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Abstract

How should electoral districts be drawn? In the U.S., many states
attempt to limit gerrymandering by requiring that districts be "reasonably
compact", but also require that plans respect "the integrity of communi-
ties of interest'. Yet mandating compactness may come at the cost of
communities of interest. In order to achieve a compact district shape,
one may need to disregard communities of interest and assemble highly
heterogeneous districts as a result, adversely affecting democratic outcomes
like representation and responsiveness. Are compactness and community
fundamentally conflicting goals?

I make two contributions in this work. First, I develop a new compact-
ness metric—human compactness—that improves upon previous measures
by incorporating a notion of travel times. Second, I use a Markov Chain
Monte Carlo (MCMC) approach to generate a large sample of districting
plans. I find mixed evidence for a trade-off between compactness and ho-
mogeneity depending on the compactness measure used. I further find that
my human compactness measure consistently identifies more homogeneous
districts, suggesting that a judicious choice of compactness metric can in
fact encourage keeping communities of interest together.
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1 Introduction

How should electoral districts be drawn? This question is important because it
is inextricably tied together with democratic representation, a concept deeply
rooted in the political science literature. Representation (making all citizens’
voices “present” in public policymaking processes) is one of the key pillars of
democracy, if not its raison d’etre. In The Concept of Representation, Pitkin
[1967] identifies four facets of representation: formalistic, symbolic, descriptive,
and substantive. The way that districts are drawn can affect all four facets of
respresentation.

Formalistic representation involves both authorisation and accountability. Au-
thorisation means that the representative must have come to power through
a legitimate mechanism, and accountability means that constituents must be
able to punish their representatives and vote them out of office if they do poorly.
Districts that are drawn fairly deliver both authorisation and accountability.
However, gerrymandering—drawing districts that “pack” or “crack” voters—
ensure safe seats for incumbents, meaning that that representatives can perform
badly and yet be assured of a large margin of victory. If representatives can
stay in power regardless of their performance, they are unaccountable. More
generally, if voters cannot materially affect the outcome of elections due to
gerrymandering, this casts doubt on the legitimacy—and thus authorisation—of
the representatives.

How districts are drawn also affects descriptive and substantive representation,
which in turn affect democratic outcomes. Descriptive representation involves
the extent to which a representative “mirrors” his constituents: this could be
belonging to the same race or socioeconomic class, sharing common experiences,
or being part of the same communities of interest. But in order for a representative
to mirror his constituents, his constituents must be somewhat homogeneous. A
single representative cannot resemble multiple highly heterogeneous populations
at once. If a district is spatially divided between “nonwhite and white, rich
and poor, rural and urban”, “then it may be very hard for one representative
to represent all factions well” [Cain, 1984]. The more homogeneous a district,
the better able the elected official is to accurately reflect the views of more of
his constituents [Brunell, 2010]. Additionally, districts can either be drawn to
ensure minority representation—as in a majority-minority district—or dilute
minority votes to the point of irrelevance.

Many states have written their constitutions with representation clearly in
mind. In order to protect formalistic representation, thirty-seven states prevent
gerrymandering by mandating that districts should be “reasonably compact”,
because “the diagnostic mark of the gerrymander. .. is the noncompact district”
[Polsby and Popper, 1991]. Twenty-four states also promote descriptive and
substantive representation by asking redistricting bodies to respect “communities
of interest”—areas with “recognised similarities of interest” in “social, cultural,
racial, ethnic and economic interests”—when districting.



Normative Legislative Instantiations of

principles requirements requirements
Formalistic: every Gerrymandering harms )
: formalistic . Several different
person’s vote | p operationalised
— representation. b compactness
should count P Sy Y
revent it with measures
equally compactness
What makes a
good democracy?
Representation
Descriptive and Increase descriptive
substantive: a and substantive District
rep ive should representation by operationalised f
mirror the people of his respecting by hor_noggnelty
district and fight for their communities of (spatial diversity)
interests. interest

Figure 1: Why representation matters, and how legislators try to promote it

Figure 1 summarises why representation matters, and how legislators try to
promote it. In sum, the normative principle of representation guides legislators,
which try to protect and promote representation in their constitutions. They
do so by mandating that districts should be “reasonably compact” (which
protects formalistic representation) and should respect “communities of interest”
(which promotes descriptive and substantive representation). Finally, as the
constitutions do not specify how compactness and communities of interest should
be measured, we must then find a way to operationalise them and ensure that
proposed districting plans comply with them.

However, some have argued that compactness and respecting communities of
interest are fundamentally conflicting goals. After all, communities of interest do
not form neat geometric shapes. For instance—like the Shenandoah Valley—they
may follow a river and be long and serpentine. In that case, it may be difficult
or impossible to draw a compact-enough plan that does not break up the Valley.
Wolf writes that “all [compactness] does is needlessly and unproductively split
communities, cities, and counties”. If so, then mandating compactness would
come at the expense of communities of interest—leaving redistrictors in an
impossible situation.

Is this true? Are more compact districts more likely to split communities
of interest? While many have argued that compactness may conflict with
communities of interest and other desired metrics like minority vote share and
electoral competitiveness ([Cain, 1984], Karlan [1989]), no work that I know of
has examined the trade-off between compactness and communities of interest.

I thus address this open question in this thesis, which investigates the relationship



between two prominent criteria for district design. Using a simulation approach,
I generate many districting plans that represent the set of plans a non-partisan
districting commission pursuing compactness would possibly generate. I develop
a compactness measure of my own which improves upon existing ones, and see if
there is any correlation between compactness and communities of interest. My
results indicate no trade-off between compactness and homogeneity across all
four compactness measures I examine: plans with more compact districts do
not tend to have lower levels of homogeneity. I further find that my human
compactness measure consistently identifies more homogeneous districts. Rather
than a trade-off, the right choice of compactness metric can in fact encourage
keeping communities of interest together.

1.1 Why compactness is important

Thirty-seven states require their legislative districts be reasonably compact, and
eighteen states require congressional districts to be compact as well (Levitt 2019).
This is because mandating compactness prevents gerrymandering, a key way in
which incumbents can subvert fair elections and evade accountability. As Polsby
and Popper [1991] put: “Without the ability to distend district lines... it is
not possible to gerrymander. The diagnostic mark of the gerrymander is the
noncompact district”. This claim is well-supported by the literature: Apollonio
et al. [2006] find that “compactness is a good shield against the practice of
gerrymandering”.

Compactness thus plays a key role in safeguarding formalistic representation. For
this reason, the courts have explicitly used compactness as a critical desiderata
when challenging unrepresentative plans. Altman [1998] writes:

In Shaw v. Reno (1993), the Court allowed a challenge to North
Carolina’s redistricting plan to proceed on the basis that the ill-
compactness of the districts indicated a racial gerrymander... Bush
v. Vera (1996) declares that violations of compactness and other
districting principles are necessary conditions for strict scrutiny to
apply.

1.2 Why communities of interest are important

Keeping communities of interest together in a district increases descriptive and
substantive representation, which leads to better democratic outcomes. In this
thesis, I use district homogeneity as a proxy for communities of interest. This
is for two reasons: i) ‘communities of interest’ are ill-defined and difficult to
measure; ii) district homogeneity is regarded as the best proxy for communities
of interest. The evidence suggests that more homogeneous districts have higher
turnout levels, more responsive elections, and representatives that fight harder
for their interests (Stephanopoulos [2012], O’Grady [2019]).



1.2.1 Measuring communities of interest is difficult

Altman writes that communities of interest are important but difficult to pin
down:

The question of how redistricting in general, and compactness in
particular, affects ‘communities of interest’ is important, but ill-
defined... the term is often used when we are unable to more
conventionally classify the ‘interest’ involved. In part because of this
use of ‘communities of interest’ as a catch-all, these communities
are difficult to quantify. The lack of an objective, quantitative,
standard for recognizing such communities makes the subject difficult
to examine through either statistics or simulation.

We have seen how difficult defining communities of interest can be. In 2010,
the California Redistricting Committee made districting maps that respected
“communities of interest” through a year-long, drawn-out process, which involved
recruiting unbiased candidates to form the committee, holding dozens of public
input hearings, reading through comments and suggestions from over 20,000
individuals and groups, and conducting hundreds of field interviews. It relied on
the “active participation” of citizens across California to weigh in on an “open
conversation” in which “[the commission] deliberated over the best approach to
minimize the splitting of cities, counties, neighbourhoods, and local communities
of interest”. While this approach did succeed in identifying communities of
interest, the Herculean effort involved makes it unlikely to be replicated in other
states. More recently, the MGGG Redistricting Lab built a tool inviting members
of the public to tag and identify communities of interest—because “communities
of interest are notoriously hard to locate” [MGGG Redistricting Lab, 2020].

1.2.2 Using district homogeneity as a proxy

As communities of interest are hard to define and hard to measure, I use district
homogeneity—how similar people in a district are, measured on key demographic
indicators—as a proxy instead. District homogeneity tracks communities of
interest quite closely. The idea is simple: people in the same “communities of
interest” are often more alike than not: for instance, they may often be of the
same age group, race, or religion. In fact, communities of interest are often viewed
through exactly that lens. The Constitution of Colorado defines communities of
interest as “ethnic, cultural, economic, trade area, geographic, and demographic
factors”, and Massachussets defines them based on “trade areas, geographic
location, communication and transportation networks. .. social, cultural and
economic interests, or occupations and lifestyles” [Brennan Center for Justice,
2020].

Unlike communities of interest, moreover, there is broad agreement on what
homogeneity constitutes. I use American Community Survey (ACS) data—



which contains all sorts of demographic data like educational attainment, income,
employment, housing, age, race, and so on—at a geographic (Census Tract) level.
These are regarded as the “best available proxies for how closely. .. districts
correspond to geographic communities of interest” Stephanopoulos [2012, p. 283].

I operationalise district homogeneity using a particular instantiation called spatial
diversity developed by Stephanopoulos [2012]. Tt measures the variance in each
Census Tract along ACS factors such as race, ethnicity, age, income, education,
and so on. The higher the spatial diversity score, the less homogeneous the
district.

1.2.3 District homogeneity is associated with better democratic out-
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Figure 2: Increased spatial diversity (lower homogeneity) is associated with an
increased roll-off rate

In accordance with the evidence presented so far, Stephanopoulos finds that
district homogeneity and statewide homogeneity are both strong predictors of
democratic outcomes. Figure 2 shows the relationship between spatial diversity
and roll-off rate, which is defined as the difference between the proportion of
voters who cast a ballot for a presidential race and the proportion who cast a
ballot for a lower-ticket (e.g. Congressional) race. Roll-off rates are important



indicators of democratic participation, because they zero in on the confusion,
lack of knowledge, or apathy that prevents voters from casting their vote in the
Congressional race despite having cast a top-ticket vote. Stephanopoulos argues
that increasing spatial diversity increases the roll-off rate, which makes sense
given what we know so far: homogeneous districts are easier to represent and
representatives can better act in their constituents’ interests.
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Figure 3: Relationship between spatial diversity and electoral responsiveness

Stephanopulos finds that homogeneous districts also tend to be the ones whose
elections are most responsive to changes in public opinion. Figure 3 plots
the relationship Stephanopoulos found between spatial diversity and electoral
responsiveness. Electoral responsiveness refers to the rate at which a party
gains or loses seats given changes in its statewide vote share. For instance, if
Democrats would win ten percent more seats if they received five percent more
of the vote, then a plan would have a responsiveness of two. The higher a
plan’s responsiveness, the better it is thought to be. Stephanopoulos finds that
more homogeneous districts are more responsive, and writes that “advocates of
responsive elections. .. may push without hesitation for spatially homogeneous
districts to be drawn”.

In sum, district homogeneity is associated with a variety of positive democratic
outcomes.



1.3 A conflict between compactness and communities of
interest?

In the previous section, I have established that both compactness and communi-
ties of interest are greatly cherished by legislators. However, some have argued
that compactness and respecting communities of interest are fundamentally con-
flicting goals. In order to form districts that are compact enough, a districting
commission may have to break apart communities of interest, or agglomerate
two communities with nothing in common except that they fit neatly into a neat
geometric shape.

Some communities of interest like the Shenandoah Valley may follow a river and
be long and serpentine. In that case, it may be difficult or impossible to draw a
compact-enough plan that does not break up the Valley. Wolf writes that “all
[compactness] does is needlessly and unproductively split communities, cities,
and counties”. If so, then mandating compactness would come at the expense of
communities of interest—leaving redistrictors in an impossible situation.

Previous work has found trade-offs between compactness and other democratic
outcomes. DeFord et al. [2019a] show that mandating competitiveness has effects
on the partisan lean of the ensuing districting plans. And Schutzman [2020]
finds that compactness and partisan symmetry (competitiveness) are somewhat
incompatible, suggesting that mandating compactness may have unwanted effects
on desired electoral outcomes. It is therefore plausible, as many have suggested,
that there is also a trade-off between compactness and communities of interest.

2 Key research questions

Can we have plans that are both very compact and respect communities of
interest? Is there a trade-off between community and compactness? Additionally,
while legislators have mandated that districting plans be “reasonably compact”,
they have not specified how compactness should be measured. There are dozens
of compactness measures that have been proposed in the literature: if there is
indeed a trade-off, might some of them be able to better accommodate both
compactness and community?

Along these lines of thought, I pose the following research questions:

2.1 Is there a trade-off between compactness and commu-
nities of interest?

Many have claimed that mandating compactness may lead to districts that

split communities of interest. But while some very compact districts may split
communities, there may also be very compact districts that do not. The key
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question is this. Within the set of plans that an unbiased redistrictor could draw,
do more compact plans tend to be more or less homogeneous? Is there a tradeoff
between compactness and community?

2.2 Do some compactness measures better encompass
communities of interest than others?

While almost all states mandate that districts are drawn in a “reasonably
compact” fashion, they do not specify how compactness should be measured. A
natural question is to ask which compactness measures we should choose from
the dozens proposed in the literature.

While there may be theoretical and methodological reasons to favour one com-
pactness measure over another, there is also a normative consideration. If the
plans favoured under one compactness measure are consistently more homoge-
neous than the others, then this might give us a normative basis for choosing
amongst the different compactness measures.

3 Methodology

To answer my research questions, I adopt the following research procedure:

1. Generate a large and representative subset of plausible districting plans

2. Evaluate compactness and spatial diversity scores on that subset of plans

3. Analyse the overall relationship between compactness and communities of
interest (operationalised by spatial diversity)

This three-step procedure is used by many previous works, including Chen et al.
[2013], DeFord et al. [2019a], and Schutzman [2020]. While the specifics differ,
they all follow the same general procedure. I now explain why this procedure
(analyzing hypothetical districting plans) has advantages over analyzing enacted
or proposed districting plans.

3.1 Why a simulation approach is necessary

I use a simulation approach to generate tens of thousands of plausible districting
plans. One might ask: What is the point of using a simulation approach? Why
not just use historical districting plans that actually existed in real life? There
are two reasons. Firstly, there have not been very many historical districting
plans. There may be at most twenty districting plans over the history of a state,
but they range from the 1800s to the 2000s. It would be difficult to get geospatial
data on these historical plans, and impossible to get any demographic data on
district homogeneity /communities of interest.

11



But the biggest problem in trying to draw a link between districting plans and
any outcome of interest is that of endogeneity. Suppose we believe that less
compact plans lead to less political participation:

Compactness — Participation

To identify whether this relationship is true, we could look at several enacted
districting plans and measure their compactness and political participation.
Then we would be able to run an OLS regression and retrieve the coeflicients.
But these coefficients would not have a causal interpretation. We know that
compactness is a result of districting procedures that are political in nature.
Political participation affects who wins the state, and the winning party then
has outsize influence on the next districting plan. The districting plans affect
the outcome of the election, which in turn affects future districting plans. This
makes it difficult to find the marginal effect of an increase in compactness on
participation.

Even finding natural experiments may not be enough to remove the endogeneity.
The Supreme Court has often struck down proposed districting plans and forced
parties to propose a new one. We can think of this as an exogenous shock
and calculate compactness and political participation in both plans. But even
this has knock-on effects. When the Supreme Court strikes down a plan, it’s
safe to say that there will be significantly increased media coverage on the
proceedings—which will surely affect interest and participation in the subsequent
elections.

It would be useful to vary compactness unilaterally while knowing that that
variation was not due to a previous change in political participation. But this
is precisely what simulation approaches allow us to do. If we could simulate
plans that represent the set of plans that a non-partisan committee pursuing
compactness might generate, then we would solve the problems of small sample
size, lack of data, and endogeneity in one fell swoop.

A simulation approach is therefore advantageous due to data limitations and
endogeneity concerns. But the simulation procedure introduces several new
considerations. We need to choose two things in the procedure: a method to
generate districting plans, and a compactness metric to score these districting
plans. This choice is highly consequential: different generating functions and
the choice of compactness metric can give very different results. I now explain
how I chose both of these.

3.2 Choosing which compactness measures to evaluate
To empirically evaluate a trade-off between compactness and homogeneity, we

must first figure out how to measure compactness. I give a brief overview of the
different types of measures and explain the pros and cons of each. I present a
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compactness measure that I develop and finally explain my decision to analyse
four different compactness measures to increase the robustness of my results.

Over a hundred compactness measures have been proposed in the literature.
Here, I focus on two main families: geometric compactness metrics and point-wise
distance metrics.

3.2.1 Geometric/dispersion-based compactness measures

Geometric—also called dispersion-based—compactness metrics are by far the
largest class of compactness measures. They look at some geometric properties
of proposed districts. These properties are most often shapes, area or perimeter—
although more esoteric measures do exist. Here, I explain the three most
popular compactness measures, although other popular compactness measures
e.g. Schwartzberg are qualitatively similar.

3.2.1.1 Polsby-Popper

The Polsby-Popper measure is by far the most popular measure used in the
literature. It is the ratio of the area of the district to the area of a circle whose
circumference is equal to the perimeter of the district [Polsby and Popper, 1991].
A perfect circle has a Polsby-Popper score of 1.

A
47T><ﬁ

PP =1 PP =7 PP = 0.07 PP = 0.07

Figure 4: Polsby-Popper scores of four example districts: a perfect circle, a square,
a circle with a ragged boundary, an an example district from a Pennsylvania
plan. Taken from Schutzman [2020].

11 use the phrases “compactness metric” and “compactness measure” interchangeably.
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3.2.1.2 Reock

The Reock score is the ratio of the district’s area to the area of the minimum
bounding circle that encloses the district’s geometry [Reock, 1961].

Area

AreaO f MinimumBoundingClircle

Figure 5: A visualisation of the Reock metric. Taken from fisherzachary.github.io.

3.2.1.3 Convex Hull

The Convex Hull metric is a ratio of the area of the district to the area of the
minimum convex polygon that can enclose the district’s geometry. A circle,
square, or any other convex polygon has the maximum Convex Hull score of 1.
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Figure 6: A visualisation of the Convex Hull metric. Taken from fish-
erzachary.github.io.

3.2.2 Point-wise distance compactness measures

Another large family of compactness measures are non-geometric measures,
which do not take into account the geometric properties (e.g. area, perimeter) of
the district explicitly. Many such non-geometric measures have been proposed.
For instance, Dube and Clark [2016] bring in a discipline of mathematics—
graph theory—to formulate a new metric of compactness. And Kaufman et al.

15



[Forthcoming] use a machine learning model to try and ape human intuition—
quantifying the intuitive metric of “I know it when I see it”.2

But one particular class of metrics I term point-wise distance compactness stands
out for its ease of understanding (critical if it is to be persuasive to Supreme
Court judges), theoretical attractiveness, and academic consensus. Roughly
speaking, this class of compactness metrics tries to measure the distance between
voters in a district, and assigns higher scores the lower that distance is.

This class of metrics enjoys strong theoretical grounding. Paramount to the idea
of single-member districts is that there is great value in voters who live in the
same area being put into the same district. Eubank and Rodden [2019] write:

“Voters in the same area are likely to share political interests; voters
in the same area are better able to communicate and coordinate with
one another; politicians can better maintain connections with voters
in the same area; voters in the same area are especially likely to
belong to the same social communities — all suggest the importance
of voters being located in districts with their geographic peers.”

Due to the fact that voters in the same area share many things in common,
A point-wise distance measure that tries to put people together in the same
district could be a remedy for the key claim levied against compactness—that
it splits communities of interest. A wealth of empirical evidence supports the
above statement. Arzheimer and Evans [2012] find that constituents support less
strongly candidates that live far from them, even controlling for strong predictors
of vote choice like party feeling and socio-economic distance. Similarly, Dyck
and Gimpel [2005] find that voters living further away from a voting site are less
likely to turn out to vote. In part, voters strongly support proximate candidates
because they think that these candidates better represent their interests. If
voters prefer a representative who lives close to them, then we can satisfy the
most voters by drawing districts where everyone lives close to everyone else—only
then can that district have a representative who lives close to everybody.

In contrast, districts that put people with unrelated, faraway others carve voters
out of their natural communities and are thus to be avoided. We care about
whether co-districtors live in the same area and belong to the same communities
of interest, not just the compactness of their electoral district. And point-wise
distance metrics deliver exactly that.

Point-wise distance metrics possess a normative bent that more abstract math-
ematical compactness measures lack. It has therefore been an active area of
development in the literature. Chambers and Miller [2010] present a measure
of “bizarreness”, which is the “expected relative difficulty in traveling between
two points within the district”. And Fryer Jr and Holden [2011] measures “the
distance between voters within the same district relative to the minimum distance

2This penalises districting plans that have a large difference between districts e.g. one very
good district and one very bad one.
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achievable”.

3.2.3 Flaws with existing compactness measures

In this section, I show existing compactness metrics are useful but somewhat
inadequate. Geometric compactness measures have several well-known problems,
and while point-wise distance metrics fix many of these problems, they have
issues of their own. I thus develop a new compactness metric which improves
upon existing point-wise distance metrics.

All three geometric compactness measures are well-cited in the literature and
enjoy widespread use. They have been cited in U.S. Supreme Court cases,
amici briefs, and redistricting commissions [Moncrief, 2011]. Despite their
widespread use, however, the problems with compactness measures are many,
and well-covered in the literature. As an example, the most popular compactness
measure in the literature—Polsby-Popper—is sensitive to small perturbations in
data resolution (the coastline problem).? The same is true for other geometric
compactness measures: no single metric is perfect.

Because all three of these compactness measures are purely geometric, they
are all vulnerable to geographic perturbations. Indeed, Barnes and Solomon
[Forthcoming] show that minimal changes in the geometric features of states are
enough for the four most popular compactness measures (Polsby-Popper, Convex
Hull, Reock, Schwartzberg) to give very different conclusions on nominally
identical data. These changes do not have to be made on purpose: small changes
in the way the data is collected or processed can suffice to affect the conclusions
we draw.

And despite the relative merits of point-wise distance metrics, there are two areas
of improvement—one theoretical, the other empirical. Firstly, all point-wise
distance metrics suggested in the literature use Euclidean distances. But many
have rightly suggested that we should consider travel times/driving durations
instead. For instance, while Fryer Jr and Holden [2011] used Euclidean distance
in their metric, they point out its shortcomings:

Suppose there is a city on a hill. On the West side is [a] mild, long
incline toward the rest of the city, which is in a plane. On the East
side is a steep cliff, either impassable or with just a narrow, winding
road that very few people use. While the next residential center to
the East is much closer to the hilltop on a horizontal plane, it is
much further on all sorts of distances that we think might matter:
transportation time, intensity of social interactions, sets of shared

3The Polsby-Popper metric measures the ratio of the area of the district to the area of
a circle whose circumference is equal to the perimeter of the district. But depending on
the resolution of the map, the perimeter can be effectively infinite. Barnes and Solomon
find that the choice of resolution has “a substantial impact on compactness scores, with the
Polsby-Popper score especially affected.”

17



local public goods and common interests, etc. Thus, for all practical
purposes, one probably wants to include the hilltop in a Western
district rather than an Eastern one. More general notions of distance
can handle this.

Here we see the key problem with using Euclidean distances in point-wise distance
metrics. The “impassable” region on the East would have a short Euclidean
distance, and any districting plan that put the hilltop with the Eastern district
would be unfairly penalised by these point-wise distance metrics. Evidently,
using driving durations instead would give us more accurate scores. Using
driving durations, the impassable region would have a long driving duration,
accurately reflecting the political geography. In this and many other cases like
it (e.g. large bodies of water), driving durations better reflect a state’s unique
political geographies.

After acknowledging the shortcomings of Euclidean distance, Fryer Jr and Holden
specifically suggest using driving durations to improve their metric: “one can
extend much of [our analysis| by using driving distance or what legal scholars
refer to as ‘communities of interest’”.

There are thus strong theoretical grounds for using driving durations in point-wise
distance metrics. Why then have scholars not adopted it, seeing as they agree on
its superiority? This brings me to my empirical criticism: the point-wise distance
metrics scholars have proposed are either far too computationally complex to
compute at scale, or have restrictions that make using travel times difficult,
if not impossible. For instance, the metric that Fryer Jr and Holden [2011]
propose requires solving an NP-complete problem. A term used in computer
science, an NP-complete problem scales exponentially with the size of the input.
This makes it prohibitively expensive on larger states. And while they have an
approximation that runs much quicker, they provide no bounds on the correctness
of this approximation.

Similarly, Olson has a metric that minimises the average distance from each voter
to the center of their district. He says of travel times “that it might be the right
kind of thing to measure, but it would take too long... The large amount of map
data and extra computer time to calculate all those travel times would slow the
process down horribly. It would then require a room filling supercomputer to get
an answer in a reasonable amount of time.” [Olson, 2010]. And finally, Chambers
and Miller’s measure cannot feasibly be improved with driving durations due to
the difficulty of finding point-to-point travel distances without passing through
another district. This is because most routing engines allow you only to specify
a route between two (or more) points. They do not further allow you to specify
regions through which the route cannot pass.
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3.2.4 Building a new compactness measure: Human compactness

Given the difficulties of adapting existing point-based distance metrics to use
driving durations, I develop a new measure called human compactness. This
metric incorporates driving durations at the very outset, and builds in optimi-
sations to run quickly. The human compactness metric measures the ratio of
driving durations between one’s nearest neighbours and one’s fellow districtors.
This ratio ranges from 0 to 1. The higher this ratio is, the more compact the
district. Intuitively, it encourages drawing districts that put one’s next-door
neighbours together in the same district.

The human compactness metric works at three levels: at the voter-level, the
district-level, and the overall plan-level. At the voter level, human compactness
of a voter is the ratio of: the sum of driving durations to one’s K nearest
neighbours, to the sum of driving durations to one’s co-districtors, where K is
the number of voters in that voter’s district.

A simple example will be illuminating. The following figures give a simple
demonstration of how the human compactness metric is calculated both on the
voter- and district- level. The example works for both Euclidean distances and
driving durations: only a simple swap is required.

Figure 7 shows a highly simplified state assignment, with two districts, Red and
Blue, and three voters in each district. We label each point from top-left to
bottom-right. Note here that Red and Blue are not partisan affliations: R1, R2
and R3 are red voters simply because they happen to fall in the Red district.

We will first calculate the individual human compactness score for each voter in
the Red district. Figure 8 illustrates this for the top-left voter, R1. First, we
find the sum of distances between R1 and his fellow co-districtors R2 and R3.
This sum, 5 + 6, forms the denominator of the human compactness score.

Next, we find the sum of driving durations between R1 and his nearest neighbours.
Because there are two other voters in his district, we will find his two nearest
neighbours. To find the two nearest neighbours, here I have drawn a circle
centered upon R1, and expanded the circle on all sides until it touches two other
voters.*. We can see that R1’s nearest neighbours are the points B1 and R2,
with a distance of 1.5 and 5 respectively. The human compactness score of R1 is

thus dp +dps 1545
HCp = -BLT7R2 _ — =0.59
B dpe + drs 546

4The method of drawing an ever-expanding circle to get one’s K-nearest neighbours only
works for Euclidean distances. In reality, the “circle of K-nearest neighbours” will not be a circle,
but rather be what is called an i¢sochrone: a line drawn on a map that connects points that
have the same travel duration. The shape of the isochrone will vary with geographic features
like cliffs or man-made features like highways. My implementation of the human compactness
algorithm precomputes all the K-nearest neighbours for every single point, negating the need
to calculate isochrones.
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Figure 7: A simplified state assignment with two districts and six voters
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Figure 8: Human compactness measure for voter R1
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Figure 9: Human compactness measure for voter R2
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This is how we calculate an individual human compactness score. We repeat

the same procedure with R2 and R3, and obtain HCrs = 422 = (.94 and

5+4
HCgr3 = % = 0.45. The compactness score for point R3 is particularly low.

We can see why this is the case in Figure 10. Because point R3 is so close to B2
and B3, it really should be put in the same district with them—R3 likely lives
in the same neighbourhood and/or community as B2 and B3. This is why the
human compactness metric gives it a very low score.

2+ 2.0

H(:Rj, — m

Figure 10: Human compactness measure for voter R3

The district’s human compactness measure, HCg, simply takes the ratio of all
the sum of durations, as follows:®

5 Another reasonable approach might be take the arithmetic mean of all individual human
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15+5)+ (4+4.5)+(2.5+2)

GO +Gra) e 0
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Finally, we obtain the districting plan’s plan-level compactness score by taking
the simple arithmetic mean of all district-level compactness scores. Other
aggregation functions are plausible: for instance, taking the median, or the
root-mean-squared value. In the Results section, I run robustness checks with
the root-mean-squared aggregation function and find qualitatively similar results.

X

R1

x

B1

R2

X X

R3 B3

x

B2

Figure 11: An alternative, more humanly compact proposed districting plan

compactness scores. In that case the district-level human compactness score would be 0.59 +
0.94 + 0.45/3 = 0.66, basically identical to the value we obtained.
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We have seen how to calculate the human compactness score for a proposed
districting plan. Now we demonstrate the conditions under which human com-
pactness score will assign better scores.

Figure 11 shows a proposed alternative districting plan. Only the boundary
has changed—the points have not. We can see intuitively that this plan is
more compact. Rather than being “carved out” of his natural community in a
snakelike fashion, R3 is now put in a reasonably-shaped district with B2 and B3.
We can calculate the spatial diversity of this new district by imputing reasonable
distance values for R1-B1 and R2-B1. We thus get

(1.54+5) + (1.54+4.5) + (4 +4.5)
(1.5+5) + (1.5 +4.5) + (5 +4.5)

HCg, = =0.95

As we can see, the new district (and by extension districting plan) is given a
much higher score under the human compactness metric, which largely accords
with our intuitions. The human compactness measure enjoys two significant
advantages over existing approaches. First, the human compactness metric
improves upon the algorithmic complexity of Fryer Jr and Holden’s algorithm
from an NP-hard problem to one with a O(n?) polynomial runtime. This is
an exponential decrease in algorithmic complexity. I also use programming
techniques like precomputation and memoisation to decrease the time taken to
compute the metric greatly. My implementation is competitive with geometry-
based compactness measures like Reock: on my machine, both metrics took
roughly the same amount of time (~0.20s per step). This greatly increases the
capability of political science researchers to conduct ensemble analysis without
requiring “room-filling supercomputers”. Further details on these algorithmic
optimisations can be found in the Supplementary Information on my GitHub
repository.

Because of these algorithmic improvements and the way I have designed the
metric, I am able to use driving durations rather than Euclidean (as-the-crow-
flies) distances between voters. Many scholars have suggested exactly this change,
giving it strong theoretical support. It keeps the metric robust to quirks in
political geography like mountains and lakes, and better represents the notion of
natural communities.

Figure 12 shows how driving durations is able to get the right answer despite
quirks in political geography. It represents the situation that Fryer Jr and Holden
[2011] point out: the voters in red live atop a cliff, and the valley below (inhabited
by the voters in blue) is impassable. In this case, it would be better to put the
voters in red together, as they are “closer” together on all sorts of metrics that
would matter: shared communities, public services, and so on. A compactness
measure that used Euclidean distances would not be able to accommodate this.

Empirically, too, the use of driving durations seems strictly superior in many
cases involving human-scale distances. Working with Eubank and Rodden, I

25



Figure 12: With an impassable cliff face, Euclidean distance gives the wrong
answer
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update their gerrymandering-detection metric to use driving durations instead
[Eubank and Rodden, 2019]. We find a consistently different picture of the social
context of American suburban voters, raising the possibility of false positives

under the Euclidean distance measureS.

3.2.5 Choosing which compactness metrics to evaluate

As each compactness measure has its advantages and disadvantages, we should
include the broadest subset of measures possible in our analyses. This maximises
the generalisability of my results: in order to claim that there is or isn’t a
tradeoff between compactness and homogeneity, we should make sure that the
relationship holds for as many compactness measures as possible. At the same
time, however, the inclusion of each additional compactness measure incurs time,
effort and computational costs. Given finite time and resources, there is thus
a trade-off between the number of compactness measures and the number of
states/districting plans I can analyse. I therefore made a judgement call to
include the most-used and most representative compactness measures.

We must include at least one of the geometric compactness measures, as these
geometric compactness measures are by far the most widely used both within
academic political science and without. As mentioned, they have been cited in
U.S. Supreme Court cases, amici briefs, and redistricting commissions [Moncrief,
2011]. I therefore include the three most popular geometric compactness measures
(Polsby-Popper, Convex Hull, and Reock).

It is also important to include a non-geometric compactness measure as the
geometric compactness measures are all sensitive to small changes in the way
the geospatial data are collected and processed. I use my human compactness
measure as a representative of non-geometric compactness measures, for two
reasons. Firstly, many of the compactness measures have a formal mathematical
definition but have no code available online. It would have taken too much
time for me to re-implement the compactness measure and calculate it for
100,000 districting plans. Secondly, human compactness is the only measure
that incorporates travel durations, which has strong theoretical and normative
backing and some tentative empirical support. Nonetheless, I would have liked
to include another non-geometric compactness measure.

Given these considerations, I settle on using four different compactness measures:
Polsby-Popper, Reock, Convex Hull, and Human Compactness.

3.3 Choosing an algorithm to generate districting plans

In order to find out whether compactness measures track spatial diversity, we
have to generate many districting plans that span the set of plans a nonpartisan

6Citation redacted so I don’t fall afoul of exam regs :P
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districtor would draw. We would then measure the correlation between com-
pactness and spatial diversity. This requires using a computer to draw a large
number of plans, and I use a simulation approach to do so.

How should we draw the representative plans? Many approaches have been
suggested in the computational districting literature (Cirincione et al. [2000],
Chen et al. [2013], Fifield et al. [Working Paper|, DeFord et al. [2019b]). I have
chosen a simulation approach known as Markov Chain Monte Carlo (MCMC).
This approach generates many plausible districting plans, then accepts and
rejects them based on a “score function”. 1 deliberately chose an approach
with a very permissive score function (a “neutral ensemble” approach). Unlike
other approaches, my approach does not impose any additional requirements like
county boundaries, proportionality, or minority deviation. The only requirements
on plans are that they fulfill minimal population deviation and compactness
requirements. This is to ensure that the algorithm generates the subset of
plans most representative of what a nonpartisan districting commission would.
Additionally, my chosen approach is regarded as the state-of-the-art in the
computational redistricting literature [DeFord et al., 2019b].

The details of how I chose the algorithm are in Technical Appendix A. I start
with a literature review of seminal work in computational districting and evaluate
three different state-of-the-art MCMC approaches before choosing my preferred
one (neutral ensemble + ReCom proposal).

4 Research procedure

Now that we have chosen both the compactness metric and the simulation
procedure, we can refine the previous three-step procedure into something more
specific:

1. Use the MCMC simulation algorithm to generate 10,000 districting plans
for every state

2. Calculate spatial diversity and four compactness scores (Polsby-Popper,
Reock, Convex Hull, and Human Compactness) for each districting plan

3. Perform data analysis (OLS regressions, difference-in-means test) and
analyse the results

I now describe each step in detail.

4.1 Generating 100,000 districting plans with the MCMC
algorithm

I download Census Tract data from the United States Census Bureau website.

I use Census Tracts rather than Census Blocks because Census Tracts are the
smallest (highest-resolution) units that have spatial diversity data.
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I use the open-source software library GerryChain to generate the ensembles.
Replication code and data are included in my GitHub repository. I obtain the
ReCom Markov chain procedure from one of the co-authors (Daryl Deford) of
the DeFord et al. [2019b] paper. I then fed the Census Tract data into the
GerryChain library. Using the Recom Markov chain procedure, 1 generated
10,000 districting plans for 10 states (Connecticut, Georgia, Idaho, Louisiana,
Maine, Maryland, New Hampshire, Rhode Island, Utah, and Wisconsin) for a
total of 100,000 plans.

Created with mapchart.net ©

Figure 13: States I analysed, marked in red

Figure 13 marks the states I analysed in red. I chose these states mainly due
to size considerations. All of these states are small-to-medium sized (in terms
of the number of Congressional districts): the largest states like California,
Texas and Florida are absent. This is because my algorithm scales in both time
and memory with the square of the size of the state (O(n?)). The analysis is
achievable with larger desktop machines. Unfortunately, my own laptop had
only 8GB of RAM and not very much free disk space, making it infeasible to
examine larger states. Nonetheless, I was still able to analyse medium-sized
states like Louisiana, Maryland and Georgia (14 districts).

Size aside, I tried to get states that spanned the entire country, including Western
states (Idaho, Utah), Southern states (Louisiana, Georgia), and Northeastern
states (Maine, Rhode Island, New Hampshire, Connecticut). I would also have
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liked to generate plans from a Pacific state like Oregon and a Midwestern state
like Kansas, but time constraints prevented me from doing so.

Nonetheless, the number of states that I analyse exceeds most other similar
analyses. For instance, the seminal and heavily-cited work Chen et al. [2013]
only analyse the state of Florida, and even very recent work by DeFord et al.
[2019b] and Schutzman [2020] analyse only five and two states respectively.

4.2 Calculating spatial diversity and compactness scores
for 100,000 plans

After generating the plans, I calculate spatial diversity and compactness scores
for all of the plans. As mentioned, spatial diversity is an operationalisation
of district homogeneity: the higher spatial diversity is, the less homogeneous
(more heterogeneous) the district is. I obtain data on spatial diversity from
Professor Nicholas Stephanopoulos. The dataset he gave me has eight factor
scores for each Census Tract in the country, where a factor score is a combined
variable that covers vital areas like race, education, profession, marital status,
and housing. A district’s spatial diversity score is calculated by the sum of the
standard deviation of each factor score, normalised by the proportion of the
variance each factor score explains. As an example, consider a district made up
of three Census Tracts (A, B, C), and let each Tract have three factor scores (1,
2, 3). Let the proportion of the variance explained by each factor score be 50%,
30% and 20% respectively. Then the total spatial diversity score would be:

O'(AhBl,Cl) x 0.5 +O’(A2,Bg,02) X 0.3+O’(A3,Bg,03) x 0.2

I calculate spatial diversity score for every district, and, following Stephanopoulos,
take the arithmetic mean of all districts in a districting plan to get the overall
spatial diversity score for that plan.

Next, I calculate compactness scores. As the Polsby-Popper metric is so well-
known and widely used, there was already an existing implementation in the
GerryChain library which I made use of. Similarly, existing libraries like SciPy
already had a Convex Hull method. Finally, I wrote my own implementation
of Reock, making use of the Smallest Enclosing Circle code written by Project
Nayuki [Project Nayuki, 2020].

In order to calculate human compactness scores, I have to know where voters
live (to calculate driving durations between them). I therefore obtain a dataset
of “voter representative points” (VRPs) from Eubank and Rodden [2019]. These
points aggregate many actual voters, downsampling the data into a size that can
be worked with. While this down-sampling and placements of points randomly
does introduce some noise, “the variability contributed... is empirically very
small” [Eubank and Rodden, 2019]. I sample 1,000 VRPs for each Congressional
District in a state. That means that a state like Maine with two districts will
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have 2,000 VRPs, and a state like Louisiana—with seven districts before the
new redistricting plan—will have 7,000.

I then calculate all pairwise driving durations between all VRPs using an open-
source routing engine called Open Source Routing Machine (OSRM) built by
Luxen and Vetter [2011]. The routing engine is able to calculate driving durations
between any two points—very similar to Google Maps—but the number of queries
it can process is orders of magnitude larger than the limits imposed by the Google
Maps API. For these ten states, I calculate about 400 million point-to-point
driving durations in total. As point of comparison, using Google Map’s Distance
Matrix API for that number of requests would cost $1,480,000["23]. And trying
to analyse California (with 53 Congressional districts), would require almost 3
billion point-to-point driving durations.

Because my analysis is on the tract level, I map VRPs to Census Tracts using
a spatial join. I sum the pairwise point-to-point distances to get a matrix of
pairwise tract-to-tract driving durations. I then sum the driving durations from
each point in the district to another and calculate the human compactness score
for each district.

Finally, I aggregate the individual district scores into a plan-level score by
simply taking the arithmetic mean. For instance, if a districting plan has
three districts with Polsby-Popper scores of 0.25, 0.5, and 1, the Polsby-Popper
score for that plan would be (0.25 + 0.5 + 1)/3 = 0.5833. As a robustness
check, I also use the sum of square roots as an aggregation function: that is,
v0.25 + /0.5 + /1 = 0.7367, obtaining qualitatively similar results.

4.3 Performing data analysis on the 100,000 plans

After calculating the overall spatial diversity and compactness scores on all the
plans, I start running exploratory data analysis and statistical tests. The results
are detailed below.

5 Results

I begin by performing exploratory data analysis. I find that different compactness
measures correlate positively with one another, although the correlation is not
perfect. As we would expect, the geometric compactness measures correlate
more strongly with one another than the human compactness metric does. I
also find that small, urban districts tend to be more heterogeneous, and that

"This penalises districting plans that have a large difference between districts e.g. one very
good district and one very bad one.
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most of the variation in spatial diversity tends to be between, rather than within,
states®.

Moving on to answering my key research questions, I run OLS regressions with
state dummies and find that only human compactness has a significantly negative
correlation with spatial diversity. Difference-in-means tests show that the top
plans under human compactness are less spatially diverse than average. The
top plans under human compactness are more homogeneous than the top plans
under any other compactness measure I examined.

Overall, the evidence suggests that there may be some tradeoff between compact-
ness and communities of interest, but this tradeoff goes away with a judicious
choice of compactness metric. As we predicted, choosing to optimise over human
compactness rather than a geometric compactness metric is likely to result in
districts that are more homogeneous.

5.1 Initial analysis

Before proceeding to the quantitative statistical tests that answer my main
research question, I perform preliminary analysis to show what the generated
plans look like and what the distribution of those plans looks like. This will help
us contextualise the key results that come next. I also present some interesting
supplementary results that largely accord with our intuitions.

5.1.1 The choice of compactness measure can result in very different
plans

After having obtained all the plans and their corresponding scores, I plot the
plans with the best and worst spatial diversity and compactness scores to get an
understanding for the types of plans that each metric encourages. This will give
us valuable intuition for understanding the subsequent results.

For ease of exposition I show states with only two districts, but the analysis
extends to states with any number of districts. (Plots of the other eight states
are available in my GitHub repository). I also use Polsby-Popper to represent
the other two geometric compactness metrics as my explanations are similarly
applicable to those metrics.

Figure 15 plots the best and worst plans according to several metrics. Let
us begin with the middle row (Polsby-Popper), as its interpretation is the
most straightforward. The Polsby-Popper (and other dispersion-based) metric
penalises districts that are very “snakelike” and prefers districts that have regular
shapes like squares or circles. This is clearly reflected in the plot. The best

8] use the terms “spatial diversity” and “district homogeneity” interchangeably, as spatial
diversity is my chosen operationalisation of district homogeneity.
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Figure 14: Population density plot of New Hampshire. Each dot represents
roughly 600 people.
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Figure 15: Best and worst districting plans of New Hampshire under different
metrics
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plan has a district with a very regular shape, and the worst plan has a snakelike
district that contorts through half the state.

On the top row is human compactness. A good plan under human compactness
minimises the total travel times between every member of the district. This
encourages small, compact districts that avoid splitting urban centers.

We can see that the top plan under human compactness corresponds well to the
actual population density of New Hampshire as seen in Figure 14. The top plan
puts the two most populous and urban counties in New Hampshire—Rockingham
and Hillsborough—together in the same district. The worst plan under human
compactness splits the counties in such a way that one’s co-districtors are far
away, and one’s nearest neighbours are in a separate district.

As expected, the top plan under spatial diversity (bottom row) closely resembles
the top plan under human compactness. In relatively homogeneous New Hamp-
shire, the main source of spatial diversity is the urban-rural divide. A plan that
keeps urbanites together in one district is favoured under spatial diversity.

And while the worst plan under spatial diversity looks different from that under
human compactness at first glance, they are actually quite similar. Both plans
split up the two populous urban counties, having a “fish-hook” shaped district
that starts from the rural north of the state and swoops down to the south to
carve out a large part of the counties.

This case study shows that dispersion-based measures may not always reflect
existing communities of interest. This seems to fuel criticism of dispersion-based
measures on exactly that basis (“it makes no sense to combine areas that have
nothing in common except that they fit neatly into a square” [Wolf, 2015]). In
the state of New Hampshire, human compactness and spatial diversity agree on
what the “best” districting plans look like.

While human compactness generally tracks spatial diversity better than other
compactness metrics (more on this later), it does not always give the plans that
have the lowest spatial diversity. Figure 16 gives the population of Idaho. We
can see that a large proportion of the population is concentrated in a U-shaped
“belt” spanning the southern half of the state. A good plan under spatial diversity
will attempt to put this relatively urban “belt” in the same district, and this
is indeed what we observe in Figure 17. Due to its great distance and jagged
perimeter, however, such a plan is penalised under both human compactness and
geometric measures, both of which prefer a relatively compact square-shaped
district.

As we can see, compactness measures need not always agree with spatial diversity,
particularly in the case study of Idaho. Intuitively, this seems to make sense:
spatial diversity tries to put similar people together, and people who live in the
same area are often, but not always, similar. In sum, the plans with the highest
compactness scores do not always look like the plans with the highest spatial
diversity score, and different compactness measures do not always agree on what
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Figure 16: Population density plot of Idaho. Each point represents ~700 people.
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Figure 17: Best and worst districting plans of Idaho under different metrics
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the “best” plan looks like.

5.1.2 Compactness measures largely agree with one another, but
human compactness less so

Despite the fact that compactness measures can result in radically different-
looking plans—as shown in the previous section—compactness measures largely
agree with one another. I examine the correlations between different compactness
measures and find that a plan that scores highly on one compactness metric
will likely score highly on another. The correlations are strongest between the
three geometric compactness measures, and lower (but still significantly positive)
between the geometric and human compactness measures. I made a point not
to aggregate all the observations from each state into a pooled data set, because
looking at the aggregate results can be highly misleading if there is a single
outlier state that biases the results.

Figure 18 plots the correlation coefficients between compactness metrics for
the state of Connecticut. We first observe the correlation coefficients between
spatial diversity (sd) and the compactness metrics. Human compactness has a
negative correlation with spatial diversity, with the other compactness metrics
having a somewhat smaller correlation. Additionally, while the compactness
measures all correlate positively with one another, the correlation between human
compactness and geometric compactness measures are somewhat lower (~0.46)
than the correlations between the geometric measures.
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Figure 18: Correlation heatmap of Connecticut
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This finding is nonobvious but encouraging. We would expect the different
geometric compactness measures to track each other very closely as they are
measuring very similar things. It is much less obvious, however, that purely
geometric measures would agree with a metric that measures driving durations
between points. This result is encouraging because it shows that these metrics
are able to get at the same concept of compactness despite having completely
different theoretical backgrounds.

While the compactness measures largely correlate with each other in most of
the states, they are not unanimous. The correlation heatmap of Utah in Figure
19 shows a case where human compactness and the other geometric measures
disagree. Here, the correlation between geometric compactness measures is very
high (0.89—almost 1), but there is in fact a negative correlation between human
compactness and the geometric measures.
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Figure 19: Correlation heatmap of Utah

These results vindicate my choice to use an ensemble of compactness metrics
rather than relying on a single measure. While the correlation between metrics
is high, it is not perfect, and indeed we observe cases like Utah where the
compactness measures disagree. Had we used only one compactness measure, we
might draw conclusions that were only applicable to that specific compactness
measure.

5.1.2.1 Robustness check

As a robustness check, I have also visualised the findings through pairwise
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scatterplots. These plots have the advantage of being able to visualise the
correlations, which can surface non-linear relationships that a simple correlation
coefficient cannot. The pairwise scatterplots show that the relationship between
compactness metrics is linear in all ten states. As an example, Figure 20 shows an
example correlation plot between spatial diversity and the various compactness
metrics for the state of Georgia. I have included correlation matrices and pairwise
scatterplots for all ten states in my GitHub repository. They confirm that the
overall correlation is positive for most states, with human compactness being
less correlated overall with the other metrics.
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Figure 20: Correlation plot of Georgia
In sum, while the top plans that score best on each compactness measure can
look quite different, a plan that scores well on one compactness measure will

likely—but not always—score well on another compactness measure as well.
This result is encouraging. If the compactness measures were too similar, then
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there would be little point in comparing them; if they were too different, then
this might call the entire concept of compactness into question. The results we
obtain suggest that there is some concept of compactness that different metrics
capture, but they differ substantially in how they do so.

5.1.3 Spatial diversity varies a lot between states but little within
states

Each state occupies only a narrow band in the range of possible spatial diversity
scores. Figure 21 plots the spatial diversity scores of all 100,000 generated
districting plans, binned by state. While spatial diversity scores of the districting
plans of the ten states I examine range from 0.50 to 0.80, districting plans in a
state vary by only around 0.05.
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Figure 21: Overall spatial diversity of districting plans by state
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The small range of spatial diversity may be due to the fact that the plans I
generate are meant to resemble plans that a non-partisan districting committee
would draw. If a districting plan is gerrymandered, then its spatial diversity
can be very high: for instance, a majority-black Georgia district struck down
in Miller v. Johnson “connectled] the black neighbourhoods of metropolitan
atlanta and the poor black populace of coastal Chatham County, even though
they were 260 miles apart in distance and worlds apart in culture”, exhibiting
“fractured political social and economic interests” [Stephanopoulos, 2012]. As
the quote shows, it is certainly possible to create very heterogeneous districting
plans, but these plans will almost never be generated in the algorithm I employ.

Moreover, while this range is small, it is not insignificant: Figure 3 shows that
a decrease in a state’s spatial diversity by 0.05 correlates with an increase in
electoral responsiveness by 0.3, about 10% of the variance. Nonetheless, this
should temper our expectations for the scope of redistricting to affect district
homogeneity.

5.1.4 Small urban districts are usually more heterogeneous

One finding consistent across all states is that the smaller (by area) the district,
the higher the spatial diversity. Figure 22 is a density plot of districts binned by
area. The x-axis gives the spatial diversity score and the y-axis gives how many
districts in the 10,000 plans had that spatial diversity score.

We can see that large districts (in blue) tend to occupy the low end of the
spatial diversity range, with medium-sized districts (green) in the middle, and
the smallest districts (in red) have the highest spatial diversity. This finding
is quite intuitive. Cities tend to be the most heterogeneous parts of a state,
with people of different races, ages, and socioeconomic classes. States with more
urban centers will simply have higher spatial diversity scores, which helps to
explain why spatial diversity varies greatly between plans of different states but
little within plans of the same state.

5.1.5 Conclusions of initial data exploration

In this section, we have seen that optimising over different compactness measures
can give us very different results, although the different compactness measures
largely agree with one another. We have also seen that the overall distribution
of districting plans per state lie within a tight bound, largely determined by
each state’s political geography. This suggests that while districting can exert
an effect on political outcomes, we should not expect optimising for compactness
to change district homogeneity very much.
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KDE plot of different districts and their spatial diversity, binned by area
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Figure 22: Small urban districts (in red) are the most heterogeneous
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5.2 Key results

My key research questions are: is there a trade-off between compactness and
communities of interest, and does this depend on the compactness measure we
use? In this section, I run OLS regressions and difference-in-means tests and find
that some compactness measures may trade off district homogeneity. However,
human compactness seems to promote district homogeneity, and consistently
outperforms the other compactness metrics.

5.2.1 Only human compactness positively correlates with district
homogeneity

Next, I run multivariate OLS regressions with country dummies and difference-
in-means tests, and find no significant effects of geometric compactness on spatial
diversity. I find that human compactness has a significant negative effect on
spatial diversity: increasing human compactness from 0 to 1 decreases spatial
diversity by 0.04 points.

We cannot simply run a regression aggregating every single district as each state
has a unique distribution of spatial diversity and compactness. Consider the
following. Within each state, increasing compactness decreases spatial diversity.
But on the aggregate, states with high spatial diversity also have low compactness.
In this case, regressing spatial diversity on the aggregate level would give an
inflated estimate of the actual effect, falling afoul of the ecological fallacy. 1
illustrate this in figures 23 and 24. In Figure 23, I plot a graph of human
compactness on the x-axis and spatial diversity on the y-axis. The overall trend
seems to be slightly negative: in most of the groups, there is a slight negative
correlation between human compactness and spatial diversity. However, we
would obtain erroneous results if we aggregated the different states and ran a
singular regression. This is depicted in Figure 24: due to the between-group
correlation of compactness and spatial diversity, the estimate of the effect is
biased.

We must therefore control for state when running the regression. Thus, I run a
multivariate regression with the functional form

j
Spatial Diversity = By + f1Compactness + Z B;State;.

This is a regression of spatial diversity on compactness with state dummies,
taking care to avoid the dummy variable trap.

Table 1 gives the results for the OLS regressions, which are also displayed in Figure
25. I find that only human compactness has a statistically significant negative
coefficient on spatial diversity, while Polsby-Popper and Reock have a significant
positive coefficient. This initial result suggests two things: firstly, and rather
disappointingly, that optimising over the two most popular compactness measures
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Figure 23: The individual-level regressions show a weak negative correlation
between human compactness and spatial diversity
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Figure 24: Aggregating the individual states gives an inflated estimate of the
effect of compactness and commits the ecological fallacy
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may have adverse effects on electoral competitiveness and responsiveness. More
encouragingly, though, these effects can be mitigated by a judicious choice of
compactness measure. The results show that optimising over Convex Hull does
not come at the cost of diversity, and that increasing human compactness actually
decreases spatial diversity.

Coefficient estimates of OLS regressions

Convex Hull H

Human Compaciness 4

Polsby-Popper

Reock q

-0.025 0.000 0.025
Coefficient Estimate

Figure 25: Human compactness has a much larger negative coefficient than other
compactness measures

5.2.1.1 Robustness check

The results of the initial regression are suggestive, but not the last word. As
a robustness check, I run the same regression for for different subsets of the
generated plans, and find remarkably consistent results.

The neutral ensemble algorithm I use to generate plans generates plans that run
the whole gamut of compactness scores, including both highly compact plans and
rather noncompact ones in the sample of 100,000. In reality, however, legislators
will try to optimise for compactness to some degree. A plan proposed in real
life—while not being optimally compact—would be reasonably so. Rather than
regressing over the entire sample, then, we should specifically check the spatial
diversity of plans which exceed the threshold of “reasonable compactness”.

But what is the threshold of “reasonable compactness”? The choice of the
threshold cannot be determined a priori. One would have to know the distribution
of compactness in a sample of plans generated in real life. Of course, as real-life

47



Table 1: OLS Regression of spatial diversity on various compactness metrics

Dependent variable:

Spatial diversity

(1) (2) (3) (4)
Human compactness —0.040***
(0.001)
Polsby-Popper 0.025%**
(0.001)
Reock 0021***
(0.001)
Convex Hull —0.002*
(0.001)
Observations 100,000 100,000 100,000 100,000
State Dummies? Yes Yes Yes Yes
R? 1.000 1.000 1.000 1.000
Adjusted R? 1.000 1.000 1.000 1.000
Residual Std. Error (df = 99989) 0.010 0.010 0.010 0.010

F Statistic (df = 11; 99989)

41,883,992+

41,570,562***

41,518,528** 41,204,865 **

Note:
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expert districtors do not produce a distribution of plans, this is a tall order. I
therefore run the same OLS regression for different thresholds of “reasonable
compactness”, ranging from no cutoff (all plans) of plans to the top 10% of
plans®. That is to say, I run the same OLS regression with smaller and smaller
subsets of the generated plans. The results are shown in Figure 26 which plots
the regression coefficients for all the models I ran.

Coefficient estimates of OLS regressions

Convex Hull -
model
Human Compaciness 4 — *

10th percentile

25th percentile

= 50th percentile

= 75th percentile

Polsby-Popper | . ~ 90th percentile
oth percentile (all)

Reock 4 -~
-0.050 -0.025 0.000 0.025 0.050

Coefficient Estimate

Figure 26: OLS regression of spatial diversity on compactness for different cutoffs

While the results vary somewhat depending on our choice of threshold, they are
on the whole remarkably consistent. The Reock measure and Polsby-Popper
metrics perform poorly no matter what threshold one sets. The Convex Hull
metric is the best of the dispersion-based measures. It consistently has a negative
coefficient, although the negative coefficients are very small—particularly when
the threshold is low. Finally, the human compactness metric performs well on all
subsamples. The coefficient on human compactness is larger than all the other
metrics on all the thresholds—a strong indication that it is the metric that best
ensures district homogeneity.

9The results are similar when we take the top 5% or 2% of plans, but the small sample
sizes of those thresholds mean that it is difficult to get statistical significance.
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5.2.2 The most humanly-compact plans are significantly more ho-
mogeneous than the most geometrically-compact plans

The OLS regressions I have run give the relationship between compactness
and spatial diversity. But perhaps we are not concerned about the marginal
effect of compactness on diversity. One might ask a more basic question: if we
mandate that plans are “reasonably compact”—whatever that means—and force
legislators to propose only plans that cross a threshold of reasonable compactness,
will that adversely affect spatial diversity?

If there is indeed a fundamental trade-off between compactness and spatial
diversity, then we should observe the average spatial diversity of highly compact
plans to be higher than the spatial diversity across all plans. I therefore compare
the mean spatial diversity of the top 500 plans under each compactness metric to
the mean spatial diversity of all plans. As a robustness check, I look at different
proportions of top plans (top 10%/5%/2%) and obtain almost-identical results.
Encouragingly, there seems to be no trade-off between compactness and spatial
diversity: the mean spatial diversity in top compactness plans is not higher than
the overall mean spatial diversity. But only human compactness has a mean
spatial diversity significantly lower than the mean spatial diversity of all plans.
In order to check the significance of this result, I run a differences-in-means
test using Welch’s t-test. I use Welch’s t-test as Student’s t-test relies on a
homogeneity in variances assumption. When the assumption of equal variances
is not met, Student’s t-test yields unreliable results, while Welch’s t-test controls
Type 1 error rates as expected [Delacre et al., 2017]. In this case, since the
top plans come from different distributions, it is unlikely that the variances are
homogeneous. I find that only human compactness had a statistically significant
difference in mean spatial diversity.

For completeness, I also ran pairwise differences-in-means tests between the top
plans of all four metrics, for a total of 10 tests. The results are shown in Figure
27. As expected, there were no significant differences in means between any of
the geometric compactness metrics, but there was a significant difference in the
means between human compactness and the other compactness metrics. The
results show that the top plans under human compactness have significantly
lower spatial diversity than the top plans under other compactness metrics.

5.2.2.1 Robustness check

As a robustness check, and to prevent committing the ecological fallacy (drawing
inferences about individual-level differences from aggregate-level data), I run
40 individual t-tests to check if there are differences in spatial diversity on a
state-by-state level. The top plans under human compactness are more likely
to be significantly more homogeneous than top plans under other compactness
metrics.
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Difference in spatial diversity between top plans
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Figure 27: Mean spatial diversity of top plans under each compactness measure

While the difference-in-means tests are suggestive, there are two rejoinders to
this. Firstly, one could argue that the difference in means is quite small: only
1.5% of the total variance in spatial diversity. Secondly, one might think that
looking only at the aggregated results could be misleading. A difference in means
in the aggregate could be due to one or a few outlier states driving the results.

To address these two criticisms, I run Welch’s t-test—testing the hypotheses
that the average spatial diversity of a top plan under each compactness metric is
significantly different from the average spatial diversity of all plans—for all ten
states (giving a total of 40 t-tests), The full list of t-tests is available in Appendix
A. Once again, human compactness performs the best. The top plans under the
Reock metric have statistically significant negative differences in spatial diversity
means in 3 out of 10 states. Polsby-Popper and Convex Hull do a little better
with 4 out of 10 states. Human compactness outperforms with a total of seven
states. If we look at meaningful differences—not just statistically significant ones
(instances where the mean is lower by more than 5% of the total variance)—then
human compactness outperforms by a wide margin. Human compactness has
a statistically significant and meaningfully lower spatial diversity in six of the
states. Reock does in two states, and Convex Hull and Polsby-Popper only in
one. Finally, in two cases (both under the human compactness metric), the
difference is so meaningful that it makes up 25% and 35% of the total variance.
Concretely, the spatial diversity of all 10,000 New Hampshire plans lie within
a range of 0.03. The top 1,000 plans under human compactness have a spatial
diversity that is 0.01 lower than the mean — a very meaningful effect that spans
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one-third of the total range. Far from being a small effect, it seems that the
choice of compactness metric to optimise over can have significant impacts.

What do the difference in means actually imply in terms of proposed plans?
Table 2 shows what percentile the top 10 percent of plans under each metric
would occupy in the distribution of 10,000 plans (lower is better). If there is
no relationship between a compactness metric and spatial diversity, then we
should expect the mean percentile to lie around 50 percent. If, however, the
top plans under a metric are significantly less spatially diverse, then we should
see a low percentile for many of the states. In the table, I have bolded the
best-performing metric in each row, subject to it being less than the median
(<50th percentile). As before, I run robustness checks and get qualitatively
similar results for various threshold cut-offs.

Table 2: What percentile the top 10 percent of plans under each metric occupy
(lower is better)

he PP reock ch
0 Connecticut 34.31 54.02 55.61 48.25
1 Georgia 48.29 44.24 48.34 47.62
2 Idaho 59.92 48.62  20.90 26.88
3 Louisiana 39.03 39.12 42.45 41.24
4 Maine 26.22 92.48 78.12 23.56
5 Rhode Island 23.32 56.46 53.71 52.70
6 Maryland 36.99 33.00 33.00 48.68
7 New Hampshire 8.25 58.08 40.30 65.73
8 Utah 77.05 61.72 58.57 59.92
9 Wisconsin 34.09 42.14 47.26 43.07

Mean percentile 38.75 52.99 47.83 45.77

The table shows that the human compactness metric consistently outperforms the
other metrics in many of the states, forestalling the criticism that the results may
be driven by one or two outliers. While human compactness does particularly
well in New Hampshire and Rhode Island, it still performs best overall even if
we remove those two states from consideration.

5.2.3 Conclusions of data analysis

I find two results: one equivocal, one very strong. Depending on whether we
weight the results of the OLS regression or the difference-in-means tests more,
there may be a trade-off between the Polsby-Popper/Reock metrics and district
homogeneity. There seems to be no trade-off for the Convex Hull and human
compactness metrics.

The data strongly support the claim that human compactness is the metric that
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best encompasses district homogeneity. Firstly, the coefficient estimates on the
OLS regression show that human compactness has the largest negative correlation
with spatial diversity. Secondly, the top plans under human compactness were
significantly more homogeneous than the top plans under any other compactness
metric. Lastly, the most humanly compact plans were also more homogeneous
than average in eight out of ten of the states I analysed—compared to only three
or four for the other metrics. These results are robust to different thresholds and
different aggregation functions, and the size of the differences between human
compactness and other compactness measures are also very large.

6 Discussion

6.1 I found no consistent trade-off between compactness
and communities of interest

Is there a fundamental trade-off between compactness and communities of interest,
as proxied by district homogeneity? The answer seems to be: it depends on
how you measure compactness. For geometric compactness measures, the results
are equivocal: OLS regressions indicate that there is some trade-off between
compactness and homogeneity, while difference-in-means tests indicate no such
trade-off. Point-based distance metrics like human compactness fare much better.
Rather than a trade-off, there is a synergy between human compactness and
district homogeneity.

It was the right call to use many different compactness metrics, due to the
frequency at which even very similar compactness measures disagree. The Maine
entry in Table 2 is a good example. The top Polsby-Popper plans lie in the 92nd
percentile of all plans—very high—but looking at the Reock and Convex Hull
measures paint a much less one-sided picture. In fact, it is surprising that the
Reock and Convex Hull percentiles differ so radically, seeing as the measures
differ only in the bounding shape (convex polygon versus a circle) of the district.

If we had used only the Polsby-Popper metric in our analyses, we would have
(erroneously) concluded that Maine’s political geography was fundamentally
incompatible with compactness. This casts doubt upon work that uses only a
singular compactness metric to score districting plans. Without wishing to single
out any work in particular (many other papers do the same thing), Schutzman
[2020] uses only the Polsby-Popper measure to analyse only two states. My data
suggest that this analysis is insufficient—severely curtailing the generalisability
of such works.
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6.2 Human compactness seems to best encompass com-
munities of interest

The data show that human compactness best tracks spatial diversity, which in
turn correlates with democratic outcomes like participation, responsiveness and
competitiveness. This finding consistently repeats itself throughout different
analyses, different thresholds, and different aggregation functions. The implica-
tion is clear: if we believe Stephanopoulos’s work on the benefits of lower spatial
diversity, then adopting human compactness will give us better plans.

Human compactness (and other point-wise metrics like it) put people who live
close together in the same district, which also tends to mean that communities
of interest are not split. This has been a powerful theoretical argument for using
point-wise distance metrics over dispersion-based ones, and in this thesis I have
lent empirical support to that argument.

To be fair, there are many other considerations that go into choosing a com-
pactness metric, and I have alluded to several in the previous sections. First is
objectivity. Geometric compactness measures were invented in the first place—
almost six decades ago—to measure and prosecute gerrymandering objectively:
“[compactness| remains subjective in that no method of measurement has gained
general acceptance” [Reock, 1961, p. 74].

But second—and possibly far more important—is explainability. Compactness
metrics feature prominently in spheres outside academic political science, from
general political discourse to amicus briefs for the Supreme Court. The seminal
work by Reock almost sixty years ago says “the best use for the method of
measuring compactness outlined here is as a tool for the courts and as a weapon
for public opinion”. It is thus incredibly important that a compactness metric be
intuitive and explainable to laymen. This almost entirely rules out overly mathe-
matical measures like Dube and Clark [2016] that use graph theory and minimise
cut edges, or uninterpretable measures like Kaufman et al. [Forthcoming] that
build a “black box” machine learning model.

While geometric compactness metrics are simple enough to explain, they lack
a normative appeal. It is almost too easy to criticise geometric compactness
metrics on the basis of irrelevance. If we ask: why should districts follow some
regular shape? the answer is not immediately forthcoming, and in fact many
have correctly pointed out that there is little reason to do so eo ipso.

Human compactness seems to meet both these criteria. It well-encapsulates the
notion of “communities of interest”, while sidestepping the problem of having
to define, delineate and make subjective judgement calls on these communities.
And while it is not obvious that districts should conform to some regular polygon,
the idea of putting people who live together in the same voting district has a
strong normative force with great intuitive appeal—an idea which has now been
bolstered with new empirical evidence.
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6.3 Directions for future work

Future work should look at expanding the scope of the analysis in three ways:
more states, more compactness measures, and more outcomes of interest.

My work analyses 10 out of the 50 states. Restricting analysis to a subset of states
is common in other redistricting work, due to the onerous computational burdens
of the procedure. DeFord et al. [2019a] measure the effect of competitiveness on
partisanship for five states, and Schutzman [2020] looks at the trade-off between
compactness and partisan symmetry for only two states. We know, however, that
this has implications on external validity. While my analysis covers more states
than much of the literature, further work should nonetheless extend the analysis
to cover more states—especially large states like Texas, Florida and California.
Analysing more compactness measures would also help. Of particular interest
would be other point-wise distance metrics like bizarreness, and Kaufman et al.’s
(Forthcoming) metric that attempts to imitate human perception.

Finally, future work should analyse a variety of other outcomes of interest
Districting affects many other things: political knowledge, turnout, and federal
spending [Snyder Jr and Stromberg, 2010], but work so far has been focused
almost entirely on electoral competitiveness. My work takes a step apart from
that tradition by examining district homogeneity (a non-electoral outcome), but
there are many more outcomes of interest that can and should be studied.

6.4 Conclusion

In this work, I have used a simulation approach to test the claim that compactness
comes at a cost to communities of interest. I have shown that these claims
are not entirely unfounded. The evidence suggests that point-based distance
metrics are the best option for redistrictors trying to satisfy the twin demands of
compactness and communities of interest laid out in the legislature. Jurisdictions
considering redistricting reforms should therefore carefully consider how they
plan to measure—and meet—these twin demands: their choice of metric can
have a significant impact on communities of interest, with knock-on effect on
representation and other democratic outcomes.
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7 Technical Appendix A: evaluating different
methods of plan generation

In this Technical Appendix, I introduce the different methods that have been
used to generate many different districting plans, explain their strengths and
weaknesses, then justify my chosen approach.

7.1 Seminal algorithms for plan generation

The idea of drawing a large number of districting plans with a computer has
a long and storied history, starting in the 60s and 70s. The approach has
almost always been used to identify gerrymandering; for instance Cirincione
et al. [2000] build an algorithm to “quantitatively [assess] whether the [1990
South Carolina] plan is a racial gerrymander”. More recently, Chen et al. [2013]
“generatle] a large number of hypothetical alternative districting plans that are
blind as to party and race, relying only on criteria of geographic contiguity
and compactness.” They do this using a Markov Chain simulation algorithm,
a procedure that makes iterative changes for a large number of steps until a
unique districting plan emerges. At each step of Cirincione et al.’s algorithm,
they randomly select a Census Block Group to serve as a “seed” of the district,
then randomly add its neighbouring block groups to it until a district with the
desired population is formed. Similarly, Chen et al. begin by initialising all
voting precincts as an individual, separate district, then randomly agglomerating
neighbouring precincts until the desired number of districts is reached.

While this standard iterative algorithm enjoys a certain degree of success, it
has one crippling weakness. The way in which this class of algorithms operates
necessarily explores only a tiny subset of all possible districting plans. Subsequent
work pointed out this flaw: Magleby and Mosesson wrote that automated
processes “may take a biased sample of all possible legislative maps... and fail
to efficiently produce a meaningful distribution of all alternative maps”. And
Fifield et al. contend that “[standard Monte Carlo algorithms] are unlikely to
yield a representative sample of redistricting plans for a target population.” 19
This poses a huge issue for the validity of any statistical analysis, because any
correlation that we discover on a biased subset of plans may be spurious when
measured over the actual distribution of plans. !

108ee Fifield et al. [Working Paper]|, pg. 16, for a technical explanation of why these
algorithms don’t produce uniform redistricting plans: “For example ..., the creation of earlier
districts may make it impossible to yield contiguous districts. These algorithms rely on rejection
sampling to incorporate constraints, which is an inefficient strategy. More importantly, the
algorithms come with no theoretical result and are not even designed to uniformly sample
redistricting plans.”

11 Generating a biased sample is not necessarily a problem if all you want to do is optimise,
e.g. draw the most compact plan possible. Recent work builds upon this standard algorithm,
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7.2 Markov Chain algorithms

Thankfully, scholars have developed an improvement over the standard algorithm
with stronger theoretical guarantees. This second class of algorithms reframe the
districting problem as a graph partition problem (borrowing insights from graph
theory and computer science), and use a Markov Chain Monte Carlo (MCMC)
approach to sample possible districting plans. This approach is best laid out in
Fifield et al. [Working Paper]. A graph partition is an assignment of Census
Tracts/Blocks to districts — basically a districting plan. The graph contains
nodes, which are individual Census Tracts/Blocks, and edges, which are lines
between nodes that denote contiguity.

The MCMC approach first initialises a specific graph partition. This is the first
step of the Markov Chain. Then it flips a random node of the graph to get
another valid partition, which means swapping the ownership of a Census Tract
from one district to another. This process is repeated until the Markov Chain
approaches its steady state distribution: when this happens, the Markov chain
is called “well-mixed”.

This class of algorithms inherit desirable well-known theoretical guarantees of
the Markov Chain.'? They are therefore much less likely (both theoretically and
empirically) to generate a biased subset of plans. Conducting a small-scale vali-
dation study on a 25-precinct set, Fifield et al. compare the distribution of plans
generated by their algorithm to those generated by the standard redistricting
algorithm. They prove that their algorithm produces plans that hew much more
closely to the actual distribution of all possible districting plans.

7.3 Three different Markov Chain algorithms

The MCMC approach enjoys many advantages. However, there are many ways
to conduct an MCMC analysis. The key question is how one should sample from
the near-infinite pool of possible plans. State-of-the-art literature in this space
use one of three main approaches, all of which have their pros and cons.

The first is to get a sense for the properties of extremely compact plans under
each compactness measure by using a local optimization technique, starting at
a whole bunch of different initial seeds using the single node Flip approach
previously described. This approach gives us the most compact plans, and is
often used to find the “maximal” or “best” districting plans. However, it will—by
design—only explore a very tiny subset of all plausible districting plans. Also,
because the Flip proposal is very state-dependent, the initial state can affect
the results greatly.

using Voronoi diagrams or iterative flood fill procedures rather than random chance, to assign
the precincts to be agglomerated. See Levin and Friedler [2019] for a technical overview.
123ee DeFord et al. [2019b] for a technical overview.
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The second is a middle-of-the-road approach, using a global proposal distribution
and a Metropolis-Hasting acceptance function to sample from a distribution over
plans that is proportional to e(~#xCempactness) Thig approach first generates
many plans, but uses an “acceptance function” to reject plans that are not
compact enough. This will give us a distribution of plans that is biased towards
compact ones, but also contains some noncompact plans.

One can get different distributions of plans depending on the specific acceptance
function. For instance, DeFord and Duchin [2019] prioritises plans that have fewer
locality splits and/or sustain a Black majority-minority district. Herschlag et al.
[2018] use a complicated score function that takes into account county splitting,
population deviation, compactness and minority representation. If I were to use
this approach, I would define four different score functions corresponding to the
different compactness measures, and compare the resulting distributions that
result from each measure.

Finally, one can sample from a distribution that doesn’t incorporate any com-
pactness score at all and extract the plans that achieve a good score under each
metric. This approach is used in DeFord et al. [2019a], where they generate a
large neutral ensemble of districting plans and then subsequently filter the plans
according to increasingly strict vote-band constraints. The advantage of this
approach is that it casts the widest net: all plausible districts (subject to the
equal population bound) are explored. The disadvantage is that the odds of
sampling an ‘optimal’ district are incredibly low, which makes it suboptimal for
algorithms that aim to build the “best” plan.

7.4 Choosing the best MCMC approach

To recap, there are three plausible MCMC approaches to generate a large subset
of redistricting plans: local optimisation, score function, or neutral ensemble. I
examine them each in turn and decide on the neutral ensemble approach because
it generates the largest and most representative subset of redistricting plans,
which best represents the plans that legislators are likely to draw in real life.

The first proposal is local optimisation. Local optimisation approaches like the
Flip proposal have one key problem. The “mixing time” of the Markov Chain
under the Flip proposal—that is, the number of steps it takes for the Markov
Chain to be “close enough” to the stationary distribution—is very large. What
that means is that the F1ip proposal tends to generate very uncompact, snakelike
districts in the beginning, as can be seen in Figure 28. It will take millions of
steps for plans under the Flip proposal to reach a satisfactory districting plan.
As such, I prefer the Recombination (Recom) distribution by DeFord et al.,
which uses a spanning tree method to bipartition pairs of adjacent districts
at each step [DeFord et al., 2019a]. This proposal distribution improves upon
the Flip proposal by decreasing the mixing time needed to reach a satisfactory
districting plan.
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(a) Initial Partition (b) 1,000,000 Flip steps (c) 100 ReCom steps

Figure 28: The Recom proposal generates more realistic plans in much fewer
steps. Taken from DeFord et al. [2019D].

Mixing time aside, the extreme compactness of local optimisation is in fact
something that I want to avoid. I aim to find out if mandating compactness in
state constitutions can inadvertently adversely affect democratic representation.
But restricting one’s analysis to extremely compact plans means that we cannot
say much about the relationship between compactness and spatial diversity. In
addition, extremely compact plans are not a representative subset of the plans
unbiased redistrictors might draw. This is because redistrictors care about a lot
of other considerations apart from compactness, and therefore most definitely do
not optimise solely over compactness. State constitutions demand that plans be
“reasonably compact”, not “maximally compact”: it’s vanishingly unlikely that
those extremely compact plans would resemble the types of plans that would
be drawn in real life. As such, even if I found that optimally compact plans
had greater spatial diversity, this would have very little bearing on redistricting
policy. It’s far more instructive to see whether the relationship holds in the plans
that a non-partisan committee could actually be expected to draw.

How can we get a representative subset of plans that legislators could actually
be expected to draw? Given that legislators care a lot about many different
considerations, might it be better to try and include these considerations into
the score function? This is what the second approach does. While this approach
holds strong theoretical merit, I find that this approach introduces too many
degrees of freedom. The choice of what factors to include in the score function
is contentious: Herschlag et al. use population deviation, Polsby-Popper score,
county boundaries and minority deviation. But they could just as easily have
included factors such as proportionality or number of cut edges (proposed in
Dube and Clark [2016]) for instance. Even if there is a strong justification
for including exactly those factors, there is still significant researcher freedom
to operationalise the scores. For instance, Herschlag et al. and DeFord and
Duchin both include a population deviation score, but operationalise the metric
differently.

Furthermore, any score function has to be assigned specific weights— but this
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assignment is somewhat arbitrary and open to argument. For instance, Herschlag
et al. “chose a VRA score function which awards lower scores to districting plans
which had one district close to 44.48% African-Americans and a second district
close to 36.20% African-Americans”, on the basis that the 2016 districting plan
which was accepted by the Court had districts with those proportions. But this
is incredibly arbitrary. Obviously, just because a particular district was accepted
by the Court with those proportions of African-Americans doesn’t imply that
those exact proportions of African-Americans are optimal.

To be clear, these problems are not insurmountable. If there is a strong theoretical
basis for one particular operationalisation over another, then the criticism of
researcher fiat largely loses its bite. Furthermore, the results obtained are robust
to a variety of perturbations. Herschlag et al. [2018] change the weights and
threshold values as a robustness check and find qualitatively similar results.
Nonetheless, different results can occur. And if two different operationalisations
or factor weights yield qualitatively different results, how would we adjudicate
between them? For these reasons, I choose not to use the second approach.

Finally, the neutral ensemble approach is the most permissive, and thus gives
us the best chance of getting a representative sample of legislators’ plans. It
generates a neutral ensemble and does not favour one plan over another (except
for some minimal compactness and population deviation requirements). This
approach gives us the largest space of plausible plans, which has a key advantage:
it allows the results to be applicable even for districting algorithms that do not
use an MCMC approach. This includes not only the regular low-tech way of
drawing districts, but also other automated districting algorithms like Magleby
and Mosesson [2018] and Levin and Friedler [2019].

Therefore, 1 elect to use the last, “neutral walk” approach. I use a global Recom
proposal to generate the states, but accept every proposal subject to minimal
population deviation requirements. This gives me a neutral ensemble of 10,000
plans for every state.

8 Appendix A: Results of difference-in-means
tests for individual states

Here I compare the average spatial diversity of all 10,000 plans per state to the
average spatial diversity of the 500 most compact plans per state.

I present the results for each state and each metric in the ensemble, using Welch’s
t-test.
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state metric mean_diff variance pct_variance t-stat p-value
0 0 hc -0.003460  0.058642 -5.900607  -17.425785  1.366961e-61
1 0 pp 0.000069  0.058642 0.118009 0.288166  7.732681e-01
2 0 reock 0.000381  0.058642 0.650317 1.624462  1.045297e-01
3 0 ch -0.001042  0.058642 -1.776135 -5.014481  6.033771e-07
4 1 hc -0.000513  0.057499 -0.892208 -1.868482  6.193359e-02
5 1 pp -0.001423  0.057499 -2.475505 -4.986335  7.054193e-07
6 1 reock -0.000498  0.057499 -0.865298 -1.692770  9.076060e-02
7 1 «ch -0.000678  0.057499 -1.178930 -2.231754  2.581874e-02
8 2  hc 0.001489  0.036047 4.131827 26.809567  2.038788e-153
9 2 pp 0.001104  0.036047 3.062205 10.321991  2.820313e-24
10 2 reock -0.000188  0.036047 -0.520417 -0.859779  3.900941e-01
11 2 ch 0.000383  0.036047 1.063637 2.841225  4.560090e-03
12 3 hc -0.001257  0.033457 -3.756204 -9.240446  9.523388e-20
13 3 pp -0.001245 0.033457 -3.720159 -7.632057  4.670461e-14
14 3 reock -0.000776  0.033457 -2.318159 -5.132091  3.320205e-07
15 3 ch -0.000927  0.033457 -2.770633 -7.108140  1.896994e-12
16 4 hc -0.001902  0.028376 -6.704063  -49.155427  0.000000e+-00
17 4 pp 0.005131 0.028376 18.081320 38.153281  1.090249e-206
18 4 reock 0.001304 0.028376 4.596054 20.334160  7.714653e-84
19 4 ch -0.002035 0.028376 -7.171113  -50.341694  0.000000e+-00
20 5 hc -0.019707  0.077819 -25.324736  -43.785027 7.817121e-271
21 5 pp 0.007385 0.077819 9.490310 14.029691  8.033314e-42
22 5 reock 0.005601 0.077819 7.197869 10.059549  5.666063e-23
23 5 ch 0.004848 0.077819 6.229592 8.615116  2.011837e-17
24 6 hc -0.004913 0.076917 -6.386934  -12.541515  4.676097e-34
25 6 pp -0.006333  0.076917 -8.2336563  -16.445177  3.655560e-55
26 6 reock -0.006334 0.076917 -8.235342  -17.317992  1.527167e-60
27 6 ch -0.000795 0.076917 -1.033852 -1.809545  7.061978e-02
28 7 hc -0.011556  0.032940 -35.083239 -120.004988  0.000000e+-00
29 7 pp 0.002150  0.032940 6.527335 9.218455  1.208411e-19
30 7 reock -0.002165  0.032940 -6.573630  -11.615082  6.541658e-30
31 7 ch 0.004050  0.032940 12.294876 17.193270  1.023553e-59
32 8 hc 0.005538  0.058276 9.503582 42.778404  4.401068e-291
33 8 pp 0.002962  0.058276 5.082034 18.477814  2.578165e-69
34 8 reock 0.002492  0.058276 4.275665 14.864941  8.132217e-47
35 8 «ch 0.002689  0.058276 4.613737 16.787183  1.984654e-58
36 9 hc -0.003290  0.049699 -6.619743  -13.092609  8.687410e-37
37 9 pp -0.001645 0.049699 -3.309711 -6.053633  1.889349e-09
38 9 reock -0.000677  0.049699 -1.361577 -2.476624  1.340008e-02
39 9 ch -0.001482  0.049699 -2.982079 -5.561983  3.278783e-08
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