is the hardest part of defining a multi-system API as
it differs across every system. The common input devices are:

• Joypad (with or without analogs)

• Mouse (e.g. SNES mouse)

• Keyboard (e.g. Commodore, Amiga)

• Lightguns (e.g. SNES SuperScope)

The joypad abstraction is the most interesting. Rather than complicating things
by mapping input arbitrarily in terms of the implementation, which would

7

make input configuration very complex with careful configuration on a per-
implementation basis, an abstract joypad device, the RetroPad, was devised.

This joypad is essentially the Super Nintendo controller, widely considered
the pinnacle of retro game controllers. To account for more modern systems with
additional buttons, additions from the PlayStation DualShock are incorporated,
with extra shoulder buttons (L2/R2), as well as depressable analogs (L3/R3).
In addition, the RETRO_DEVICE_ANALOG is used for analog stick data.
An implementation should map its idea of a joypad in terms of the RetroPad,
which is what most users will have to use with their frontend.

4.2.5 retro_serialize_size()

4.2.6 retro_serialize()

4.2.7 retro_unserialize()

Serialization is optional to implement. Serialization is better known as "save
states" in emulators, and these functions are certainly more useful in emulators
which have a fixed amount of state. It allows the frontend to take a snapshot of
all internal state, and later restore it. This functionality is used to implement
e.g. rewind and netplay. Some important considerations must be taken to
implement these functions well.

If serialization is not supported, retro_serialize_size() should return 0. If
retro_serialize_size() returns non-zero, it is assumed that serialization is prop-
erly implemented.

The frontend should call retro_serialize_size() before calling retro_serialize()
to determine the amount of memory needed to correctly serialize. The size even-
tually passed to retro_serialize() must be at least the size of the value returned
in retro_serialize_size(). If too large a buffer is passed to retro_serialize(), the
extra data should be ignored (or memset to 0).

It is valid for the value returned by retro_serialize_size() to vary over time,
however, it cannot ever increase over time. If it should ever change, it must
decrease. This is rationaled by the ability to pre- determined a fixed save state
size right after retro_load_game() that will always be large enough to hold any
following serialization. This certainty is fundamental to the rewind implemen-
tation. This requirement only holds between calls to retro_load_game() and
retro_unload_game().

If possible, the implementation should attempt to serialize data at consistent
offsets in the memory buffer. This will greatly help the rewind implementation
in RetroArch to use less memory.

Both retro_serialize() and retro_unserialize() return a boolean value to let
the frontend know if the implementation succeeded in serializing or unserializing.

8

4.3 Tear-down
4.3.1 retro_unload_game()

After the user desired to stop playing, retro_unload_game() will be called. This
should free any internal data related to the game, and allow retro_load_game()
to be called again.

4.3.2 retro_deinit()

This function should free all state that was initialized during retro_init(). After
calling this function, the frontend can again call retro_init().

9

Index
A
ABI, 5
AltiVec, 7

B
Braid, 3

C
C++, 4
C99, 4
Cave Story, 2

D
Doom, 2

F
FFmpeg, 3, 6
FLAC, 3

G
GGPO, 4

H
H.264, 3

I
Input device abstractions

RetroPad, 8

L
libavcodec, 3
libretro, 2–5, 7

Q
Qt, 2

R
RetroArch, 2–4, 7, 8

S
SIMD, 7
SSE, 7

10

	Background
	Portability
	Features
	Frame-by-frame rewind
	FFmpeg lossless recording
	Advanced GPU shader support
	Peer-to-peer netplay
	Audio DSP plugins

	Implementing the API
	Startup
	retro_api_version()
	retro_init()
	retro_set_*()
	Environment callback
	retro_set_controller_port_device()
	retro_get_system_info()
	retro_load_game()
	retro_get_system_av_info()

	Running
	retro_run()
	Video/Audio synchronization considerations
	Audio callback considerations
	Input device abstraction
	retro_serialize_size()
	retro_serialize()
	retro_unserialize()

	Tear-down
	retro_unload_game()
	retro_deinit()

