
Dynamic Rate Control for Retro Game Emulators

Hans-Kristian Arntzen

December 12, 2012

Abstract

This article describes a method for game emulator frontends to
synchronize both audio and video output at the same time, even when
the emulating system has a different refresh rate and audio sampling
rate than the gaming system that is being emulated.

The method works by dynamically adjusting audio resampling ra-
tios in such ways that ideally, the audio buffer is never underrun nor
overrun, thus avoiding blocking on audio. This in turn allows vertical
synchronization for video.

The audio pitch is adjusted when adjusting audio resampling ratios,
but in practice so little, that it is inaudible to the human ear.

1 Background

Retro game consoles are highly synchronous. Their audio output rates are
linked directly to video refresh rates. Every video frame, the audio chip
generates on average a fixed amount of audio samples. Before continuing to
emulate the next frame, the generated audio samples must be pushed to an
audio buffer of fixed size.

If there is not enough space in the audio buffer, the emulator must wait
(block) for the buffer to become ready for writing. This is a non-ideal
situation as while the emulator is blocking on audio, a vertical refresh might
be missed entirely, thus creating stuttering video.

1.1 The ideal synchronization

For an emulator of a retro game system, a key factor in smooth video is
vertical refresh synchronization (VSync), where each frame of the game maps
to a single frame on the monitor. Audio must also be pushed to the speakers
without any audio dropouts. This double synchronization requirement poses
a problem as any form of synchronization to one modality will negatively
affect the other.

This is a real problem as an emulator has no way of guaranteeing per-
fectly equal video refresh rates and audio sampling rates as the original
system.

1



On conventional computer hardware, there is no perfect way of know-
ing the real monitor refresh rates and audio sampling rates either due to
tolerances on oscillators.

1.2 Scope of method

As this method aims to implement a method for synchronization when
VSync is used, this method is only useful when game frame rate is close
to monitor frame rate. If this is not the case, other methods should be
employed.

2 Method

This method assumes that audio from the emulator is output at regular
intervals, e.g. every video frame. The method also assumes that audio is
resampled from the game system sampling rate to the sound cards sampling
rate. The resampling ratio will be dynamically adjusted every time audio is
resampled and subsequently pushed to the audio buffer.

2.1 Definitions

fv Emulated game system frame rate (FPS)

fa Emulated game system sampling rate (Hz)

r Emulated game system samples per frame fa/fv

ma Emulator system sampling rate

mv Emulator system monitor refresh rate

m
′
a Estimated emulator system sampling rate

m
′
v Estimated emulator system monitor refresh rate

R Emulator system samples per frame ma/mv

R
′

Estimated emulator system samples per frame m
′
a/m

′
v

Ab Current amount of samples in the audio buffer

AB Capacity (in samples) of the audio buffer

d Allowed deviation in audio pitch

2



2.2 Resampling audio

Every time the game system outputs audio, it is resampled with some ratio.
It is here assumed that the game system outputs a video frame worth of
audio at a time. While the formulae are invariant to how often audio is
written to audio buffers, this assumption is made for simplicity.

The correct resampling ratio is estimated to be R
′
/r, thus pushing R

′

samples of audio per frame on average. In the duration of a frame, on
average, R audio frames will have been played to the speakers and thus
removed from the buffer.

∆Ab = R
′ −R (1)

We see that unless ∆Ab = 0, it is inevitable that the audio will either
underrun (Ab ≤ 0), or block due to buffer being full (Ab ≥ AB). Both
these situations are not acceptable as underruns would cause audible au-
dio dropouts, and blocking would block the emulator from emulating more
frames, and thus greatly increasing the chance of missing a VBlank, which
is not acceptable as well. Blocking however, is far more preferable than
underrunning.

As with any estimator, it is impossible to guarantee that R
′

can be
perfectly estimated. Therefore, it is impossible to guarantee that underrun
nor blocking occurs.

2.3 Dynamic rate control

The proposed method will dynamically adjust the resampling ratio R
′
/r.

Changing this ratio will adjust audio pitch as well. To ensure that these
adjustments are not audible to the human ear, the range of adjustment will
be limited by d.

Using d, the maximum pushed samples will be R
′
(1 + d), and similarly,

minimum will be R
′
(1− d). d must be chosen so that R falls between

minimum or maximum. This depends on the confidence of the estimate R
′
.

The revised update formula will look like this:

∆Ab =

[
1 +

(
AB − 2Ab

AB

)
d

]
R

′ −R (2)

The formula will decrease resampling ratio if audio buffer is over half
full, and similarly increase resampling ratio if buffer is below half full.

2.4 Stability

To ensure that the method is stable, i.e. that Ab will converge to a certain
value, we assume a continuous model for pushing audio.

3



δAb

δf
=

[
1 +

(
AB − 2Ab

AB

)
d

]
R

′ −R (3)

δAb

δf
+

2dR
′

AB
Ab = R

′
(1 + d)−R (4)

The differential equation in (4) can be solved as

Ab = AB
R

′
(1 + d)−R

2dR′ + C0 exp

(
−2dR

′

AB
f

)
(5)

Given time (f →∞), this expression converges to

Ab,c = AB
R

′
(1 + d)−R

2dR′ (6)

If R
′

is the ideal estimate, R
′

= R, the expression converges to

Ab,c = AB/2 (7)

which is the best case, as having a half full buffer means most possible wiggle
room for jitter.

2.5 Updating ratio estimate R
′

After time, it is assumed that Ab will converge to Ab,c. Due to jitter, and

various non-ideal behavior, only an estimate of Ab,c, Âb,c = Āb can be ob-
tained.

R̂′

R
=

AB

(1 + d)AB − 2dÂb,c

(8)

The ratio estimate R
′
can thus be re-estimated accordingly. This method

of re-estimating the ratio might however not be the best. Directly estimating
m

′
a and m

′
v should yield more confident results, but this is outside the scope

of this article.

3 Results

A synthetic test was carried out to test how the method would react to a
common scenario for this method. An emulation of Super Nintendo En-
tertainment System (SNES) was matched to an emulating system. To test
effects of jitter, the frame time was assumed to follow a normal distribution.
Thus, R in (2) followed a normal distribution.

4



Table 1: Timings
System FPS (Hz) Sample rate (Hz)

SNES 60.0988 32040.5

Emulating system 59.88 48000.15

Estimated system 59.95 48000.0

Table 2: Test parameters
d 0.005

Frame time deviation 2%

5



0 1 2 3 4 5 6 7 8 9 10

x 104

0

500

1000

1500

2000

2500

3000

3500

4000
Audio buffer size (AB = 4096)

Frame

A
b

0 1 2 3 4 5 6 7 8 9 10

x 104

0.999

1

1.001

1.002

1.003

1.004

1.005
Relative pitch

Frame

P
itc

h 
m

od

Figure 1: Results with 2% standard deviation on frame time

The results are shown for audio buffer size over time and the pitch mod-
ulation for every simulated frame. Audio pitch modulation deviation was
estimated to 0.062%, significantly lower than the d value, which allowed for
a maximum deviation of 0.5%.

The audio buffer is never filled nor underrun, which would allow every
single VBlank to be met, while maintaining audio sync.

6



4 Discussion

4.1 Effect of d

Ideally, d should be as low as possible to avoid large deviations in pitch,
but at the same time, a too low value for d will not be able to compensate
for the difference between R

′
and R. From testing in the emulator fron-

tend RetroArch1, a factor of d ≥ 0.002, d ≤ 0.005 has been found to give
satisfactory results.

This method does not propose a method of determining the best d factor.

4.2 Audibility

As audio pitch is altered, there is a question of audibility. Given a small
enough d, it’s clear that the effect would be completely inaudible as all
oscillators in a DAC have tolerances and jitter to some degree. It is also
reasonable to believe that some persons are able to notice a smaller d than
others.

Some testing must be carried out to find a d that is inaudible in subjective
tests.

5 Conclusion

This method shows that it is possible to obtain synchronization to both
VBlank and audio without having a perfect estimate of the emulating sys-
tems frequencies. As long as the estimates are reasonable close to the real
values, the dynamic rate control method proposed here is able to smooth
out the differences.

1https://github.com/Themaister/RetroArch

7


