
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Instance Segmentation via Deep Embeddings - ADVML 2019

Yannay Jaffe Lior Ben-Moshe

https://github.com/lior1990/instance-seg

Abstract
We present new approaches for the Instance Seg-
mentation problem that are based on ”Semantic
Instance Segmentation with a Discriminative Loss
Function” (Brabandere et al., 2017) framework.
We propose different approaches such as: modify-
ing the suggested loss function to take into consid-
eration critical parts of the object (edges, center),
using MRF as post-processing action in order to
improve the segments’ borders, and building a
neural-network that is capable of segmenting a
unique object within a group of similar objects.
We evaluate our work based on leaf level seg-
mentation of plants from the Computer Vision
Problems in Plant Phenotyping (CVPPP 2017) A1
dataset.

1. Introduction
Instance segmentation is defined as the task of assigning a
unique label to every object in an image. That is assigning
every pixel a label, such that every pixel in the same object
receive the same label, and pixels from different objects are
labeled differently. It is considered a fundamentally harder
problem than semantic segmentation - where instances of
the same class are segmented as one. It is often understood
as an extension of object detection where, instead of bound-
ing boxes, accurate masks must be predicted.

(Brabandere et al., 2017) obtain masks by two steps: map-
ping each pixel to a vector in an embedding space, so that
vectors that belong to the same instance lie close together,
while vectors from different instances are separated by a
wide margin; and then using clustering in order to create the
mask for each object in the image. The first part is done by
a custom loss function.

Our first intuition was to further investigate the custom loss.
We were trying to clarify the boundaries between each mask
in the image. As a result, we made two modifications to
the loss function: adding boundary component to the loss
function, and changing the mean calculation of the clusters
to be weighted mean with higher weights to the object’s
boundaries and center.

In addition, we tried to make sure the boundaries of the
masks are well shaped and there are no ”holes” in them.
For this purpose we used post-processing Markov Random
Field (MRF) method in order to ”clean” each mask.

Another approach we took was to use a different neural-
network that was trained to fine-tune each segment, by post
processing the distances in the embedding space of every
vector from each cluster center.

2. Related Work
(Brabandere et al., 2017) defines a differentiable loss func-
tion that operates on the mapping of each pixel in an input
image to a point in an n-dimensional feature space, referred
to as the pixel embedding. The intuition behind the loss
function is that embeddings with the same label (same in-
stance) should end up close together, while embeddings
with a different label (different instance) should end up far
apart.

This loss function has two competing terms that helps it to
achieve the above objective: a term to penalize large dis-
tances between embeddings with the same label, and a term
to penalize small distances between the mean embeddings
of different labels.

They formulate the discriminative loss in terms of push (i.e.
repelling) and pull forces between and within clusters. A
cluster is defined as a group of pixel embeddings sharing
the same label, e.g. pixels belonging to the same instance.
The loss consists of three terms:

1. Variance term: an intra-cluster pull-force that draws
embeddings towards the mean embedding, i.e. the
cluster center.

2. Distance term: an inter-cluster push-force that pushes
clusters away from each other, increasing the distance
between the cluster centers.

3. Regularization term: a small pull-force that draws all
clusters towards the origin, to keep the activations
bounded.

The variance and distance terms are hinged: their forces
are only active up to a certain distance. Embeddings within

https://github.com/lior1990/instance-seg

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Instance Segmentation via Deep Embeddings

a distance of δv from their cluster center are no longer at-
tracted to it, which means that they can exist on a local
manifold in feature space rather than having to converge to
a single point. Analogously, cluster centers further apart
than 2δd are no longer repulsed and can move freely in fea-
ture space. Hinging the forces relaxes the constraints on the
network, giving it more representational power to achieve
its goal.

The loss function can also be written down exactly. Define
C as the number of clusters in the ground truth, Nc as the
number of elements in cluster C, xi as an embedding, µc as
the mean embedding of cluster C (the cluster center), || · ||
as the L2 distance, and [x]+ = max(0, x) denotes the hinge.
δv and δd are respectively the margins for the variance and
distance loss. The loss can then be written as follows:

Lvar =
1

C

C∑
c=1

1

Nc

Nc∑
i=1

[||µc − xi|| − δv]2+ (1)

Ldist =
1

C(C − 1)

C∑
cA=1

C∑
cB=1

cA 6=cB

[2δd−||µcA−µcB ||]2+ (2)

Lreg =
1

C

C∑
c=1

||µc|| (3)

L = α · Lvar + β · Ldist + γ · Lreg (4)

Where α, β and γ are hyper-parameters.

For the task of segmentation they use post-processing step.
The post-processing step uses a clustering approach, which
clusters the pixels in the embedding space in order to create
masks. For this task a variant of the mean-shift algorithm is
applied on the network’s output.

3. Our Method
3.1. Custom loss

Our intuition was that some pixels are more important than
others, and we should take that into consideration while cal-
culating the loss. This led us to try two different approaches:

• Creating another loss term for the objects’ boundaries.

• Changing the clusters’ mean to be weighted mean.

3.1.1. EDGE LOSS

We wanted to put more emphasize on the objects’ bound-
aries so there will be no intersection between the masks of

close objects. To do so, we have created another term for the
boundaries loss. This term is a variation of the distance term.
For every object, we looked at the embeddings of boundary
pixels, and demanded that every boundary pixel embeddings
of different objects should be far apart from each other. In
order to reduce the large computation of the distances be-
tween all possible pairs of boundary pixels embeddings, we
limited the number of boundary pixels to contribute to that
part of the loss. We selected P pixels chosen at random
in every training iteration. For our experiments, we used
P = 200.

Denote by N ′c the maximum between P and the number of
points that lies on the edges of a cluster C. δe is equivalent
to δd and controls the inter-cluster push-force. For our
experiments we chose δe = 2(δd − δv).

The new loss component can then be written as follows:

Ledge =
1

C(C−1)
∑C

cA=1

∑C
cB=1

cA 6=cB

1
N ′

cA
·N ′

cB

∑N ′
cA

iA=1

∑N ′
cB

iB=1

[2δe − ||x′cA [iA]− x
′
cB [iB]||]

2
+

Where x′c[k] is the k’th embedding of cluster C boundary.
The updated loss can then be written as follows:

L = α · Lvar + β · Ldist + γ · Lreg + ψ · Ledge

Where ψ is another hyper-parameter.

3.1.2. WEIGHTED MEAN

The variance term is supposed to penalize large distances
between embeddings with the same label. If there is a large
distance between some key points of the objects, we want
to penalize ”harder”. The selected key points are:

• top left • top right • center

• bottom left • bottom right

For this purpose, we have changed the cluster mean calcula-
tion to be weighted mean with more weight for the points
that were described above. This should keep all the sur-
rounding pixels closely together in the feature space, since
going farther from them will result in a higher loss.

The updated mean can be then calculated as follows for each
cluster C:

µc =

∑Nc

i=1 wi · xi∑Nc

i=1 wi

Where wi is 1 for every regular point, and wi ≥ 1 for every
selected key point.

3.2. Clustering algorithm

For clustering the results in the embedding space, we used
the HDBSCAN algorithm (McInnes et al., 2017). We chose

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Instance Segmentation via Deep Embeddings

it over other algorithms (such as Mean Shift) due to its
quick processing and accurate results even for ”odd-shaped”
clusters.

3.3. Post-Processing with MRF

In order to get complete mask and with a ”smooth” shape,
we have used Markov Random Field (MRF) method after
getting the clustering output. Since MRF can be computa-
tionally hard, we have simplified the approach by running
MRF per segment that the network has outputted for a given
input (except from the background). We convert each seg-
ment into binary representation to improve performance.
Then, if a pixel from the segment is converted to 0, he is
removed from the segment, and a pixel from outside the seg-
ment that is converted to 1 joins the segment. Afterwards,
we are merging all the segments to a single labeled image.

3.4. Clustering alternatives using neural-network

When we tested our model, we noticed that after running the
clustering algorithm, and MRF de-noising, we had descent
segments. That means, that we could clearly see that the
segmented leaves matched the ground truth, but we believed
that we can do better. Even though the segmented image
looked nice, we believed that we can fine tune the segments
to match the different leaves even better, so we came up
with the idea to provide another neural network that will
fine tune the segments. The idea here is as follows:

1. Have a trained feature extraction model, and run it on
an input image. Get the output which is the embed-
dings of every pixel.

2. Run a clustering algorithm (HDBSCAN), possibly with
MRF afterwards, and get the different segments of the
image.

3. Do a ”processing step” on the segmented image, that
will output a new ”image” per segment (except the
background). The value of every pixel in the ”image”
represents a ”likelihood” of the pixel to be included in
the segment. For example, if our clustering algorithm
found N segments (besides background) in the image,
we will have N new ”images”. The value of pixel (i,j)
in the k’th ”image” can be interpreted as the likelihood
of the pixel (i,j) in the original image to belong the k’th
segment.

4. Run all the new ”images” in the clustering neural net-
work, and get a binary mask per new ”image”. A value
of 1 in pixel (i,j) of the k’th output from the neural
network means that the pixel (i,j) in the original image
should belong to the k’th segment. Note that the same
pixel may have the value 1 in several output binary
masks.

5. Merge all the outputted binary masks from the previous
step and get a single labeled mask (with different label
per segment).

The processing step we chose is as follows:

1. Per segment we found (except background), we calcu-
late the mean in the embedding space, denote that with
µc for c ∈ {1...N} (assuming N segments excluding
background).

2. Per segment mean in the embedding space, calculate
the distance of every pixel from that segment mean.
That is assuming the embedding of pixel (i,j) is xi,j we
calculate dci,j = ||xi,j − µc||2.

3. For every segment found generate a new image Ic, such
that Ic[i, j] = 1− dc

i,j

maxm,n(dc
m,n)

4. Output Ic for all c ∈ {1...N}.

Figure 1. After the processing step. The whiter the pixel, the closer
its value to 1.

The merging procedure of all individual segments we chose
is as follows:

1. Go through all the individual segments in increasing
order of their size.

2. For all pixels that belong to the current segment, assign
them a unique label in the merged image (even if the
pixel is already labeled).

3. After going through all the individual segments, any
remaining unsegmented pixels, mark as background.

Note that by doing so, we override the decisions of small
segments by large segments. That in order to avoid ”ghost”
segments in the middle of actual true segments.

4. Models architecture
4.1. Model layout

We sketch the overall model in Figure 2, and give further
details on the networks’ architecture below.

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Instance Segmentation via Deep Embeddings

Figure 2. Full network

4.2. Optimizer

Initially, we used the Adam optimizer (Kingma & Ba, 2014)
for our training. Due to its well known fast convergence
properties. However, we noticed that the network converged
to unsatisfying optima. So we changed the optimizer to
SGD with momentum, which improved our results, so we
kept using that optimizer for both of our networks.

4.3. Embeddings net architecture

We used pre-trained Resnet101 (He et al., 2015) as a back-
bone for feature extraction, in order to create the mapping
between pixel to the embedding space. After that we used
a series of convolutional layers to produce the embeddings
of each pixel. The output of this network is 32 dimensional
vector per pixel.

For training we used Cyclic Learning Rate scheduler (Smith,
2015), with learning rate that varies between 1e−4 to 1e−6,
that is because the majority of the network is pre-trained
and we needed to fine tune using our loss.

4.4. Clustering net architecture

For the clustering network we used a series of convolu-
tional layers with skip connections. The architecture of this
network is based on the U-Net architecture (Ronneberger
et al., 2015). The full architecture is displayed in Figures 3,
and 4. Note that in ”DownSampling Block #1”, we trans-
formed the number of features per input ”pixel” to 64 instead
of doubling the amount of input features. The rest of the
”DownSampling Blocks” behave as described in Figure 4.

The loss function we used was the binary cross entropy
loss. We added a weight factor of 105 to the leaf segments
pixels (the average ratio between single leaf pixels to the
rest was 1

105). For training we used Multi-Step Learning
Rate scheduler with γ = 0.1, and the initial learning rate
was 0.01. We decreased the learning after training many
epochs, until a final value of 1e− 5. This is due to the fact

that we trained a brand new model, and needed fast learning
at the beginning of training, and we noticed that the loss was
decreasing for many epochs without modifying the learning
rate.

Figure 3. Clustering network

5. Dataset
We tested our method on the CVPPP Leaf Segmentation A1
dataset (Minervini et al., 2015a) (Minervini et al., 2015b).
The task is to individually segment each leaf of a plant. The
dataset was developed to encourage the use of computer
vision methods to aid in the study of plant phenotyping.
The A1 dataset training data consists of 128 segmented
plants images. We used a total of 108 images for the train-
ing and 20 images for the validation/testing chosen at ran-
dom. We re-scaled all of the images to 224× 224, and nor-
malized the images using µ = [0.485, 0.456, 0.406], σ =
[0.229, 0.224, 0.225].

5.1. Embeddings net dataset

For training the feature (embeddings) extraction network,
we used 78 images of the A1 dataset (out of the 108 training
images) chosen at random. Due to the low amount of images
we used the following data augmentation methods:

• Random horizontal/vertical flipping.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Instance Segmentation via Deep Embeddings

(a) DownSampling Block (b) UpSamplingBlock

Figure 4. Clustering network building blocks

• Random rotation.

• Random grayscale/color jittering.

5.2. Clustering net dataset

For training the clustering network we used the remaining
30 images in the training set. We created a separated training
data for each feature extraction model configuration. The
creation of the training data is the same as the processing
step described in section 3.4. Except that for the calcula-
tion of the mean vector in the embedding space, we used
the labels of the ground truth. That is, we separated each
image to the individual leaves, and for every leaf, provided
a ”probability” for every pixel to be part of that leaf. Be-
cause each image had many leaves, we had a total of 495
segmented leaves using this method, so we chose to not use
data augmentation on this dataset.

6. Evaluations
6.1. Evaluation Metrics

We report three metrics defined in (Scharr et al., 2015),
which are frequently used in leaf segmentation challenges:

• Symmetric Best Dice (SBD): denotes the accuracy of
the instance segmentation.

• Foreground-Background Dice (FBD): evaluate a de-

lineation of a plant from the background with respect
to the ground truth.

• Absolute Difference in Count (|DiC|): the absolute
value of the mean of the difference between the pre-
dicted number of leaves and the ground truth over all
images.

6.2. Evaluation method

For full evaluation of our network we chose the best candi-
date (according to the cross-validation) from the different
feature extraction model variants: with/without modifica-
tions to the loss function (edges loss and weighted mean)
- a total of four configurations. For every selected feature
extraction model we trained the clustering network, and
calculated the evaluation metrics on the following:

1. Clustering using HDBSCAN only.

2. Clustering using HDBSCAN, and then using MRF.

3. Clustering using HDBSCAN, and then clustering with
our clustering network.

4. Clustering using HDBSCAN, then using MRF, and
then clustering with our clustering network (we call it
ClusterNet).

5. Clustering using HDBSCAN, then clustering with our
clustering network, and then using MRF.

6. Clustering using HDBSCAN, then using MRF, then
clustering with our clustering network, and then using
MRF.

7. Using the ground truth to extract the mean in the em-
bedding space, and then clustering using the clustering
network (to examine the performance of the clustering
network on the true instances means in the embedding
space).

7. Results
After testing our model, we noticed that the additions we
made to the loss function didn’t improve its performance,
so we will not display here the results for those variants.
We will show how by using MRF and the clustering neu-
ral network we improved our baseline results. We will
compare our results to those mentioned in (Brabandere
et al., 2017), however it is important to mention that we
couldn’t find the original authors implementation so we
couldn’t add our modifications on top of theirs. How-
ever, we found an implementation in ”Papers With Code”
https://paperswithcode.com in the repository of Almog El-
harar https://github.com/alicranck/instance-seg, and used it
as a baseline on which we added our modifications. The
baseline results are those presented as ”HDBSCAN only”.
The results are shown in Table 1.

https://paperswithcode.com/
https://github.com/alicranck/instance-seg

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Instance Segmentation via Deep Embeddings

SBD FBD |DiC|
RIS + CRF (Romera-Paredes & Torr, 2015) 66.6 —– 1.1

MSU (Scharr et al., 2015) 66.7 —– 2.3
Nottingham (Scharr et al., 2015) 68.3 —– 3.8
Wageningen (Yin et al., 2014) 71.1 —– 2.2
IPK (Pape & Klukas, 2014) 74.4 —– 2.6

Discriminative Loss (Brabandere et al., 2017) 84.2 —– 1.0
End-to-End (Ren & Zemel, 2016) 84.9 —– 0.8
Synthetic data (Ward et al., 2018) 90.0 —– —–

HDBSCAN only 80.84 90.34 0.9
HDBSCAN + MRF 77.69 90.00 0.9

HDBSCAN + ClusterNet 82.32 94.99 0.85
HDBSCAN + MRF + ClusterNet 81.94 94.94 0.9
HDBSCAN + ClusterNet + MRF 81.22 92.56 0.95

HDBSCAN + MRF + ClusterNet + MRF 80.52 92.29 1.1
True cluster mean + ClusterNet 87.76 95.61 0.0

Table 1. Metrics comparison of different methods.

Figure 5 shows some output examples of the different meth-
ods.

(a) Original
image

(b) Ground
truth

(c) HDB-
SCAN
only

(d) HDB-
SCAN +
MRF

(e) HDB-
SCAN +
ClusterNet

(f) HDB-
SCAN +
MRF +
ClusterNet

(g) HDB-
SCAN +
ClusterNet +
MRF

(h) HDB-
SCAN +
MRF +
ClusterNet +
MRF

(i) True
embedding
mean +
ClusterNet

Figure 5. Some examples of the validation results.

The best results were achieved by using the following
hyper-parameters: δd = 20, δv = 2, α = 1, β = 1, γ =
0.001, ψ = 0,∀i : wi = 1.

8. Conclusions and discussion
In this work we have proposed new approaches for loss
function modification and extra post-processing steps for
the task of instance segmentation.

As mentioned, we have seen that our modifications to the
loss function didn’t yield any improvements. We believe
that this is due to including only the edge pixels in the loss
term mentioned in section 3.1.1, which caused a non smooth
effect on the network. This effect caused sharp variations in
the clusters which only hurt the clustering methods we used.

About the weighted mean term as mentioned in section 3.1.2,
we believe that it is the right direction, but looking only on
5 pixels per instance is not enough to make much of a dif-
ference on the overall learning process. We believe that by
merging our approaches we can receive better performance
- add a weight term to the loss per pixel, and setting that
weight larger at ”interesting” spots, such as making it larger
near the edges and smaller at the center (similar to (Ron-
neberger et al., 2015)). We can also use this whole instance
weights to calculate the weighted mean in the embedding
space.

On the other hand, we have seen that the post-processing
steps we have added were successful. The different com-
binations of MRF and ClusterNet led to better results over
the baseline. We can see that the overall segmentation is
working well, and by using those methods we can take it to
the next level for making the segments full and well-shaped.
By fine-tuning those methods we believe the results can be
even better.

As seen in Table 1, when calculating the input for the clus-
tering network based on the true mean of the embeddings
we get much better results. This implies that by having a
better estimation of the mean in the embedding space, we
can greatly improve our performance.

Another thing we noticed is that the clustering network
worked well on true instances, but when some ”ghost” in-
stances appeared after the initial clustering, it’s performance
was greatly reduced. This is due to the fact that the clus-
tering network wasn’t designed to distinguish background
from foreground (it wasn’t trained on entirely background
ground truth), but to fine-tune the true foreground segments,
so it didn’t eliminate ghost segments. Because of that, we
tried to rerun our evaluation, but now also treat the back-
ground label as another segment, and apply the background
label to the reconstructed image last. By doing so, the back-
ground label could take over all the ghost instances in the
background. Note, that during the training of the clustering
network, we used only true leaf instances and not the back-
ground. However, the clustering network could figure out
that the background cluster is an instance whose label is in
the background, this is because during the training of the
embeddings network, we treated the background like any
other label, so it also got clustered like the leaf instances.
The results in Table 1 are those of the evaluation with the
treatment of the background as a true label. Figure 6 shows
an example for the performance impact due to ”ghost” in-
stance located at the edges of the true instances, and the
same result after treating the background as a legitimate
label as well.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Instance Segmentation via Deep Embeddings

(a) After HDB-
SCAN

(b) ClusterNet re-
sults

(c) ClusterNet re-
sults with back-
ground as label

Figure 6. A ghost instance at the edges of the true segments caused
the clustering network to perform poorly on the background. After
treating the background as label we could eliminate most of the
ghost segment.

9. Further Work
There are several more approaches that would be good can-
didates for a follow-up research:

• Create a dedicated neural network which would dis-
tinguish better between the background and the fore-
ground. This will make the task of eliminating ghost
labels easier.

• Investigate the merging strategy of individual segments
that come as a result from the Clustering Network. For
example, finding a better algorithm to solve conflicts
between different segments.

• Further explore the colored segment de-noising task
and try to use other methods than MRF to do this, by
taking into consideration both the accuracy and the
speed of the methods.

• Investigate the feature-extraction neural network - its
backbone and embedding network architecture. As
we’ve seen we couldn’t achieve the results of (Braban-
dere et al., 2017) in our baseline. This is probably due
to difference in the embedding model.

• Search for a way to have better estimates for the true
instances means in the embedding space. As we saw,
having the true mean can greatly improve the results.

• When creating the training set for the clustering net-
work, use also the means in the embedding space of
HDBSCAN clustered instances (and not only of the
true labels). This will add data about the distances to
not the true mean in the embedding space, and will be
more similar to the evaluation conditions.

• Figure out a way for end-to-end training our model.
Currently we use two different neural networks, with
intermediate processing steps in between.

In addition, we would like to evaluate our method on other
datasets such as Cityscapes, Pascal VOC and MSCOCO.

References
Brabandere, B. D., Neven, D., and Gool, L. V. Semantic

instance segmentation with a discriminative loss function.
ArXiv, abs/1708.02551, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2015.

Kingma, D. P. and Ba, J. L. Adam: A method for stochastic
optimization. arXiv, 1412.6980v9, 2014.

McInnes, L., Healy, J., and Astels, S. hdbscan: Hierarchical
density based clustering. The Journal of Open Source
Software, 2(11), mar 2017. URL https://doi.org/
10.21105/joss.00205.

Minervini, M., Fischbach, A., Scharr, H., and Tsaftaris, S.
Plant phenotyping datasets, 2015a. URL http://www.
plant-phenotyping.org/datasets.

Minervini, M., Fischbach, A., Scharr, H., and Tsaftaris,
S. A. Finely-grained annotated datasets for image-
based plant phenotyping. Pattern Recognition Letters,
2015b. URL http://www.sciencedirect.com/
science/article/pii/S0167865515003645.

Pape, J.-M. and Klukas, C. 3-d histogram-based segmen-
tation and leaf detection for rosette plants. In ECCV
Workshops, 2014.

Ren, M. and Zemel, R. S. End-to-end instance segmen-
tation and counting with recurrent attention. CoRR,
abs/1605.09410, 2016. URL http://arxiv.org/
abs/1605.09410.

Romera-Paredes, B. and Torr, P. H. S. Recurrent instance
segmentation. CoRR, abs/1511.08250, 2015. URL http:
//arxiv.org/abs/1511.08250.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
CoRR, abs/1505.04597, 2015. URL http://arxiv.
org/abs/1505.04597.

Scharr, H., Minervini, M., French, A., Klukas, C., Kramer,
D., Liu, X., Luengo, I., Pape, J.-M., Polder, G., Vukadi-
novic, D., Yin, X., and Tsaftaris, S. Leaf segmentation in
plant phenotyping: a collation study. Machine Vision and
Applications, 27, 12 2015.

Smith, L. N. Cyclical learning rates for training neural
networks. 2017 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 464–472, 2015.

Ward, D., Moghadam, P., and Hudson, N. Deep leaf segmen-
tation using synthetic data. CoRR, abs/1807.10931, 2018.
URL http://arxiv.org/abs/1807.10931.

Yin, X., Liu, X., Chen, J., and Kramer, D. M. Multi-leaf
tracking from fluorescence plant videos. In 2014 IEEE
International Conference on Image Processing (ICIP),
pp. 408–412, Oct 2014.

https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00205
http://www.plant-phenotyping.org/datasets
http://www.plant-phenotyping.org/datasets
http://www.sciencedirect.com/science/article/pii/S0167865515003645
http://www.sciencedirect.com/science/article/pii/S0167865515003645
http://arxiv.org/abs/1605.09410
http://arxiv.org/abs/1605.09410
http://arxiv.org/abs/1511.08250
http://arxiv.org/abs/1511.08250
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1807.10931

