End-to-end Training for Whole Image Breast Cancer Diagnosis using An All Convolutional Design

Li Shen, li.shen@mssm.edu

Icahn School of Medicine at Mount Sinai, New York, New York

Introduction

- Mammography is the most commonly used technique for breast cancer diagnosis.
- Harnessing machine learning for breast cancer diagnosis based on mammography is a very hot topic now.
- Large mammograms vs. small lesion sizes.
- Many mammography databases lack lesion annotation.

Highlights

- Our algorithm requires lesion annotation only at the first stage of training.
- A model can be efficiently transferred to another database without lesion annotation.
- On DDSM, we achieve single model AUC score of 0.88; 3model average AUC score of 0.91.
- On INbreast, we achieve single model AUC score of 0.96.

Patch classifier training on DDSM

Model	Accuracy	#Epochs
Resnet50	0.89	39
VGG16	0.84	25

- 10 patches are generated from each ROI (overlap=0.9).
- 10 background patches from the same mammogram.
- Models are pretrained on the ImageNet.

The heatmap layer may become an information barrier. Use Resnet50 as an example (dim of feature maps):

With heatmap	No heatmap
2048-5-512	2048-512

Whole image classifier training on DDSM							
All convolutional design							
Patch net	Block1		Block2		Single- model AUC	Augmente d AUC	#Epochs
Resnet50	[512-512-20	048]x1	[512-5	12-2048]x1	0.85	NA	20
Resnet50	[512-512-10	024]x2	[512-5	12-1024]x2	0.86	0.88	25
Resnet50	[256-256-5	12]x3	[128-1	28-256]x3	0.84	NA	48
VGG16	512x3		512x3		0.71	NA	47
VGG16	512x1		512x1		0.83	0.86	44
VGG16	256x1		128x1		0.80	NA	35
VGG16	[512-512-10	024]x2	[512-5	12-1024]x2	$0.81, 0.85^{1}$	0.88^{1}	46
 Add heatmap and residual blocks on top 							
Resnet50	[512-512-10	024]x2	[512-5	12-1024]x2	0.80	NA	47
Add heatmap, max pooling and FC layers on top							
	Pool size	FC1		FC2			
Resnet50	5x5	64		32	0.73	NA	28
VGG16	5x5	64		32	0.71	NA	26
¹ Result obtained from extended model training							

Different color profiles DDSM INbreast VS.

Transfer to INbreast database						
#Pat	#Img	Resnet50	VGG16	Hybrid		
20	79	0.78	0.87	0.89		
30	117	0.78	0.90	0.90		
40	159	0.82	0.90	0.93		
50	199	0.80	0.93	0.93		
60	239	0.84	0.95	0.91		

The INbreast data are digital mammograms, the DDSM are scanned films.

VGG16 beats Resnet50 on INbreast. The reason: bottom layers!

Computational setup: a single NVIDIA Quadro M4000 GPU with 8GB memory. The deep learning framework is Keras 2 with Tensorflow as the backend.