
Provenance-enhanced Algorithmic Debugging

Henrique Linhares
hlinhares@id.uff.br

Instituto de Computação
Universidade Federal Fluminense

Niterói, Rio de Janeiro, Brazil

João Felipe Pimentel
jpimentel@ic.uff.br

Instituto de Computação
Universidade Federal Fluminense

Niterói, Rio de Janeiro, Brazil

Troy Kohwalter
tkohwalter@ic.uff.br

Instituto de Computação
Universidade Federal Fluminense

Niterói, Rio de Janeiro, Brazil

Leonardo Gresta Paulino Murta
leomurta@ic.uff.br

Instituto de Computação
Universidade Federal Fluminense

Niterói, Rio de Janeiro, Brazil

ABSTRACT
Localizing defects in a faulty software is a notoriously difficult activ-
ity. Researchers proposed several techniques to help developers to
locate defects. One of these techniques is Algorithmic Debugging,
which consists on executing the defective program, building an
execution tree with the subcomputations, asking questions to the
developer about the correctness of some specific subcomputations,
and pruning the search space according to the answers to those
questions. However, depending on the complexity of the program,
the number of questions can be high, increasing the duration of
the debug session. In this work we propose DebugProv, an algo-
rithmic debugging approach for Python programs that enhances
the execution tree with provenance to reduce the number of nec-
essary questions to locate the defect, and, consequently, reduce
the duration of debug sessions. We evaluated our technique over
different programs and found that it was able to reduce the number
of questions in 25.26%, on average.

CCS CONCEPTS
· Software and its engineering → Software testing and de-
bugging;

KEYWORDS
algorithmic debugging, provenance, program slicing, software de-
fects

ACM Reference Format:
Henrique Linhares, João Felipe Pimentel, Troy Kohwalter, and Leonardo
Gresta Paulino Murta. 2019. Provenance-enhanced Algorithmic Debugging.
In XXXIII Brazilian Symposium on Software Engineering (SBES 2019), Sep-
tember 23–27, 2019, Salvador, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3350768.3350777

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES 2019, September 23–27, 2019, Salvador, Brazil
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7651-8/19/09. . . $15.00
https://doi.org/10.1145/3350768.3350777

1 INTRODUCTION
Finding defects in software is a notoriously difficult activity. When
a program presents an unexpected behavior, programmers must
search, among several lines of code, the one that contains the defect.
The developers in charge of the debugging task usually do this
search in an unsystematic way, based on guesses [18, 35]. These
guesses demand a great effort, and the larger the software, the
bigger the number of possible locations for the defects.

Almost 40 years ago, Shapiro [30] introduced algorithmic de-
bugging as an iterative technique to find defects. An algorithmic
debugging session starts when a computation presents an incorrect
or unexpected result. Then, the algorithmic debugger builds a tree
that represents this computation. In this tree, the root node is the
initial computation, and the children nodes are the routines (or
function activations) that executed in that computation. Then, the
algorithmic debugger asks questions to an oracle (usually a devel-
oper) to compare the result of the routines with the expectations of
the developer, e.g., łthe routine AVERAGE(10,20) returned 15. Is this
valid (Y/N/I Don’t Know)?ž. The algorithmic debugger traverses the
execution tree, checking the validity of the nodes and reducing the
search space until the defective node is found [5].

After the initial proposal of algorithmic debugging in the early
1980s, researchers proposed several concrete implementations for
the functional programming paradigm [2, 14, 17, 21, 23]. GADT [9]
was the first algorithmic debugger to work with an imperative
programming language: Pascal. GADT used a static program slic-
ing technique [33] to remove irrelevant nodes from the execution
tree. The major limitation of GADT is the necessity to apply a pro-
gram transformation technique before building the execution tree,
creating a mismatch between the original program structure and
the questions asked to developers. Another approach that works
with imperative programs written in Java is JDD [3]. JDD employs
equivalence classes to reduce the number of questions that the
debugger presents to the developer. However, this technique only
removes equivalent questions, still presenting a sub-optimum set
of questions to developers.

Even though algorithmic debugging is a systematic way to lo-
cate defects, the debugging sessions can still be time-consuming.
Execution trees with a large number of nodes lead to algorithmic de-
bugging sessions with many questions, and the higher the number
of questions, the more time is necessary to find the defect.

203

SBES 2019, September 23ś27, 2019, Salvador, Brazil Linhares et al.

In this work, we propose DebugProv, an algorithmic debugging
approach for Python programs. DebugProv enhances the execution
tree with provenance captured from the execution of a defective
program. In general, provenance refers to the origin of a data ob-
ject [19]. In the specific context of debugging, it encompasses all the
data and computations that were necessary to derive the program
results. DebugProv uses a dynamic program slicing technique [7],
which captures the steps used by a program to generate the values
presented in its variables, function results, or outputs.

We evaluated our proposed approach over a set of 15 Python
programs. We first artificially inserted different defects into each
one of them, generating 458 mutants [8]. Then, we ran DebugProv
over these mutants and measured the number of questions asked to
the developer to detect each defect. We contrasted the performance
of DebugProv with the classic algorithmic debugging technique,
without provenance enhancement. Our results show that prove-
nance enhancement produces an average reduction of 25.26% in
the number of algorithmic debugging questions. This reduction
in the number of questions brings initial evidence that enhancing
execution trees with provenance may reduce the duration and the
effort necessary to locate defects in algorithmic debugging sessions.

The main goal of this paper is to introduce DebugProv, which
brings the following contributions: (i) it is the first approach to im-
plement algorithmic debugging for an interpreted and dynamically-
typed imperative language (i.e., Python), (ii) it is the first approach
that uses provenance collected through dynamic program slicing to
enhance the execution tree used in algorithmic debugging, and (iii)
it was able to reduce in about 25% the number of questions asked
during algorithmic debugging sessions.

This paper is organized as follows: Section 2 introduces algo-
rithmic debugging. Section 3 describes our approach, including its
architecture, the provenance enhancement technique, and the im-
plementation aspects. Section 4 presents DebugProv evaluation and
discuss the results. Section 5 presents the related work. Section 6
concludes our work and presents some future work.

2 ALGORITHMIC DEBUGGING
In this section, we use the Python script presented in Figure 1 as
an intentionally simple but didactic guiding example to introduce
algorithmic debugging. This script prints a header (print), reads
data from a file (readfile), finds the minimum value in the data
(find_min), and prints the count of elements and the minimum
value (print_result). The script has a bug in the function find_min.

Caballero et al. [5] interpret algorithmic debugging as a process
with two phases: (i) capturing and (ii) navigation. The capturing
phase employs program transformation, code instrumentation,
reflection, or modifications in the compiler to identify all function
and method calls during the execution of the program and compose
the execution tree. In this tree, nodes represent function calls. The
root node of the execution tree corresponds to the first call that
started the computation. Figure 2 illustrates the execution tree built
from the execution of our guiding example.

Every node in the execution tree can contain descendants. A child
of a node n corresponds to a computation (a function or method, in
Python) that was activated during the execution of n. In Figure 2,
the function readfile has two immediate descendants: open and load.

1 from j s o n import l o a d
2 FILE_NAME = ' d a t a . j s o n '
3
4 def r e a d f i l e (f i l e n a m e) :
5 f = open (f i l e n a m e , ' r ')
6 return l o a d (f)
7
8 def f ind_min (d a t a) :
9 c u r r e n t = f l o a t (' i n f ')

10 for d in d a t a :
11 i f d < c u r r e n t :
12 pass # D e f e c t i v e L i n e
13 return c u r r e n t
14
15 def p r i n t _ r e s u l t s (data , d_min) :
16 d_count = len (d a t a)
17 print (d_count)
18 print (d_min)
19
20 print (" Count ␣− ␣ Min : ")
21 d a t a = r e a d f i l e (FILE_NAME)
22 pda ta = f ind_min (d a t a)
23 p r i n t _ r e s u l t s (data , pda ta)

Figure 1: Python script used as a guiding example

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 2: The execution tree of our guiding example

The navigation phase is the core of an algorithm debugging
process. It uses a navigation strategy to traverse the generated
execution tree and interacts with the user to find the defective node.
The navigation strategy decides the order of nodes to visit and,
consequently, the questions to be asked to the user. After receiving
an input from the user, the algorithmic debugger process the answer
and prunes the execution tree before moving forward and asking
another question to the user.

Therefore, every question asked in an algorithmic debugging
session leads to a prune. The algorithmic debugger reduces the
search space by assuming only one defective node per session. For
programs with multiple defects, the programmer must run multiple
debugging sessions. When a node n is evaluated and classified as
valid (i.e., correct), n and all the subtree rooted at n are pruned
(removed) from the search space. In Figure 2, when the debugger
classifies readfile as valid, it marks both open and load as valid as
well. On the other hand, in case that n is classified as invalid (i.e.,
incorrect), all nodes that are not descendants of n are removed from
the search space. Thus, n becomes the new root of the execution
tree. In Figure 2, it occurs when the debugger classifies find_min as
invalid. In this case, the debugging session continues to check if the
bug is in the find_min node itself or if it is in one of its descendants.

The defective node is a node that is invalid while all of its children
are valid. When the debugger finds the defective node, the session
ends, and the debugger presents to the user the defective node,
which relates to a defective function call.

Nevertheless, the pruning process that occurs in the execution
tree can be more or less effective depending on the sequence of
questions asked to the developers, which depends on the chosen

204

Provenance-enhanced Algorithmic Debugging SBES 2019, September 23ś27, 2019, Salvador, Brazil

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 3: An algorithmic debugging session (Step 3)

navigation strategy. Many navigation strategies have been proposed
for algorithmic debugging in the literature [32]. The most relevant
are Single Stepping, Top Down, Heaviest First, and Divide and
Query. Table 1 describes these strategies and presents the navigation
steps to find the defective node find_min in Figure 2.

For instance, suppose that we are performing an algorithmic
debugging session in our example shown in Figure 1, using the Top
Down navigation strategy. Following the Top Down navigation
strategy, the debugger first evaluates the root node, which refers to
the program itself. The developer answers that this node is present-
ing a wrong result, and the debugger marks the root as invalid. As
this is the root node, the debugger does not prune any other node.

The next evaluated node is print. The debugger informs that the
function received a string and outputted it without returning any
value. Since the developer answers that this behavior is correct, the
debugger marks it as valid without pruning other nodes, as this
node has no children.

Then, the debugger evaluates readfile. The developer is informed
that readfile received a parameter named FILE_NAME with value
data.json and returned an array with the following numbers: 738,
967, 667, 122. As the computation of readfile is correct, the devel-
oper answers that the node is valid as well. Following the rules of
algorithmic debugging pruning, the debugger classifies the node
readfile and all of its subtree nodes as valid, removing them from the
search space. This operation results in the execution tree presented
in Figure 3. The nodes in green are valid, and the nodes in orange
are invalid. Just the white ones are still in the search space.

In the next step, the debugger evaluates the node find_min. Here,
the developer is informed that find_min received a parameter named
data with values 738,967,667,122 and returned the value inf. It is an
incorrect computation: the smallest number among the inputs is 122,
and not infinite. Thus, the developer answers that the computation
is invalid. Following the algorithmic debugging pruning rules, the
debugger defines find_min as invalid, and all nodes that are not
descendants of find_min are marked as valid and consequently
removed from the search space.

After this step, the algorithmic debugger evaluates the descen-
dant float. This node receives the string ‘inf’ and returns the float
representation of infinite. Since the developer considers this as a
correct behavior, the debugger marks this node as valid. Hence,
the debugging session finishes, indicating that the defective node
is find_min since this is the only invalid node that has all of its
children marked as valid. The resulting execution tree is presented
in Figure 4. The red color distinguishes the defective node.

3 DEBUGPROV
DebugProv is an algorithmic debugging approach that uses prove-
nance enhancement to prune nodes from the execution tree be-
fore the navigation phase of the algorithmic debugging. It was

program.py

print("Count - Min:") readfile(FILE_NAME) find_min(data) print_results(data, pdata)

open(filename, 'r') load(f) float('inf') len(data) print(d_count) print(d_min)

Figure 4: An algorithmic debugging session (last step)

implemented in Python and assists the debugging of Python pro-
grams. It is an open-source project available for download at https:
//github.com/gems-uff/debugprov. The algorithmic debugging ses-
sion starts in command-line mode by making the following call,
according to our guiding example: debugprov program.py.

In our algorithmic debugging process, we define a new phase
before the navigation phase: the provenance enhancement phase.
Thus, the architecture of DebugProv is based on three modules:
the capturing module, the provenance enhancement module, and
the navigation module. Figure 5 illustrates the main modules of
DebugProv, which are detailed in the following.

3.1 Capturing module
The capturing module is responsible for running the defective pro-
gram and capturing the data necessary to build an execution tree,
the traditional algorithmic debugging structure, and the provenance
graph, a structure used in our provenance enhancement technique.
We divide the captured data into two groups: the definition data
and the execution data.

The definition data corresponds to the structure that can be
extracted from the script before executing it. We capture definition
data by constructing an Abstract Syntax Tree (AST) of the script
code and extracting the necessary information from the AST. The
definition data includes:

• Function definitions: information about functions that were
defined in the source code.

• Parameters: information about received parameters of func-
tions.

• Code components: information about code components of a
Python script. Expressions and assigns are examples of code
components.

The execution data corresponds to the data that is captured
during the script execution. We capture execution data by trans-
forming the AST before the execution to add function calls that
collect the necessary information. This transformation is internal
to the capturing module, with no side effects in the enhancement
or navigation modules. The execution data includes:

• Function activations: information about functions that were
activated (called) during the program execution and also the
relationship between these functions (i.e., the sequence of
activations in the call stack).

• Arguments and returns: the values of the arguments passed
to the activated functions and their respective return values.

• Evaluations: the Python interpreter evaluates the code com-
ponents of a Python program during their executions. Our
approach stores the following information about the evalu-
ated components: (1) the code component associated with an

205

SBES 2019, September 23ś27, 2019, Salvador, Brazil Linhares et al.

Table 1: Navigation Strategies

Nav. Strategy Description Steps in Figure 2 # Quest.

Single Stepping Navigates the execution tree in a post-order depth first traversal, re-
specting the original execution order (left to right).

print, open, load, readfile,
float, find_min

6

Top Down Navigates the execution tree in a breadth first traversal, respecting the
original execution order (left to right).

program.py, print,
readfile, find_min, float

5

Heaviest First Variation of the Top Down strategy that selects the child with the biggest
sub-tree instead of simply navigating according to the execution order.

program.py, print_results,
readfile, find_min, float

5

Divide and Query Navigates to nodes that prune almost half of the execution tree for
every answer.

print_results, readfile,
find_min, float

4

Parse

AST

Execute

Transform

AST

Capturing

Python

Program

Execution

Tree

Merge

Enhancement

Provenance

Graph

Single

Stepping

Heaviest

First

Top Down

Navigation

Provenance

Enhanced

Execution

Tree
Divide and

Query

Localized

Defect
Prune

Figure 5: DebugProv overview

evaluation, (2) the activation associated with an evaluation,
and (3) the representation (or the result of) that evaluation.

• Dependencies: by using dynamic program slicing [7], De-
bugProv can store the dependencies between evaluations.
A dependency is a relationship between two evaluations,
where the value of the dependent was influenced somehow
by the value of the dependency. Capturing and storing the
dependencies between evaluations is essential to perform
the provenance enhancement in the execution tree.

As a result, this module provides to the enhancement module
both the execution tree and the provenance graph. Considering our
example shown in Figure 1, while the execution tree informs that
function readfile calls function load, the provenance graph informs
that the input of find_min depends on the results of readfile.

In PROV terms, we map each Python evaluation to a PROV “en-
tity”. These entities have “wasDerivedFrom” relationships to other
entities, which are extracted from the dependencies collected by
a dynamic program slicing technique. When the evaluation is an
activation (function call), we represent its resulting value as an
entity that “wasGeneratedBy” an “activity” that represents the acti-
vation. We indicate that this activity “used” the entities passed as
arguments. As we capture the provenance recursively, we also use
“wasInformedBy” relationships between activities to indicate which
activity occurs in the context of others. In DebugProv, we select
only the activities that appear in the provenance of the entity that
represents the incorrect result. Note, however, that we demonstrate
the equivalences in PROV for didactic purposes, but the prove-
nance is processed in a proprietary format, without exporting and
importing to PROV [19].

To implement the capturing module, we chose to adopt an ex-
isting tool named noWorkflow [20, 24, 25] in version 2.0-alpha.
We chose this tool because it not only captures the provenance of
Python script, as required by our provenance enhancement module,
but it also captures enough execution data in the provenance for
the generation of execution trees by our approach.

3.2 Enhancement module
The enhancement module receives two structures: an execution tree
and a provenance graph. The responsibility of the enhancement
module is to use both of these structures to produce a new structure:
The provenance-enhanced execution tree.

The production of the provenance-enhanced execution tree be-
gins by asking the developer which program output is incorrect.
This question is straightforward to answer because the developer
usually starts a debugging session when he or she observes some
inappropriate output.

Therefore, after the user report which output data is not correct,
the enhancement module searches in the provenance graph for the
dependencies that influenced (directly or indirectly) such incorrect
output. This process is done in backward, answering the following
question: "Which function activations contributed in the produc-
tion of the incorrect output?". The enhancement of the execution
tree consists of inserting over the execution tree the dependency
relations that contributed to the production of the incorrect output.

When the execution tree is enhanced with provenance data, the
enhancement module can distinguish the nodes that contributed
to the production of the incorrect output from those nodes that
did not contribute. This information allows DebugProv to perform

206

Provenance-enhanced Algorithmic Debugging SBES 2019, September 23ś27, 2019, Salvador, Brazil

13 readfile(FILE_NAME)

25 find_min(data) 63 print(d_min)

16 open(filename, 'r') 21 load(f)

28 float('inf')

Figure 6: A provenance graph

1 program.py

10 print("Count - Min:") 13 readfile(FILE_NAME) 25 find_min(data) 53 print_results(data, pdata)

16 open(filename, 'r') 21 load(f) 28 float('inf') 63 print(d_min)58 len(data) 61 print(d_count)

Figure 7: The provenance enhanced execution tree

an additional tree pruning by removing from the search space the
nodes that did not contribute to the production of the incorrect
outcome. Thus, the provenance enhancement potentially reduces
the total number of required questions to detect defective nodes,
speeding up the algorithmic debugging session.

For example, we present a provenance graph in Figure 6. The
result of the provenance enhancement can be observed in Figure 7.
The blue dashed edges represent the dependencies between nodes
and they go from the influenced to the influencer node, as dictated
by PROV [19], the W3C provenance notation. For example, an arrow
from find_min to readfile indicates that readfile influences find_min.
The nodes in grey do not belong to the provenance transitive closure
and can be safely pruned from the search space.

3.3 Navigation module
The navigation module of DebugProv employs the standard nav-
igation strategies of algorithmic debugging, discussed in Section
2. However, instead of using the plain execution tree, they use the
provenance enhanced execution tree, which was already pruned
by the enhancement module.

Currently, DebugProv allows developers to choose any of the
four navigation strategies presented in Table 1. For instance, sim-
ilarly to the example discussed in Section 2, suppose that Debug-
Prov is using the Top Down navigation strategy, but now over the
provenance enhanced execution tree, shown in Figure 7. Instead
of evaluating the root and the print nodes, which were pruned by
the enhancement module, DebugProv first evaluates the readfile
node. The developer is informed about the inputs and outputs of
this node, and answers that the node is valid. Consequently, De-
bugProv classifies the node readfile and all of its subtree nodes as
valid, removing them from the search space.

Afterward, DebugProv asks the developers about the find_min
node, and the developer answers that the computation is invalid.
Hence, DebugProv defines find_min as invalid, and all nodes that are
not descendants of find_min are marked as valid and are removed
from the search space. Finally, DebugProv askes about the float
node, and the developer indicates that its behavior is correct. Thus,
DebugProv marks this node as valid and finishes the debugging
session, showing that the defective node is find_min.

For this specific navigation strategy, the number of questions
asked to the developer dropped from 5 to 3, which consists of
40% gain. Table 2 summarizes the improvements introduced by

Table 2: Improvements obtained by DebugProv in the guid-
ing example

Nav. Strategy Steps in Figure 7 # Questions Reduction

Single
Stepping

open, load, readfile,
float, find_min

5 16%

Top Down readfile, find_min,
float

3 40%

Heaviest
First

readfile, find_min,
float

3 40%

Divide and
Query

readfile, find_min,
float

3 25%

DebugProv in our guiding example, for each one of the navigation
strategies.

3.4 Fallback mechanism
In a perfect scenario, the provenance data collected by the capturing
module would always precisely represent the nodes that were re-
sponsible for producing an incorrect output. However, the 2.0 alpha
version of noWorkFlow, as every provenance collection tool, has
limitations. It currently does not capture provenance from async
programming (async def, async for, async with, and await), methods
defined inside classes in the main script, and some other Python
constructs (with, assert, raise, del, global, nonlocal, and yield from).
In these cases, the provenance data captured by noWorkFlow could
miss the defective node.

In order to provide a workaround to these limitations of noWork-
Flow, we implemented the fallback mechanism that is applied when
an execution tree is enhanced with provenance and traversed by
a navigation strategy but the defective node is not found. In such
cases, we assume that the provenance data did not capture the
dependency on the defective node. Therefore, the search continues
by evaluating the nodes that were not on the provenance graph.

The fallback mechanism only needs to be executed when a node
that was supposed to be on the provenance graph is not due to
provenance capture limitations. In these cases, it can increase the
number of questions to locate the defective node. We expect that,
as the provenance collection tools improve and get more precision,
the fallback mechanism will be less necessary.

4 EVALUATION
We performed a quantitative evaluation of DebugProv to assess its
effectiveness in comparison to the classic algorithmic debugging
technique. Our evaluation aims at answering the following research
questions:

• RQ1: How effective is provenance enhancement in the reduc-
tion on the number of questions in algorithmic debugging?

• RQ2: How provenance enhancement improves each navigation
strategy?

4.1 Materials and methods
Our evaluation process is described by the following workflow:

(1) Select a set of Python programs

207

SBES 2019, September 23ś27, 2019, Salvador, Brazil Linhares et al.

Table 3: Selected Programs

Program Name Repository on GitHub Application Domain LOCs

01 Compression Analysis TheAlgorithms/Python Image Processing 40
02 Bisection TheAlgorithms/Python Arithmetic 39
03 Intersection TheAlgorithms/Python Arithmetic 21
04 LU Decomposition TheAlgorithms/Python Arithmetic 31
05 Newton Method TheAlgorithms/Python Arithmetic 18
06 Basic Binary Tree TheAlgorithms/Python Data Structures 47
07 Dijkstra Algorithm TheAlgorithms/Python Graphs 212
08 Caesar Cipher TheAlgorithms/Python Cryptography 73
09 Brute Force Caesar Cipher TheAlgorithms/Python Cryptography 56
10 Basic Maths TheAlgorithms/Python Arithmetic 74
11 Mergesort TheAlgorithms/Python Sorting 69
12 Decision Tree TheAlgorithms/Python Machine Learning 143
13 Math Parser keon/algorithms Arithmetic 143
14 Merge Interval keon/algorithms Data Structures 83
15 Binary Search keon/algorithms Searches 36
16 Permute keon/algorithms Combinatorics 57
17 Longest Common Subsequence haikentcode/top10algoritms Data Comparison 28
18 Catalan haikentcode/top10algoritms Combinatorics 15
19 Bubblesort haikentcode/top10algoritms Sorting 28
20 Quicksort haikentcode/top10algoritms Sorting 47
21 Heapsort mingrammer/sorting Sorting 80
22 Generate Parenthesis marcosfede/algorithms Combinatorics 34
23 Knn harrypotter0/algorithms-in-python Machine Learning 95
24 String Permutation harrypotter0/algorithms-in-python Combinatorics 35
25 Linear Regression llSourcell/linear_regression_demo Machine Learning 21

(2) Run all selected programs, storing the outputs
(3) Generate mutants of the selected programs
(4) Run all mutants, storing the outputs
(5) Generate oracles
(6) Run automated algorithmic debugging sessions

In the first step, we selected a set of 25 Python programs from
GitHub repositories to form the corpus of our experiment. We
selected the repositories by searching on Github for "algorithms"
and filtering by the Python language. We used three criteria to
select each program: (i) the program must be exclusively written
in the Python language (compliant to version 3.7), (ii) the program
must be syntactically correct, and (iii) the program must produce
an output. The selected programs, the respective repositories, and
the number of lines (LOCs) are presented in Table 3.

In the second step, we executed each program using Python 3.7
and stored their respective outputs. We assume that these outputs
represent the correct executions of the programs, and we use them
as baselines for the oracle generation (step 5).

In the third step, we generated mutants [8] for each of the
selected programs. Mutants are variants of a program with the
introduction of some logical change in the source code. This tech-
nique is originally used in the software testing area to assess the
quality of test suites. For instance, a single mutation may be the
replacement of a “==” (equal sign) to a “!=” (not equal sign), or
the replacement of a “<” (less sign) to a “>=” (grater or equal sign).

As the number of possible transformation is large, a single pro-
gram can produce several mutants, each one containing exactly one
change. We used universalmutator [12], which is a multi-language
regex-based mutant generator, to produce mutants for our selected
programs. We generated a total of 6,197 mutants in this step of
the workflow, which are the subjects of our experiment. Since uni-
versalmutator could not generate mutants for two programs (#01 -
Compression Analysis and #22 - Generate Parenthesis), they were
removed from our corpus. The complete set of mutation operators
supported by universalmutator is available in the tool repository. In
this experiment, we used the python operators1 and the universal
operators2.

In the fourth step, we ran all 6,127 mutants generated in step 3.
We could observe three distinct situations for each mutant execu-
tion: (i) the mutant ran successfully, and thus we stored the output
of the execution (4,758 cases); (ii) the mutant entered in an infinite
loop and was discarded after waiting for 90 seconds3 (163 cases);
and (iii) the mutant did not even start to run due to invalid syn-
tax or broken dependencies, generating an error before execution
(1,276 cases). In this case, we also stored the information related to
the error. Subsequently, we removed mutants that did not produce
outputs (1,439 from cases ii and iii) and removed the mutants that

1https://github.com/agroce/universalmutator/blob/master/universalmutator/static/
python.rules
2https://github.com/agroce/universalmutator/blob/master/universalmutator/static/
universal.rules
3The current version of DebugProv does not deal with silent defects.

208

Provenance-enhanced Algorithmic Debugging SBES 2019, September 23ś27, 2019, Salvador, Brazil

Table 4: Mutants Characterization

Description Step # of mutants

Generated Mutants 3 6,197
Mutants that do not start executing 4 1,276
Mutants that do not finish executing 4 163

Mutants without errors 4 1,794
Mutants without a unique oracle 5 2,506

Used Mutants 6 458

produced the same output of the original program (1,794 cases).
This latter case indicates that the code transformation introduced
during the generation of the mutant for some reason did not lead
to an error. By the end of this step, we only have mutants that ran
and finished the execution with an output that is different from the
output of the original program, leaving us with 2,964 mutants.

In the fifth step, we generated the oracle for each mutant. To
do so, we first calculated the diffs between the original programs
and the mutants. These diffs precisely identify the lines where a
defect was introduced during the mutant generation (step 3). We
used difflib [27], a Python module that compare files, to identify
the diffs. Then, we ran the mutants using the capturing module of
DebugProv to capture and store execution data about the mutants.
Finally, we located the line (or lines) of code that the mutation
process changed and identified the respective node in the execution
tree. The generated oracle basically indicates this node and its
ancestors as invalid and all other nodes as valid.

We removed out mutants that have more than one defective node
in the execution tree (2,506 cases). Please remember that each node
in the execution tree represents an activation, and activations are
associated with code components. Since a code component may pro-
duce multiple activations (e.g., a recursive function that was called
multiple times), the execution tree could contain more than one in-
valid node. We opted to remove theses imprecise situations as they
could introduce bias to the results of the experiment. Consequently,
after this step, we end up with 458 mutants. Table 4 summarizes the
characterization of the mutants. In this step, eight of the selected
programs were removed because they had no remaining mutants.
The removed programs in this step are #8 - Caesar Cipher, #9 -
Brute Force Caesar Cipher, #10 - Basic Maths, #12 - Decision Tree,
#13 - Math Parser, #23 - Knn, #24 - String Permutation, and #25 -
Linear Regression.

Finally, in the sixth step, we ran the algorithmic debugging
sessions over each of the 458 mutants. DebugProv was originally
designed to perform semi-automated debugging sessions with a
developer being the oracle – the developer must answer the ques-
tions about the validity of the execution tree nodes. During our
evaluation, we adapted DebugProv to perform automated debug-
ging sessions, by reading the oracle that contains the information
about the validity of nodes (see step 5). We also run in this step
the classic algorithmic debugging technique, without provenance
enhancement. After finishing all automated debugging sessions,
we analyzed the output data.

4.2 How effective is provenance enhancement
in the reduction on the number of
questions in algorithmic debugging? (RQ1)

To answer this question, we looked at (i) the number of steps to
locate the defective node using provenance enhancement (i.e., De-
bugProv) and (ii) the number of steps to locate the defective node
without provenance enhancement (i.e., classic algorithmic debug-
ging), regardless of the navigation strategy. Thus, we pose the
following hypotheses, which are subject to statistical tests:

• H0: The number of questions asked during debugging ses-
sions is the same for execution trees with and without prove-
nance enhancement;

• H1: The number of questions asked during debugging ses-
sions is different for execution trees with and without prove-
nance enhancement.

We applied the Shapiro-Wilk test [31] to check whether our sam-
ples followed a normal distribution. Both samples (with and without
provenance enhancement) do not follow a normal distribution (p-
value lower than 2.2 × 10−16). Therefore, we used the Wilcoxon
Signed-Rank test [34], a non-parametric test to compare two paired
samples. The resulting p-values were below 2.2 × 10−16, rejecting
the null hypothesis (H0) and indicating that there is indeed a differ-
ence between the samples. A visual inspection of the boxplots in
Figure 8 indicates that the provenance enhancement reduced the
number of questions asked during the debugging sessions.

We also applied Cliff's Delta (for paired samples) to calculate the
effect size between the samples. Cliff's Delta is a non-parametric test
that allows quantifying the magnitude of the difference between
two samples that do not meet the normality assumptions. The
results have an effect size of 0.36, which is classified as medium [28].
In addition to the effect size, we also calculated the proportional
reduction in the number of questions by subtracting the number of
questions with provenance from the number of questions without
provenance, and dividing this result by the number of questions
without provenance. We observed a reduction of 25.26% in the
number of questions, on average. It is important to notice that
the questions asked during a provenance-enhanced session are
similar to the questions asked in a traditional algorithmic debugging
session, as all of them come from the same execution tree.

Finally, we analyzed each program individually. In this analysis,
we computed at the number of questions for each mutant of that
program, both for the execution tree with and without provenance.
In Table 5, we present the results of this analysis. We can observe
that the decrease in the number of questions can vary from pro-
gram to program: in some cases, like the 02 - Bisection program, the
provenance enhancement practically does not change the number
of questions. In other cases, such as the 04 - LU Decomposition,
we were able to observe an impressive reduction. Since the reduc-
tion in the number of questions come from the irrelevant nodes
removed from the search space, the performance of the provenance
enhancement technique is associated with the number of unrelated
nodes to a given result. The higher the number of unrelated nodes,
the higher will be the reduction in the number of questions. The
number of unrelated nodes for a given result explains the differ-
ence in the performance between the mutants of 02 - Bisection and
04 - LU Decomposition. However, in situations where the fallback

209

SBES 2019, September 23ś27, 2019, Salvador, Brazil Linhares et al.

w/o Prov.
Enhancement

w/ Prov.
Enhancement

0

20

40

60

80

100

Figure 8: Boxplot of the number of questions required to lo-
cate the defective node without provenance enhancement
(left) and with provenance enhancement (right). Outliers re-
moved.

mechanism was largely used, the number of questions increased
with the enhancement (e.g., 19 - Bubblesort and 20 - Quicksort).

RQ1: How effective is provenance enhancement in the reduction
on the number of questions in algorithmic debugging?
Answer: We could observe a statistically significant reduction
in the number of questions asked during debugging sessions
when the execution tree is enhanced with provenance, with
medium effect size. The average number of questions dropped
from 41.05 to 30.68, while the median number of questions
dropped from 17 to 6. We also observed that the reduction
varies from program to program.

4.3 How provenance enhancement improves
each navigation strategy? (RQ2)

To answer RQ2, we computed the number of questions to locate
the defective node by navigation strategy. Each one of the four
navigation strategies was executed over the execution tree with
and without provenance enhancement. Therefore, we have eight
treatments for this analysis.

Similar to RQ1, we first checked normality with the Shapiro-Wilk
test and obtained p-values lower than 2.2 × 10−16 for all samples,
which indicates that none of them followed a normal distribution.
Therefore, we used the Wilcoxon Signed-Rank test (for paired sam-
ples) for comparing the number of required questions to locate the
defective node for each permutation of navigation strategy (Single
Stepping, Top Down, Heaviest First, and Divide and Query) and
execution tree (with or without provenance enhancement), and
observed a significant difference between the samples for all navi-
gation strategies. We also used the Cliff's delta (for paired samples)
to calculate the effect size and found medium effect size for Single
Stepping and Heaviest First. For Top Down we observed a large
effect size, and for Divide and Query a small effect size.

Table 6 shows the reduction of the number of questions for each
navigation strategy. Moreover, Single Stepping was the navigation
strategy with the largest proportional reduction, followed by Top
Down. However, by analyzing the total number of questions, we

conclude that Heaviest First is the navigation strategy with the best
performance, both for execution trees with and without provenance
enhancement. Surprisingly, Divide and Query is the worst naviga-
tion strategy in terms of proportional reduction of the number of
questions.

RQ2: How provenance enhancement improves each navigation
strategy?
Answer: We could observe a reduction in the number of ques-
tions for all navigation strategies when the execution tree is
enhanced with provenance. The effect size ranges from 0.163 to
0.454, and the reduction ranges from 12.33% to 31.01%. The nav-
igation strategy with the greatest reduction is Single Stepping,
and the navigation with the highest effect size between the num-
ber of questions with and without provenance enhancement
is Top Down. Nevertheless, Heaviest First is the strategy with
the smallest total number of questions when the provenance
enhancement is applied.

4.4 Threats to validity
Even though we have carefully conducted the experiment design
and execution, as in any experimental study, our work is subject to
some threats to validity.

Construct. Our dependent variable in all research questions
is the number of questions asked to the user during a debugging
session. However, different questions may have different difficul-
ties, and some questions can be more time-consuming than others.
Consequently, debugging sessions with fewer questions are not
necessarily easier or faster than the ones with more questions.

Construct. We implemented the fallback mechanism (described
in Section 3) to handle imperfections in the provenance data. The
usage of the fallback mechanism can lead to cases where the prove-
nance enhancement provides a sub-optimal number of questions.
Consequently, the results presented in this experiment should be
seen as a lower bound of the provenance enhancement technique.
We expect that the provenance enhancement can reduce even more
the number of questions in a scenario where the provenance does
not present imperfections.

Internal. We used program mutation to simulate defective pro-
grams. The tool we use to produce mutants, universalmutator [12],
implements a set of operators for generating mutants. Even though
the mutant generated by universalmutator are defective programs,
we cannot assume that defects naturally produced by programmers
are similar to those artificially generated by the universalmutator
tool.

External. We selected implementations of known algorithms in
Python. However, we cannot assume that DebugProv will reach the
same effectiveness when executed over other Python programs.

External. We used a script to generate oracles for running au-
tomated algorithmic debugging sessions. Our script was not able
to generate an oracle for every mutant – when the mutated code
component was associated with multiple nodes in the execution
tree, we were not able to automatically distinguish which nodes
exercised the mutant lines. Consequently, we could not generate
the oracle in these situations. We removed several mutants from the
evaluation due to this limitation. Therefore, we may have removed

210

Provenance-enhanced Algorithmic Debugging SBES 2019, September 23ś27, 2019, Salvador, Brazil

Table 5: Individual analysis of provenance enhancement by selected program.

Program Mutants # Questions without Prov. # Questions with Prov. Reduction Fallbacks

02 Bisection 71 24,546 24,097 1.9% 9
03 Intersection 40 6,699 5,516 17.66% 10
04 LU Decomposition 55 4,743 990 79.13% 0
05 Newton Method 15 419 321 23.39% 0
06 Basic Binary Tree 5 296 254 14.19% 1
07 Dijkstra Algorithm 92 24,430 15,170 37.9% 49
11 Mergesort 3 36 24 33.33% 0
14 Merge Intervals 28 850 276 67.53% 0
15 Binary Search 17 170 112 34.12% 0
16 Permute 2 99 83 16.16% 0
17 LCS 8 112 96 14.29% 0
18 Catalan 5 52 40 23.08% 0
19 Bubblesort 51 510 710 -40% 51
20 Quicksort 10 434 471 -8.53% 10
21 Heapsort 56 11,805 8,056 31.76% 0

Total 458 75,219 56,220 25.26% 130

Table 6: Navigation strategies performance over trees with and without provenance enhancement.

Navigation Strategy
Questions

without Prov.
Questions
with Prov.

Reduction Effect size Interpretation

Single Stepping 36,498 25,181 31.01% 0.347 Medium
Top Down 13,787 10,252 25.64% 0.476 Large

Heaviest First 11,683 9,170 21.51% 0.454 Medium
Divide and Query 13,251 11,617 12.33% 0.163 Small

mutants that shared the same behavior, compromising somehow
the generalizability of our results.

5 RELATED WORK
Since the introduction of algorithmic debugging in 1982 [30], sev-
eral tools were developed to instantiate the base concept in different
programming paradigms and environments, such as logic [22] and
functional [4, 26]. However, in this work, we focus only on ap-
proaches for imperative programming languages.

The first project that adapted the concept of algorithmic debug-
ging for an imperative programming language with side-effects
was presented in 1990 [29]. The implemented prototype, called
GADT (Generalized Algorithmic Debugging and Testing), was able
to run algorithmic debugging sessions in programs written in Pascal.
GADT [29] shares several points in common with our work. Both
GADT and DebugProv work with the imperative paradigm. GADT
also aimed at reducing the number of questions by allowing users to
indicate a variable that contains an incorrect value and using static
program slicing to discover and remove the nodes of computation
that were irrelevant to that variable. However, GADT employed
program transformations that change the source code before the
execution to perform algorithmic debugging in Pascal programs.
These transformations have the disadvantage of requiring the de-
veloper to answer questions about a transformed program, instead
of the program he or she is familiar with, increasing the difficulty

of the task. In contrast, DebugProv performs transformations in
the AST that are transparent to the users and builds execution trees
that represent the source codes, without artificial changes.

In 2003, HDT [16] was the first tool to bring algorithmic debug-
ging to Java. HDT combines algorithmic debugging with breakpoint
debugging but uses the standard execution tree proposed in 1982.
Some other tools apply algorithmic debugging in Java. JavaDD [10]
keeps a deductive database with information about past executions
of a Java program and queries this database to perform a debugging
session. DDJ [15] uses concepts of equivalence classes and def-use
chains to reduce the number of questions. JHyde [13] is a hybrid
debugger for Java that combines techniques from algorithmic de-
bugging and omniscient debugging. HDJ [11] is an extension of
DDJ [15] that combines algorithmic debugging, omniscient debug-
ging, and breakpoint debugging.

In the last years, researchers prioritized the development of tools
that embraced multiple features. An example of this is that both of
the tools presented by Hermanns and Kuchen [13] and González
et al. [11] are capable of performing omniscient debugging, which
allow navigation not only forward but also backward into the pro-
gram execution, without needing to re-execute the program.

As far as we know, DebugProv is the first approach that uses
provenance to enhance the execution tree and, consequently, reduce
the number of questions asked to users during algorithmic debug-
ging sessions. It is also the first approach that runs algorithmic

211

SBES 2019, September 23ś27, 2019, Salvador, Brazil Linhares et al.

debugging in an interpreted language (Python). Moreover, the only
tool that employed program slicing to enhance the execution tree
until now (GADT) used static program slicing due to the static typ-
ing characteristic of Pascal. In general, the use of dynamic program
slicing, adopted by DebugProv, reaches more precise results [1].

6 CONCLUSION
In this work, we presented DebugProv, an algorithmic debugging
tool for Python. DebugProv is the first tool that uses provenance
to enhance algorithmic debugging over a dynamically-typed and
interpreted imperative language, reducing the number of questions
during the debugging session. Moreover, the provenance captured
by DebugProv is based on dynamic program slicing instead of static
program slicing, thus increasing the precision of the results.

We evaluated our approach through a quantitative study with 15
Python programs. We artificially inserted defects into each program,
generating hundreds of mutants that were used during automated
algorithmic debugging sessions. Our study evaluated the effects
of provenance enhancement in algorithmic debugging sessions by
contrasting DebugProv with traditional algorithmic debugging. Our
results showed that provenance enhancement reduced the number
of algorithmic debugging questions by 25.26%, on average.

The adoption of noWorkflow in the capturing module imposes
limitations over Debugprov, due to some Python constructs that are
not currently supported by noWorkflow. Moreover, since the prove-
nance enhancement technique demands the developer to inform
the incorrect output, the current version of DebugProv does not
work for silent defects (i.e., infinite loops or defects that consist of
the absence of outputs). Additionally, limitations in the provenance
collection of DebugProv may prevent it from reducing the number
of questions in some kinds of programs. This occurs when a node
from the execution tree has an indirect dependency on another
node (e.g., through reading/writing tuples in a database).

We have identified several possibilities for future work. Cur-
rently, DebugProv runs the debugging session based on a single
execution of a program. We intend to take advantage of multiple ex-
ecutions to refine even further the pruning process. Another future
work is to build a probabilistic system that integrates with Debug-
Prov. Additionally, the why-not provenance [6] could be explored
in DebugProv to detect silent defects, such as infinite loops or the
absence of outputs. Lastly, a possible future work would be related
to debugging inside the function, line-by-line, using provenance
information analogously to what DebugProv currently does for
pruning the execution tree.

ACKNOWLEDGMENTS
The authors would like to thank CAPES and CNPq for the financial
support.

REFERENCES
[1] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. ACM

SIGPlan Notices 25, 6 (1990), 246–256.
[2] Evyatar Av-Ron. 1984. Top-down diagnosis of Prolog programs. Master’s thesis.

Weizmann Institute of Science, Rehovot, Israel.
[3] Rafael Caballero, Christian Hermanns, and Herbert Kuchen. 2007. Algorithmic

debugging of Java programs. ENTCS 177 (2007), 75–89.
[4] Rafael Caballero, Enrique Martin-Martin, Adrian Riesco, and Salvador Tamarit.

2014. EDD: A declarative debugger for sequential erlang programs. In TACAS.

Springer Berlin Heidelberg, Berlin, Heidelberg, 581–586.
[5] Rafael Caballero, Adrián Riesco, and Josep Silva. 2017. A survey of algorithmic

debugging. CSUR 50, 4 (2017), 60.
[6] Adriane Chapman and HV Jagadish. 2009. Why not?. In SIGMOD. ACM, Provi-

dence, RI, 523–534.
[7] Zhifei Chen, Lin Chen, Yuming Zhou, Zhaogui Xu, William C Chu, and Baowen

Xu. 2014. Dynamic slicing of Python programs. In COMPSAC. IEEE, Vasteras,
Sweden, 219–228.

[8] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. 1978. Hints on
test data selection: Help for the practicing programmer. Computer 11, 4 (1978),
34–41.

[9] Peter Fritzson, Nahid Shahmehri, Mariam Kamkar, and Tibor Gyimothy. 1992.
Generalized algorithmic debugging and testing. LOPLAS 1, 4 (1992), 303–322.

[10] Hani Z Girgis and Bharat Jayaraman. 2006. JavaDD: a declarative debugger for
java. Technical Report. University at Buffalo, Department of Computer Science
and Engineering.

[11] Juan González, David Insa, and Josep Silva. 2013. A new hybrid debugging
architecture for eclipse. In LOPSTR. Springer, Madrid, Spain, 183–201.

[12] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang.
2018. An extensible, regular-expression-based tool for multi-language mutant
generation. In ICSE-Companion. IEEE, Gothenburg, Sweden, 25–28.

[13] Christian Hermanns and Herbert Kuchen. 2011. Hybrid debugging of java
programs. In ICSOFT. Springer, Seville, Spain, 91–107.

[14] Matthew M Huntbach. 1987. Algorithmic PARLOG debugging. In Symposium on
Logic Programming. IEEE, San Francisco, CA, 288–297.

[15] David Insa and Josep Silva. 2010. An algorithmic debugger for Java. In ICSME.
IEEE, Timisoara, Romania, 1–6.

[16] Hoon-Joon Kouh and Weon-Hee Yoo. 2003. The efficient debugging system for
locating logical errors in java programs. In ICCSA. Springer, Montreal, Canada,
684–693.

[17] Arun Lakhotia and Leon Sterling. 1990. ProMiX: A Prolog partial evaluation
system. In The Practice of Prolog. MIT Press, Cambridge, MA, 137–179.

[18] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle
Rector, and Scott D Fleming. 2013. How programmers debug, revisited: An infor-
mation foraging theory perspective. IEEE Transactions on Software Engineering
39, 2 (2013), 197–215.

[19] Paolo Missier, Khalid Belhajjame, and James Cheney. 2013. The W3C PROV
family of specifications for modelling provenance metadata. In EDBT/ICDT. ACM,
Genoa, Italy, 773–776.

[20] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and
Juliana Freire. 2015. noWorkflow: Capturing and Analyzing Provenance of Scripts.
In IPAW. Springer International Publishing, Cham, 71–83.

[21] Lee Naish. 1992. Declarative diagnosis of missing answers. New Generation
Computing 10, 3 (1992), 255–285.

[22] Lee Naish, Philip W Dart, and Justin Zobel. 1989. The NU-Prolog Debugging
Environment. In ICLP. MIT Press, Lisbon, Portugal, 521–536.

[23] Henrik Nilsson and Peter Fritzson. 1994. Algorithmic debugging for lazy func-
tional languages. Journal of functional programming 4, 3 (1994), 337–369.

[24] João Felipe Pimentel, Juliana Freire, Leonardo Murta, and Vanessa Braganholo.
2016. Fine-Grained Provenance Collection over Scripts Through Program Slicing.
In IPAW. Springer International Publishing, Cham, 199–203.

[25] Joao Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and Juliana Freire.
2017. noWorkflow: a tool for collecting, analyzing, and managing provenance
from python scripts. PVLDB 10, 12 (2017), 4.

[26] Bernard Pope. 2004. Declarative debugging with Buddha. In AFP. Springer, Tartu,
Estonia, 273–308.

[27] Python Software Foundation. 2019. difflib Helpers for computing deltas. https:
//docs.python.org/3/library/difflib.html Accessed: 2019-05-19.

[28] Jeanine Romano, Jeffrey D Kromrey, Jesse Coraggio, and Jeff Skowronek. 2006.
Appropriate statistics for ordinal level data: Should we really be using t-test and
Cohen's d for evaluating group differences on the NSSE and other surveys. In
Annual meeting of the Florida Association of Institutional Research. FAIR, Cocoa
Beach, FL, 1–33.

[29] Nahid Shahmehri and Peter Fritzson. 1990. Algorithmic debugging for imperative
languages with side-effects. In CC. Springer, Schwerin, Germany, 226–227.

[30] Ehud Yehuda Shapiro. 1982. Algorithmic Program Debugging. Ph.D. Dissertation.
Yale University, New Haven, CT. AAI8221751.

[31] Samuel Sanford Shapiro and Martin B Wilk. 1965. An analysis of variance test
for normality (complete samples). Biometrika 52, 3/4 (1965), 591–611.

[32] Josep Silva. 2011. A survey on algorithmic debugging strategies. Advances in
engineering software 42, 11 (2011), 976–991.

[33] Mark Weiser. 1982. Programmers use slices when debugging. CACM 25, 7 (1982),
446–452.

[34] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83. http://www.jstor.org/stable/3001968

[35] Andreas Zeller. 2009. Why programs fail: a guide to systematic debugging. Morgan
Kaufmann, San Francisco, CA.

212

