The Art of the Metaobject Protocol

Gregor Kiczales, Jim des Riviéres, and Daniel G. Bobrow

The MIT Press
Cambridge, Massachusetts

London, England

Contents

Introduction

1 THE DESIGN AND IMPLEMENTATION
OF METAOBJECT PROTOCOLS

1 How CLOS is Implemented

1.1 A Subset of CLOS

1.2 The Basic Backstage Structures

1.3 Representing Classes

1.4 Printing Objects

1.5 Representing the Structure of Instances

1.6 Representing Generic Functions

1.7 Representing Methods

1.8 Invoking Generic Functions

1.9 A Word About Performance

1.10 Summary

2 Introspection and Analysis

2.1 Introducing Class Metaobjects

2.2 Browsing Classes

2.3 Browsing Generic Functions

2.4 Programmatic Creation of New Classes

2.5 Summary

3 Extending the Language

3.1 Specialized Class Metaobjects

3.2 Terminology

3.3 Using Specialized Class Metaobject Classes

3.4 Class Precedence Lists

3.5 Slot Inheritance

3.6 Other Inheritance Protocols

3.7 Slot Access

13

14
15
17
26
26
34
36
40
45
45

47

48
52
98
66
69

71

72
74
76
78
83
90
96

vi

3.8 Instance Allocation

3.9 Summary

4 Protocol Design

4.1 A Simple Generic Function Invocation Protocol
4.2 Functional and Procedural Protocols

4.3 Layered Protocols

4.4 Improving Performance

4.5 Protocol Design Summary

II A METAOBJECT PROTOCOL FOR CLOS
5 Concepts

5.1 Introduction

5.2 Metaobjects

5.3 Inheritance Structure of Metaobject Classes
5.4 Processing of the User Interface Macros

5.5 Subprotocols

6 Generic Functions and Methods

A Introduction to CLOS

B Solutions to Selected Exercises

C Living with Circularity

D A Working Closette Implementation
E Cross Reference to Full MOP
References

Index

99
105

107

107
110
119
125
131

137

137
137
140
145
153

163

243

255

269

277

317

325

327

Contents

Acknowledgments

The work described here is synthetic in nature, bringing together techniques and insights
from several branches of computer science. It has also been essentially collaborative; we
have had the pleasure to meet and work with people from a number of communities.

The largest of these communities has been the users of our prototype CLOS imple-
mentation, PCL. By using and experimenting with early metaobject protocols, these
people provided a fertile ground for the ideas behind this work to grow. Their enthu-
siasm provided energy for this work and their successes provided the insight. Everyone
who ever used the metaobject protocol facilities of PCL contributed to this work, but
certain people deserve particular mention. Ken Anderson, Jim Kempf, Andreas Paepcke
and Mike Thome were experts on different aspects of Metaobject Protocol use; their con-
tributions to the CommonLoops mailing list helped many others learn to use the CLOS
Metaobject Protocol. Richard Harris, Yasuhiko Kiuchi and Luis Rodriguez made signif-
icant contributions to the design and maintenance of PCL, a task that was also helped
by each of the Common Lisp vendors who suggested implementation-specific ways to en-
hance PCL performance. The project also benefited from a number of users who had the
courage and conviction to attempt large projects with early versions of the CLOS Meta-
object Protocol: Ken Anderson, James Bennett, John Collins, Angela Dappert-Farquhar,
Neil Goldman, Warren Harris, Reed Hastings, Chuck Irvine, Jim Kempf, Joshua Lubell,
Yoshihiro Masuda, Phillip McBride, Steven Nicoud, Greg Nuyens, Andreas Paepcke, Pe-
ter Patel-Schneider, Dan Rabin, Doug Rand, George Robertson, Larry Rowe, Richard
Shapiro and Arun Welch.

Electronic mail has been essential to the dialogue in this project. In particular, the
CommonLoops mailing list has been the home of the PCL user community. Yasuhiko
Kiuchi maintained this list for three years, overseeing its growth from less than one-
hundred to almost eight-hundred readers. More recently, Arun Welch has taken this list
over, maintaining both it and the gateway to the comp.lang.clos newsgroup.

Masayuki Ida has been the primary force for establishing and nurturing a PCL and
CLOS Metaobject Protocol user community in Japan. His success at mediating the
cross-cultural language and stylistic differences has enabled the community to include
the Japanese users.

The CLOS design community has also been involved in this project. The people
involved in that effort, or in the larger Common Lisp standardization effort, have par-
ticipated in the development of both the fundamental principles of metaobject protocol
design presented in Part I and in the full CLOS Metaobject Protocol presented in Part II.
They are: Kim Barrett, Eric Benson, Scott Cyphers, Harley Davis, Linda DeMichiel,
Gary Drescher, Patrick Dussud, John Foderaro, Richard P. Gabriel, David Gray, Ken
Kahn, Sonya Keene, Jim Kempf, Larry Masinter, David A. Moon, Andreas Paepcke,

viii Acknowledgments

Chris E%«amo? Alan Snyder, Guy Steele, Walter van Roggen, Dan Weinreb, Jon
L White and Jan Zubkoff.

Work on reflection has been another source of inspiration guiding the design of the
CLOS Metaobject Protocol and influencing its presentation. Smith’s 3-Lisp had shown
how the framework of a simple reflective interpreter can be used to clarify the relation
between a language’s reflective facilities and its implementation, by factoring out po-
tentially distracting issues of circularity. Jim des Riviéres, who joined the project at a
relatively late stage, used his experience with reflection to develop the Closette imple-
mentation and pedagogical structure on which Part I of the book is based. We would
especially like to thank the following members of the reflection community, who have
made contributions to the development of this work: Giuseppe Attardi, Pierre Cointe,
Roman Cunis, Mike Dixon, Brian Foote, Nicolas Graube, John Lamping, Pattie Maes,
Satoshi Matsuoka, Ramana Rao and Takuo Watanabe.

The manuscript for this book has taken shape over a period of years. In addition
to the members of the CLOS community previously mentioned, we would like to thank
the following people for their extensive feedback on various drafts: Hal Abelson, Pierre
Cointe, Doug Cutting, Mike Dixon, Brian Foote, Volker Haarslev, Masayuki Ida, Ya-
suhiko Kiuchi, Wilf LaLonde, John Lamping, Stan Lanning, Yoshihiro Masuda, Satoshi
Matsuoka, Ramana Rao, Brian Smith, Deborah Tatar, Dave Thomas, Takuo Watanabe,
Mark Weiser and Peter Wegner.

Finally, there are our friends and colleagues at Xerox PARC, who have helped and
supported us through this long project. We thank them for the help they have given us,
and for making PARC such a stimulating and enjoyable place to work. In particular,
we want to thank: Bob Bauer, Alan Bawden, Nora Boettcher, John Seely Brown, Doug
Cutting, Johan de Kleer, Mike Dixon, Mimi Gardner, David Goldstone, Volker Haarslev,
Ken Kahn, Yashiko Kiuchi, John Lamping, Stan Lanning, Susi Lilly, Larry Masinter,
Ramana Rao, Jonathan Rees, George Robertson, Luis Rodriguez, Brian Smith, Mark
Stefik, Deborah Tatar and Mark Weiser.

Introduction

Modern programming language design lives in tension between two apparently conflict-
ing a@ﬁMbmm. On the one hand, high-level languages such as Scheme, Prolog, and ML
incorporate significant advances in elegance and expressive power. On the other hand,
many industrial programmers find these languages too “theoretical” or impractical for
everyday use, and too inefficient. As a result, these languages are often used only in
academic and research contexts, while the majority of the world’s mainline programming
is conducted in such languages as C and C++, distinguished instead for their efficiency
and adaptability.

This book is about a new approach to programming language design, in which these
two demands of elegance and efficiency are viewed as compatible, not conflicting. Our
goal is the development of languages that are as clean as the purest theoretical designs,
but that make no compromises on performance or control over implementation.

The way in which we have achieved elegance and efliciency jointly is to base language
design on metaobject protocols. Metaobject protocols are interfaces to the language that
give users the ability to incrementally modify the language’s behavior and implementa-
tion, as well as the ability to write programs within the language.

Languages that incorporate metaobject protocols blur the distinction between language
designer and language user. Traditionally, designers are expected to produce languages
with well-defined, fixed behaviors (or “semantics”). Users are expected to treat these
languages as immutable black-box abstractions, and to derive any needed flexibility or
power from constructs built on top of them. This sharp division is thought to constitute
an appropriate division of labor. Programming language design is viewed as a difficult,
highly-specialized art, inappropriate for average users to engage in. It is also often as-
sumed that a language design must be rigid in order to support portable implementations,
efficient compilers, and the like.

The metaobject protocol approach, in contrast, is based on the idea that one can and
should “open languages up,” allowing users to adjust the design and implementation to
suit their particular needs. In other words, users are encouraged to participate in the
language design process. If handled properly, opening up the language design need not
compromise program portability or implementation efficiency.

In a language based upon our metaobject protocols, the language implementation itself
is structured as an object-oriented program. This allows us to exploit the power of object-
oriented programming techniques to make the language implementation adjustable and
flexible. In effect, the resulting implementation does not represent a single point in the
overall space of language designs, but rather an entire region within that space.

The protocols followed by this object-oriented program serve two important functions.
First, they are used by the designers to specify a distinguished point in that region,

2 Introduction

corresponding to the language’s default behavior and implementation. Second, they
allow ufers to create variant languages, using standard techniques of subclassing and
specialization. In this way, users can select whatever point in the region of language
designs best serves their needs.

Our development of the metaobject protocol approach has emerged hand-in-hand with
our involvement, over the past several years, in the design of the Common Lisp Object
System (CLOS) [CLtL, CLtLII, X3J13].! CLOS is a high-level object-oriented language
designed as part of the forthcoming ANSI Common Lisp standard. That project brought
us face to face with many of the classic problems of high-level languages, including the
need for compatibility with existing languages, special extensions for particular projects,
and efficiency. Our effort to deal with these problems led us to develop the approach
to language design based on metaobject protocols and to implement a first practical
instance, a metaobject protocol for CLOS.

The purpose of this book is twofold. First, in Part I, we present metaobject protocol
design by gradually deriving a simplified metaobject protocol for CLOS.

Because we expect the notion of a metaobject protocol itself to evolve, we not only
present the approach as we understand it today, but also point towards open issues and
directions for further development.

In Part II we provide a detailed and complete description of a particular metaobject
protocol we have designed for CLOS. This second CLOS metaobject protocol can be
incorporated into production CLOS implementations and used for writing production-
quality code.

The work reported in this book synthesizes a number of concerns and approaches from
different parts of the computer science field. As a result we hope it will be of interest to
a wide spectrum of the community:

e Programming language designers should benefit from our analysis of some of the prob-
lems users have with high-level languages. Some designers may be interested in adding
a metaobject protocol to existing languages or designing a new language with a meta-
object protocol.

Augmenting a language with a metaobject protocol does not need to be a radical
change. In many cases, problems with an existing language or implementation can
be improved by gradually introducing metaobject protocol features. Also, compiler,
debugger, and programming environment features can often be recast as metaobject
protocols, with concomitant simplifications in their design, implementation, and doc-
umentation.

ITwo of the authors (Bobrow and Kiczales) were members of the X3J13 subcommittee responsible for
CLOS.

Introduction 3

e Programmers m:&\moxgaﬁm engineers should be interested in our analysis of why high-
level languages are often inadequate, and in our suggestions for how to improve them.
Fven if they are not working with a metaobject protocol, they may find that the
analysis helps them conceptualize and address problems they are having with existing
languages.

e Pcople working with object-oriented languages will have two reasons to be interested in
this work. First, since our approach relies extensively on object-oriented techniques,
the book can simply be viewed as presenting a well-documented case-study within
the object-oriented paradigm. Particular attention is given to issues of designing and
documenting object-oriented protocols. Second, the book includes a discussion not
only of the behavior of CLOS, but also of features that are characteristic of object-
oriented programming languages in general. As well as examining how these features
work, we focus on some of the issues involved in designing such languages.

¢ People interested in reflection will recognize that our approach also relies on the tech-
niques of procedural reflection. We hope they will see what we have done as helping
to bring reflection into wider practical use, by engineering reflective techniques to be
robust, efficient, and easy to use.

e The CLOS community, being a cross-section of these other groups, will presumably
share many of their interests. Furthermore, the book provides them with specific
information on how to use, implement, and continue the development of the CLOS
metaobject protocol.

The Problems We Faced

During the development of the CLOS standard, we realized that we were up against a
number of fundamental problems. The prospective CLOS user community was already
using a variety of object-oriented extensions to Lisp. They were committed to large bod-
ies of existing code, which they needed to continue using and maintaining. Experience
with these earlier extended languages had shown that various improvements would be
desirable, but some of these involved incompatible changes. In fact the very notion of a
single, standardized object-oriented extension to Common Lisp was an inherently incom-
patible change, since the set of earlier extensions were not compatible among themselves.
We therefore faced a traditional dilemma: genuine needs of backward compatibility were
fundamentally at odds with important goals of an improved design.

As is often the case, the situation was particularly aggravating because of an essential
compatibility between the language being designed and each of the older ones—the fact
that although they differed in surface details, they were all based, at a deeper level, on
the same fundamental approach. Each, after all, was an object-oriented programming

Introduction

\

language with classes, instances, inheritance, methods, and generic functions? which,
when called, automatically determine the appropriate method to run. From the broader
perspective of the family of object-oriented programming languages, they differed only in
how they interpreted various aspects of object-oriented behavior: the syntax for calling
generic functions; the rules for handling multiple inheritance; the rules of method lookup;
etc.

Along with this first challenge, of compatibility, we faced a second one, of extensibility.
As well as using a small number of major existing languages, many of the prospective
CLOS users had also developed custom languages of their own. In many ways these,
too, were essentially compatible with the major languages, and with the new language
we wanted to design. But each had its own distinguishing characteristics, supporting a
number of additional features, or implementing variant interpretations of basic object-
oriented behavior. For example, some of these languages provided special mechanisms
for representing the structure of instances. Others employed various special inheritance
and method lookup mechanisms.

Furthermore, it turned out on examination that these added functionalities and varia-
tions in the base object-oriented model were neither arbitrary nor superfluous. Because
they satisfied various application-specific requirements, these incremental differences al-
lowed programs to be clear, easy to write, and straightforward to maintain. Without
them, the users would have lost the advantage of programming in a high-level language:
expressive power well-matched to the problem at hand.

It was clear, furthermore, that some prospective CLOS users would always be in a
similar situation. No matter what design was agreed upon, there would be times when
a given user, for entirely appropriate reasons, would need this or that variant of it. For
example, while CLOS was being designed, it emerged that some users were interested in
the support of persistent objects, of the sort that would be provided by an object-oriented
database. Our challenge was to find a way to enable such users, who wanted something
close to CLOS, to adapt it to fit their needs.

The third problem we faced was that of ensuring that programs written in CLOS would
run efficiently.® Unfortunately, the very expressiveness of high-level languages makes this

2In traditional object-oriented languages, the terminology used for a polymorphic operation is message.
The terminology for invoking a such an operation is sending a message. In CLOS, the form taken by this
functionality warrants the use of somewhat different terminology, which will be used throughout this book: the
CLOS term for message is generic function, and the term for sending a message is calling or invoking a generic
function. (Appendix A presents an introduction to CLOS.)

3We call this familiar problem the paradox of high-level programming languages. On the one hand, the
primary rationale for high-level programming languages is that they are more expressive—i.e., that they allow
better formulations of what our programs are doing. On the other hand, it is widely agreed that programs
written in high-level languages are usually less efficient than programs written in lower-level ones. The paradox
arises from the fact that there must be things about the high-level programs that aren’t being expressed more
clearly, since otherwise compilers would be able to notice and exploit them, making those programs more,

Introduction 5

difficult. No single implementation strategy is likely to perform well on the full range of
behaviors that user programs’can be expected to exhibit.

Consider, for example, two different uses of CLOS classes. In the first, which might
arise in a graphics application, instances represent screen positions, with two slots* for x
and y coordinates. In such applications, it is safe to assume that slot access performance
is critical—the faster the better. In the second, which might arise in a blackboard system,
instances can potentially have a large number of slots, but in practice any given instance
only uses a small number of them. If there can be a very large number of these instances,
the space taken up by the instances would be of critical concern, making it important
not to waste space on all the unused slots.

Even though the behavior of both of these classes is well captured by the CLOS lan-
guage, they would clearly benefit from different implementation strategies. As a result,
an implementation that used a single strategy would at best perform well on only one.
The situation is further exacerbated by the fact that the information needed to choose
the best implementation strategy might be difficult or impossible for a compiler to ex-
tract from the program text, since it depends on dynamic behavior, such as how many
instances will be created, or how often their slots will be accessed. This is why efficiency
is a challenge: somehow, within the context of a single language design, different users
should be given the specific implementation and performance profiles they need.

While these goals of compatibility, extensibility and efficiency at first seemed different,
we eventually came to see them as instances of the same underlying problem, and were
therefore able to address them within a common structural framework.

The underlying problem is a lack of fit: in each case, the basic language design fails to
meet some particular need. Compatibility is an obvious example: as soon as the language
is changed to incorporate a new feature, it fails to match up with existing bodies of code.
But the other cases have the same structure. The graphics program is well served by one
implementation of instance representation, but the sparsely populated slots case requires
another.

The unavoidable conclusion is that no single language will ever be universally appro-
priate, no matter how clever its design. So we adopted a different solution. Rather than
supplying the user with a fixed, single point in the space of all language designs and im-
plementations, we would instead support a region of possible designs within that overall
space. This is the essence of the metaobject protocol approach. In the case of CLOS,
for example, instead of providing a single fixed language, with a single implementation

rather than less, efficient than their low-level counterparts. In on-going work on metaobject protocols, not
discussed in this book, we are focusing directly on this issue. Qur goal is to make it easier to make a piece of
code simultaneously clear and fast in a high-level language than to make it fast in a low-level language.

4In CLOS the fields of an instance, which in many languages are called instance variables, are called slots.

6 Introduction

strategy, the metaobject protocol extends a basic or “default” CLOS by providing a sur-
rounding region of alternatives., Users are free to move to whatever point in that region
best matches their particular am{:mnmgmsam.

This strategy has two tangible benefits. First, relying on the metaobject protocol to
deal with a wide range of users’ concerns allows the base case—CLOS itself—to be simpler
and more elegant. The very existence of the metaobject protocol, in other words, takes
some pressure off the design of the base language, to its benefit. Second, the strategy
of supporting a CLOS region, rather than a single CLOS point, enables us to solve all
three of our original problems.

The compatibility problem is solved by ensuring that the behavior of each of the earlier
languages lay within the scope of the newly supplied region. As we have already said,
those earlier languages were already incompatible with one other, and none was located
at exactly the same point as basic CLOS. But, because of their essential similarity, we
were able to delineate a coherent region of object-oriented languages that included them
all. Users can select whichever language they prefer by adjusting default CLOS to the
appropriate new point. Furthermore, they derive some additional benefits. Since the
language behavior can be incrementally adjusted to any point in the region, not just to
one or two pre-designated positions, users can gradually convert their programs from the
old language to the new. And because different parts of a program can be assigned to
different positions in the region, users can combine code written in different versions of
the language within the same program.

The extensibility problem is solved in the same way. As long as the region includes
the extended behavior the user wants, the default language can be simply adjusted to
meet it. The efficiency problem can similarly be solved, so long as the user can readily
alter the implementation strategy to suit each particular program or part thereof.

In sum, if a region can be identified that is comprehensible enough for the user to
understand and large enough to include the user’s needs, and if it is easy for the user
to incrementally adjust the default language behavior and implementation within that
region, then our three goals can be met, and the investment in the basic language imple-
mentation preserved. The question remains, though, of how this can be done.

Metaobject Protocol Based Language Design

While designing a language—or language region—in this way departs significantly from
traditional practice, it can be done while preserving the important qualities of existing
design approaches. There are two critical enabling technologies: reflective techniques
make it possible to open up a language’s implementation without revealing unnecessary
implementation details or compromising portability; and object-oriented techniques allow

Introduction 7

the resulting model of the language’s implementation and behavior to be locally and
incrementally adjusted.

Reflective techniques [Smith 84, Maes&Nardi 88] allow the implementation to be ex-
posed in a way that satisfies two important criteria. First, the access must be at an
appropriately high level of abstraction, so that implementors retain enough freedom to
exploit idiosyncrasies of their target platforms, and so that users aren’t saddled with
gratuitous (and non-portable) details. Second, that access must be effective, in the sense
that adjustments must actually change the language behavior. These two properties are
exactly what is provided by a reflective implementation model.?

What reflection on its own doesn’t provide, however, is flexibility, incrementality, or
ease of use. This is where object-oriented techniques come into their own. These tech-
niques work by (i) defining a set of object types and operations on them, which can
support not just a single behavior, but a space or region of behaviors—this is commonly
called a protocol; (ii) defining a default behavior, a single point in the region, in terms
of the protocol—this is the role of the default classes and methods; and (iii) making it
possible to effect incremental adjustments from the default behavior to other points in
the region—this is the role of inheritance and specialization.

These techniques, applied to the design and implementation of a programming lan-
guage itself, are exactly what our strategy requires. First, the basic elements of the
programming language—classes, methods and generic functions—are made accessible as
objects. Because these objects represent fragments of a program, they are given the spe-
cial name of metaobjects. Second, individual decisions about the behavior of the language
are encoded in a protocol operating on these metaobjects—a metaobject protocol. Third,
for each kind of metaobject, a default class is created, which lays down the behavior of
the default language in the form of methods in the protocol. In this way, metaobject
protocols, by supplementing the base language, provide control over the language’s be-
havior, and therefore provide the user with the ability to select any point within the
region of languages around the one specified by the default classes.

In the CLOS metaobject protocol, for example, the rules used to determine the im-
plementation of instances are controlled by a small number of generic functions. This
makes it possible to change those rules by defining a new kind of class, as a subclass of the

SReflection also solves any problems of circularity that arise when the language used to implement the
protocol is the same as the language implemented by the protocol. This merging of languages, which is often
convenient, is adopted in CLOS, and the metaob ject protocols presented in both Part I and Part Ilcontain a
number of such circularities. As in any reflective system, however, they can easily be discharged, as explained
in Appendix C. It is important to note, however, that self-referentiality is not essential to the basic notion of &
metaobject protocol. In on-going work that extends the ideas presented in this book, we are adding a metaobject
protocol to Scheme, but we are using CLOS (not Scheme) as the language for expressing adjustments, so issues
of self-reference don’t arise. The two criteria discussed in the main text remain of central importance, and
reflective techniques can still be used to support them.

8 Introduction

default, and by giving it specialized methods on those generic functions. By doing this,
the user is making an incré¢mental adjustment in the language. Most aspects of both its
behavior and implementation remain unchanged, with just the instance representation
strategy being adjusted.

In this way, by combining these two techniques into an integrated protocol, we are able
to meet a number of important design criteria:

o Robustness: moving the language around in the region to suit one program shouldn’t
have an adverse effect on other programs or on the system as a whole;

e Abstraction: in order to adjust the language, the user should not have to know the
complete details of the language implementation;

e Ease of use: adjusting the language must be natural and straightforward, and the
resulting languages must themselves be easy to use; and

e Efficiency: providing the flexibility of a surrounding region should not undermine the
performance of the default language, nor curtail the implementor’s ability to exploit
idiosyncrasies of target architectures to improve performance of the entire region (in
fact we retain our goal of having programs written in a language augmented with a
metaobject protocol be more, not less efficient than programs written in a traditional
language).

Our conclusion is that a synthetic combination of object-oriented and reflective tech-
niques, applied under existing software engineering considerations, make possible a new
approach to programming language design, one that meets a wider set of design criteria
than have been met before. Doing so is the art of metaobject protocol design, the subject
of this book.

Structure of the Book

The remainder of the book is divided in two parts. The first part presents metaobject
protocol design. The second part gives a detailed specification of a metaobject protocol
for CLOS.

In Part I, metaobject protocol design is presented as a narrated derivation of a meta-
object protocol for CLOS. We begin with a (simplified} CLOS sans metaobject protocol,
and gradually derive one for it. The derivation is driven by examples of the kinds of
problems metaobject protocols can solve. This approach allows us to give attention not
just to how metaobject protocols work and are implemented, but also to the process of
analyzing user needs, and of incorporating those needs into the design of a protocol. In
effect, metaobject protocol design requires determining the size, shape, and dimensions
of the region to be provided. In the early stages of the derivation, the focus is on the

Introduction 9

basic motivation ms% approach of metaobject protocol design. In later stages, attention
shifts to problems of ease of use and efficiency.

Throughout, we will work with actual code for a simplified implementation of CLOS,
and as we develop it, its metaobject protocol. This will give the reader an opportunity
to gain some practical experience with the evolving design. In the same vein, we have
included a number of exercises, addressing important concerns and open issues—we en-
courage all readers at least to read them, if not actually to work them through. Solutions
to those that can be answered with code are included in Appendix B; others require more
discursive replies, from short essays to moderate sized term projects.

The presentation throughout this first part presumes a familiarity with Common Lisp
and CLOS. Readers who are unfamiliar with CLOS, but familiar with other object-
oriented languages, will find an introduction in Appendix A. Those who are not familiar
with object-oriented programming can find an excellent introduction to both it and CLOS
in [Keene 89].

Chapter 1 lays the groundwork by presenting a simplified subset of CLOS and a simple
implementation of it. This CLOS subset and implementation will be the basis of all of
Part I, so we encourage even those familiar with CLOS to read this chapter.

Chapter 2 begins the derivation of the metaobject protocol by looking at the needs of
users writing browsers and other program analysis tools. We will develop a variety of
introspective protocols, which make it possible to analyze the structure and definition of
a program.

Chapter 3 continues the derivation of the metaobject protocol with examples of com-
patibility, extensibility and performance needs that require adjusting the default lan-
guage behavior. This ability to “step in” or intercede in the behavior of the system will
be provided by a set of intercessory protocols.

In Chapter 4, we continue to develop intercessory protocols. But, in this chapter, our
focus is the problem of designing protocols that are efficient and easy to use. We discuss
various protocol design considerations and techniques.

Part II presents a detailed specification of a metaobject protocol for CLOS. The spec-
ification is divided into two chapters, in a manner similar to the specification of CLOS
itself [X3J13]. Chapter 5 presents basic terminology and concepts; Chapter 6 describes
each function, generic function, and method in the protocol.

Readers interested in designing metaobject protocols for other languages will find that
this part not only fills in specific technical details, but also conveys additional information
about the overall nature of our design approach. For CLOS users and implementors,
however, the primary interest of Part II will be as a specification of a complete metaobject
protocol for CLOS. This protocol is not offered as a proposed standard, but as a basis
for experimentation, which may subsequently lead to the development of a revised and

10 Introduction

standardized CLOS metaobject protocol. There is evidence that this is already underway:;
many Common Lisp vendors are already implementing metaobject protocols based on
the one presented here.

“—H HEHUHMHDZ>ZUHgﬁbmgm2H>HHOzOH.JHSHH,.POWHHOH
PROTOCOLS

Hl How CLOS is Implemented

We will present metaobject protocol design in stages, by following the development
of a simplified metaobject protocol for a subset of CLOS. Our technique will be to
progressively design and implement a metaobject protocol for this language, motivating
each step with an example of the kind of problem users have with CLOS. Each example
will be resolved by showing how it is handled by the newly developed portion of the
protocol.

Metaobject protocol design requires an understanding both of the language behavior
(in this case CLOS), and of the common architecture of that language’s implementations.
The first task therefore, addressed in this chapter, is to present the architecture of CLOS
implementations in the form of Closette, a simple CLOS interpreter.! Closette is the
“everyman” of CLOS implementations—despite the simplifications, it is representative
of the architecture of all CLOS implementations.?

Although understanding implementation architecture is important, it is vital to distin-
guish the implementation from the documented language. A useful metaphor for making
this separation comes from the theatre. We can think of the documented language as
being on-stage. Users, which we think of as the audience, only get to see this on-stage
behavior. The internal parts of the implementation are backstage: they support what
happens on-stage, but the audience doesn’t get to see them. Finally, implementors are
the producers: they get to see what happens both on and offstage, and they are the ones
responsible for putting on the show.

In presenting Closette, we will be showing the essential structure of what can be
found backstage in any CLOS implementation. We will see how this backstage structure
supports the on-stage language behavior. This will be useful in later chapters as we design
the metaobject protocol, because it will let us think about what information waiting in
the wings might be useful to the user, and what possibilities there are for implementors
to expose that information.

Throughout this part of the book, presentations are based on working code. This
will allow readers to try the examples, work through the exercises, and try alternative
approaches. In fact, we recommend this (see Appendix D for the complete code).

It will be assumed that the reader is familiar with Lisp and has some familiarity with
CLOS programming. Those with a background in other object-oriented programming
languages, such as Smalltalk or C++, can acquaint themselves with CLOS by reading

1To support the later addition of a metaob ject protocol, we have structured Closette as an object-oriented
program. In this case, the object-oriented language is CLOS itself. (We assume that the reader is comfortable
enough with the idea of metacircular interpreters to trust that the manifest circularities can eventually be
resolved; we defer discussion of these circularities until Appendix C)

2The simplifications in Closette are for pedagogical purposes only. The most significant is that it is an
interpreter rather than compiler-based implementation—that is, we have reduced complexity by neglecting
performance. In addition, most error-checking code has been omitted.

14 Chapter 1

Appendix A. Those who are not familiar with object-oriented programming can find an
excellent introduction to both it and CLOS in [Keene 89].

1.1 A Subset of CLOS

In the interests of pedagogy and (relative) brevity, we have chosen to work with a simpli-
fied subset of CLOS. All the essential features of full CLOS are included: classes, which
inherit structure and behavior from one or more other classes; instances of classes, which
are created, initialized, and manipulated; generic functions, whose behavior depends on
the classes of the arguments supplied to them; and methods which define the class-specific
behavior and operations of generic functions. The major restrictions of the simplified
dialect include:

No class redefinition. Full CLOS allows the definition of a class to be changed; the
changes are propagated to its subclasses and to extant instances. The subset does not
allow classes to be redefined.

No method redefinition. Full CLOS allows methods to be redefined, with the new
definition completely replacing the old one. The subset does not allow methods to be
redefined. (For convenience, the working code in Appendix D does support method
redefinition.)

No forward-referenced superclasses. Full CLOS allows classes to be referenced be-
fore they are defined. One class can be defined in terms of another before the second
has been defined. These forward references are not permitted in the subset.

Explicit generic function definitions. Full CLOS allows the definition of a generic
function to be inferred from the method definitions. The subset requires that a generic
function be explicitly introduced with a defgeneric form before any methods are
defined on it.

Standard method combination only. Full CLOS provides a powerful mechanism for
user control of method combination. The subset defines only simple “demon” combi-
nation (primary, before-, and after-methods).

No eql specializers. Full CLOS allows methods to be specialized not only to classes,
but also to individual objects. The subset restricts method specialization to classes.
No slots with :class allocation. Full CLOS supports slots allocated in each instance
of a class and slots which are shared across all of them. The subset defines only per-

instance slots.

Types and classes not fully integrated. Full CLOS closely integrates Common Lisp
types and CLOS classes. It is possible to define methods specialized to primitive classes

How CLOS is Implemented 15

(e.g., symbol) and structure classes (defined with defstruct). The subset provides
classes for the primitive Common Lisp types but not for structure classes.

Minimal syntactic sugar. A number of convenience macros and special forms are not
included in the subset. These include: with-slots, generic-function, generic-
flet and generic-labels.

1.2 The Basic Backstage Structures

In its simplest terms, a CLOS program consists of def class, defgeneric, and defmethod
forms mixed in with other more traditional Common Lisp forms. Executing these forms
defines the program’s classes, generic functions and methods.

Backstage, execution of these forms creates internal representations of the classes,
generic functions, and methods, recording the information provided in their definitions.
The implementation uses the information stored in the internal representation of a class
to create instances of that class and to access their slots. Information stored in the
internal representation of a generic function and its methods is used to invoke the generic
function.

To make things concrete, consider the following example CLOS program:

(defclass rectangle ()
((height :initform 0.0 :initarg :height)
(width :initform 0.0 :initarg :width)))

(defclass color-mixin ()
((cyan tinitform O :initarg :cyan)
(magenta :initform O :initarg :magenta)
(yellow :initform O :initarg :yellow)))

(defclass color-rectangle (color-mixin rectangle)
((clearp :initform (y-or-n-p "But is it transparent?")
tinitarg :clearp :accessor clearp)))

(defgeneric paint (x))

(defmethod paint ((x rectangle)) ;Method #1
(vertical-stroke (slot-value x ‘height)
(slot-value x 'width)))

16 Chapter 1

(defmethod paint :before ((x color-mixin)) ;Method #2
(set-brush-color (slot-value x 'cyan)
(slot-value x 'magenta)
(slot-value x 'yellow)))

(defmethod paint ((x color-rectangle)) ;Method #3
(unless (clearp x) (call-next-method)))

(setq door
(make-instance 'color-rectangle
:width 38 :height 84 :cyan 60 :yellow 55 :clearp nil))

t

standard-object

TN

color-mixin rectangle

RSN
| N

7/

; Method #3 Method#2 Method #1

— Direct-superclass/subclass
= = Generic-function/Methods
..... Specializer/Direct-method
-- -- Class-of

Figure 1.1 A First Glimpse Backstage.

These definitions cause several new internal objects to be created and connected as
shown in Figure 1.1. They can be divided into two groups: classes and instances, and
functions and methods. In the former group, each class object is connected to its direct
(i.e., immediate) superclasses and subclasses. The instance door (which is the only on-
stage object in the figure) is connected to its class, but not vice versa. In the latter group,
the generic function paint is connected to its methods, and conversely the methods are

How CLOS is Implemented 17

connected to their generic function. Connecting the two groups are bidirectional links
between methods and the classes they are specialized to.

Unlike instances of color-rectangle, such as the one door is bound to, which repre-
sent rectangles, the backstage objects, such as the one corresponding to the class rectan-
gle, represent elements of the program. These backstage objects are called metaobjects
because they represent the program rather than the program’s domain. In fact, every-
thing that goes on inside the implementation is considered to be at the “meta” level
with respect to the program; i.e., about the program itself, rather than about whatever
the program happens to be about. Of course, if you weren’t peering into the insides of
an implementation you might not even notice that there were such metaobjects; being
backstage they are normally hidden from the user.

CLOS implementations divide the execution of defining forms (defclass, defgeneric,
and defmethod) and the processing of metaobjects into a three layer structure—some-
what reminiscent of furniture construction:

¢ The macro-expansion layer that provides a thin veneer of syntactic sugar that the user
gets to see; e.g., the defclass macro.

¢ The glue layer that maps names to the metaobjects; e.g., the function find-class,
which looks up a class metaobject given its name.

e The lowest layer that provides all the support, and traffics directly in first-class metaob-
Jects. This is where the behavior of classes, instances, generic-functions, and methods
is implemented. (Our metaobject protocols will end up being concentrated in this
layer.)

Given this overall picture, the remainder of the chapter will fill in the details by working
through Closette, dealing in turn with the following issues:

How classes are represented. (Section 1.3)

How objects are printed. (Section 1.4)

How instances are represented, initialized, and accessed. (Section 1.5)
How generic functions are represented. (Section 1.6)

How methods are represented. (Section 1.7)

What happens when a generic function is called. (Section 1.8)

1.3 Representing Classes

The CLOS user defines classes with the defclass macro. It is natural, therefore, to
.mg; by examining how defclass is implemented. Although a lot of machinery will be
Introduced, remember that the definitions other than the defclass macro are internal
to the implementation—they are hidden backstage.

18 Chapter 1

Name: color-rectangle

Direct superclasses: (color-mixin rectangle)

Direct slots: {clearp}

Class precedence list: (color-rectangle color-mixin rectangle standard-object t)
Effective slots: {clearp, cyan, height, magenta, width, yellow}

Direct subclasses: none

Direct methods: {paint method #3}

Figure 1.2 The metaobject for the class color-rectangle.

The term class metaobject is used for the backstage structure that represents the classes
the user defines with defclass. For example, the class metaobject corresponding to the
class named color-rectangle contains the information shown in Figure 1.2. In general,
this information will include:

e Fields from the defclass form; e.g., the class’s name (color-rectangle), direct su-
perclasses (color-mixin and rectangle), and slot specifications ({clearp...}).

¢ Information that is derived or inherited; e.g., a list of all of the class’s superclasses in
order of precedence and the full set of slots including those inherited from superclasses.

¢ Backlinks to the class’s direct subclasses and links to methods that include the class
among the method’s specializers. ,

As our first step in the construction of Closette, the class standard-~class is defined
to centralize the description of what class metaobjects look like. Instances of standard-
class represent individual classes; or, to say it another way, class metaobjects are in-
stances of standard-class. Here is the definition:

n (defclass standard-class ()
((name :initarg :name
raccessor class-name)
(direct-superclasses :initarg :direct-superclasses
:accessor class-direct-superclasses)
(direct-slots :accessor class-direct-slots)
(class-precedence-list :accessor class-precedence-list)
(effective-slots :accessor class-slots)
(direct-subclasses :initform ()
:accessor class-direct-subclasses)
(direct-methods :initform ()
:accessor class-direct-methods)))

How CLOS is Implemented 19

Note that throughout this part of the book, all code that is part of the Closette
implementation will be marked with a backstage door this way.

Each of the slots has been given accessor functions; these will be used consistently to
access the slots of metaobjects (rather than employing slot-value).

1.3.1 The defclass Macro

In Closette’s three layered implementation structure, the job of the defclass macro
(macro-expansion layer) is to parse the class definition and convert it into a call to
ensure-class (glue layer).

The implementation of defclass is organized so that the bulk of the macro-expansion
work is carried out by canonicalize-... procedures:

m (defmacro defclass (name direct-superclasses direct-slots &rest options)
‘ (ensure-class ',name
:direct-superclasses , (canonicalize-direct-superclasses
direct-superclasses)
:direct-slots ,(canonicalize-direct-slots
direct-slots)
,@(canonicalize-defclass-options options)))

1.3.2 Direct Superclasses

The processing of the direct superclasses, which is performed by canonicalize-direct-
superclasses (286),% is responsible for ensuring that the class names are looked up in
the global database. For example, the definition

(defclass color-rectangle (color-mixin rectangle) (...))
macro-expands into

(ensure-class ‘color-rectangle
:direct-superclasses (list (find-class 'color-mixin)

(find-class 'rectangle))
‘direct-slots (list ...))

The direct superclass names appearing in the defclass form expand into calls to
find-class (glue layer) which retrieve the corresponding class metaobjects.

wﬂrm. definitions of functions of lesser importance are not included in the running text. It can be found in
Appendix D. Italicized numerals refer to the page on which the definition can be found. It should be noted that

Some functions are revised in later chapters as the metaobject protocol is developed; the code in the appendix
reflects these revisions.

20 Chapter 1

1.3.3 Direct Slots

The processing of a defclass form’s direct slot specifications, which is carried out by
canonicalize-direct-slots (286), is more complex. It involves:

e Converting the slot’s name into a :name property (each slot is encoded in the form of
a property list).

o Converting the :initform option into an :initfunction property whose value is
a zero-argument function? that gets called at instance creation time to execute the
initialization form in the lexical environment of the defclass. The original :initform
is retained for display purposes.

e Collecting multiple :initarg options into a single :initargs property.

e Separating :accessor options into :reader and :writer options, and collecting mul-
tiple :reader options into a single :readers property, and multiple :writer options
into a single :writers property.

The result of this process is a list of property lists, each property list describing one
slot. Our example class definition

(defclass color-rectangle (...)
((clearp :initform (y-or-n-p "But is it transparent?")
:initarg :clearp :accessor clearp)))

macro-expands to

(ensure-class

‘color-rectangle

:direct-superclasses (list ...)

:direct-slots

(list
(list
:name 'clearp
:initform '(y-or-n-p "But is it transparent?")
:initfunction #'(lambda ()
(y-or-n-p "But is it transparent?"))

:initargs '(:clearp)
:readers '(clearp)
:writers '((setf clearp)))))

4Readers familiar with other dialects of Lisp may want to think of this as a closure. We have used the term
function to be consistent with Common Lisp.

How CLOS is Implemented 21

The property list describing the slot is later handed to make-direct-slot-
definition (289) which creates a direct slot definition metaobject, supplying appropriate
default values for any properties not mentioned explicitly. The details of the internal
representation of direct slot definition metaobjects is not of concern to us; we need only
know the various accessor functions that can be used with them:®

slot-definition-name
slot-defirition-initargs
slot-definition-initform
slot-definition-initfunction
slot-definition-readers
slot-definition-writers

1.3.4 Class Options

Options included in the defclass form are processed by canonicalize-defclass-
options (287). We will ignore class options for now, but will return to them in Chapter 3.

1.3.5 ensure-class

The glue layer function ensure-class takes the name and description of a class as
keyword arguments and defines a class with that name. make-instance is called to
create and initialize the new class metaobject (i.e., a new instance of standard-class),
and that class metaobject is then registered in the global database. (Because our CLOS
subset does not allow class redefinition, we arrange for ensure-class to signal an error
if there is already a class with the given name.)

n (defun ensure-class (name &rest all-keys)
(if (find-class name nil)
(error "Can't redefine the class named ~S." name)
(let ((class (apply #'make-instance
'standard-class :name name all-keys)))
(setf (find-class name) class)
class)))

The all-keys parameter receives all of the keyword arguments (:direct-
Superclasses, :direct-slots, and other class options) and passes them along to

. "The implementation in Appendix D Just uses the property lists themselves as the direct slot defini-
tion metaobjects. On the other hand, the full MOP specification in Part IT defines a special class named
Standard-direct-slot-def inition for this purpose.

22 Chapter 1

make-instance where they are used to initialize the class metaobject. This general
treatment means that neither defclass nor ensure-class needs to be aware of the
options communicated from the defclass form through to the point of creation and
initialization of the class metaobject. The only concern of ensure-class is class naming.

The glue-layer functions find-class and (setf find-class), that maintain the
global mapping from class names to class metaobjects, are defined as follows:

n (let ((class-table (make-hash-table :test #'eq)))

(defun find-class (symbol &optional (errorp t))
(let ((class (gethash symbol class-table nil)))
(if (and (null class) errorp)
(error "No class named ~S." symbol)
class)))

(defun (setf find-class)® (new-value symbol)
(setf (gethash symbol class-table) new-value))

1.3.6 Initializing Class Metaobjects

make-instance is at the lowest layer, since it traffics in class metaobjects without con-
cern for how they are named. When creating a class metaobject, there is additional
initialization to be done, including:

Providing a proper default value for the direct superclasses.

Adding the direct subclass links to the new class’s direct superclasses.
Converting slot property lists into direct slot definition metaobjects.
Defining any slot accessor methods (we come back to these in Section 1.7.2).
Performing inheritance-related activities.

As is the convention in CLOS, these initialization operations are carried out by an after-
method on initialize-instance specifically targeted for new instances of standard-
class:

5In the new version of Common Lisp, (setf find-class) is the name of the function that is called by
the expansion of (setf (find-class (symbol)) (new-value)). Notice that the (new-value) argument to setf
ends up as the first argument to the function.

How CLOS is Implemented 23

m (defmethod initialize-instance :after
((class standard-class) &key direct-superclasses
direct-slots)
(let ((supers
(or direct-superclasses
(1ist (find-class 'standard-object)))))
(setf (class-direct-superclasses class) supers)
(dolist (superclass supers)
(push class (class-direct-subclasses superclass))))
(let ((slots
(mapcar #'(lambda (slot-properties)
(apply #'make-direct-slot-definition
slot-properties))
direct-slots)))
(setf (class-direct-slots class) slots)
(dolist (direct-slot slots)
(dolist (reader (slot-definition-readers direct-slot))
(add-reader-method
class reader (slot-definition-name direct-slot)))
(dolist (writer (slot-definition-writers direct-slot))
(add-writer-method
class writer (slot-definition-name direct-slot)))))
(finalize-inheritance class))

1.3.7 Inheritance

We have seen almost all of the steps involved in the creation of a class metaob ject: from
defclass through ensure-class down to make-instance and initialize-instance.
The remaining steps are the inheritance-related activities:

* Computing and storing the class precedence list.
¢ Computing and storing the full set of slots defined directly in the class and inherited
from superclasses.

finalize-inheritance, which is called from the preceding after-method on
initialize-instance, performs both of these activities:

24 Chapter 1

n (defun finalize-inheritance (class)
(setf (class-precedence-list class)
(compute-class-precedence-list class))
(setf (class-slots class)
(compute-slots class))
(values)”)

A class inherits structure and behavior from all its direct and indirect superclasses in
a specified order, from most specific to least specific. The class precedence list of a class
defines this order by including all of its superclasses in order of decreasing specificity.
Class precedence lists are stored in the class metaobject in the form of a list of class
metaobjects. For example, the class precedence list for color-rectangle consists of the
class metaobjects for color-rectangle, color-mixin, rectangle, standard-object,
and t, in that order. Notice that the class itself always appears first, and the classes
standard-object and t always appear at the end.

The algorithm used to compute class precedence lists is described in the section of
the CLOS Specification entitled “Determining the Class Precedence List”. It involves
topologically sorting the list of direct and indirect superclasses of the given class, using
local precedence ordering as the constraint; a special rule is used to resolve ties. The full
details of this process are not important to this presentation; all that matters is that it
produce a predictable ordering of the set of a class’s superclasses.

m (defun compute-class-precedence-list (class)
(let ((classes-to-order (collect-superclasses* class)))
(topological-sort classes-to-order
(remove-duplicates
Aswvmwvmbnm #'local-precedence-ordering
classes-to-order))
#'std-tie-breaker-rule)))

collect-superclasses#* collects the set consisting of a given class, all its direct su-
perclasses, all their direct superclasses, and so on.

TWe use this Common Lisp idiom to emphasize that the function returns no usable result.

8napappend (280) is a non-standard, but immensely handy utility that applies a function to every element
of a sequence and appends the sequences that result. It could be defined as:
(defun mapappend (fn seq) (apply #’append (mapcar fn seq)))

How CLOS is Implemented 25

m (defun collect-superclasses* (class)
(remove-duplicates
(cons class
(mapappend #'collect-superclasses*
(class-direct-superclasses class)))))

topological-sort (291) takes a set of elements to order, a set of ordering constraints
between pairs of elements (the result of local-precedence-ordering (292)), and a
function that can be called to arbitrate ties (the result of std-tie~breaker-rule (292)).

The full set of slots which a class inherits is computed by collecting all of the direct
slot definition metaobjects from each class that appears on that class’s precedence list.
For the time being, we implement simpler slot inheritance rules than those used by
full CLOS: when more than one class in the class precedence list has a slot with a given
name, only the direct slot definition metaobject from the most specific class is retained—
no merging of slot properties is supported.? The direct slot definition metaobjects are
then converted into effective slot definition metaobjects, which are similar in structure to
direct slot definition metaobjects but omit values that only make sense for direct slots
(readers and writers).

The function compute-slots is responsible for slot inheritance:

n (defun compute-slots (class)
(mapcar #'(lambda (slot)
(make-effective-slot-definition
:name (slot-definition-name slot)
:initform (slot-definition-initform slot)
:initfunction (slot-definition-initfunction slot)
:initargs (slot-definition-initargs slot)))
(remove-duplicates
(mapappend #'class-direct-slots
(class-precedence-list class))
:key #'slot-definition-name
:from-end t)))

make-effective-slot-definition (289) creates effective slot definition metaobjects,
the details of which need not concern us. We need only know that, with the exception of
slot-definition-readers and slot-def inition-writers, all of the accessor functions

) 9n Chapter 3 we will discuss more elaborate forms of slot inheritance that are closer to what is provided
in full CLOS.

26 Chapter 1

which work on direct slot definition metaobjects also work on effective slot definition
metaobjects.

This completes the presentation of class metaobjects and how defclass is imple-
mented.

1.4 Printing Objects

In CLOS, printing of objects is controlled by the generic function print-object. All of
the standard Common Lisp print functions (print, pprint, format, etc.) call print-
object to actually print each object. Users can control the printing of objects by defining
their own methods on print-object. We define print-object as follows:!?

(defgeneric print-object (instance stream))

The default printed representation of objects should include the name of the object’s
class. For example, the object bound to the variable door should print as something
like #<Color-Rectangle 324237>. We provide this default printed representation with
a method specialized to the class standard-object. (Remember that all classes defined
with defclass include the class standard-object in their class precedence lists; conse-
quently methods defined on standard-object will, by default, be applicable to instances
of these classes.)

(defmethod print-object ((instance standard-object) stream)
(print-unreadable-object!! (instance stream :identity t)
(format stream "~“:("S7)" (class-name (class-of instance))))
instance)

1.5 Representing the Structure of Instances

CLOS provides a collection of user-visible functions for creating (make-instance), ini-
tializing (initialize-instance, reinitialize-instance and shared-initialize),
interrogating (slot-value, (setf slot-value), slot-boundp, slot-makunbound and
slot-exists-p), and changing the class of (change~class and update-instance-for-
different-class) instances of user-defined classes. Implementing these functions places
certain requirements on the low-level representation of instances:

10We simply assume that the printing functions have been modified to call print-object appropriately.

I1n the new version of Common Lisp, print-unreadable-object can be used to automatically generate
the leading “#<” and trailing “>”. When used with a true value for the :identity argument, the object
identification number is alsp included. Note that print-unreadable-object is a macro, not a function.

How CLOS is Implemented 27

Object identity Different calls to make-instance must create distinct objects (i.e.,
non-eq).

Slot storage There must be a place to store the current bindings of each instance’s
slots.

Classification It must be possible to determine the class that a given object is an
instance of.

Reclassification change-class must change the class of an instance without changing
its identity.

For example, the door instance of color-rectangle is laid out along the lines of
Figure 1.3. The actual implementation of the low-level instance representation is not
important to this presentation. We simply assume the existence of an abstract data type
called standard instance with the following functional interface:'2

o (allocate-std-instance {(class) (slot-storage)) returns a brand new standard in-
stance whose class is (class) and whose slot storage is (slot-storage).

e (std-instance-p (object)) returns true only when (object) is a standard instance
(i.e., the result of a call to allocate-std-instance, and not some other Common
Lisp object, like a cons or a symbol).

s (std-instance-class (instance)) provides access to the class of the standard in-
stance (instance).

e (std-instance-slots (instance)) provides access to the slot storage for the standard
instance (instance).

e (allocate-slot-storage (size) (initial-value)) returns a new chunk of storage big
enough to hold the bindings of {size) number of slots; all are initialized to (initial-value).

o (slot-contents (slot-storage) (location)) provides access to the binding of the slot
at a given (location) in (slot-storage). Locations are numbered from zero.

Class: color-rectangle
Slots: clearp=nil, cyan=60, height=84, magenta=0, width=38, yellow=>55

Figure 1.3 The structure of an instance of color-rectangle.

1.5.1 Determining the Class of an Instance

Every object in Common Lisp is an instance of a CLOS class. Internally, implementing
generic function invocation and other operations requires that we be able to determine

12For the curious, see std-instance (281).

28 Chapter 1

the class of an instance. We define the function class-of to return a class metaobject
given an instance. The class of a standard instance is stored with the instance. The
class of other objects is determined in other highly implementation-dependent ways that
we needn’t go into; we simply assume that built-in-class-of returns the appropriate
class metaobject. The definition of class-of is as follows:

n (defun class-of (object)
(if (std-instance-p object)
(std-instance-class object)
(built-in-class-of object)))

1.5.2 Allocating Storage for Slots

The slot storage of a standard instance holds the current values of all the slots associated
with that instance. allocate-instance creates a new standard instance with slots
initialized to a recognizable, but otherwise secret value. We will use the presence of this
value in a slot to indicate that it is unbound.

n (defparameter secret-unbound-value (list "slot unbound"))

(defun allocate-instance (class)
(allocate-std-instance class
(allocate-slot-storage
(length (class-slots class))
secret—unbound-value)))

The complete list of slots associated with instances of a class is obtained from the class
metaobject with class-slots. The length of this list tells us how much space is needed
to store the instance’s slots.

1.5.3 Accessing the Bindings of Slots

The standard CLOS slot accessing procedures (slot-value et al.) all use information
about the slot’s location in the slots to access the slot. Determination of a slot’s location
is centralized in the internal function slot-location:

How CLOS is Implemented 29

¢| (defun slot-location (class slot-name)
(let ((pos (position slot-name
(class-slots class)
:key #'slot-definition-name)))
(if (null pos)
(error "The slot ~S is missing from the class ~S."
slot-name class)
pos)))

(slot-value (instance) (slot-name)) returns the current binding of the slot named
(slot-name) in the standard instance (instance), or reports an error if the slot is currently
unbound:

mgﬂammﬁb slot-value (instance slot-name)
(let* ((location (slot-location (class-of instance) slot-name))
(slots (std-instance-slots instance))
(val (slot-contents slots location)))
(if (eq secret-unbound-value val)
(error "The slot ~S is unbound in the object ~S."
slot-name instance)
val)))

(setf (slot-value (instance) (slot-name)) (new-value)) changes the binding of the
(slot-name) slot of the standard instance (instance) to (new-value):

muﬂabmcb (setf slot-value) (new-value instance slot-name)
(let ((location (slot-location (class-of instance) slot-name))
(slots (std-instance-slots instance)))
(setf (slot-contents slots location) new-value)))

(slot-boundp (instance) (slot-name)) returns true if and only if the (slot-name) slot
of the standard instance (instance) is currently bound:

M_nnmmsb slot-boundp (instance slot-name)
(let ((location (slot-location (class-of instance) slot-name))
(slots (std-instance-slots instance)))
(not (eq secret-unbound-value
(slot-contents slots location)))))

30 Chapter 1

(slot-makunbound (instance) (slot-name)) unbinds the (slot-name) slot of the stan-
dard instance (instance):

m (defun slot-makunbound (instance slot-name)
(let ((location (slot-location (class-of instance) slot-name))
(slots (std-instance-slots instance)))
(setf (slot-contents slots location) secret-unbound-value))
instance)

(slot-exists-p (instance) (slot-name)) returns true if and only if the standard in-
stance (instance) has a (slot-name) slot:

n (defun slot-exists-p (instance slot-name)
(not (null (find slot-name (class-slots (class-of instance))
:key #'slot-definition-name))))

1.5.4 Initializing Instances

Having seen how to allocate standard instances and access their slots, we next turn to the

normal way in which the user would create standard instances, namely make-instance.
The principal method for the generic function make-instance looks up the class name

supplied by the user and then calls make-instance again with the class metaobject.

n (defgeneric make-instance (class &key))
(defmethod make-instance ((class symbol) &rest initargs)
(apply #'make-instance (find-class class) initargs))

A secondary method allocates a new instance of the class using allocate-instance,
and then calls initialize-instance to initialize it, passing along the keyword argument
list that follows the class argument:

m (defmethod make-instance ((class standard-class) &rest initargs)
(let ((instance (allocate-instance class)))
(apply #'initialize-instance instance initargs)
instance))

For example, the call

(make-instance 'color-rectangle
:width 38 :height 84 :cyan 60 :yellow 55 :clearp nil)

How CLOS is Implemented 31

would invoke the former method, which would look up the class and call make-instance
again. This time the latter method would be applicable; it would allocate a fresh standard
instance, say #<Color-Rectangle 542742>, and call initialize-instance on that in-
stance, passing along the original list of keyword arguments.

Both initialization and reinitialization of instances are funneled to the generic function
shared-initijalize.

m (defgeneric initialize-instance (instance g&key))
(defmethod initialize-instance ((instance standard-object)
&rest initargs)
(apply #'shared-initialize instance t initargs))

(defgeneric reinitialize-instance (instance &key))
(defmethod reinitialize-instance ((instance standard-object)
&rest initargs)
(apply #'shared-initialize instance () initargs))

(defgeneric shared-initialize (instance slot-names &key))
(defmethod shared-initialize ((instance standard-object)
slot-names &rest all-keys)
(dolist (slot (class-slots (class-of instance)))
(let ((slot-name (slot-definition-name slot)))
(multiple-value-bind (init-key init-value foundp)
(get-properties!®
all-keys (slot-definition-initargs slot))
(declare (ignore init-key))
(if foundp
(setf (slot-value instance slot-name) init-value)
(when (and (not (slot-boundp instance slot-name))
(not (null (slot-definition~initfunction
slot)))
(or (eq slot-names t)
(member slot-name slot-names)))
(setf (slot-value instance slot-name)
(funcall (slot-definition-initfunction

slot))))))))

instance)

13The Common Lisp function get-properties searches a property list for any of a set of properties, returning
the first property and value found (and a success flag indicating whether any of the properties were found).

32 Chapter 1

shared-initialize binds values to an instance’s slots in any of several ways. In order
of decreasing precedence, they are:

1. From an explicit initialization argument whose keyword matches one of the slot’s
:initarg names.

2. From an existing binding of the slot.

3. From a slot’s :initform if it has one, and provided that the name of the slot appears
in the list of slot names passed in as the second argument to shared-initialize (t
means all slots).

4. Do nothing whatsoever.

1.5.5 Changing the Class of an Instance

When the class of an existing instance is changed with change-class, the bindings of
slots common to both the old and new classes must be carried over. After the class of
the instance has been changed, the generic function update-instance-for-different-
class is called to initialize the new slots and to provide the user an opportunity to
salvage the slot bindings that are about to be dropped on the floor. For example, exe-
cuting (change-class door ’rectangle) would change the class of door from color-
rectangle to rectangle. Since rectangles don’t have clearp, cyan, magenta, or
yellow slots, the bindings of these slots are forgotten. In this case there are no new slots
to initialize, but in general there might be (e.g., if we were to then change the class of
door back to color-rectangle).

In order to engender this behavior, change-class allocates a new instance of the new
class and initializes it from the old instance. Then the class and slot storage of these
instances are simply swapped; this has the desired effect of preserving the instance’s
identity while changing its class and realigning its slots.

How CLOS is Implemented 33

m (defgeneric change-class (instance new-class &key))
(defmethod change-class ((old-instance standard-object)
(new-class standard-class)
&rest initargs)
(let ((new-instance (allocate-instance new-class)))
(dolist (slot-name (mapcar #'slot-definition-name
(class-slots new-class)))
(vhen (and (slot-exists-p old-instance slot-name)
(slot-boundp old-instance slot-name))
(setf (slot-value new-instance slot-name)
(slot-value old-instance slot-name))))
(rotatef!4
(std-instance-slots new-instance)
(std-instance-slots old-instance))
(rotatef
(std-instance-class new-instance)
(std-instance-class old-instance))
(apply #'update-instance-for-different-class
new-instance old-instance initargs)
old-instance))

Just as with make-instance, a second method intercepts calls with a symbol in the
second argument position, which it coerces into a class metaobject:

m (defmethod change-class ((instance standard-object)
(new-class symbol)
&rest initargs)
(apply #'change-class instance (find-class new-class) initargs))

As mentioned above, the generic function update-instance-for-different-class
Serves a two-fold purpose. By default, it simply initializes all of the new slots that
appeared because of the class change. But by defining other more specialized methods
on it, the user gains (temporary) access to the old state of the instance (the old instance
is now in its new state—remember the identity swap), making it possible to salvage any
of the slot bindings that are disappearing

14The Common Lisp macro rotatef is similar to setf. It interchanges the value of its two arguments.

34 Chapter 1

n (defgeneric update-instance-for-different-class (old new &key))
(defmethod update-instance-for-different-class ((old standard-object)
(new standard-object)

&rest initargs)

(let ((added-slots
(remove-if #'(lambda (slot-name)
(slot-exists-p old slot-name))
(mapcar #'slot-definition-name
(class-slots (class-of new))))))
(apply #'shared-initialize new added-slots initargs)))

This completes our presentation of standard instances.

1.6 Representing Generic Functions

The CLOS user defines generic functions with the defgeneric macro. In this section
we see how defgeneric is implemented. All other definitions, such as the function
ensure-generic-function and the class standard-generic-function are part of the
supporting implementation and are not intended to be user-visible.

A generic function metaobject, which is created as the result of a call to defgeneric,
captures the information supplied in the defgeneric definition, and stores the set of
methods defined on the generic function. Figure 1.4 depicts the metaobject for the generic
function paint. The class standard-generic-function has slots for the name and
lambda list as obtained from the generic function definition, and one for the associated
method metaobjects:!®

m (defclass standard-generic-function ()
((name :initarg :name :accessor generic-function-name)
(lambda-list :initarg :lambda-list
:accessor generic-function-lambda-list)
(methods :initform ()
:accessor generic-function-methods)))

151n full CLOS, generic function metaobjects differ somewhat from ordinary instances. They are funcallable
instances, that is, instances which both have slots and can be called as functions (passed to funcall or
apply). In Part I, we have quietly assumed the existence of such funcallable instances; but the full Closette
implementation in Appendix D provides a somewhat simpler approximation of this functionality.

How CLOS is Implemented 35

Name: paint
Lambda list: (x)
Methods: paint methods #1, #2, and #3

Figure 1.4 The metaobject for the generic function paint.

1.6.1 The defgeneric Macro

defgeneric is very much like defclass; it macro-expands into a call to the glue layer
function ensure-generic-function. For example,

(defgeneric paint (x))
macro-expands into
(ensure-generic-function 'paint :lambda-list '(x))

The defgeneric macro is defined as follows:

n (defmacro defgeneric (function-name lambda-list)
‘(ensure-generic-function ',function-name
:lambda-list ',lambda-list))

ensure-generic-function creates the generic function metaobject (provided that

there isn’t one with that name already) and installs it as the global function definition
for its name.

n (defun ensure-generic-function (function-name)
(if (fboundp function-name)
(fdefinition!® function-name)
(let ((gf (apply #'make-instance
'standard-generic-function
:name function-name all-keys)))
(setf (fdefinition function-name) gf)

gf)))

This completes our presentation of how defgeneric is implemented. The interesting

behavior of generic functions (i.e., method lookup) will be presented after we introduce
method metaobjects.

H.. .
. ®This is the new Common Lisp replacement for symbol-function that can also be used with function names
ike (setf foo) which aren’t symbols.

36 Chapter 1

Lambda list: (x)

Qualifiers: (:before)

Specializers: (color-mixin)

Body: (set-brush-color ...)
Environment: the top-level environment
Generic-function: paint

Figure 1.5 The metaobject for paint method #2.

1.7 Representing Methods

The CLOS user defines methods with the defmethod form. In this section we see how
defmethod is implemented. Again, all other definitions are part of the supporting im-
plementation and are not user-visible.

Method metaobjects capture the information supplied in a defmethod definition and
provide a direct link to the corresponding generic function metaobject. This information
includes:

The method’s unspecialized lambda list.

The list of method qualifiers (e.g., :before, :after).

The list of class metaobjects that are the method’s parameter specializers.
The form that constitutes the body of the method.

The lexically enclosing environment.

The corresponding generic function metaobject.

Figure 1.5 shows the method metaobject for paint method #2.
We introduce a class standard-method whose instances are method metaobjects that
store this information:

How CLOS is Implemented 37

0| (defclass standard-method ()
((lambda-list :initarg :lambda-list
:accessor method-lambda-list)
(qualifiers :initarg :qualifiers
:accessor method-qualifiers)
(specializers :initarg :specializers
:accessor method-specializers)
(body :initarg :body
:accessor method-body)
(environment :initarg :environment
:accessor method-environment)
(generic-function :initform nil
:accessor method-generic-function)))

1.7.1 The defmethod Macro

The three-layered handling of defmethod is analogous to that of defclass and def-
generic. For example,

(defmethod paint :before ((x color-mixin)) ;Method #2
(set-brush-color (slot-value x 'cyan)
(slot-value x 'magenta)
(slot-value x 'yellow)))

macro-expands to

(ensure-method (fdefinition 'paint)

:lambda-list '(x)

‘qualifiers '(:before)

:specializers (list (find-class 'color-mixin))

‘body '(block paint

(set-brush-color (slot-value x 'cyan)

(slot-value x 'magenta)
(slot-value x 'yellow)))

‘environment (top-level-environment)!”)

17 -
:omammﬁaoa Lisp OEK supports ﬁrma could be nw:m..m compile-time lexical environments, whereas what is
in C here is the run-time lexical environment. In reality, the function top-level-environment doesn’t exist
iss ommon Lisp. Assume for the time being that it returns the top-level runtime lexical environment. This
ue is discussed further in Section 1.8.3.

38 Chapter 1

A critical concern at the macro expansion layer is to ensure that the lexical environment
of the defmethod is captured so that it can be retrieved when the body of the method
is executed. Unfortunately, Common Lisp makes this rather difficult to do. Rather than
try to solve this problem, we will simply implement defmethod in a way that works only
for the most common case of top-level definitions.

n (defmacro defmethod (&rest args)
(multiple-value-bind (function-name qualifiers
lambda-1ist specializers body)
(parse-defmethod args)
‘(ensure-method (fdefinition ',function-name)
:lambda-list ',lambda-list
:qualifiers ',qualifiers
:specializers ,(canonicalize-specializers specializers)
:body ',body
:environment (top-level-environment))))

The tedious job of parsing the form is given to the function parse-defmethod (298);
canonicalize-specializers (298) converts specializer names (class names) to actual
specializers (class metaobjects).

ensure-method creates a new method metaobject and adds it to the generic function
with add-method:

m (defun ensure-method (gf &rest all-keys)
(let ({(new-method (apply #'make-instance 'standard-method all-keys)))
(add-method gf new-method)
new-method))

add-method adds the method to the generic function’s list of methods and to each of
the specializers’ list of direct methods:

n (defun add-method (gf method)
(setf (method-generic-function method) gf)
(push method (generic-~function-methods gf))
(dolist (specializer (method-specializers method))
(pushnew method (class-direct-methods specializer)))
method)

How CLOS is Implemented 39

1.7.2 Accessor Methods]

There is still one last “1” to dot. In a class definition such as

(defclass color-rectangle (color-mixin rectangle)
((clearp :initform (y-or-n-p "But is it transparent?")
:initarg :clearp :accessor clearp)))

the slot named clearp has automatically generated slot accessor methods associated
with it. These slot accessor methods are primary methods specialized to the containing
class; i.e., their written out equivalents would be:

(defmethod clearp ((object color-rectangle))
(slot-value object 'clearp))

and

(defmethod (setf clearp) (new-value (object color-rectangle))
(setf (slot-value object 'clearp) new-value))

The functions add-reader-method and add-writer-method, which are called when a
class is created, call ensure-method to create these methods directly:

@ (defun add-reader-method (class fn-name slot-name)
(ensure-method
(ensure-generic-function fn-name :lambda-list '(object))
:lambda-1ist '(object)
:qualifiers ()
:specializers (list class)
:body ‘(slot-value object ',slot-name)
:environment (top-level-environment))
(values))

(defun add-writer-method (class fn-name slot-name)

(ensure-method
(ensure-generic-function fn-name :lambda-list '(new-value object))
‘lambda-list '(new-value object)
‘qualifiers ()
:specializers (list (find-class 't) class)
‘body ‘(setf (slot-value object ',slot-name) new-value)
‘environment (top-level-environment))

(values))

This completes the presentation of how defmethod is implemented.

40 Chapter 1

1.8 Invoking Generic Functions

Now that we have seen how the supporting metaobjects are constructed, we are finally
ready to see how generic function invocation is implemented. We will see that this brings
together all the pieces—instances, classes, generic functions, and methods.

Exactly which methods are run on any particular invocation of a generic function
depends, of course, on the arguments that are passed. More specifically, it depends on
the classes of the required (i.e., non-optional, non-keyword and non-rest) arguments.
Conceptually, CLOS divides generic function invocation into three pieces: determining
which methods are applicable (as dictated by the method specializers and the classes of
the required arguments); sorting the applicable methods into decreasing precedence order
(also dictated by the method specializers and the classes of the required arguments), and
sequencing the execution of the sorted list of applicable methods (as dictated by the
method qualifiers). This whole process is often lumped together under the title method
lookup..

Our implementation follows this same conceptual breakdown. First, we arrange so that
whenever a generic function is called (by name or by apply/funcall), control is passed
to the function apply-generic-function, passing in the generic function metaobject
along with the generic-function’s list of actual arguments;!® e.g., the call (paint door)
is actually implemented by a call equivalent to:

(apply-generic-function #'paint (list door))

The function apply-generic-function calls compute-applicable-methods-using-
classes to both determine which of the generic function’s methods are applicable to
arguments with these classes and to sort those methods into decreasing precedence order.
It then calls apply-methods to sequence the invocation of applicable methods.

m (defun apply-generic-function (gf args)
(let ((applicable-methods
(compute-applicable-methods-using-classes
gf (mapcar #'class-of (required-portion gf args)))))
(if (null applicable-methods)

(error "No matching method for the~@
generic function ~S,"Q
when called with arguments ~:S." gf args)

(apply-methods gf args applicable-methods))))

18There are several ways that this can be implemented, but all involve implementation details that are
irrelevant for our current purposes. We recommend reading Section 4.4.3 before trying to understand how the
code in Appendix D does it.

How CLOS is Implemented Al

required-portion (298) simply returns that initial portion of the arguments that
corresponds to the required arguments to the generic function.

1.8.1 Determining the Applicable Methods

compute-applicable-methods-using-classes returns a sorted list of the methods that
are applicable to arguments of the given classes. First, method applicability is decided by
looking at the method’s specializers: a method is applicable if every required argument
satisfies the corresponding parameter specializer. This will be the case if every required
argument’s class is equal to or a subclass of the parameter specializer. The list of method
metaobjects is sorted in decreasing precedence order before being returned.

—n (defun compute-applicable-methods-using-classes (gf required-classes)
(sort
(copy-lis
(remove-if-not #'(lambda (method)
(every #'subclassp
required-classes
(method-specializers method)))
(generic-function-methods gf)))
#' (lambda (ml1 m2)
(method-more-specific-p ml m2 required-classes))))

19

Class precedence lists are used to determine when one class is a (not necessarily proper)
subclass of another: class C; is a subclass of C; if and only if C; is a superclass of Cj,
and that holds if and only if C, occurs in the class precedence list of C). For example,
color-rectangle is a subclass of rectangle because rectangle occurs on the class
precedence list of color-rectangle. The function subclassp provides the lowest layer
support for subclass determination:

n (defun subclassp (cl c2)
(not (null (find c2 (class-precedence-list c1)))))

The function method-more-specific-p compares the precedence of two methods on
the same generic function with respect to arguments of certain classes by examining the
Specialized parameters in left to right order. The first pair of parameter specializers that

are not the same determines the precedence (false is returned if all parameter specializers
are the same).

~© . .,.
" OoBBo: Lisp’s sort primitive destructively sorts its argument and we must avoid modifying the generic
unction’s list of methods.

42 Chapter 1

n (defun method-more-specific-p (methodl method2 required-classes)
(mapc #'(lambda (specl spec2 arg-class)
(unless (eq specl spec2)
(return-from method-more-specific-p
(sub-specializer-p specl spec2 arg-class))))

(method-specializers methodl)

(method~specializers method?2)

required-classes)
nil)

For example, with respect to a single argument whose class is color-rectangle, the
method that is specialized to color-rectangle (#3) is the most specific, followed by
the method that is specialized to color-mixin (#2), and then the method specialized to
rectangle (#1). Thus the list of applicable methods returned by compute-applicable-
methods-using-classes is (method #3, method #2, method #1).

The subclass relationship can be used to order classes that are related as ancestor-
descendent, but, because CLOS supports multiple inheritance, ordering applicable meth-
ods may involve comparing specializers that are not so related; e.g., neither color-mixin
nor rectangle is a subclass of the other. The class of the actual argument in question
provides the common yardstick for comparison: a class C, is a sub-specializer of another
class C; with respect to a reference class Cyy (the class of the argument in question) if C;
shows up earlier than C; on Cyy,’s class precedence list.? So, for example, color-mixin
is a sub-specializer of rectangle with respect to color-rectangle because color-mixin
precedes rectangle in the class precedence list of color-rectangle. The function sub-
specializer-p computes the strict sub-specializer relationship; i.e, a class is never a
sub-specializer of itself.

n (defun sub-specializer-p (cl c2 c-arg)
(let ((cpl (class-precedence-list c-arg)))
(not (null (find c2 (cdr (member cl cpl)))))))

1.8.2 Sequencing the Applicable Methods

Having computed the sorted list of applicable methods, the task remains of orchestrating
the invocation of the methods. The list of method qualifiers is used to categorize any
method as a primary, before-, or after-method:.

Given a class C, with direct superclasses (C;C3), and a class Cy with direct superclasses (C2C1), then C
will be a sub-specializer of C with respect to C; while at the same time Cp will be a sub-specializer of C]
with respect to Cy.

How CLOS is Implemented 43

m_ (defun primary-method-p (method)
(null (method-qualifiers method)))

(defun before-method-p (method)
(equal '(:before) (method-qualifiers method)))

(defun after-method-p (method)
(equal '(:after) (method-qualifiers method)))

Under the rules of standard method combination, applicable before-methods are ex-
ecuted first, from most specific to least specific. The most specific applicable primary
method is executed next, followed by the applicable after-methods, from least specific to
most specific. The value(s) returned by the call to the generic function are the values(s)
returned by the primary method.

The function apply-methods does this sequencing, calling apply-method to invoke
individual methods on the arguments:

uﬁnmm:b apply-methods (gf args methods)

(let ((primaries (remove-if-not #'primary-method-p methods))
(befores (remove-if-not #'before-method-p methods))
(afters (remove-if-not #'after-method-p methods)))

(wvhen (null primaries)
(error "No primary methods for the”@
generic function ~S." gf))
(dolist (before befores)
(apply-method before args ()))
(multiple-value-progi
(apply-method (car primaries) args (cdr primaries))
(dolist (after (reverse afters))
(apply-method after args ())))))

1.8.3 Applying a Method

Applying a method is handled in basically the same way a Lisp interpreter handles a call
to a normal (non-primitive) function: evaluate the body form in the lexical environment
of the defmethod as extended with new variable binding resulting from matching the
lambda list against the list of actual arguments. Assuming that add-variable-bindings
does the matching and environment manipulations, this can be expressed as:

44 Chapter 1

(eval?! (method-body method)
(add-variable-bindings (method-lambda-list method)
args
(method-environment method)))

This brings us to the mysterious third argument to apply-method that the reader may
have noticed in the above definition of apply-methods. When there are multiple primary
methods applicable to a set of arguments, the rules of standard method combination are
that calls to the function call-next-method from within the body of one primary method
should activate the next most specific applicable primary method (on either the original
or an all-new set of arguments).?? This list of next methods is passed to apply-methods,
which introduces lexical function binding (similar to flet) for call-next-method (and
its companion, next-method-p) into the scope of the body of the method. The function
bound to call-next-method simply passes the list of next methods back to apply-
methods. Assuming that the function add-function-bindings adds function bindings
to an existing environment, apply-method is defined as follows:

m (defun apply-method (method args next-methods)
(let ((call-next-method
#' (lambda (&rest cnm-args)
(if (null next-methods)

(error "No next method for the~Q
generic-function ~S."
(method-generic~function method))

(apply-methods

(method-generic-function method)
(or cnm-args args)
next-methods))))
(next-method-p
#' (lambda ()
(not (null next-methods)))))

21Not only are we assuming that run-time lexical environments exist, but also that eval takes an environment
argument. While Common Lisp supports neither, the ideas are well-known to readers familiar with metacircular
Lisp interpreters. Rather than complicate matters because of this shortcoming of Common Lisp, we opted to
bend the rules. Later, when we introduce the notion of method functions in Section 4.4.2, a solution that does
not involve calling the Lisp interpreter will become apparent. The working program in Appendix D does not
use eval to invoke methods.

22 Arguments to call-next-method, when supplied, must have the same ordered list of applicable methods
as the original arguments to the generic function.

How CLOS is Implemented 45

(eval (method-body method)
(add-function-bindings
' (call-next-method next-method-p)
(1ist call-next-method next-method-p)
(add-variable-bindings
(method-lambda-list method)
args
(method-environment method))))))

This completes the presentation of generic function invocation.

1.9 A Word About Performance

Closette is simple, but it is woefully inefficient. At the very least, any real implementation
of CLOS must handle generic function invocation and slot access more efficiently. We will
discuss the interaction between metaobject protocols and optimization when we design
the metaobject protocol for method lookup in Chapter 4. For the time being, a few
comments about the basis for optimizing ordinary CLOS implementations are in order.

There are a wide range of approaches to optimizing CLOS implementations, but all
stem from the same basic idea: improve performance by computing the results of critical
internal computations once and then saving and reusing that result. This technique
is known as memoization. For example, in Closette, determining a slot’s location is a
critical step in accessing the slot. Because our scheme for computing slot locations is
such that the location of a given slot in a given class never changes, they can easily
be memoized. This makes it possible to improve the performance of slot-value and
other slot accessing functions. In real implementations, a number of similar values are
memoized, often forming intricately linked structures of memoized values.

Exercise 1.1 The Closette implementation of generic function invocation offers numerous
Possibilities for memoizing meta-level computations. Modify apply-generic-function so
that it memoizes previous results of compute-applicable-methods-using-classes. What
are the conditions under which your memoized values remain valid?

1.10 Summary

We have now seen the backstage architecture common to all CLOS implementations.
Zmﬂ@ogmoﬁm are used to represent components of CLOS programs: class metaobjects
Tepresent classes, generic function metaobjects represent generic functions, and method

46 Chapter 1

metaobjects represent methods. The implementation uses information stored in the
metaobjects to run the program. For example, the information stored in class metaob-
jects is used to access the slots of the class’s instances.

The processing of the source program to create the internal metaobject structure is or-
ganized into a three layer structure. The macro expansion layer (defclass, defgeneric
and defmethod) processes the syntax of the forms; the glue layer (ensure-class, etc.)
maps names to metaobjects; the lowest layer handles metaobjects directly and provides
the bulk of the language behavior.

N Introspection and Analysis

In this chapter, we begin the process of designing a metaobject protocol for our subset
of CLOS. We will do this by working through some examples illustrative of the prob-
Jems users have in writing browsers and other program analysis tools. The metaobject
protocols we will develop make it possible to write these tools easily and portably.

Having just worked through the code for a simple CLOS implementation, the reader
has now seen the CLOS language from a curious “second” vantage point. The first van-
tage point (which was assumed at the outset) is the one that all users would know about
CLOS-—namely, the on-stage behavior of classes, instances, generic functions and meth-
ods. The second vantage point is the backstage one, which only a CLOS implementor
would usually get to see. Given both viewpoints, the reader is now hovering omnisciently
in the galleries watching what is happening on both sides of the curtain.

However, seeing things from a new angle should not be taken as a blurring of the
distinction between on-stage and backstage, or between audience and producer. No
such blurring has happened, nor will it. The implementation presented in the preceding
chapter provides precisely the following on-stage CLOS functionality:

o Three user interface macros defclass, defgeneric, and defmethod, for defining
classes, generic functions, and methods respectively.

e Several pre-defined classes named standard-object, t, symbol, etc., which can be
used as specializers in defmethod forms.

e A set of functions for creating, initializing, displaying, interrogating, and otherwise
manipulating instances of user-defined classes: make-instance, initialize-
instance, reinitialize-instance, shared-initialize, print-object, slot-
value et al., change-class, and update-instance-for-different-class.

e Two lexical functions, call-next-method and next-method-p, for invoking the next

most applicable primary method from within the body of a user-defined method.
¢ That’s all.

The class, generic function, and method metaobjects were not a part of the on-stage
deal; nor were the metaobject classes standard-class, standard-generic-function,
and standard-method, nor any of the other generic or regular functions. All are back-
stage fixtures.

But that is about to change. In this second chapter we begin the process of exposing
Some of the backstage fixtures—opening up the implementation to the user. We will
show how this places useful functionality in the hands of the user. And very importantly,
We will discuss how this can be done while honoring two important constraints: (i)

.mamﬁsm within accepted parameters of good language design, and (ii) not hobbling the
implementor.

48 Chapter 2

The first step in this process of exposing backstage functionality is to let the user’s
program inspect its own classes, generic functions, and methods. Such introspective
access is the basis for browsers and other program analysis tools.

The development of our metaobject protocol will supplement the original language,
which will be expanded to include functions and objects not in the above list. On the
other hand, in this chapter, the Closette implementation will require only trivial modi-
fications. This is only possible because we “rigged” Closette so that the functions and
objects that will be added to the language in this chapter would already be present.
Don’t be fooled by this: metaobject protocols are not designed or implemented by ar-
bitrarily exporting the internal structure of existing implementations. As we go along,
we will give explicit attention to the design principles underlying our evolving metaob-
Ject protocol. In later chapters, we will introduce metaobject protocols that will require
portions of Closette to be rewritten.

2.1 Introducing Class Metaobjects

Browsers and other program analysis tools are an important part of any interactive
programming environment. They allow the user to cope with large, complex programs by
presenting answers to certain questions about the program in a specialized perspective.
In some cases, it is even useful to have such tools tailored to a specific application.
Unfortunately, browsers have traditionally been tightly coupled to internal aspects of
the language implementation and, as a result, have not been portable. It has also been
difficult for users to write program analysis tools of their own. We will see how, when
properly exposed to the user, metaobjects and the information associated with them
make it possible to write portable browsers and other program analysis tools.

Consider for a moment the very simple task of getting a list of the names of all classes
defined in the user’s application program. For last chapter’s example program, that
would be the list:

(rectangle color-mixin color-rectangle)

Larger programs would have commensurably longer lists. There are any number of
ways that the user might procure this list for use by the application:

e Directly, as in:
(defconstant my-classes ’ (rectangle color-mixin color-rectangle))
® By reading in the source file and locating all the defclass forms contained therein.

¢ By visiting all of the class metaobjects reachable via direct subclass links from the
class standard-object.

Introspection and Analysis 49

The first way is simple and completely portable; however, the list has to be manually
kept up to date whenever the application program’s class structure changes. The other
two ways automatically guarantee that the list accurately reflects the true class structure
of the program, but have problems of their own. Reading the source file is not particu-
larly straightforward;' tapping into the implementation’s internal metaobject structure
would seem to be much easier. But this last alternative can only be done portably if all
implementations standardize on a way to provide access to this information. Although
we (from our second vantage point) know exactly where this information is in Closette,
access to it was not provided to users. So, if the user were to use their knowledge of
Closette to gain access to the necessary information, the resulting program would be
highly Closette-dependent, and would have little prospect of running in other implemen-
tations. It should be clear that access to this information must be a documented part of
the language in order for users to be able to write portable programs that use it.

Since class metaobjects are not presently a part of the story the user sees, providing
publicly accessible ways for the user to access them is going to be our first change to the
language.

Conceptually, there are two ways to get access to class metaobjects. One is by name;
any class defined with defclass has a name, so it makes sense to provide the user with
a way to obtain a class metaobject given its name. The other is by asking a given
object what its class is; since every object in the Lisp system has a class, this access is
unproblematic. The functions find-class and class-of provide exactly the respective
required functionalities internal to Closette. We can provide users with the desired
functionality simply by adding these internal functions to the documented language:

(find-class (symbol) &optional (errorp)) Returns the class metaobject correspond-
ing to the class named by (symbol). If there is no class with this name and (errorp)
is either missing or non-nil, an error is signaled.? If there is no class with this name
and (errorp) is nil, then nil is returned.

(class-of (object)) Returns the class metaobject corresponding to the class of (object).

Once again, even though these functions were already present in Closette, this is a real
change to the language: we are requiring all implementations of the extended language
to support class metaobjects and provide this functionality under these names.

As part of making class metaobjects available to the user, it is useful to improve their
Printed appearance to display the class’s name. For example, the color-rectangle class
metaobject should print something like #<Standard-Class COLOR-RECTANGLE 323627>.

1 - . .
To properly handle macro-expansion, a complex code walker is required.

2 . . - 2
In the parlance of the CLOS specification, saying that “an error is signaled” means that the programmer
can rely on the implementation to detect and report the offending situation.

50 Chapter 2

(Previously, the only reason to do this would have been for the convenience of the im-
plementor since the user would never have seen a class metaobject displayed.) A simple
change to Closette supports this.

n (defmethod print-object ((class standard-class) stream)
(print-unreadable-object (class stream :identity t)
(format stream "Standard-Class ~S" (class-name class)))
class)

We also document the identity conditions for class metaobjects: equality of class meta-
objects can be tested with eq. To make meaningful use of class metaobjects, the user
must also be given ways of extracting information from them. In Closette these ser-
vices were provided internally by metaobject accessor functions (e.g., class-name). We
continue to supplement the language by making these functions available to the user:

(class-name (class)) Returns the name of the class metaobject (class) as given in the
defining defclass form.?

(class-direct-superclasses (class)) Returns a list of class metaobjects that are the
direct superclasses of the class metaobject (class), in the order specified in the defining
defclass form.

(class-direct-slots (class)) Returns a set of direct slot definition metaobjects for
the class metaobject (class), corresponding to the slot specifications in the class’s
defclass definition.

(class-precedence-list (class)) Returns the class precedence list for the class meta-
object (class).

(class-slots (class)) Returns a set of effective slot definition metaobjects that corre-
spond to all of the slots associated with the class metaobject {class).

(class-direct-subclasses (class)) Returns a set of class metaobjects that are the
direct subclasses of the class metaobject {class).

(class-direct-methods (class)) Returns a set of method metaobjects, each of which
has the class metaobject {class) among its list of specializers.

In order to make it easier for the implementor to provide these accessor functions, we
include some general “fair use” rules that the user must respect. These rules are based
on common software engineering practice for data abstractions.

3Assume that the built-in classes were pre-defined with defclass forms something like (defclass t ()
()), (defclass standard-object (t) ()), (defclass symbol (t) ()),...

Introspection and Analysis 51

1. The user should not make any assumptions about the order of elements in unordered
collections. For example, class-direct-subclasses, which returns a set of class meta-
objects, guarantees that there are no duplicates, but makes no promise about the order
of the elements in the list it returns.

2. The user should not make any assumptions about whether the results are obtained
by retrieval or by recomputation. For example, the lists returned by successive calls to
class-direct-superclasses may not be eq even though they will be equal.

3. The user should not try to change the metaobject, either directly with something like
(setf (class-direct-subclasses ...) ...), or indirectly with some sort of destruc-
tive operation like rplaca applied to a list returned as a result. The results of smashing
these structures are undefined.*

These rules do not overly inconvenience the user, but they do provide the implemen-
tor with some needed flexibility. For instance, the first two rules make it possible for
an implementation to store the information in an alternate form, and only derive the
documented form when an accessor is called. The last rule allows an implementation to
compute and store a single list which can be used both internally and handed out to the
user; without this provision an implementation wouldn’t dare hand out anything but a
copy of a list containing critical information.

The balance between user convenience and implementor freedom we have struck here—
to provide the metaobjects and accessors but have rules about their use—is critical to
metaobject protocol design. As with all other language design, we consider not only the
advantage to users o our decisions, but also the potential effect on implementors.

Exercise 2.1 In Closette, the strategy used to implement class-direct-subclasses is to
store the set of subclasses directly in the class metaobject. This is a simple strategy, but
it’s certainly not the only—or even the best—one. If most traversals of the class hierarchy
go upwards (from subclasses to superclasses) rather than downwards, it may not be worth
the added expense to store direct subclass links in each class metaobject. Show an alternate
strategy for implementing class-direct-subclasses that doesn’t use direct backlinks. Does
your strategy depend on the freedom provided by the fair use rules? How?

“In the parlance of the CLOS specification, “the results of a given action are undefined” means that the
results must be considered to be completely unpredictable. Programmers bear the responsibility of ensuring
that their program avoids situations that are undefined.

52 Chapter 2

2.2 Browsing Classes

With class metaobjects part of the extended language, we are now in a position to present
user code that utilizes the information associated with them to build portable browsing
tools. The functions introduced above provide a standard programmatic interface to the
underlying class metaobjects. User code can call these functions to ascertain how the
classes are related to one another, and what the structure of each class is.

2.2.1 Finding a Class’s Subclasses

We can easily use the metaobjects to get information about the structure of the class
hierarchy. The class precedence list, which we can obtain with class-precedence-
list, gives us the set of a class and all its superclasses. We can also define the function
subclasses* to return the set consisting of a given class, all its direct subclasses, all
their direct subclasses, and so on:

hm\ﬂnmmzb subclasses* (class)
(remove-duplicates
(cons class
(mapappend #'subclassesx
(class~-direct-subclasses class)))))

Just as we have been marking code that is part of the Closette implementation, we will
also mark code that the user writes using the metaobject protocol with a mop. We will
continue to leave both interactions with the lisp interpreter and example CLOS programs
unmarked.

In some cases, we may find it more convenient just to get the subclasses without the
class itself:

K\ammﬁn subclasses (class) (remove class (subclasses* class)))

Returning to the running example of the last chapter, we can use this code to find the
subclasses of the class rectangle:

= (subclasses (find-class 'rectangle))
(#<Standard-Class COLOR-RECTANGLE 323627>)

Moreover, since all user-defined classes are subclasses of the class standard-ob ject,
the easy way for the user to automatically construct a list of the names of all user-defined
classes is as follows:

Introspection and Analysis 53

(defvar my-classes
(mapcar #'class-name
(subclasses (find-class 'standard-object))))
—> my-classes
(COLOR-MIXIN RECTANGLE COLOR-RECTANGLE)

This solution is fully general, entirely automatic, reasonably efficient, and completely
portable.’

2.2.2 Regenerating Class Definitions

In addition to information concerning the relationships among classes, class metaobjects
also provide access to properties of the class itself. For example, suppose the user wanted
to regenerate a defclass from a class metaobject. This requires extracting information
stored with class metaobjects and displaying it in appropriate ways.

h\ammg display-defclass (class-name)
(pprint (generate-defclass (find-class class-name)))
(values))

(defun generate-defclass (class)
‘(defclass ,(class-name class)
, (mapcar #'class-name (class-direct-superclasses class))
, (mapcar #'generate-slot-specification (class-direct-slots class))))

However, in order to generate the slot specifications, the user needs to know something
about slot definition metaobjects. This means that we must also document the relevant
accessing functions as part of the language:

(slot-definition-name (slot)) Returns the name of the slot.

(slot-definition-initargs (slot)) Returns a set of :initarg keywords associated
with the slot.

(slot-definition-initfunction (slot)) Returns a function of no arguments that can
be called to produce the value that is to be used to initialize the slot, or nil if the slot
has no explicit :initform.

(slot-definition-initform (slot)) Returns a rendition of the form that appeared as
the slot’s :initform, or nil if the slot has no explicit :initform.

mﬂrmnmmmm catch, which we will discuss later: many system-defined classes will also appear among the
Subclasses of standard-object.

54 Chapter 2

(slot-definition-readers (slot)) Returns a set of function names, where each func-

tion named is a generic function with an automatically generated reader method that
reads the slot. (slot) must be a direct slot definition metaobject.

(slot-definition-writers (slot)) Returns a set of function names, where each func-
tion named is a generic function with an automatically generated writer method that
stores into the slot. (slot) must be a direct slot definition metaobject.

The fair use rules mentioned on page 50 in the context of class metaobjects also govern
the use of slot definition metaobjects.

With this knowledge, it is an easy matter for user code to regenerate an approximation
of the original slot specification:

(defun generate-slot-specification (slot)
‘(,(slot-definition-name slot)
,@(when (slot-definition-initfunction slot)
‘(:initform ,(slot-definition-initform slot)))
,@(when (slot-definition-initargs slot)
(mapappend #'(lambda (initarg) ‘(:initarg ,initarg))
(slot-definition-initargs slot)))
,@(when (slot-definition-readers slot)
(mapappend #'(lambda (reader) ‘(:reader ,reader))

(slot-definition-readers slot)))
,@(when (slot-definition-writers slot)

(mapappend #'(lambda (writer) ‘(:writer ,writer))
(slot-definition-writers slot)))))
We can now use display-defclass to display existing class metaobjects in a familiar
format:
=—> (display-defclass 'rectangle)
(DEFCLASS RECTANGLE (STANDARD-OBJECT)

((HEIGTH :INITFORM 0.0 :INITARG :HEIGTH)
(WIDTH :INITFORM 0.0 :INITARG :WIDTH)))

Out of curiosity we can take a peek at the classes t and standard-object:

—> (display-defclass 't)

(DEFCLASS T ())

= (display-defclass 'standard-object)
(DEFCLASS STANDARD-O0BJECT (T) ())

Everything is as expected.

Introspection and Analysis 55

2.2.3 Displaying Inherited Information

It is possible to display more than just the information that was explicitly supplied in
the defclass; information about inheritance can be included as well. For instance,
both the class precedence list and the complete list of slots are associated with the class
metaobject; here we display them in a format resembling a defclass.

(defun display-defclass* (class-name)
(pprint (generate-defclass* (find-class class-name)))
(values))

(defun generate-defclass* (class)
‘(defclass* ,(class-name class)
, (mapcar #'class-name (cdr (class-precedence-list class)))
, (mapcar #'(lambda (slot)
(generate-inherited-slot-specification class slot))
(class-slots class))))

The big difference between generate-slot-specification and generate-
inherited-slot-specification is that the latter labels slots inherited from other
classes with the name of the class that supplied it:

sm\ﬁnmmcb generate-inherited-slot-specification (class slot)
(let* ((source-class
(find~if #'(lambda (superclass)
(find (slot-definition-name slot)
(class-direct-slots superclass)
:key #'slot-definition-name))
(class-precedence-list class)))
(generated-slot-spec
(generate-slot-specification slot)))
(if (eq source-class class)
generated-slot-spec
(append generated-slot-spec
‘(:inherited-from ,(class-name source-class))))))

56 Chapter 2

For example, the class color-rectangle, which inherits slots from both rectangle
and color-mixin displays as:

= (display-defclass* 'color-rectangle)
(DEFCLASS* COLOR-RECTANGLE (COLOR-MIXIN RECTANGLE STANDARD-OBJECT T)
((CLEARP :INITFORM '(Y-OR-N-P "But is it transparent?")
:INITARG :CLEARP)
(CYAN :INITFORM O :INITARG :CYAN
: INHERITED-FROM COLOR-MIXIN)
(MAGENTA :INITFORM O :INITARG :MAGENTA
: INHERITED-FROM COLOR-MIXIN)
(YELLOW :INITFORM O :INITARG :YELLOW
: INHERITED-FROM COLOR-MIXIN)
(HEIGHT :INITFORM 0.0 :INITARG :HEIGHT
:INHERITED-FROM RECTANGLE)
(WIDTH :INITFORM 0.0 :INITARG :WIDTH
: INHERITED-FROM RECTANGLE)))

2.2.4 Ordering of Classes in Multiple Inheritance

Multiple inheritance is a powerful tool for organizing large object-oriented programs, but
there are cases where the very size of the program can cause the multiple inheritance
behavior to be unclear. .Given the metaobject accessors we have defined, the user can
now write tools which enable them to analyze these sorts of issues. For example, suppose
we were to add another class to our sample class hierarchy:

(defclass color-chart (rectangle color-mixin) ())

Recall that we have previously defined the class color-rectangle with the same
superclasses, but in the opposite order. This means that in the class precedence lists of
color-chart and color-rectangle the classes rectangle and color-mixin appear in
different orders:

= (mapcar #'class-name
(class-precedence-list (find-class 'color-rectangle)))
(COLOR-RECTANGLE COLOR-MIXIN RECTANGLE STANDARD-OBJECT T)

—> (mapcar #'class-name
(class-precedence-list (find-class 'color-chart)))
(COLOR-CHART RECTANGLE COLOR-MIXIN STANDARD-OBJECT T)

Introspection and Analysis 57

This lack of consistency in the order in which color-mixin and rectangle appear may
be a problem for certain kinds of method definitions. For example, consider a generic
function with exactly two primary methods, one specialized to the class color-mixin
and the other to the class rectangle. When this generic function is invoked on an
instance of color-rectangle, the method specialized to color-mixin will be run. On
the other hand, when the generic function is called on an instance of color-chart, the
method specialized to rectangle will be run. Depending on the methods, this may or
may not be what is desired. In any case, it is useful to have a tool which can detect this
case so that the programmer can be aware of it.

We say that a pair of classes C and C, are in order provided that C; appears before
C, in the class precedence list of all of their common subclasses.® If two classes are in
order, we know that pairs of methods specialized to them will always be run in that
order. The predicate in-order-p tests whether a pair of classes are in order:

(defun in-order-p (cl c2)
(flet ((in-order-at-subclass-p (sub)
(let ((cpl (class-precedence-list sub)))
(not (null (member c2 (cdr (member cl cpl))))))))
(or (eq ci c2)
(every #'in-order-at-subclass-p
(intersection (subclasses* cl)
(subclasses* c2))))))

The classes color-mixin and rectangle are not in order because their common sub-
classes, color-chart and color-rectangle, are not in agreement:

= (in-order-p (find-class 'color-mixin)

(find-class 'rectangle))
NIL

On the other hand, the classes standard-object and t are in order. (It would be a
sign of serious trouble if they weren’t.)

= (in-order-p (find-class 'standard-object)

(find-class 't))
T

6
Hrm. rules of class precedence list computation are such that a class C is always in order with respect to
each of its superclasses.

58 Chapter 2

Exercise 2.2 Consider another scenario of multiple inheritance gone awry:

(defclass position ()

x y)»
(defclass cad-element (position ...) ...)
(defclass display-element (position ...) ...)

The class position is supposed to be a general-purpose mixin with (z, y) coordinate positions.
The class cad-element is supposed to model solid geometric objects, and includes position
within its direct superclasses so as to model the position of that solid object in 2-space. Quite
independently, the class display-element is used for data objects that can be displayed on
the screen, and includes position within its direct superclasses to record the screen location
of object. A class of data objects that both model solid objects and are displayable on the
screen could then be defined as follows:

(defclass displayable-cad-element (display-element cad-element) ())

However, under the CLOS inheritance rules, the resulting class only has one pair of
x and y coordinate slots, which is clearly wrong. (Under similar circumstances in
C++ [Ellis&Stroustrup 90| there would be one pair for each different inheritance path.)

A diamond is a multiple inheritance situation where a class inherits from some other class
along two different paths. In the above setting, there is a diamond with apex position.
Write a function (has-diamond-p (class)) that determines whether there are any diamonds
with (class) at the apex.

2.2.5 Summary

By documenting a metaobject protocol for class metaobjects we have made it possible
to write browsers and other program analysis tools portably. Our protocol gives the user
a natural and convenient abstraction of their program’s class structure. By following
standard practice for data abstractions, we have been able to design the protocol so that
it is useful but does not overly burden implementors.

The next section introduces similar metaobject protocols for dealing with generic func-
tion and method metaobjects, and shows how the one remaining piece of information
about class metaobjects, namely the list of methods specialized to the class (the result
of class-direct-methods), can be used to bridge the gap between the class and generic
function halves of the metaobject world.

2.3 Browsing Generic Functions

Properly designed access to generic function and method metaobjects allows the user
to browse the world of generic functions and methods as well as the one of classes and

Introspection and Analysis 59

instances. Just as with class metaobjects, we begin by documenting a way to get access
to generic function metaobjects. For generic functions defined with defgeneric, we
will say that the existing Common Lisp function fdefinition can be used to access
the generic function metaobject; for example, (fdefinition ’paint) can be used to
return the generic function metaobject for the generic function named paint. Method
metaobjects will usually be obtained via an accessor on the generic function metaobject
that owns them. Equality of generic function and method metaobjects can be tested
with eq.

We also revise Closette to improve the printed appearance of these metaobjects. Print-
ing of generic function metaobjects should include the name of the generic function; so
the generic function paint prints something like #<Standard-Generic-Function PAINT
172341>. Printing of method metaobjects should include the name of the method’s
generic function as well as the method’s qualifiers and specializers; so that paint method
#2 would print like #<Standard-Method PAINT :BEFORE (COLOR-MIXIN) 787812>.

m (defmethod print-object ((gf standard-generic-function) stream)
(print-unreadable-object (gf stream :identity t)
(format stream
"Standard-Generic-Function “S"
(generic-function-name gf)))
gf)

(defmethod print-object ((method standard-method) stream)
(print-unreadable-object (method stream :identity t)
(format stream
"Standard-Method ~S~{ "S~} ~S"
(generic-function-name
(method-generic-function method))
(method-qualifiers method)
(mapcar #'class-name

(method-specializers method))))
method)

The following additional metaobject protocols provide a functional interface to generic
function and method metaobjects similar to what we have already defined for class and
slot definition metaob jects:

(generic-function-name {(9f)) Returns the name of the generic function metaobject
(af), which is given in the defining defgeneric form.

60 Chapter 2

(generic-function-lambda-list (gf)) Returns the lambda list for the generic func-
tion metaobject (gf) from which it is possible to determine the mumber of required
arguments and the presence of &optional, &rest, and &key arguments.

(generic~function-methods {(gf)) Returns a set of method metaobjects that are as-
sociated with the generic function metaobject (gf).

(method-generic-function (method)) Returns the generic function metaobject with
which the method metaobject (method) is associated; this method metaobject appears
among that generic function’s set of methods.

(method-lambda-list (method)) Returns the unspecialized lambda list for the method
metaobject (method) from which it is possible to determine the number of required
arguments and the presence of &optional, &rest, and &key arguments for this method.

(method-qualifiers (method)) Returns alist of atomic qualifiers for the method meta-
object (method) which were given in the defining defmethod form.

(method-specializers (method)) Returns a list of class metaobjects that are the spe-
cializers of the method metaobject {method), one per required argument position; each
class metaobject has this method in its set of direct methods.

(method-body (method)) Returns the form that is the body of the method metaobject
{method).

(method-environment (method)) Returns the lexical environment that enclosed the
definition for the method metaobject (method).

Once again, the fair use rules mentioned for class metaobjects also apply to the han-
dling of generic function and method metaobjects.

2.3.1 Regenerating Generic Function and Method Definitions

The task of regenerating defgeneric and defmethod forms from generic function and
method metaobjects is straightforward:

(defun generate-defgeneric (gf)
‘(defgeneric ,(generic-function-name gf)
, (generic-function-lambda-list gf)))

(defun generate-defmethod (method &key show-body)
‘(defmethod , (generic-function-name (method-generic-function method))
,@(method-qualifiers method)
, (generate-specialized-arglist method)
,@(when show-body (list (method-body method)))))

generate-specialized-arglist weaves the method’s specializer names back into the
method’s lambda list:

Introspection and Analysis 61

(defun generate-specialized-arglist (method)

(let* ((specializers (method-specializers method))
(lambda-list (method-lambda-list method))
(number-required (length specializers)))

(append (mapcar #'(lambda (arg class)
(if (eq class (find-class 't))
arg
‘(,arg ,(class-name class))))
(subseq lambda-list 0 number-required)
specializers)
(subseq lambda-list number-required))))

The function display-generic-function pretty-prints a generic function along with
its associated methods:

(defun display-generic-function (gf-name &key show-body)
(display-defgeneric gf-name)
(dolist (method (generic-function-methods (fdefinition gf-name)))
(pprint (generate-defmethod method :show-body show-body)))
(values))

(defun display-defgeneric (gf-name)
(pprint (generate-defgeneric (fdefinition gf-name)))
(values))

For example, we can have a look at the generic function paint:

== (display-generic-function 'paint :show-body t)
(DEFGENERIC PAINT (X))
(DEFMETHOD PAINT ((X RECTANGLE))
(BLOCK PAINT
(VERTICAL-STROKE (SLOT-VALUE X 'HEIGHT)
(SLOT-VALUE X 'WIDTH))))
(DEFMETHOD PAINT :BEFORE ((X COLOR-MIXIN))
(BLOCK PAINT
(SET-BRUSH-COLOR (SLOT-VALUE X 'CYAN)
(SLOT-VALUE X 'MAGENTA)
(SLOT-VALUE X 'YELLOW))))

62 Chapter 2

(DEFMETHOD PAINT ((X COLOR-RECTANGLE))
(BLOCK PAINT
(UNLESS (CLEARP X) (CALL-NEXT-METHOD))))

Automatically generated slot reader and writer functions like clearp can also be dis-
played:

—> (display-generic-function 'clearp :show-body t)

(DEFGENERIC CLEARP (OBJECT))

(DEFMETHOD CLEARP ((OBJECT COLOR-RECTANGLE))
(SLOT-VALUE OBJECT 'CLEARP))

—3 (display-generic-function '(setf clearp) :show-body t)

(DEFGENERIC (SETF CLEARP) (NEW-VALUE OBJECT))

(DEFMETHOD (SETF CLEARP) (NEW-VALUE (OBJECT COLOR-RECTANGLE))
(SETF (SLOT-VALUE OBJECT 'CLEARP) NEW-VALUE))

And so can standard generic functions like shared-initialize:

— (display-generic-function 'shared-initialize)
(DEFGENERIC SHARED-INITIALIZE (INSTANCE SLOT-NAMES &KEY))
(DEFMETHOD SHARED-INITIALIZE ((INSTANCE STANDARD-OBJECT)
SLOT-NAMES
&REST ALL-KEYS))

2.3.2 Finding All Generic Functions

The user can find every generic function in the system by exploiting the links between
the class hierarchy and the generic function and method world. Each method appears
among the list of direct methods of the classes it is specialized to (even the class t).
Since each useful generic function has at least one method, we are guaranteed that every
useful generic function is reachable from some class in the class hierarchy.

The function all-generic-functions returns the set of all generic function metaob-
jects in the system:

(defun all-generic-functions ()
(remove-duplicates
(mapappend #'class-direct-generic-functions
(subclasses* (find-class 't)))))

where class-direct-generic-functions is defined in terms of class-direct-methods:

?ﬁo%%ﬁo: and Analysis 63

(defun class-direct-generic-functions (class)
(remove-duplicates
(mapcar #'method-generic-function
(class-direct-methods class))))

The (abridged) list of all generic functions in this system:

- (mapcar #'generic-function-name (all-generic-functions))
(CLEARP PAINT UPDATE-INSTANCE-FOR-DIFFERENT-CLASS
REINITIALIZE-INSTANCE INITIALIZE-INSTANCE CHANGE-CLASS
MAKE-INSTANCE (SETF CLEARP) SHARED-INITIALIZE

PRINT-OBJECT ...)

2.3.3 Finding Relevant Generic Functions

A somewhat more focused task is to find all generic functions which can be called on
instances of a given class. These are just those generic functions with methods specialized
to the class or one of its superclasses. Because there are a number of methods which are
specialized to standard-object or t, it is useful to be able to set an upper limit on the
search for methods.

Rammg relevant-generic-functions (class ceiling)
(remove-duplicates
(mapcar #'method-generic-function
(mapappend #'class-direct-methods
(set-difference (class-precedence-list class)
(class-precedence-list ceiling))))))

For example, we can find all the generic functions that can be called with instances of
the class color-rectangle:

= (relevant-generic-functions (find-class ‘color-rectangle)
(find-class 'standard-object))
(#<Standard-Generic-Function CLEARP 239548>
#<Standard-Generic-Function PAINT 172341>
#AwdemelombmHMOlm,cbndu..ob (SETF CLEARP). 238721>)

64 Chapter 2

Exercise 2.3 When there are several methods that may be applicable to particular argu-
ments, it is sometimes helpful to be able to visualize exactly what will happen when a generic
function is called; a Lisp form is one easy way to convey this information. For instance, using
the stylized subform (call-method (method) (nezt-method-list)) to indicate that a particu-
lar method is to be called with a particular list of next methods, the following form expresses
what happens when the generic function paint is called with a color-rectangle:

(PROGN
(CALL-METHOD
(METHOD PAINT :BEFORE ((X COLOR-MIXIN))
(BLOCK PAINT
(SET-BRUSH-COLOR (SLOT-VALUE X 'CYAN)
(SLOT-VALUE X 'MAGENTA)
(SLOT-VALUE X 'YELLOW))))
0)
(CALL-METHOD
(METHOD PAINT ((X COLOR-RECTANGLE))
(BLOCK PAINT
(UNLESS (CLEARP X) (CALL-NEXT-METHOD))))
((METHOD PAINT ((X RECTANGLE))
(BLOCK PAINT
(VERTICAL-STROKE (SLOT-VALUE X 'HEIGHT)
(SLOT-VALUE X 'WIDTH)))))))

Define a function (display-effective-method (gf) (args)) that constructs and displays
such a form showing how the applicable methods of the given generic function will actually
be applied to the given set of arguments. Use Closette internal functions only if you are
certain you could have defined them yourself using the documented accessors.

2.3.4 Finding All Slot Accessors

Typically, a number of the relevant generic functions will appear in the list only because
of automatically generated accessor methods. It is useful to be able to filter such generic |
functions from the list. To do this, we need to be able to determine whether a given
method is an automatically generated reader or writer. ,

We can determine whether a method is a reader method by checking the correspon-
dence between the name of the method’s generic function and the class the method is |
specialized to. If one of the class’s slots defines a reader with the same generic function
name, the method must be a reader. Writer methods can be recognized in an analogous
way.

[ntrospection and Analysis 65

(defun reader-method-p (method)
(let ((specializers (method-specializers method)))

(and (= (length specializers) 1)
(member (generic-function-name (method-gemeric-function method))
(mapappend #'slot-definition-readers
(class-direct-slots (car specializers)))

:test #'equal))))

(defun writer-method-p (method)
(let ((specializers (method-specializers method)))

(and (= (length specializers) 2)
(member (generic-function-name (method-generic-function method))

(mapappend #'slot-definition-writers
(class-direct-slots (cadr specializers)))

:test #'equal))))

Given these two predicates, we can revise the definition of relevant-generic-

functions as follows:

AA\Aammcu relevant-generic-functions (class ceiling &key elide-accessors-p)
(remove-duplicates
(mapcar #'method-generic-function
(remove-if #'(lambda (m)
(and elide-accessors-p
(or (reader-method-p m)
(writer-method-p m))))
(mapappend #'class-direct-methods
(set-difference (class—precedence-list class)
(class-precedence-list ceiling)))))))

The pruned list of generic functions is only a bit shorter in this example setting:

= (relevant-generic-functions (find-class 'color-rectangle)
(find-class 'standard-object)

:elide-accessors-p t)
(#<Standard-Generic-Function PAINT 172341>)

66 Chapter 2

Exercise 2.4 The definition we have given for reader-method-p (and writer-method-p)
is somewhat indirect; it infers the result by checking class metaobjects to see what reader
methods were created and what that says about the method in question. Predicates like
these are common in object-oriented programming and there are two common techniques for
implementing them more directly. The first is to mark each object as to whether it satisfies
the predicate. le., a mark, perhaps using the value of a slot, on each method metaobject
would indicate whether it was a reader. The second is to use a special subclass to indicate the
special property. Modify Closette to implement reader-method-p (and writer-method-p)
in each of these other ways and discuss the merits of each approach.

2.3.5 Summary

Documenting the information associated with class, generic function, and method meta-
objects makes it possible for the user to write portable programs to do things such as
locating all metaobjects of a given kind and determining salient properties of individual
metaobjects (e.g., their subclasses) and important relationships among them (e.g., being
in order at all common subclasses).

So far, we have augmented CLOS by adding mechanisms for accessing metaobjects
and important information associated with them. In essence, this functionality makes
it possible for a user to recover the definition of a program defined using defclass,
defgeneric and defmethod forms. This is natural since the metaobjects provide a
documented abstract representation of the user’s program. In the next section we will
see that there are situations in which using defclass, defgeneric and defmethod to
define programs is inconvenient, and how documenting information required to create
metaobjects allows the user to define programs more directly in these cases.

2.4 Programmatic Creation of New Classes

Consider a graphics application in which the program manipulates graphical objects of a
number of geometric shapes which can be painted a variety of colors and labeled in one
of several different ways. The classes defining these traits might look something like:

(defclass shape () ...)

(defclass circle (shape) ...)
(defclass triangle (shape) ...)
(defclass pentagon (shape) ...)

Introspection and Analysis .

(defclass color () ...)

(defclass fuchsia (color) ...)
(defclass orange (color) ...)
(defclass magenta (color) ...)

(defclass label-type () ...)

(defclass top-labeled (1abel-type) ...)
(defclass center-labeled (label-type) ...)
(defclass bottom-labeled (label-type) ...)

A orange circle with its label at the top would be an instance of the class with direct
superclasses circle, orange, and top-labeled. Such a class could be defined with:

(defclass orange-top-labeled-circle (circle orange top-labeled)

0))

Although it would be possible to write explicit class definitions for all valid combi-
nations, it would be tedious to do so—and wasteful if only a few of the combinations
are actually instantiated in any single execution of the graphics application. In such
cases it would be desirable to hold off defining the combination classes and creating the
corresponding class metaobjects until that combination is actually needed. So, for ex-
ample, to create an instance of the class of orange circles labeled at the top, we would
call some function make-programmatic-instance giving the names of the appropriate
superclasses along with the initialization arguments for the instance:

\Aammcb make-programmatic-instance (superclass-names &rest initargs)
" (apply #'make-instance
(find-programmatic-class
(mapcar #'find-class superclass-names))
initargs))

An example programmatic instance creation:

= AsmeuvHomHmBBmdHnuuumdmbom '(circle orange top-labeled)
:title "Color Wheel"
:radius 10)

#<(CIRCLE ORANGE TOP-LABELED) 823456>

68 Chapter 2

Assuming that there is only one class with a given list of direct superclasses, we can
easily find out whether we have already encountered this combination of classes before:

hm\mammcb find-programmatic-class {(superclasses)
(let ((class (find-if
#'(lambda (class)
(equal superclasses
(class-direct-superclasses class)))
(class-direct-subclasses (car superclasses)))))
(if class
class
(make-programmatic-class superclasses))))

As we saw in the last chapter, the Closette implementation is structured into three
layers, the lowest of which deals exclusively with first-class metaobjects. The task of cre-
ating classes under program control is precisely the kind of task that is found at the lowest j
layer; what the user needs is enough information to be able to write (make-instance |
'standard-class ...). Since make-instance is already a user-visible generic function, |
all we need to do is document the fact that class metaobjects are instances of the class |
standard-class, and disclose the relevant initialization arguments for creating them:

:name (object) Specifies the object (object) as the name of the new class. This value will |
be returned subsequently by calls to class-name on the new class metaobject. If this §
keyword argument is omitted, nil will be used.

:direct-superclasses (list) Specifies that the direct superclasses of the new class are |
to be the list of classes whose metaobjects appear on (list). This list is the value
returned by class-direct-superclasses. If this keyword argument is omitted, or is {
(), it will default to a list containing just the class metaobject standard-object.

:direct-slots (list) Specifies that the direct slots of the new class are to be the set of |
slots whose property list-style specifications appear on (list).” The value returned by
class-direct-slots will be the set of corresponding direct slot definition metaob- §
jects. If omitted, this keyword argument defaults to the empty set. ,,

We also define and document ground rules similar to the fair use rules for metaobject |
accessors. These rules prohibit the user from destructively modifying any of the list]
structures passed in as initialization arguments (so that the implementation needn’t §
copy them) or invoking other operations that would change the class metaobject in |}
uncontrolled ways (e.g., initialize-instance, and change-class). ,

7 Assume that the format of the individual property list-style slot specifications has been documented in 8 §
similar manner. ,

[ntrospection and Analysis 69

Armed with this additional piece of metaobject protocol, it is now possible for the user
to define make-programmatic-class directly in terms of make-instance. Because the
veneer and glue layers are bypassed, there is no need to give the class a unique name for
find-class to key on; here we name them using a list of the direct superclass names.®

h\ammg BNWm|vHomHmBBmﬁ..n..onmmAmcvaonmmmmv
(make-instance 'standard-class
:name (mapcar #'class-name superclasses)
:direct-superclasses superclasses
:direct-slots ()))

So, for example, issuing commands to create three instance of two different combina-
tions results in the creation of just two new class metaobjects:

— (class-direct-subclasses (find-class 'circle))
0
— (setq il (make-programmatic-instance
'*(circle orange top-labeled))
i2 (make-programmatic-instance
'(circle magenta bottom-labeled))
i3 (make-programmatic-instance
"(circle orange top-labeled)))
= (class-direct-subclasses (find-class 'circle))
(#<Standard-Class (CIRCLE MAGENTA BOTTOM-LABELED) 727553>
#<Standard-Class (CIRCLE ORANGE TOP-LABELED) 200664>)

Programmatic creation of generic function and method metaobjects is supported by
analogous metaobject protocols for invoking make-instance; the details of the protocols
are not included here.

2.5 Summary

We have augmented the original language by documenting the existence of metaobjects,
accessors for them, and an initialization protocol for creating them. This makes it possible
for users to write portable browsers, program analysis tools and alternative interfaces to
the programming language behavior.

8 - s . o
In CLOS, such a class is called anonymous. That is, given its name, it isn’t possible to use find-class
ai get the class metaobject itself. A special case of anonymous classes are those for which class-name returns
1l. These are called unnamed classes.

to

70 Chapter 2

In designing these metaobject protocols, we have been careful to strike an appropriate
balance between giving the user important functionality and allowing the implemen-
tor adequate flexibility. This balance stems from our use of common data abstraction
techniques in the design of the protocols.

In closing, we return to the theatre metaphor to summarize our current situation. We
haven’t changed anything on-stage; what is there is still the basic CLOS behavior as
defined in Chapter 1. Neither have we changed any of the backstage mechanisms; they
are still in place and still serve to support the on-stage behavior.

We can see now that metaobject protocol design isn’t simply a matter of removing the
backdrop from traditional theatre to allow the audience to see backstage. Instead, it is
a new kind of theatre in which we design a cleaned up portion of the backstage which
the audience gets to see. The audience now sees the traditional on-stage and the new,
stylized on-backstage. In the same way as we used to design the on-stage, we now design
the on-stage and the on-backstage; the real backstage is still hidden and is a domain
where only producers may go.

In the next chapter, we will develop metaobject protocols which go beyond allowing
the audience to see the on-backstage. We will allow the audience to manipulate the
on-backstage mechanisms to control what happens on-stage.

Exercise 2.5 Suppose one uses the simple criterion that anything that explicitly traffics in
metaobjects is a metaobject protocol facility, and everything else is a part of the ordinary
language. This would classify functions like make-instance as part of the metaobject pro-
tocol, even though there is a strong intuition that it is a piece of base level functionality.
Do you think there should be a strong distinction between ordinary and metaobject protocol
facilities? If so, what criteria would you use to tell them apart?

Exercise 2.6 Pick a programming language, or one particular implementation, and consider
various facilities that are provided in the programming environment like browsers and debug-
gers. What support would you need if you wanted to write similar tools? How general, and
how portable, would the resulting program be?

Exercise 2.7 We have been assuming that metaobjects are created in the process of loading
a source file containing Lisp defining forms. In this chapter we saw that defining forms can be
reconstructed from metaobjects (e.g., a defclass from a class metaobject), and how meta-
objects may also be created directly, bypassing forms entirely. In residential programming
environments the assumption is that internal objects are the principal permanent representa-
tion of the program, and that Lisp forms or text strings are simply familiar ways of presenting
the information associated with these objects to the programmer. Adding a metaobject pro-
tocol to a language seems to provide a basis for residential environments. Discuss the relation
between residential programming environments and metaobject protocols. (More information
about residential environments can be found in [Barstow et al. 84] and [Bobrow et al. 87].)

m Extending the Language

When working in real life situations, users of high-level programming languages en-
counter a number of common problems. Often, these can be expressed in the form of
desires: for compatibility with other related languages; for customizations to support
specific applications; for adjustments to the implementation in order to improve the
performance of a given application program.

Lacking mechanisms to meet these goals, programmers are driven to employ work-
arounds, to give up on their desires, or to abandon the language completely. Sometimes,
that is, they get by without a desired feature. Sometimes they learn to avoid inefficiently
implemented constructs. Occasionally they are forced to change their approach, and to
write their programs in an entirely new way (often at great cost to the clarity of the
original conception). In extreme cases, they can even find themselves forced to switch to
another vendor’s implementation of the language, or to use a different language altogether
(occasionally, some users will even develop their own languages from scratch).

Inherent in the notion of a metaobject protocol is an approach to this whole class of
problems. As discussed in the introduction, the basic idea is to apply the general benefits
of object-oriented programming (flexibility and incremental extensibility) to language
implementation itself, thus endowing both language and implementation with enough
“give” so that users can vary one or both, as needed. By adding a metaobject protocol,
a single language with a single implementation can be transformed into a region of
flexible, extensible implementations of flexible, extensible languages.

In order to achieve this goal, the metaobject protocol must be able to support changes
to the default design. In contrast, the protocols developed in the previous chapter dealt
only with “looking” at a program. By providing a documented interface to the internal
representation of programs, we were able to give users the ability to build introspective
facilities for analyzing the structure of their programs. In this chapter, however, we will
extend these protocols to allow the user to “step in” and make adjustments, both to
the language itself and to its implementation. The strategy will be to add a new set of
protocols—which we call intercessory—to the introspective ones previously developed.

Intercessory facilities will be provided by placing certain key aspects of the language
implementation under the control of documented generic functions—in essence, by de-
veloping an object-oriented protocol for the full language implementation. Given this
protocol, the standard object-oriented techniques of subclassing and specialization can
be used to create the desired specialized languages and specialized implementations.

72 Chapter 3

3.1 Specialized Class Metaobjects

We begin by showing how familiar object-oriented techniques—particularly inheritance
and subclass specialization—are used in intercessory metaobject protocols. The first
example will be a simple one of defining a variant of standard-class that can be used
to construct classes that count how many times they have been instantiated.

The expression

Knammnpmmm counted-class (standard-class)
((counter :initform 0)))

defines a specialized metaobject class, counted-class, as a subclass of the standard
metaobject class standard-class. The new class has one additional slot named counter,
but otherwise specifies the same behavior as its superclass. We can create instances of
counted-class (which, of course, will themselves be class metaobjects) using make-
instance. For example,

= (setf (find-class 'counted-rectangle)
(make-instance 'counted-class
:name 'counted-rectangle
:direct-superclasses (list (find-class 'rectangle))
:direct-slots ()))

creates a new class metaobject named counted-rectangle. The class represented by
this metaobject is a direct subclass of rectangle and has no slots. The only behavioral
differences between this class metaobject, and the one for the class rectangle are their
classes and the presence (in the case of counted-rectangle) of the extra counter slot:

= (class-of (find-class 'rectangle))

#<Standard-Class STANDARD-CLASS 125054>

= (class-of (find-class 'counted-rectangle))

#<Standard-Class COUNTED-CLASS 635478>

=> (slot-value (find-class 'rectangle) 'counter)

Error: The slot COUNTER is missing from the class
#<Standard-Class STANDARD-CLASS 125054>.

= (slot-value (find-class 'counted-rectangle) 'counter)

0

Extending the Language 73

As we saw in Chapter 1, some parts of the CLOS implementation are controlled by
generic functions operating on class metaobjects—generic functions for which the stan-
dard methods are specialized to standard-class. For these parts of the language be-
havior, counted-class simply inherits the behavior of standard-class. For example,
we saw that the job of creating class metaobjects is handled by the following standard
method on make-instance:

m (defmethod make-instance ((class standard-class) &rest initargs)
(let ((instance (allocate-instance class)))
(apply #'initialize-instance instance initargs)
instance))

Because of inheritance, this method is also applicable when make-instance is used to
instantiate a counted class (e.g., with counted-rectangle as its first argument).

In order to make use of the counter slot, however, it makes sense to supplement the
behavior of make-instance, in the case of counted classes, by defining a specialized
method:

KEmmBmaWon make-instance :after ((class counted-class) &key)
(incf (slot-value class 'counter)))

Now, when make-instance is used to create an instance of counted-rectangle, two
methods will be applicable: the standard method, specialized to standard-class, and
the supplemental after-method, just defined. The standard method will run and return a
new instance; the after-method will run and increment the counter. In this way, counted
classes such as counted-rectangle inherit all the standard behavior defined for make-
instance, but can also add their own special behavior of counting how many instances
have been created.

= (slot-value (find-class 'counted-rectangle) 'counter)
0

= (make-instance 'counted-rectangle)
#<COUNTED-RECTANGLE 236721>

== (slot-value (find-class 'counted-rectangle) 'counter)
1

Finally, because the specialized method applies only to instances of counted-class,
the behavior of the rest of the system—including all implementation- and user-defined
classes-—remains unaffected.

74 Chapter 3

Although almost trivially simple, this example nonetheless illustrates the three steps
of a process that underlies the use of all intercessory metaobject protocols: (i) defining a
specialized metaobject class (counted-class); (ii) defining correspondingly specialized
methods on the appropriate generic functions (the after-method on make-instance); and
(iii) creating instances of the specialized metaobject class (counted-rectangle) which
inherit most of their behavior from the standard metaobject class, but which, via the
specialized methods, have some extended or different behavior as well. ‘

Like standard metaobjects, specialized metaobjects can be viewed as representing frag-
ments of the user’s program. But, whereas standard metaobjects represent program
fragments written in CLOS, specialized metaobjects are best understood as representing
program fragments written in alternative (but usually only slightly different) languages.
From this perspective, the class metaobject counted-rectangle, is not a CLOS class,
but is instead a class in an extended language. The new language has all the behavior of
CLOS, but has one additional property as well—classes count their instances. In other
words, the first two steps of the three step process described above should be viewed
as creating—using the object-oriented technique of subclass specialization—a derivative
programming language. Similarly, the third step would be understood as the selection of
that new language for a given piece of the user’s program. Two aspects of this process,
furthermore, are importantly incremental: the new language is incrementally defined in
terms of the original one; and only a portion of the program is expressed in that new
language.

As we develop our metaobject protocol, we will add to the set of generic functions
that the user can specialize to control the language’s behavior. This will increase the
number of aspects of CLOS which can be adjusted, giving the user increased flexibility
to produce variant languages based on standard CLOS.

3.2 Terminology

In working with these new protocols, it will be important to distinguish between system-
supplied definitions and the standard language on the one hand, and user definitions and
language extensions on the other. The following terminology makes this clear:!

e The classes standard-class, standard-generic-function, and standard-method
are the standard metaobject classes. The user is free to define new metaobject classes
as subclasses of the standard metaobject classes; these will be referred to as specialized
metaobject classes. (See Figure 3.1.)

1The full MOP gives a more elaborate and precise definition of these distinctions (p- 142).

Extending the Language 75

standard-object

standard-generic-

Standard
metaobject
classes

function

standard-class standard-method

Specialized
metaobject
classes

— Direct-superclass/subclass

Figure 3.1 Metaobject Classes.

e Methods specialized to standard metaobject classes, (e.g., the method on make-
instance specialized to standard-class) will be called standard methods. Methods
specialized to specialized metaobject classes, (e.g., the after-method on make-instance
specialized to counted-class) will be called specialized methods.

e Instances of metaobject classes will be called metaobjects. A standard metaobject is
an instance of a standard metaobject class. A specialized metaobject is an instance of
a specialized metaobject class.

® A class metaobject is an instance of the metaobject class standard-class or one of
its subclasses. (E.g., rectangle is a standard class metaobject, counted-rectangle
is a specialized class metaobject.)

® A generic function metaobject is an instance of the metaobject class standard-
generic-function or one of its subclasses.

* A method metaobject is an instance of the metaobject class standard-method or
one of its subclasses.

We refrain from using the term “metaclass” for classes like standard-class, choosing
instead to use the more explicit phrase: class metaobject class. The sole exception is

an option we will add to defclass called :metaclass, which has been retained for
historical reasons.

76 Chapter 3

3.3 Using Specialized Class Metaobject Classes

Before considering any substantial examples, we need to make it more convenient for
the user to use specialized metaobject classes. It is already simple to define specialized
class metaobject classes like counted-class, but no correspondingly convenient way
exists to create specialized class metaobjects. In the previous example, we resorted to
using make-instance to create the class counted-rectangle, but it would have been
more convenient to use the existing facility for creating class metaobjects—the defclass
macro.

Unfortunately, the version of defclass documented and implemented in the first chap-
ter always creates instances of standard-class. We modify it, by adding a new option
named :metaclass, to control the class of the resulting class metaobject; when the
:metaclass option is not supplied, it defaults to standard-class as before. Given this
extension, the example class counted-rectangle from above could be defined (and given
a proper name) with:

(defclass counted-rectangle (rectangle)
O

(:metaclass counted-class))

This change to defclass requires only modest changes to Closette. Recall that the
defclass macro expands to a call to ensure-class, which then calls make-instance to
create the class metaobject. When the :metaclass option is present, its value must be
communicated to ensure-class, which must then create an instance of that class. This
is handled in the same way as other parts of the defclass form; the expansion passes the
value to ensure-class using a keyword argument. The previously mentioned (but not
discussed) canonicalize-defclass-options (287) handles this. The above defclass
form expands to:

(ensure-class 'counted-rectangle
:direct-superclasses (list (find-class 'rectangle))
:direct-slots ()
:metaclass (find-class 'counted-class))

The function ensure-class is similarly modified to accept the :metaclass keyword
argument, and to call make-instance with the value of that argument. If omitted,
ensure-class supplies standard-class as the default value. The revised definition is:

Extending the Language 7

n (gefun ensure-class (name &rest all-keys
&key (metaclass (find-class 'standard-class))
&allow-other-keys)
(if (find-class name nil)
(error "Can't redefine the class named ~S." name)
(let ((class (apply #'make-instance
metaclass :name name all-keys)))
(setf (find-class name) class)
class)))

With these changes, the ent.re functionality of defclass—including proper handling
of :initforms, :accessors and all other features—is available when defining specialized
as well as standard class metaobjects.

Having licensed the user to define subclasses of standard-class, it is also appropriate
to allow specialized methods on initialize-instance and print-object. This gives
the user the same control over initialization and printing in subclasses of metaobject
classes as in subclasses of any other kind of class.

In the Closette implementation itself, we can alleviate some of the need for specializing
print-object by modifying the standard method so that it displays the name of the
class’s class in addition to the name of the class itself.

n (defmethod print-object ((class standard-class) stream)
(print-unreadable-object (class stream :identity t)
(format stream "~:("S”) ~S"
(class-name (class-of class))

(class-name class)))
class)

This ensures that instances of specialized metaobject classes will be automatically dis-
tinguished from standard class metaobjects even when there is no directly corresponding
Print-object method.

== (find-class 'counted-rectangle)
#<Counted-Class COUNTED-RECTANGLE 737212>
== (find-class 'rectangle)
#<Standard-Class RECTANGLE 125054>

78 Chapter 3

We now resume development of our metaobject protocol with a series of examples
demonstrating how a number of problems, common among users of object-oriented pro-

gramming languages, can be solved by producing variants of CLOS with different kinds
of inheritance behavior.

3.4 Class Precedence Lists

Many prospective CLOS programmers have extensive experience with programs written
in other Lisp-based object-oriented programming languages such as Flavors [Cannon 82]
or Loops [Bobrow&Stefik 83]. As is often the case when introduced to a new language,
they would find the transition to CLOS more attractive if their existing code could be
easily ported.

In most respects, Flavors, Loops, and CLOS are sufficiently similar that the task of
mapping Flavors or Loops code into CLOS is (relatively) straightforward. Each language
has classes, instances with slots (or instance variables), methods, generic functions (or
messages), and all the other basics of object-oriented behavior.

On closer examination however, the languages differ in an important way: while they all
support multiple inheritance, they use different rules to order the priority of superclasses.
This means that a simple mapping of Flavors or Loops programs into CLOS can fail
because of asymmetries in the inheritance of methods and slots. If it were possible to
give the user control over the inheritance regimen so that, on a per-class basis, it was
compatible with Flavors or Loops, a major stumbling block to compatibility would be
removed.

In CLOS, as we saw in the model backstage architecture, the basis of all inheritance
decisions is the class precedence list. Thus, a change to a class’s class precedence list
would affect both slot and method inheritance, making it possible to provide Flavors
or Loops compatibility. What is the best way to give the user control over the class
precedence list?

The most obvious approach might be to allow the user to modify the class precedence
list of a class metaobject explicitly using setf with class-precedence-list. With this
kind of flexibility, arranging for a given class to use alternative inheritance rules would be
straightforward. Unfortunately, however, while simple and powerful, this proposal opens
up the language more than is desirable. Consider two example scenarios.

First, suppose that a user, using this scheme, were to define a variant of CLOS in
which the class precedence lists changed frequently throughout the program’s execution.
This might be powerful—and the resulting programming language would certainly be
exciting to program in—but such behavior would affect too many other parts of the
language. What, for example, should happen to extant instances if the change to the

Extending the Language 79

class precedence list causes the set of slots defined in a class to change? What should
happen if, while a method is running, a class precedence list changes in a way that affects
the sequence of next methods??

Second, suppose the user were to change a class’s class precedence list so that it no
longer included the classes standard-object and t. Again, this might be useful, but it
presents a serious inconvenience to the implementor. Note, for example, that an instance
of such a class might have no applicable method on print-object (since the previously
defined system-supplied method, specialized to standard-object, would no longer be
applicable). While the user could repair this problem by defining their own method on
print-object, other internal generic functions, critical to the implementation, could not
be so easily repaired. For example, the garbage collector might be written using generic
functions, and the implementor might like to assume that a method specialized to t is,
in fact, applicable to all objects.

In essence, these problems stem from giving the user the power to alter the language
so radically that very few of its original characteristics remain. This is outside the goals
of metaobject protocol design, which are simply to make the language flexible enough so
that it can be extended to a range of relatively similar languages. We wanted to open
the language from a single point in design space to the surrounding region. Instead, we
have opened it almost to the entire space of programming language design. Deciding
how much flexibility to support in a protocol (i.e., how large to make the region) is a
balancing act. The more flexible the protocol, the more the user will potentially be able
to do; the less flexible the protocol, the more basic properties of the language the user
and implementor both will be able to rely on in all extensions.

In the case at hand, we strike this balance by requiring: (i) that a class’s class prece-
dence list be a fixed property of the class; (ii) that it include all of the class’s superclasses;
and (iii) that those superclasses include the classes standard-object and t. This gives
the user the power to adjust the inheritance behavior over a wide range—including that of
all the major object-oriented programming languages—while still providing useful basic
guarantees on the inheritance behavior of any language extension.

If a class’s class precedence list cannot change, we might as well make this explicit in
the protocol. In our model backstage architecture, compute-class-precedence-list
was the function that did the real work of computing class precedence lists, and class-
Precedence-list was the function that fetched the previously computed value. We will
Put both of these in our metaobject protocol, allowing the user to define methods on
the former, but only to call the latter. The user will not be permitted to use setf with
class-precedence-1list.

2These problems are similar to those associated with change-class in full CLOS.

80 Chapter 3

We are now ready to document the new piece of protocol:

(compute~class-precedence-list (class)) This generic function is called to compute
the class precedence list for the class metaobject (class). The result must be a list of
class metaobjects; the first element of the list must be (class) itself, the last two ele-
ments must be standard-object and t, in that order, and the intermediate elements
must be a permutation of the other superclasses of (class). The class precedence list
of a class may not change once it is computed; the implementation will call compute-
class-precedence-list once and then store its value. The value can then be accessed
by calling the function class-precedence-1ist. The results of destructively modify-
ing the value are undefined.

Note that this restriction of power has efficiency advantages as well. In Chapter 1
we mentioned that the basis of slot access optimization is memoization of slot locations.
Under the original, unrestricted suggestion of allowing arbitrary changes to the class
precedence list, it is difficult to imagine how the implementor could retain this optimiza-
tion technique. Slot locations could not be memoized because the implementor would
have no idea as to what might cause them to change. The new protocol, while it allows a
wide range of inheritance and therefore slot inheritance behavior, has enough restrictions
that slot locations can still easily be memoized. Once the class precedence list has been
computed, the set of slots for a class can be fixed, and the slot locations can be computed
once and for all.

Implementing the new protocol in Closette requires only that we convert compute-
class-precedence-list to a generic function, and that we provide a standard method
to implement the normal CLOS rules. The code in the body of this method is unchanged
from its original definition as a function (p. 24).

m (defgeneric compute-class-precedence-list (class))
(defmethod compute-class-precedence-list ((class standard-class))
(let ((classes-to-order (collect-superclasses* class)))
(topological-sort classes-to-order
(remove-duplicates
(mapappend #'local-precedence-ordering
classes-to-order))

#'std-tie-breaker-rule)))

3.4.1 Alternative Class Precedence Lists

Given this new protocol, the user can write code to implement variants of CLOS that
provide the Flavors and Loops inheritance rules. Those rules can be summarized as:

Extending the Language 81

i

«depthb-first, left-to-right, up to joins,” with the root class being treated specially. They
differ from each other only in whether a class that is encountered more than once—a. join
class—gets traversed on its first or last visit. The behavior of each language’s rules, as
well as the difference between them, can be seen in the following example:

(defclass a (O ()) a b c
(defclass b () ()

(defclass ¢ () ()

(defclass s (a b) ()) s t
(defclass r (a ¢} ()) / \

(defclass q (s r) ()) q

The class precedence lists for the class q in each of the languages are as follows:

Flavors (q s a b r ¢ standard-object t)
Loops (@ s b r ac standard-object t)
CLOS (@ s r a ¢ b standard-object t)

The Flavors ordering can be implemented using a depth-first, preorder traversal of the
class’s superclass graph, removing all but the first occurrence of any class that appears
more than once. The root classes, standard-object and t, are not included in the
traversal; they must be added to the end of the precedence list explicitly. In the example,
the class a appears twice in the the depth-first, preorder traversal (9 s a b r a c), only
the first occurrence would be retained. The precedence ordering used by Loops retains
the last rather than the first occurrence of any duplicate class.

We can define these alternative precedence rules with two specialized class metaobject
classes, flavors-class and loops-class. Methods on compute-class-precedence-
list, specialized to each of the classes, actually implement the different rules.

Ramanwwmm flavors-class (standard-class) ())
(defclass loops-class (standard-class) ())

(defmethod compute-class-precedence-list ((class flavors-class))
(append (remove-duplicates
(depth-first-preorder-superclasses* class)
:from-end t)
(list (find-class 'standard-object)
(find-class 't))))

82 Chapter 3

sm\ﬁnmmsmdwoa compute-class-precedence-list ((class loops-class))
(append (remove-duplicates
(depth-first-preorder-superclasses* class)
:from-end nil)
(list (find-class 'standard-object)
(find-class 't))))

(defun depth-first-preorder-superclasses* (class)
(if (eq class (find-class 'standard-object))
0O
(cons class (mapappend #'depth-first-preorder-superclasses*
(class-direct-superclasses class)))))

The user could then go on to define a Flavors class as follows:

(defclass q-flavors (s r) ()
(:metaclass flavors-class))

Instances of this class can be created in the usual way, with make-instance; their slots
can be accessed with slot-value; and they can be passed to both user and system-
defined generic functions. That is, despite the difference in inheritance behavior, this class
and its instances interoperate with standard CLOS (and with other language extensions
as well).

3.4.2 Summary

‘We have now presented the framework common to all intercessory metaobject protocols.
We critically relied on the main power of object-oriented programming techniques: the
ability to organize both the behavior and the implementation of a system in such a way
as to enable users to modify and extend it in incremental ways.

In the case of metaobject protocols, the system in question is a programming language.
Implementing it using object-oriented techniques allows users to use subclass specializa-
tion to create alternative programming languages that better suit their needs. In the
case of class precedence lists, for example, we were able, as users of the metaobject pro-
tocol, to create two variant languages, one modeled on Flavors, one modeled on Loops.
Each retains most of the original CLOS behavior, but provides slightly different multi-
ple inheritance behavior. The effort required to create the new languages was modest,
consisting of only a few specialized class and method definitions. The change affects all
aspects of the new language’s inheritance behavior in predictable and appropriate ways:
slot inheritance and method applicability alike.

Extending the Language "

How can we understand what we have done in terms of our original theatre metaphor?
The new kind of metaobject protocol is, like the old, a cleaned up on-backstage. The
difference now is that the audience can not only see this on-backstage; they can also
manipulate it thereby affecting what happens on-stage. Manipulating the on-backstage
to change what happens on-stage—producing a variant language—is like making minor
changes in the script, the lighting, or the sets.

As before, we have subtly shifted the kind of theatre being produced. It can now be
viewed as a participatory theatre in which a few members of the audience are allowed to
“go on-backstage,” where they can influence the play’s outcome. We say a few members
to reflect the fact that metaobject protocol users typically write only a small amount
of code to create a variant language and then write much larger amounts of code in
that new language. It is important to stress that the on-backstage is still not the real
backstage—members of the audience who get to work with it can only affect the play’s
outcome within the framework established by the real producers.

Exercise 3.1 In CLOS, all instances of standard-class have standard-object as a su-
perclass. In this way, standard-class and standard-object operate in tandem: instances
of standard~class represent user-defined classes and the class standard-object provides
default behavior for user-defined classes. In Closette this default superclass is provided during
the initialization of the class metaobject—when a class is created with no superclasses, a list
consisting of just the class standard-object is used.

Often, when defining a specialized class metaobject class, it is convenient to similarly define
a specialized default superclass as well. For example, in Flavors, there is a default superclass
called vanilla-flavor. Our definition of the specialized metaobject class flavors-class
would be more complete if we also arranged for vanilla-flavor to be a default superclass
for all instances of flavors-class. Show how this extended defaulting behavior can be
supported in the same way as the standard defaulting behavior—with a specialized method
Oninitialize-instance. (You are free to use an around-method in your solution.)

3.5 Slot Inheritance

Our next example addresses the need some users have for programming language features
that are specialized to their particular application domain. Even when most of a user’s
Needs could be met by an existing language, if they are not all met, the traditional ap-
broach has required building a complete, customized language from scratch. In contrast,
Providing an appropriate metaobject protocol can make it possible for users to extend
an existing language to provide for their special needs.

Knowledge-representation languages such as Strobe [Smith,Barth&Young 87] are an
excellent example. They tend to be heavily object-oriented in nature, and in many ways

84 Chapter 3

could easily be mapped onto CLOS. But these languages also include certain special fea-
tures not found in CLOS (or any other common object-oriented programming language).
One such feature is the notion of slot attributes. Slot attributes (or sub-slots, as they
are sometimes called) are named locations, attached to slots, which can be used to store
information about the value in the slot.

Given an appropriate metaobject protocol, this feature could easily be implemented as
an extension to CLOS. The following class definition is intended to indicate that each in-
stance of the class credit-rating is to have a slot named level with two independently
settable attributes named date-set and time-set.

(defclass credit-rating ()
((level :attributes (date-set time-set)))
(:metaclass attributes-class))

Just as (slot-value (z) (s)) accesses the value of the slot named (s) of the instance
(z), (slot-attribute (z) (s) (a)) should access the value of the attribute named (a)
of the slot named (s) of the instance (z). Unlike slots, attributes will always be bound
to some value, initially nil.

A sample use of this extension would produce the following behavior:

= (setq cr (make-instance 'credit-rating))

— (slot-attribute cr 'level 'date-set)

NIL

— (setf (slot-attribute cr 'level 'date-set) "12/15/90")
— (slot-attribute cr 'level 'date-set)

"12/15/90"

Attributes should be inherited in the natural way; in a given class, the set of attributes
associated with a slot should be the union of the attributes defined for slots of the same
name in the class’s superclasses. For example, in the following subclass of credit-
rating, the slot named level would end up with attributes named date-set, time-set,
last-checked and interval:

(defclass monitored-credit-rating (credit-rating)
((level :attributes (last-checked interval)))
(:metaclass attributes-class))

The desired extension to CLOS can be divided into three parts. Together with a rough
description of the metaobject protocol support required by each, they are:

Extending the Language 85

o Adding the :attributes slot option to defclass. As with other such slot options
(e.g., 1initf orm), its value should be stored in the coiresponding direct slot definition
metaobject so that it can later be accessed. To support this, the metaobject protocol
must give the user control over the way in which options from the defclass form are
stored, and how those stored values can later be accessed.

e Computing the inheritance of slot attributes. For a given slot in a given class, the full
set of attribute names should be stored in the corresponding effective slot definition
metaobject. To support this, the metaobject protocol must give the user control over
the way same-named direct slot definition metaobjects are coalesced to produce an
effective slot definition metaobject.

o Implementing slot-attribute. Extra storage will be needed in each instance to store
the values of the slot attributes. To support this, the metaobject protocol must give
the user control over the process that decides how much storage to allocate per instance
of a class.

3.5.1 Slot Inheritance Protocol

Generally speaking, the second and third parts of this extension require a metaobject
protocol that provides the user with control over the way a class determines the set of
slots accessible in its instances. The second part requires control over how the same-
named slots from the class and its superclasses are combined—the user must be able
to add the inheritance of attributes to the normal inheritance behavior. The third part
requires control over how the full set of slots that will be accessible are determined—the
user can request extra storage simply by adding extra slots.

In our model backstage architecture, these kinds of decisions are made by the function
compute-slots (p. 25). Using the class precedence list and the direct slots of each class
in it, this function computes the set of effective slot definitions for a class. Because of
our previous simplification to the rules of slot inheritance, this function uses a trivial
mechanism for combining same-named direct slot definition metaobjects—only the most
specific direct slot definition is used. The need for more sophisticated control over this
aspect of the slot inheritance process suggests a two-part protocol in which gathering

the full set of slots from which to inherit and combining same-named slots are handled
Separately.

(compute-slots (class)) This generic function is called to compute the full set of slots
that will be accessible in instances of (class). The result is a set of effective slot defini-
tion metaobjects, each with a distinct name. This set is stored and can subsequently
be retrieved with the function class-slots. Class slot computations are based solely
on the class’s class precedence list and the direct slots of each class in that list. At the

86 Chapter 3

time compute-slots is called, the class precedence list will already have been com-
puted and stored. Methods on compute-slots gather together lists of same-named
direct slot definition metaobjects from the class and its superclasses, and then call
compute-effective-slot-definition to coalesce these into a single effective slot
definition metaobject.

(compute-effective-slot-definition (class) (slots)) This generic function is called
to coalesce (slots), a non-empty list of direct slot definition metaobjects, each with the
same name. The result must be a single effective slot definition metaobject, which
will be used for the class metaobject {(class). The (class) argument is typically not
consulted in the body of the methods; it is supplied only so that specialized methods
can be defined. The direct slot definition metaobjects in the list (slots) are arranged
with the highest priority slot appearing first—that is, in the same order as their classes
of origin appear in the class precedence list.

In addition, we allow the user to call make-direct-slot-definition and make-
effective-slot-definition to create direct and effective slot definition metaobjects.

Closette requires only minor modifications to support this new protocol. The function
compute-slots is replaced with a generic function. The standard method on the generic
function provides the specified behavior, calling compute-effective-slot-definition,
as required, to combine same-named slots:

n (defgeneric compute-slots (class))
(defmethod compute-slots ((class standard-class))
(let* ((all-slots (mapappend #'class-direct-slots
(class-precedence-list class)))
(all-names (remove-duplicates
(mapcar #'slot-definition-name all-slots))))
(mapcar #'(lambda (name)
(compute-effective-slot-definition
class
(remove name all-slots
:key #'slot-definition-name
:test-not #'eq)))
all-names)))

The standard method on compute-effective-slot-definition implements the de-
fault rules for combining same-named slot definitions. Since the new protocol provides
convenient control over the combination of same-named direct slot definitions, we take
advantage of this opportunity to introduce the proper inheritance behavior that was left

Extending the Language 87

out in Chapter 1. The initialization form is inherited from the most specific slot that
Eo&amm one, and initialization arguments are computed by taking the union over all
slots to be coalesced.

—n (defgeneric compute-effective-slot-definition (class direct-slots))
(defmethod compute-effective-slot-definition ((class standard-class)
direct-slots)
(let ((initer (find-if-not #'null direct-slots
:key #'slot-definition-initfunction)))
(make-effective-slot—-definition
:name (slot-definition-name (car direct-slots))
:initform (if initer
(slot-definition-initform initer)
nil)
:initfunction (if initer
(slot-definition-initfunction initer)
nil)
:initargs (remove-duplicates
(mapappend #'slot-definition-initargs
direct-slots)))))

3.5.2 TUser Code for the Slot Attributes Extension

We can now present the user code required to implement the slot attributes extension.
For the time being, we are setting aside issues surrounding the extension of defclass.
We simply assume that the :attributes slot option is properly handled, and that its
value is incorporated into the direct slot definition metaobject where it can be accessed
with the function slot-definition-attributes.® (We will return to defclass as the
subject of Exercise 3.3.)

As usual, we begin by defining the new class metaobject class:

Kammowgm attributes-class (standard-class) ())

The proper inheritance of slot attributes, and the storing of the value in each effective

slot definition metaobject, is provided by a specialized method on compute-effective-
slot-definition.

This function can be defined in a manner similar to the other slot definition metaobject accessors (e.g.,
Slot-definition-initform (290)).

88 Chapter 3

hm\AamHBoﬁwoa compute-effective-slot-definition ((class attributes-class)
direct-slots)
(let ((normal-slot (call-next-method)))
(setf (slot-definition-attributes normal-slot)
(remove-duplicates
(mapappend #'slot-definition-attributes direct-slots)))
normal-slot))

To hold the values of attributes, storage is required in each instance, over and above the
storage needed to hold the values of the slots themselves. We do this simply by inventing
a single extra slot, which will store attribute values for all the slots. (A doubly-nested
alist is used, keyed on the slot and attribute name.) We add the extra slot, named
all-attributes,* and arrange for it to be initialized appropriately with a specialized
method on compute-slots.

hm\AammBmdwoa compute-slots ((class attributes-class))
(let* ((normal-slots (call-next-method))
(alist
(mapcar
#' (lambda (slot)
(cons (slot-definition-name slot)
(mapcar #'(lambda (attr) (coms attr nil))
(slot-definition-attributes slot))))
normal-slots)))
(cons (make-effective-slot-definition
:name 'all-attributes
:initform ¢',alist
:initfunction #'(lambda () alist))
normal-slots)))))

The effect of this method is that every instance of the class credit-rating
or monitored-credit-rating (indeed, every instance of every class whose class is
attributes-class or a subclass thereof) is created with the extra slot. All that remains |
to be implemented are the functions that access the attributes:

kammg slot-attribute (instance slot-name attribute)
(cdr (slot-attribute-bucket instance slot-name attribute)))

4We are blithely assuming that this name does not conflict with the names of any real slots. A better
approach would be to use the Common Lisp package system to ensure that the name of the slot would be a
symbol the user could never use. As a humanitarian gesture, we have spared our readers this confrontation
with the package system.

mﬁmuawﬂm the Language 89

(defun (setf slot-attribute) (new-value instance slot-name attribute)
(setf (cdr (slot-attribute-bucket instance slot-name attribute))
new-value))

The helping function slot-attribute-bucket does all the work of finding the appro-
priate bucket:

(defun slot-attribute-bucket (instance slot-name attribute)
(let* ((all-buckets (slot-value instance 'all-attributes))
(slot-bucket (assoc slot-name all-buckets)))
(unless slot-bucket
(error "The slot named S of ~S has no attributes."
slot-name instance))
(let ((attr-bucket (assoc attribute (cdr slot-bucket))))
(unless attr-bucket
(error "The slot named “S of S has no attribute™@

named ~S." slot-name instance attribute))
attr-bucket)))

With the user code complete, we can run the example code from page 84. After doing
so, examining the extra slot shows the attribute buckets and values.

= (slot-value cr 'all-attributes)
((LEVEL . ((DATE-SET . "12/15/90") (TIME-SET . NIL))))
= (slot-value (make-instance 'monitored-credit-rating) 'all-attributes)
(C(LEVEL . ((LAST-CHECKED . NIL) (INTERVAL . NIL)
(DATE-SET . NIL) (TIME-SET . NIL))))

Exercise 3.2 In the object-oriented languages C++ and Common Objects [Snyder 86], the
Tules of slot inheritance are markedly different from the ones used in CLOS. These languages
are designed to provide strong support for data hiding or encapsulation, so they hide a class’s
slots not only from outside code, but also from its subclasses. A slot defined in a given class
can only be accessed directly (the analog of calling slot-value) from within the body of
methods specialized to that class. Methods specialized to subclasses must send a message
(the analog of calling a generic function) to access the value of the slot.

90 Chapter 3

The focus of this exercise is an extension to CLOS which supports this behavior. Consider
the class definitions:

(defclass c1 ()
((foo :initform 100))
(:metaclass encapsulated-class))
(defclass c2 (cl)
((foo :initform 200))
(:metaclass encapsulated-class))

The intent is that instances of c¢2 have two slots named foo. One is private to the class c1 and
one is private to the class c2. The function (private-slot-value (instance) (slot-name)
(class)) is like slot-value except that the (class) argument indicates which class’s private
slot should be accessed. (To be more true to these kinds of languages, a special mechanism
should be provided to make direct access to slots from within the body of a method more
convenient. We will return to provide this additional behavior in Section 4.2.3.)

(defmethod mumble ((o c1))
(private-slot-value o 'foo (find-class 'c1)))
(defmethod mumble ((o ¢2))
(+ (private-slot-value o 'foo (find-class 'c2))
(call-next-method)))

=—> (mumble (make-instance 'cl))
100
—> (mumble (make-instance 'c2))
300

Implement this extension to CLOS, including the function private-slot-value.

3.6 Other Inheritance Protocols

As another example of the kind of language extension that metaobject protocols can sup-
port, consider default initialization arguments, a feature of full CLOS omitted from our
initial subset. Default initialization arguments are specified with the :default-initargs
option in the defclass form; they provide default arguments to make-instance when-
ever instances of the class are created.

For example, consider the definition:

(defclass frame (rectangle)
0O
(:metaclass default-initargs-class)
(:default-initargs :width 10))

Extending the Language .

If make-instance is now called to create an instance of frame, and the :width initializa-
tion is not explicitly provided in the call, the effect should be as if it had been provided,
with a value of 10. That is,

(make-instance 'frame :height 20)
has the same effect as
(make-instance 'frame :height 20 :width 10)

Default initialization arguments are also inherited in the predictable way; a subclass of
frame would have its own default initialization arguments as well as those provided by
frame.

This extension can easily be implemented using the existing metaobject protocol.
First, we assume that defclass canonicalizes the :default-initargs option into the
tdirect-default-initargs option to ensure-class. The defclass form above ex-
pands to:®

(ensure-class 'frame
direct-superclasses (list (find-class 'rectangle))
:direct-slots ()
:metaclass (find-class ‘default-initargs-class)
‘direct-default-initargs (list ':width '10))

The new class metaobject class is defined with a slot, direct-default-initargs,
which will be used to store the set of default initialization arguments appearing in the
defclass form; e.g., in the class frame the slot has the value (:width 10).

Kammowmmm default-initargs-class (standard-class)
((direct-default-initargs
‘initarg ‘direct-default-initargs
tinitform ()
‘accessor class-direct-default-initargs)))

OoBv:ﬁ:m the full set of default initialization arguments for a class is accomplished by
appending together the direct default initialization arguments for each class in the class

92 Chapter 3

precedence list. Because not all of the classes in the class precedence list will be instances
of default-initargs-class (e.g., standard-object and t) we define an extra method
on class-direct-default-initargs to return the empty list for other classes.

kammg compute-class-default-initargs (class)
(mapappend #'class-direct-default-initargs
(class-precedence-list class)))®

(defmethod class-direct-default-initargs ((class standard-class))

)

Finally, make-instance must be extended so that it supplements the explicitly sup-
plied initialization arguments with the default ones.

hA\AanBdeom make-instance ((class default-initargs-class) &rest initargs)
(apply #'call-next-method
class
(append initargs
(compute-class-default-initargs class))))

Testing confirms the correct behavior.

= (setq f (make-instance 'frame :height 20))
==> (slot-value f 'height)

20

= (slot-value f 'width)

10

3.6.1 Precomputing Default Initialization Arguments

This user extension to support default initialization arguments has the desired behavior,
but is relatively inefficient. The source of the inefficiency is the needless duplication,
on each call to make-instance, of the computation of default initialization arguments.}
Since classes and their default initialization arguments cannot be redefined, the default;
initialization arguments could be computed just once and then stored with the class}
metaobject for subsequent use by make-instance. |

The precomputation of default initialization arguments is an inheritance-related activ-:
ity similar to the class precedence list and slot computations. It is sufficiently different, |

6In Common Lisp, it is permissible for initialization arguments to be duplicated. The first, or leftmost, }
occurrence takes precedence over all the others. Together, this definition, and the following specialized method
on make-instance, rely on this property.

Extending the Language 03

however, that neither of those existing protocols is particularly appropriate. For one
thing, the class precedence list needs to be computed and stored before the default ini-
tialization arguments can be computed.

This suggests that we need to provide the user with a more general purpose protocol for
handling inheritance activities. The clear suggestion from Closette is to make finalize-
inheritance a generic function that is the focus for all inheritance-related computations
for the class.

This requires another simple modification to Closette, the conversion of finalize-
inheritance from a function to a generic function. The body of the standard method
is the same as in the original function definition (p. 23).

2| (defgeneric finalize-inheritance (class))
(defmethod finalize-inheritance ((class standard-class))
(setf (class-precedence-list class)
(compute-class-precedence-list class))
(setf (class-slots class)
(compute-slots class))
(values))

Notice that the role of the standard method is to modify the class metaobject in
important ways. This means that we must be sure that specialized methods do not
prevent the standard method from running. For example, if a specialized primary method
failed to call call-next-method, the class precedence list and the full list of slots would
not be computed and stored. (We will return to this issue in greater detail in Chapter 4.)
The appropriate specification for this generic function is then:

(finalize-inheritance (class)) This generic function is called to compute and record
all inheritance-related information associated with the class metaobject (class). The
value returned is unspecified. It is guaranteed that after the standard method runs the
class’s class precedence list and set of slots will be available. The standard method,
which is specialized to standard-class, cannot be overridden.

With this new protocol in place, the user implementation of default initialization ar-
Buments can be made more efficient. First, we replace the earlier definition of default-

initargs-class (p- 91) with one that defines an additional slot to hold the precomputed
default initialization arguments:

94 Chapter 3

hm\ﬁnmwnmem default-initargs-class (standard-class)
((direct-default-initargs
:initarg :direct-default-initargs
:initform ()
:accessor class-direct-default-initargs)
(effective-default-initargs
:accessor class-default-initargs)))

This new slot is filled in after the class metaobject has been otherwise finalized.

s&\ﬁammsmdwon finalize-inheritance :after ((class default-initargs-class))
(setf (class-default-initargs class)
(compute-class-default-initargs class)))

Finally, the specialized make-instance method (p. 92) is replaced with one that calls
class-default-initargs to retrieve the precomputed list instead of calling compute-
class-default-initargs to compute them.

(defmethod make-instance ((class default-initargs-class) &rest initargs)
(apply #'call-next-method
class

(append initargs (class-default-initargs class))))

Exercise 3.3 We have now seen two examples (slot attributes and default initialization ar-
guments) in which we have had to assume the existence of an appropriate extension to the
behavior of defclass. This suggests that our metaobject protocol should include a mecha-
nism for extending the behavior of defclass.

One approach to this problem is to put the expansion of defclass under the control of
generic functions operating on class metaobjects. The framework of such a protocol can be
seen in the following revised definition of defclass:

Extending the Language o5

(defmacro defclass (name direct-superclasses direct-slots &rest options)
(1et* ((metaclass-option
(find ':metaclass options :key #'car))
(metaclass-name (if metaclass-option
(cadr metaclass-option)
‘standard-class))
(sample-class-metaobject
(allocate-instance (find-class metaclass-name)))
(canonical-supers
(canonicalize-direct-superclasses direct-superclasses))
(canonical-slots
(canonicalize-direct-slots direct-slots))
(canonical-options
(canonicalize-defclass-options
sample-class-metaobject
(remove metaclass-option options))))
‘ (ensure-class ',name
:direct-superclasses ,canonical-supers
:direct-slots ,canonical-slots
:metaclass (find-class ',metaclass-name)
,@canonical-options)))

(defun canonicalize-defclass-options (sample-class options)
(mapappend #'(lambda (option)
(canonicalize-defclass-option sample-class option))
options))

(defgeneric canonicalize-defclass—option (sample-class option))
(defmethod canonicalize-defclass-option
((sample-class standard-class) option)
(error "Unrecognized defclass option ~S." (car option)))

The generic function canonicalize-def class-option is called to canonicalize each in-
dividual option. Because it receives a sample instance of the class metaobject class as its
first argument, specialized methods can be defined to handle extended options. Since the
‘metaclass option is now handled specially, the standard method supports no options.

Show the specialized method the user would write, as part of the default initialization
alguments extension, to support the :default-initargs option. Note that in order to

€Xperiment with this exercise in Closette, you will want to give the new macro an alternate
Name (e.g., defclass*),

96 Chapter 3

3.7 Slot Access

In an object-oriented language like CLOS, some kinds of user extensions will require
protocols that control low-level slot access. For example, such a protocol is required to
write an extension that records all accesses to the slots of an instance. In this section,
we develop metaobject protocols for controlling slot access.

The lowest level slot access operations are the functions slot-value, (setf slot-
value), slot-boundp and slot-makunbound. To design an appropriate protocol for
controlling these operations, we first consult Closette to understand the relevant under-
lying architecture. The implementation of each operation is similar, and involves the
class metaobject, the instance itself, and the slot name. (The definition of slot-value
can be found on page 29.) First the class of the object is consulted to determine whether
the slot exists and what its location is; then the slot is fetched out of the instance.

We can design a simple protocol for these operations by placing each under the direct
control of a generic function. For example, the protocol for controlling slot-value is:

(slot-value-using-class (class) (instance) (slot-name)) This generic function pro-
vides the behavior of the function slot-value. When slot-value is called, it calls
this generic function; (instance) and (slot-name) are the arguments to slot-value.
(class) is the class of (instance). The value returned by this generic function is returned
by slot-value. The standard method can be overridden.

Modifying Closette to support this new protocol requires redefining slot-value to
call slot-value-using-class. The body of the standard method is unchanged from
the original definition of slot-value.

n (defun slot-value (instance slot-name)
(slot-value-using-class (class-of instance)
instance
slot-name)))
(defgeneric slot-value-using-class (class instance slot-name))

Extending the Language 97

n (defmethod slot-value-using-class ((class standard-class)
instance
slot-name)

(let* ((location (slot-location class slot-name))
(local-slots (std-instance-local-slots instance))

(val (slot-contents local-slots location)))

(if (eq secret-unbound-value val)

(error "The slot ~S is unbound in the object ~S."

slot-name instance)
val)))

The modifications for (setf slot-value), slot-boundp and slot-makunbound are
similar.

3.7.1 Monitoring Slot Access

Using this last protocol, the user can easily define an extension which records all slot
accesses.

kamunwwmm monitored-class (standard-class) ()
A before-method on each slot access generic function records the accesses.

kammsmﬁSn slot-value-using-class :before
((class monitored-class) instance slot-name)
(note-operation instance slot-name 'slot-value))

(defmethod (setf slot-value-using-class) :before
(new-value (class monitored-class)
instance slot-name)

(note-operation instance slot-name 'set-slot-value))

(defmethod slot-boundp-using-class :before
((class monitored-class) instance slot-name)
(note-operation instance slot-name 'slot-boundp))

(defmethod slot-makunbound-using-class :before
((class monitored-class) instance slot-name)
(note-operation instance slot-name 'slot-makunbound))

98

The functions that manipulate access history are as follows:

hm\ﬁwmd ((history-list ()))

(defun note-operation (instance slot-name operation)
(push ‘(,operation ,instance ,slot-name) history-list)

(values))

(defun reset-slot-access-history ()
(setq history-list ())
(values))

(defun slot-access-history ()
(reverse history-list))

Testing of slot monitoring confirms that it behaves as desired.

(defclass foo ()

((slotl :accessor foo-slotl :initarg :slotl)
(slot2 :accessor foo-slot2 :initform 200))

(:metaclass monitored-class))

== (reset-slot-access-history)

= (setq i (make-instance 'foo :slotl 100))
#<FOO 381312>

= (setf (slot-value i 'slotl) (foo-slot2 i))
200

= (incf (foo-slotl i))

201

= (slot-access-history)

((SET-SLOT-VALUE #<F0OO 381312> SLOT1) ;From
(SLOT-BOUNDP #<FOO 381312> SLOT2) ;From
(SET-SLOT-VALUE #<F00 381312> SLOT2) ; From
(SLOT-VALUE #<F00 381312> SLOT2) ;From
(SET-SLOT-VALUE #<F00 381312> SLOT1) ;From
(SLOT-VALUE #<F0O 381312> SLOT1) ;From

(SET-SLOT-VALUE #<F00 381312> SLOT1)) ;From

initialization
initialization
initialization
foo-slot?2

setf

incf foo-slotl
incf foo-slotl

Chapter 3

Extending the Language 99

3.8 Instance Allocation

Finally, we look at an example in which the user’s need is not to change the behavior of
the language, but rather to adjust the implementation tradeoffs for application-specific
performance reasons. Imagine a situation in which the user defines a class with a large
number of slots (several hundred or even a thousand). Further imagine that the typical
usage pattern of this class is that there are a large number of instances, but in any
given instance only a small number of the slots are actually used. In this scenario, the
implementation strategy we have chosen in Closette—in which storage is allocated for
every slot as soon as the instance is created—is inappropriate. It will cause a great deal
of needless storage to be allocated, and may well lead to paging and other virtual memory
problems.

This pattern of class definition and instance usage is common in knowledge representa-
tion applications, and languages tailored to these applications typically provide dynamic
slots to handle it. Storage for a dynamic slot is not actually allocated until the first time
the slot is used. Access to these slots tends to be somewhat slower because of the more
complex scheme required to find the storage.

We can easily envision dynamic slots as an extension to CLOS. For simplicity, we will
work with an extension in which all the slots of a given class are dynamic (Exercise 3.4
explores a more selective variant).

(defclass biggy ()

(al bl c1 d1 el f1 g1 h1 i1 j1 ki1 11 ml
nl ol pl q1 rl1 st t1 ul vi wl x1 y1 z1
a2 b2 c2 d2 e2 f2 g2 h2 i2 j2 k2 12 m2
n2 o2 p2 q2 r2 s2 t2 u2 v2 w2 x2 y2 z2
a3 b3 c3 d3 e3 f3 g3 h3 i3 j3 k3 13 m3
n3 o3 p3 q3 r3 s3 t3 ul3 v3 w3 x3 y3 23
ad b4 c4 d4 e4 f4 g4 h4 i4 j4 k4 14 md
nd4 o4 p4d q4 r4 s4 t4 ud v4))

(:metaclass dynamic-slot-class))

With the existing protocol, the user could try to implement dynamic slots by defining
a specialized method on compute-slots that simply ignores all the slots of the class,
choosing instead to return only a single slot. This single slot would be used for a sparse
Structure containing the values of all the other slots. Specialized methods on slot-
Value-using-class et al. would be defined to access this sparse structure. From the
Point of view of the function allocate-instance it would appear that instances of the

100 Chapter 3

class biggy have one slot rather than 100, so the instances would be smaller in the way
we desire.

Unfortunately, this approach does not work properly. The problem is that it violates
an important consistency constraint between two parts of the protocol: compute-slots
now claims that instances have only a single slot, while slot-value et al. recognize all the
original slot names as well. The fact is that many different parts of the implementation
use the result of compute-slots (which they access via class-slots) to find out what
slots a class has. Besides allocate-instance, these include: shared-initialize, to
determine how to initialize or reinitialize the instance; and change-class, to identify
which slot values are to be carried over to the new instance. If the user defines methods
which present inconsistent views of a class’s slots, these other language operations will
no longer behave appropriately.

If we want the user to be able to control the way slots are stored, a more direct
protocol is required. Consulting the model backstage architecture, we can see that there
are actually two slot-like concepts. The first is the on-stage slots themselves and the
second is the backstage slot storage. The correspondence between these two layers is
maintained by the slot access generic functions and the backstage function allocate-
instance.

Providing the user with control over this correspondence must be done carefully. We
are working at a very low level, and we must be careful not to overly constrain the
implementor by documenting arbitrary implementation details. In particular, it would
not be appropriate to document the low-level representation of instances and slot storage
(std-instance-slots, slot-contents etc.) as part of the protocol.

The solution we will use is to design the protocol so that the user can, on a per-
slot basis, disable the implementation’s slot storage mechanism. Once this is done, the
storage for the slot can be implemented in whatever way is appropriate. This allows the
user to control slot storage without having to know the details of the implementation’s
storage strategy.

We will do this by adding a new property to direct and effective slot definitions, called ,_
:allocation, which indicates how storage for the slot is handled. The default value of j
this property is :instance, which causes the standard methods on allocate-instance,
slot-value-using-class et al. to treat the slot in the usual way. Any other value causes
these methods to ignore the slot, allowing specialized methods to handle it instead. This
property is carried over from direct to effective slot definitions, with the most specific
direct slot’s allocation prevailing.

(allocate-instance (class)) This generic function is called to allocate a new instance
of the class metaobject (class). The result returned is the new instance. For each
slot in the class, slot-definition-allocation is called to determine how its storage

Extending the Language 101

should be allocated. The standard method on allocate-instance will only allocate
storage for slots with :instance allocation; all other allocations are ignored. The
standard method cannot be overridden.

(slot-definition-allocation (slot-definition)) This function is called to return the
allocation of a slot. The default value is :instance.

We also need to revise the specification of slot-value-using-class et al. If the
standard method of these generic functions is run, and the allocation of the slot is not
.instance, an error is signaled. A specialized method must handle these slots first, and
not invoke call-next-method.

Again, the changes to Closette are minor. The function allocate-instance (p. 28)
becomes a generic function. The standard method allocates storage only for those slots
with :instance allocation. The appropriate behavior for slot-value-using-class et
al. can be achieved simply by modifying the internal function slot-location.

m (defgeneric allocate-instance (class))
(defmethod allocate-instance ((class standard-class))
(allocate-std-instance
class
(allocate-slot-storage (count-if #'instance-slot-p
(class-slots class))
secret—-unbound-value)))

(defun slot-location (class slot-name)
(let ((slot (find slot-name
(class-slots class)
:key #'slot-definition-name)))
(if (aull slot)
(error "The slot ~S is missing from the class ~S."
slot-name class)
(let ((pos (position slot
(remove-if-not #'instance-slot-p
(class-slots class)))))
(if (null pos)
(error "The slot ~S is not an instance~@
slot in the class ~S."
slot-name class)

Pos)))))

102 Chapter 3

n (defun instance-slot-p (slot)
(eq (slot-definition-allocation slot) ':instance))

Returning to the dynamic slot example, the user code can now be written properly.
The standard storage allocation can be completely overridden; storage for the slots can
be allocated, as it is needed, in a table external to the instance.

Setting the allocation of each effective slot definition to :dynamic causes the standard
method on allocate-instance not to allocate storage for any slots, resulting in instances
that are as small as possible. The actual slot values are stored in a table external to the

instance. Specialized methods on the slot access generic functions access the values from
the table.

hNammnywmm dynamic-slot-class (standard-class) ())

A specialized method on compute-effective-slot-definition marks all the slots.

(defmethod compute-effective-slot-definition
((class dynamic-slot-class) direct-slots)
(let ((slot (call-next-method)))
(setf (slot-definition-allocation slot) ':dynamic)
slot))

(defun dynamic-slot-p (slot)
(eq (slot-definition-allocation slot) ':dynamic))

When an instance is created, storage needs to be allocated in the external table; this is
done by a specialized method on allocate-instance.

Rammsmawoa allocate-instance ((class dynamic-slot-class))
(let ((instance (call-next-method)))
(allocate-table-entry instance)
instance))

Methods must also be defined on the various slot access generic functions. If the slot
does not exist, call-next-method is used to invoke the standard method and thereby the
standard behavior for signaling that the slot is missing. (Only slot-value-us ing-class
is shown; the other methods are similar.)

Extending the Language 103

sm\AammadeOQ slot-value-using-class ((class dynamic-slot-class)
instance slot-name)
(let ((slot (find slot-name (class-slots class)
:key #'slot-definition-name)))
(if slot
(read-dynamic-slot-value instance slot-name)
(call-next-method))))

The dynamic slot value table can be implemented in any number of ways; the scheme
shown here is a hash table keyed on the instance. The table entries are sparse alists of
slot values keyed on slot name; unbound slots are not explicitly represented.”

am\nwmﬁ ((table (make-hash-table :test #'eq)))

(defun allocate-table-entry (instance)
(setf (gethash instance table) ()))

(defun read-dynamic-slot-value (instance slot-name)
(let* ((alist (gethash instance table))
(entry (assoc slot-name alist)))
(if (null entry)
(error "The slot ~S is unbound in the object ~S."
slot-name instance))
(cdr entry)))

(defun write-dynamic-slot-value (new-value instance slot-name)
(let* ((alist (gethash instance table))
(entry (assoc slot-name alist)))
(if (null entry)
(push ‘(,slot-name . ,new-value)
(gethash instance table))
(setf (cdr entry) mnew-value))
new-value))

7 - - - -
e O.:m problem with this scheme is that it can prevent the garbage collection of instances since the table will
oo:::: pointers to all such instances. Many modern Common Lisp implementations provide “weak pointers”
T other facilities which can be used to address this problem.

104 Chapter 3

h\ (defun dynamic-slot-boundp (instance slot-name)
(let* ((alist (gethash instance table))
(entry (assoc slot-name alist)))
(not (null entry))))

(defun dynamic-slot-makunbound (instance slot-name)
(let* ((alist (gethash instance table))
(entry (assoc slot-name alist)))
(unless (null entry)
(setf (gethash instance table)
(delete entry alist))))
instance)

In essence, this extension has usurped the standard slot allocation behavior, and moved
slot storage outside of the instances. A similar approach was used in [Paepcke 90] to
extend CLOS to store instances in an object-oriented database.

Exercise 3.4 As implemented, dynamic-slot-class marks all of its slots as being dynamic.
In some situations, this extension would be more useful if it were possible to mark only selected
slots as dynamic.

Modify the implementation of dynamic-slot-class so that dynamic allocation can be
selected on a per-slot basis. For example, in the definition

(defclass movable-rectangle (rectangle)
((previous-height :allocation :dynamic)
(previous-width :allocation :dynamic))

(:metaclass dynamic-slot-class))

the class has four slots: height, width, previous-height and previous-width. The first
should have :instance allocation and the last two, which presumably would be used in only
a small number of instances, should have :dynamic allocation.

Assume that defclass handles the :allocation option, and provides a default value for
it when it is not provided.

Extending the Language 105

Exercise 3.5 Another feature of full CLOS which was left out of our subset is the ability to
define slots which are shared across all the instances of a given class. With a class slot, a call
to slot-value on any instance of the class reads the same location. If the value is changed
via one instance, all instances see the new value. For example:

(defclass labeled-rectangle (rectangle)
((font :initform 'old-english-12
:allocation :class))
(:metaclass class-slot-class))

(setq 1lrl (make-instance 'labeled-rectangle))
(setq 1r2 (make-instance 'labeled-rectangle))

=—> (slot-value 1lrl 'font)

OLD-ENGLISH-12

== (setf (slot-value 1lrl 'font) 'times-roman-10)
TIMES-ROMAN-10

=—> (slot-value 'lr2 ‘'font)

TIMES-ROMAN-10

Implement a new class metaobject class, class-slot-class, which supports this behavior.
Note that the initialization form of a class slot should be evaluated at the time the class is
defined.

Suppose a user wanted both class and dynamic slots together. One appealing way to define
this behavior would be as a subclass of both dynamic-slot-class and class-slot-class.
For example:

k@mmowmmm both-slots-class (dynamic-slot-class class-slot-class)
0)

Does this produce the desired behavior? If so, why? If not, why not?

3.9 Summary

The evolving metaobject protocol is an object-oriented implementation of the CLOS
_m..:mdmmm. This makes it possible to use specialization to define variant languages with
m_m.mnm:ﬂ behavior or implementation characteristics. By providing users with a metaob-
Ject protocol we are, in effect, giving them not just the single point in language design
SPace represented by the standard language, but also a surrounding region of language
design Space. By selecting other points in the region, users can obtain compatibility with

Other _wbm:m.mom, add special features, or tune performance characteristics to meet their
Needs,

106 Chapter 3

As with all other language design, there are a number of basic criteria that govern
metaobject protocol design. We can see now what these are, and how our approach
meets them.

o Portability stems from the fact that the metaobject protocols have been designed and
documented in a way that allows it to be supported by all implementations of the
language. When the user creates a language extension, they do so without resorting
to implementation-specific details or hooks.

e Object-oriented techniques provide two kinds of control over the effect of any user
extension:

e Scope control is made possible by representing the program as a network of meta-
objects, and arranging for the behavior of a metaobject to depend on its class.
Non-standard behavior can be selected in a user-defined class like rectangle with-
out affecting system-defined classes such as standard-object. Moreover, different
parts of the user’s program can use different language extensions.

e Operation control refers to the way in which, when defining an extension, it is
possible to adjust the behavior of some operations without affecting the behavior of
others. For example, it is possible to change the inheritance rules without affecting
slot access behavior.

e Together, operation and scope control mean that conceptually orthogonal language
extensions can be naturally composed. For example, we can define a class that both
supports dynamic slots and uses the Flavors inheritance rules by defining a new class
metaobject class that is a subclass of the two classes that implement those two behav-
iors. .

e Language extensions defined by the user interoperate with each other and with the
standard language. In essence, this interoperability stems from our decision to limit
extensibility to a delineated sub-region rather than to the whole of language design
space. All the languages within the region share the same basic concepts, differing only
in how those concepts are interpreted. For example, any CLOS extension supports a
basic notion of slots, although the inheritance rules, storage allocation, and other
aspects of the slots may vary.

o Efficiency is a topic about which we will say more in the next chapter, but already we
can see how it stems from operation control and careful protocol design. For example,
in the class precedence list case, we balanced the protocol so that it gave users the
power they needed while still providing the implementor with basic guarantees on the
behavior of any language extension. This allows the implementor to use memoization
and other optimization techniques not only for the standard language, but also for any
user-defined extensions.

% Protocol Design

In practice, designing metaobject protocols is more difficult than the previous chapters
might suggest. Developing a protocol that is simultaneously powerful, easy to use, and
efficient involves a number of issues that have not yet been considered. These issues—
many of which are common to all object-oriented protocol design—are the focus of this
chapter. We will illustrate some common protocol design techniques, and also point out
common pitfalls.

This chapter continues the evolutionary approach and the use of a staged sequence
of examples. But now, given that the basic structure of metaobject protocols has been
established, the approach will shift somewhat. We will start by sketching a simple meta-
object protocol for controlling the behavior of generic functions and methods. This initial
protocol, however, will suffer from a number of problems. We will use the example-driven
approach to expose these problems, to discuss the underlying issues of metaobject pro-
tocol design, and to incrementally improve the protocol.

4.1 A Simple Generic Function Invocation Protocol

The metaobject protocols to be developed in this chapter will operate on generic function
and method metaobjects. As with the class-based protocols of the last chapter, users will
need to be able to control the class of the generic function and method metaobjects used
to represent their programs. An extension to defgeneric, similar to the :metaclass
option previously added to defclass, makes this convenient. The form

(defgeneric paint (x)
(:generic-function-class specialized-generic-function)
(:method-class specialized-method))

now specifies that the class of the paint generic function metaobject should be
Specialized-generic-function and that when defmethod is used to define methods
on this generic function, the resulting method metaobjects should be instances of
Specialized-method.

To support this, defgeneric must pass all the options it receives on to ensure-
generic-function; for example, the expansion of the above form is:

Amnmﬁ,mnmmbmﬁwoumﬁuodwou 'paint
‘lambda-1list ' (x)
‘generic-function-class (find-class 'specialized-generic-~function)
‘method-class (find-class 'specialized-method))

108 Chapter 4

After providing reasonable default values for the :generic-function-class and
:method-class options, ensure-generic-function makes an instance of the specified
class. All the options are passed along as initialization arguments. Initialization of
the generic function records the value of the :method-class option; it can be accessed
later with generic-function-method-class. (These minor changes are reflected by the
implementation in Appendix D.)

4.1.1 Generic Function Invocation

In Chapter 2 we developed metaobject protocols that make it possible for users to write
tools that analyze the static structure of their program. But often, tools are required to
analyze the program’s dynamic behavior as well. Consider a simple performance analysis
in which we search for parts of the program where performance is critical by counting
how often specific generic functions and methods are called.

In Closette, the relevant backstage architecture is modeled by these five functions
(indentation reflects the calling relationship from main to subfunctions):

apply-generic-function
compute-applicable-methods~-using-classes
method-more-specific-p
apply-methods
apply-method

The events we would like to count correspond directly to apply-generic-function and
apply-method. By making these functions generic, we can give the user the functionality
required to support the counting behavior.

(apply-generic-function {gf) {(args)) Applies a generic function to arguments.
(apply-method (method) (args) (next-methods)) Applies a method to arguments and
a list of next methods.

The changes to Closette are minor. The code in the bodies of the two new standard
methods (i.e., the methods specialized to standard-generic-function and standard-
method) is unchanged from the code in the bodies of the original definitions of apply-
generic-function and apply-method (pages 40 and 44, respectively).

4.1.2 Example: Counting Invocations

Given this new metaobject protocol, the user code for counting generic function calls
is straightforward. A specialized generic function class and a specialized method on
apply-generic~function are all that is required:

Protocol Design 109

sm\ﬁammnwwmm counting-gf Amnwbnmﬂaummumwwnlmzbnduobv
((call-count :initform 0 :accessor call-count)))

(defmethod apply-generic-function :before
((gf counting-gf) args)
(incf (call-count gf)))

Counting method calls is done similarly:

(defclass counting-method (standard-method)
((call-count :initform 0 :accessor call-count)))

(defmethod apply-method :before
((method counting-method) args next-methods)
(incf (call-count method)))

The behavior of this extension can be seen in the following example:

(defgeneric ack (x)
(:generic-function-class counting-gf)
(:method-class counting-method))
(defmethod ack :before ((x standard-object)) nil)
(defmethod ack (x) t)

= (ack (make-instance 'standard-object))
T

= (ack 1)

3

= (call-count #'ack)

N

= (mapcar #'(lambda (method)
(1ist (generate-defmethod method)
(call-count method)))
(generic-function-methods #'ack))
(((DEFMETHOD ACK :BEFORE ((X STANDARD-OBJECT))) 1)
((DEFMETHOD ACK (X)) 2)»

110 Chapter 4

Exercise 4.1 Show how the same basic approach can be used to make generic functions that
can be traced. For example,

(defgeneric foo (...)
(:generic-function-class traceable-gf))

should indicate that foo is traceable, and
(trace-generic-function 'foo t)

should turn tracing on. Subsequent calls to foo should cause information about the call—
the arguments passed and the eventual return value—to be printed to the stream *trace-
output*. The tracing should be turned off by:

(trace-generic-function 'foo nil)

4.2 Functional and Procedural Protocols

The approach to counting invocations illustrated above is more convenient than the
traditional scheme of adding extra statements to method bodies. This is an example of
how, by providing a second organizational structure through which to affect the behavior
of the program, the metaobject protocol makes it possible to say in one place what would
otherwise have to be spread out among a number of places.

Because these counters are intended to paint an accurate picture of the dynamic char-
acteristics of the program, we must pay careful attention to the specification of apply-
generic-function and apply-method. In particular, in order to guarantee that the
example code accurately counts the number of times a generic function has been called,
it is essential that the protocol specification stipulate that apply-generic~function be
called each and every time a generic function is invoked. Similar considerations apply to
apply-method and method invocation.

Notice, however, that this requirement contrasts with a property that some of the
protocols developed in the last chapter were designed to allow, namely memoizability.
For example, compute-class—precedence-1list was expressly designed so that it would
not be necessary to call it every time a class’s precedence list was needed; instead, the
user was told that this generic function would be consulted only the first time a class’s
class precedence list was needed. Each subsequent time, the initial value would be reused.

We can make sense of this disparity by distinguishing between procedural and functional
protocols.

In a functional protocol, such as compute-class-precedence-list and compute-
slots, a function is called to compute a result, which is then used by other parts of

Protocol Design 111

the system to produce the intended behavior. Calling a functional protocol, in other
words, can affect the overall behavior of a system, but it does not produce that behavior
directly. Rather, it produces a result that is in turn used by other parts of the system,
to produce the intended behavior, at appropriate times, and in appropriate places.

This aspect of functional protocols allows us to place two useful limits on their expres-
sive power. First, because the effect is only made visible through the mediation of other
parts of the system, the power is inherently limited by the behavioral repertoire of the
clients of the result in question. Second, the specification of functional protocols can im-
pose additional constraints on the result. For example, we placed such limitations on the
results of compute-class-precedence-list, so as to be able to assure its clients of the
persistence of certain basic properties. Furthermore, because these restrictions have the
effect of limiting the context on which functional protocols can depend, they guarantee
that the results can be memoized. The implementor can easily arrange to monitor those
limited parts of the context that might invalidate any results that have previously been
cached.

Procedural protocols, on the other hand, such as finalize-inheritance, slot-
value-using-class, and, of course, apply-generic~function and apply-method, are
called to perform some action—that is, to directly produce some part of the total system
behavior. As a result, the specification of a procedural protocol tends to place fewer
restrictions on the activity of the function, but more restrictions on exactly when it is
called.

Because the effect of a procedural protocol is direct, and is expressed procedurally,
such protocols tend to put more power in the hands of the user. By the same token,
however, their results cannot generally be memoized. In general this makes sense, since
causing behavior, not producing an answer, is a procedural protocol’s primary purpose.
In Section 4.4, however, we will see a way to separate the direct effect and procedural
expressiveness of such protocols, which will allow us to develop a third kind of proto-
col, essentially a partially memoizable procedural protocol, which will be appropriate in
certain specialized situations.

4.2.1 Documenting Generic Functions vs Methods

A general issue in the design of object-oriented protocols is whether the specification
should be phrased in terms of restrictions on the behavior of generic functions or on the
behavior of their standard methods. The specification of a generic function governs all
its methods, system and user-defined alike. The specification of a standard method does

1ot restrict user-defined methods on the generic function. There are times and places for
both,

112 Chapter 4

For example, the specification of apply-generic-function states that all ensuing
explicit method invocations use apply-method (our call counting example depends on
this). Since this constraint applies to the generic function as a whole, user-supplied
methods must also obey it even when it might be more convenient not to. This means
that user code that relies on apply-method (such as call counting) can be combined with
user code that specializes apply-generic-function and still work properly.

On the other hand, constraints placed by the protocol specification on standard meth-
ods are weaker, but nevertheless useful. For example, the specification for the standard
method for slot-value-using-class states that an error is signaled if the slot is cur-
rently unbound. Because this constraint does not apply to the generic function as a
whole, the user is free to write specialized methods for slot-value-using-class that
take some sort of corrective action when an unbound slot is accessed.

Knowing the behavior of the standard method amounts to knowing the unspecialized
behavior of the generic function. This is the behavior not only of standard metaobjects,
but also specialized metaobjects for which this generic function has not been specialized.
It is also the behavior produced by call-next-method when it is used to invoke the
standard method.

4.2.2 Overriding the Standard Method

The before- and after-methods of CLOS are especially well-suited to constructing special-
izable procedural protocols, because they allow easy placement of additional activities
before or after the activity of the primary method. However, because neither before- nor
after-methods have E&.\ say in what other methods run, and because neither can inspect
or affect the result returned by the primary method, they can only be used to supplement
the behavior of the standard method. If it is necessary to override the behavior of the
standard primary method, a specialized primary method must be used.

As an example of a primary method overriding a standard method, consider the fol-
lowing optimistic technique for streamlining generic function invocation. We will assume
that the generic function is always called with valid arguments, that is, there is always
an applicable method. This means that if the generic function has only a single primary
method, the method lookup process can be elided—the single method can always be
used. A similar, but somewhat more robust technique can be used to produce a CLOS
delivery compiler, that is, a compiler which assumes that the program is no longer going
to change and so precomputes method lookups wherever possible.

The following class and method definitions implement this “trusting” behavior:

kammnuwmm trusting-gf (standard-generic-function) ())

Protocol Design 113

(defmethod apply-generic-function ((gf trusting-gf) args)
(let ((methods (generic-function-methods gf)))
(if (and (= (length methods) 1)
(primary-method-p (car methods)))
(apply-method (car methods) args ())
(call-next-method))))

Notice that this code does not require trusting generic functions to have only a single
primary method; instead, it merely tests for that special case and relies on call-next-
method to take care of more complex cases. Moreover, even in the special case, the
replacement activity still obeys the general constraint that each and every method invo-
cation uses apply-method. We can combine our previous counting code with the new
trusting lookup code and obtain a class of generic function with both behaviors:

Rammnwwmm trusting-counting-gf (trusting-gf counting-gf) ())

This example raises a question however: when should a protocol allow methods—the
standard method in particular—to be overridden by more specialized methods, and under
what circumstances should overriding be prohibited?

When allowing users to override the standard method, we must be sure that they
will be able to write their method so as to properly fulfill the restrictions on the generic
function as a whole. In the above example, the restrictions on apply-generic-function
are simple enough that the user code was easy to write—this is an example where it seems
reasonable to allow specialized methods to override the standard method.

But there are situations in which it is not appropriate to document the standard
method in sufficient sufficient detail for the user to be able to properly override it. For
example, the standard method for finalize-inheritance shouldn’t be overridden, since
in order to leave the implementor room to perform other operations when a class is
finalized, the activities it carries out are only partially specified. If a specialized method
could legally prevent the standard method from running, then the standard method
would not be a suitable place for the implementation to place operations that need to be
carried out whenever the generic function is called.

Notice that prohibiting the overriding of the standard method effectively prohibits all
method overriding, since each specialized primary method is required to invoke call-
Rext-method. Prohibiting overriding thus guarantees that each and every applicable
Primary method will be run each time the generic function is called.!

'CLOS’s method combination facility provides a powerful mechanism for simplifying the documentation of

this sort of protocol. An appropriate method combination can be used to regulate the interaction between user

114 Chapter 4

4.2.3 Example: Encapsulated Methods

This example extends encapsulated classes, which we saw earlier in Exercise 3.2, to be
more compatible with Common Objects. Encapsulated classes provide a way to define
slots that are proprietary to a class; different classes in the inheritance hierarchy can have
slots of the same name without those slots being coalesced. In our original example, the
proprietary nature of the slots was reflected in the fact that access to the slot required
not just the name of the slot but also the identity of the class to which it belongs.

But in languages which use encapsulated classes, it is common to enforce the propri-
etary nature of private slots by requiring that access be made only from within the body
of methods defined on their class. An encapsulated method is one that provides this
access mechanism. Within the body of an encapsulated method specialized to an encap-
sulated class, the form (slot ’(slot-name)) can be used to refer to the class’s private
slot named (slot-name). This extension is demonstrated in the following example:

(defclass ct ()
((foo :initform 100))
(:metaclass encapsulated-class))
(defclass c2 (cl)
((foo :initform 200))
(:metaclass encapsulated-class))

(defgeneric f1 (x)
(:generic-function-class encapsulating-gf)
(:method-class encapsulated-method))

(defmethod f1 ((y c1))
(1- (slot 'foo)))
(defmethod f1 ((z c2))
(1+ (slot 'foo0)))

Within the body of the encapsulated method specialized to c1, the form (slot ’foo)
accesses the slot named foo, private to the class c1, of the argument to £1. On the other
hand, within the body of the method specialized to c2, the same form accesses the slot
named foo that is private to c2.

= (f1 (make-instance 'cl))
99

and standard methods, and guarantee that certain methods cannot be overridden. For example, in this case
we could document that finalize-inheritance used progn method combination which would ensure that all
applicable methods always run.

Protocol Design 115

= (f1 (make-instance 'c2))
201

In our earlier example, where encapsulated methods were not available, those two
methods would have been written:

(defmethod £1 ((y c1))

(1- (private-slot-value y 'foo (find-class 'c1))))
(defmethod f1 ((z c2))

(1+ (private-slot-value z 'foo (find-class 'c2))))

These examples suggest that slot be defined in terms of the private-slot-value
function mentioned previously. At each slot form, we will need access to two pieces of
information: the class the encapsulated method is specialized to, and the value of the
method’s first argument. This access is most easily provided by introducing a lexical
definition of slot into the scope of the method’s body, in exactly the way call-next-
method and next-method-p were handled. That is, we want to have the same effect
as:

(defmethod f1 ((y c1))
(flet ((slot (slot-name)
(private-slot-value y slot-name (find-class 'c1))))
(1- (slot 'foo0))))
(defmethod f1 ((z c2))
(flet ((slot (slot-name)
(private-slot-value z slot-name (find-class 'c2))))
(1+ (slot 'fo0))))

Lexical definitions for (setf slot) would be handled analogously.?

e might appear that a simpler solution would be to arrange for apply-method to use special variables to
Ppass the information needed to slot.

(proclaim ’(special *specializer* *argument*))

(defmethod apply-method ((method encapsulated-method) args next-methods)
(let ((*specializer> (first (method-specializers method)))
(*argument+ (first args)))
(call-next-method)))

(defun slot (slot-name)
(private-slot-value *argument* slot-name *specializers))

This approach cannot be used, however, because in the presence of functional arguments, dynamic mechanisms
cannot be reliably substituted for lexical ones—this is related to the well-known “funarg” problem.

116 Chapter 4

In the current protocol, the only way to introduce new lexical definitions into the
scope of the body of an encapsulated method is with a specialized, overriding, method
on apply-method. But, because overriding the standard method means taking over all
its responsibilities, the overriding method will have to do a great deal more than just
handle the two new lexical function bindings. For the Closette implementation we have
now, the complete method that the user needs to be able to write is:

su\ﬁamwsdeOQ apply-method
((method encapsulated-method) args next-methods)
(eval (method-body method)
(add-function-bindings
'(slot (setf slot) call-next-method next-method-p)
(list
#' (lambda (slot-name)
(private-slot-value
(car args)
slot-name
(car (method-specializers method))))
#' (Lambda (new-value slot-name)
(setf (private-slot-value
(car args)
slot-name
(car (method-specializers method)))
new-value))
#' (lambda (&rest cnm-args)
(if (null next-methods)

(error "No next method for the”@
generic-function “S."
(method-generic-function method))

(apply-methods

(method-generic-function method)
(or cnm-args args)
next-methods)))
#'(lambda () (not (null next-methods))))
(add-variable-bindings (method-lambda-list method)
args
(method-environment method)))))

Protocol Design 117

Making it possible for the user to write this method places a significant burden on all
involved—protocol designer, implementor and user alike.

First, the protocol designer must specify an enormous amount of detail about the
behavior of the standard method on apply-method: that call-next-method and next-
method-p must be introduced; the existence of apply-methods and that call-next-
method must use it to properly handle the next methods; that lexical function bindings
are performed with add-function-bindings; that variable bindings are performed with
add-variable-bindings; and that eval must be called to actually run the method body.

Specifying this detail results in a corresponding lack of freedom for the implemen-
tor. The implementor must not only provide the required functionality under the re-
quired names, but also lose the standard method on apply-method as a place to put
implementation-specific code that is certain not to be overridden.

Finally, even with the detailed specification, writing the method is a lot of work for
the user. It certainly seems to be more work than is appropriate for the simple task of
adding two lexical function bindings to the scope of method bodies. In addition, two
user programs, both of which override the standard method on apply-method (suppose
each adds a distinct lexical function), cannot be combined easily.

If as protocol designers, we expect that adding new lexical bindings will be a common
activity, we can easily provide this capability by extending the protocol with a new
subprotocol under apply-method.

(extra-function-bindings (method) (arguments) (next-methods)) This generic func-
tion is a specializable functional protocol that returns a list of ({function-name)
Q::ns.oﬁ-c&:mvv pairs. All primary methods of the generic function apply-method are
required to consult extra-function-bindings to find out what extra lexical function
bindings should be added to the scope of a method before executing it. The standard
method on extra-function-bindings may not overriden; instead, user methods are
free to add whatever new they wish onto the result of the standard method.

We implement this new protocol as follows: |

i
M_Emmmmbmwun extra-function-bindings (method args next-methods))

118 Chapter 4

The standard method for extra-function-bindings returns entries for call-next-
method and next-method-p:

m (defmethod extra-function-bindings
((method standard-method) args next-methods)
(list
(list 'call-next-method
#' (lambda (&rest cnm-args)
(if (null next-methods)
(error "No next method for the~@
generic-function °S."
(method-generic-function method))
(apply-methods (method-generic-function method)
(or cnm-args args)
next-methods))))
(list 'next-method-p
#'(lambda () (not (null next-methods))))))

The standard method for apply-method must be modified to call extra-function-
bindings:

—m (defmethod apply-method ((method standard-method) args next-methods)
(let ((extra-fn-bindings
(extra-function-bindings method args next-methods)))
(eval (method-body method)
(add-function-bindings
(mapcar #'car extra-fn-bindings)
(mapcar #'cadr extra-fn-bindings)
(add-variable-bindings (method-lambda-list method)
args
(method-environment method))))))

Protocol Design 119

Given this new protocol, encapsulated methods can be implemented with a specialized,
put non-overriding, method on extra-function-bindings:

mm\nnmmsmdwoa extra-function-bindings
((method encapsulated-method) args next-methods)
(list*
(list 'slot
#'(lambda (slot-name)
(private-slot-value
(car args)
slot-name
(car (method-specializers method)))))
(list '(setf slot)
#' (lambda (new-value slot-name)
(setf (private-slot-value
(car args)
slot-name
(car (method-specializers method)))
new-value)))
(call-next-method)))

We have given the procedural protocol apply-method a functional subprotocol extra-
function-bindings. By mandating that all methods for apply-method call extra-
function-bindings, and that the standard method on extra-function-bindings not
be overridden (nor its result discarded), we arrive at a reliable way for an open-ended
set of function bindings to be added to a method body’s lexical environment.

4.3 Layered Protocols

There is a more general technique at work here, called protocol layering, based on the
idea of taking a large, complex portion of the protocol and splitting it into pieces, re-
qQuiring that the main generic function call subsidiary generic functions to do parts of the
o.<m$.: task. Then, even though each generic function supports extensibility along only a
Single dimension, the combination supports extensibility along multiple dimensions. For
€xample, apply-method makes it convenient to add extra activities, like call counting, to
the basic activity of applying a method, while extra-function-bindings makes it easy
mo Introduce extra lexical bindings into the scope of the method body. Another benefit
18 that, when necessary, it is easier to override methods on the main generic function

120 Chapter 4

because more of the subtasks have corresponding subprotocols. For example, an over-
riding method on apply-method can simply call extra-function-bindings rather than
having to write it from scratch.

It is a general characteristic of layered protocols that the upper layers (e.g., apply~
method) tend to provide more powerful access than the lower layers (e.g., extra-
function-bindings). With this power comes responsibility for a number of things that
may be unrelated to the aspect that is to be changed. Lower layer protocols, on the
other hand, tend to be more focused and easier to use.

Protocol layering is a powerful tool for helping protocol designers meet the needs of
their users. Lower-level, highly-focused layers provide easy handles for what we expect
to be common needs. Higher-level protocols are a fallback strategy; they may be more
difficult to use, but they give the user more complete power.

Armed with this technique, we can now revise the protocol to introduce appropriate
layers between apply-generic-function at the top and apply-method at (or near) the
bottom. As we saw earlier, this middle realm breaks cleanly into three tasks: deter-
mining which methods are applicable to given argument classes (compute-applicable-
methods-using-classes), arranging them in decreasing order of specificity (method-
more-specific-p), and applying the methods in the order dictated by the individual
methods’ qualifiers (apply-methods). Simple protocols for each are as follows (these are
sketches only):

(compute-applicable-methods-using-classes (gf) (required-classes)) A functional
protocol that returns the list of methods applicable to the given argument classes.
Once the applicable methods are computed, method-more-specific-p is called to
assist in the ordering of the resulting list of methods. This function is called by the
standard method of apply-generic-function. This is a non-specializable protocol;
that is, the user may call it, but should only specialize method-more-specific-p.3

(method-more-specific-p (gf) (methodl) (method2) (required-classes)) A function-
al protocol that determines whether the first method is more specific than the second
relative to the given argument classes. Methods on this generic function may only
specialize the first argument. The standard method may be overridden.

(apply-methods (gf) (args) (methods)) A procedural protocol specialized on the first
argument that orchestrates the application of the methods {using apply-method) to
the given arguments. This generic function is called by the standard method of apply-
generic-function. The standard method may be overridden.

31n the full MOP, which provides support for eql specializers, this is a specializable generic function.

Protocol Design 121

In summary, the full set of layered protocols within generic function invocation is:

apply-generic-function procedural overridable
compute-applicable-methods-using-classes functional non-specializable
method-more-specific-p functional overridable
apply-methods procedural overridable
apply-method procedural overridable
| extra-function-bindings functional non-overridable

4.3.1 Revised Definitions

For convenience, we give the definitions of apply-generic-function, compute-
applicable-methods-using-classes, method-more-specific-p, and apply-methods
corresponding to the current protocol are given in this section. The definitions of apply-
method and extra-function-bindings can be found on page 118.

m (defgeneric apply-generic-function (gf args))
(defmethod apply-generic-function ((gf standard-generic-function) args)
(let ((applicable-methods
(compute-applicable-methods-using-classes
gf (mapcar #'class-of (required-portion gf args)))))
(if (null applicable-methods)

(error "No matching method for the™@
generic function “S,7@
when called with arguments ~:S." gf args)

(apply-methods gf args applicable-methods))))

(defun compute-applicable-methods-using-classes (gf required-classes)
(sort
(copy-list
(remove-if-not #'(lambda (method)
(every #'subclassp
required-classes
(method-specializers method)))
(generic-function-methods gf)))
#' (lambda (m1 m2)
(method-more-specific-p gf ml m2 required-classes))))

Aammmmbmﬂwn method-more-specific-p
(gf methodl method2 required-classes))

122 Chapter 4

n (defmethod method-more-specific-p
((gf standard-generic-function)
methodl method2 required-classes)
(mapc #'(lambda (specl spec2 arg-class)
(unless (eq specl spec2)
(return-from method-more-specific-p
(sub-specializer-p specl spec2 arg-class))))
(method-specializers methodl)
(method-specializers method2)
required-classes)
nil)

(defgeneric apply-methods (gf args methods))
(defmethod apply-methods
((gf standard-generic-function) args methods)
(let ((primaries (remove-if-not #'primary-method-p methods))
(befores (remove-if-not #'before-method-p methods))
(afters (remove-if-not #'after-method-p methods)))
(when (null primaries)
(error "No primary methods for the~@
generic function ~S." gf))
(dolist (before befores)
(apply-method before args ()))
(multiple-value-progl
(apply-method (car primaries) args (cdr primaries))
(dolist (after (reverse afters))
(apply-method after args ())))))

4.3.2 Example: Method Combination

Our CLOS subset includes only a simplified version of the full method combination
facility. Our methods have qualifiers, which indicate how they should be combined, but
we have only supported before- and after-methods. Full CLOS also has around-methods
(using the :around qualifier) which have a higher precedence than all applicable primary,
before-, and after-methods. When a generic function is called, the most specific around-
method is invoked first; when it calls call-next-method the next most specific one is
invoked and so on. When there are no more around-methods, call-next-method runs
the remaining before-, after- and primary methods as usual.

Protocol Design 123

Using the protocol we have just developed, it is an easy matter to add around-methods
to our CLOS subset.

kammnwmmm gf-with-arounds (standard-generic-function) ())

(defun around-method-p (method)
(equal '(:around) (method-qualifiers method)))

(defmethod apply-methods ((gf gf-with-arounds) args methods)
(let ((around (find-if #'around-method-p methods)))
(if around
(apply-method around args (remove around methods))
(call-next-method))))

The full CLOS method combination facility also supports a wide variety of special-
purpose ways of combining primary methods. For instance, it is sometimes more useful
to treat each primary method as a supplier of a portion of the result; i.e., invoke all
applicable primary methods, appending together their results. Although the same effect
can be achieved using normal primary methods with bodies like

(append (list) (if (next-method-p) (call-next-method) ()))

an extension can be defined which better localizes this behavior. Generic functions with
append combination support only primary methods. When they are invoked, all the
applicable methods are rén, and the results are appended together.

s\&omnwmmm gf-with-append (standard-generic-function) ())

(defmethod apply-methods ((gf gf-with-append) args methods)
(mapappend #'(lambda (method)
(apply-method method args ()))
methods))

The function extra-function-bindings is a ready example of where this form of method
combination could have been used to gather together lexical function bindings from the
various specialized methods.

124 Chapter 4

Exercise 4.2 Unlike most other object-oriented languages, CLOS supports multi-methods,
which are methods specialized in more than one argument position.

When there is only a single specialized argument position, two applicable methods can be
directly ordered by comparing their specializers with respect to the class of the argument at
hand using sub-specializer-p. But when there are multiple specialized argument positions,
a more complex ordering scheme is needed. By default, CLOS uses left-to-right lexicographic
ordering; i.e., based on the specializer ordering of the leftmost argument position with different
specializers. However, full CLOS also provides an :argument-precedence-order option on
the generic function definition that allows the user to specify a permutation of the required
arguments; this permutation is used rather than the default left-to-right ordering. This
particular feature was omitted from our CLOS subset, but it can easily be accommodated
by the protocols just introduced. Define a new generic function metaobject class apo-gf so
that, for example, the definition

(defgeneric draw (object stream)
(:generic-function-class apo-gf)
(:argument-precedence-order (stream object)))

indicates that for the purposes of ordering the applicable methods, the second argument
position should be considered before the first.

Exercise 4.3 In the Beta programming language [Kristensen et al. 87, ordering of applica-
ble methods is handled differently. Methods from superclasses are executed before methods
from subclasses; i.e., the first method run is the method from the highest superclass. Within
the body of a method, a call to inner is similar to a call to call-next-method except that it
calls the next more specific method. Unlike call-next-method, inner accepts no arguments,
and if called when there are no more methods, returns false rather than signaling an error.

Define specialized generic function and method metaobject classes which invoke methods
in this order. Also implement inner so that it has the specified behavior. {You need only
support primary methods.)

Exercise 4.4 We have now seen how several features of full CLOS, originally left out of our
subset, can be added back using the metaobject protocol (default initialization arguments,
around-methods, other kinds of method combinations, and argument precedence order). This
brings up the question of how the presence of a metaobject protocol might affect the design
of the standard language. In particular, can metaobject protocols be used to make language
definitions smaller?

Pick a programming language with which you are familiar, and look for features which,
given an appropriate metaobject protocol, need not be part of the standard language. What
criteria are you using to make your decisions? One additional possibility is for certain features
to be included as part of a library of specialized metaobject classes. What features would you
put into such a library?

Protocol Design 125

4.4 Improving Performance

As we have designed it, the generic function invocation protocol severely impairs the
implementor’s ability to optimize generic function invocation. The root of the problem
is that our protocol provides little opportunity for memoization in the generic function
invocation process; most of the generic functions in the protocol are procedural and
must be called during each generic function invocation. Fortunately, the performance
characteristics of generic function invocation can be greatly improved by careful redesign
of the relevant protocols. The same basic technique can be applied in three different
places: apply-generic-function, apply-method, and apply-methods.

4.4.1 Effective Method Functions

Consider apply-methods, calls to which lie directly along the execution path of generic
function invocation (it is called from apply-generic-function and from call-next-
method). This means that the performance of generic function invocation is limited
by the performance of apply-methods; if apply-methods does a lot of work, generic
function invocation cannot help but be slow.

In traditional language implementations, the implementor would not be constrained to
implement apply-methods literally. If it were too expensive to call apply-methods, the
implementation could be rewritten to dispense with it, and do things some faster way.
But this is not a traditional language; apply-methods is a procedural generic function in
our documented metaobject protocol. The implementor is not free to dispense with calls
to it. Moreover, since it is procedural protocol, clever memoization is not an option.

Our solution will be to redesign the protocol, splitting the activity of apply-methods
into two parts. One part will be functional; as a result it will be memoizable and won’t
need to be called during each generic function invocation. The second part will be
procedural, and will remain on the direct execution path. Having made the division, we
will then be able to improve performance by moving as much of the activity as possible
out of the second part and into the first.

Notice that the (args) argument to apply-methods is simply passed along to apply-
Dethod; it is not used in deciding the order in which the methods are invoked. This
Mmeans, in effect, that the work being done by apply-methods is actually a function of
only the (generic-function) and (methods) arguments. It is a simple matter to rewrite
apply-method as a two-argument function that returns a function as a result.* We call
these functional results effective method functions, and the function that computes them
Compute-effective-method-function. We then rewrite calls of the form:

4 - - - . .
. “Many will recognize this as the standard functional programming technique of currying, applied to the
Middle argument position of apply-methods.

126 Chapter 4

(apply-methods (gf) (args) (methods))
as

(funcall (compute-effective-method-function (gf} (methods))
(args))

The standard method for this new generic function can be derived directly from the
standard method for apply-methods (p. 122):

m (defgeneric compute-effective-method-function (gf methods))
(defmethod compute-effective-method-function
((gf standard-generic-function) methods)
#' (lambda (args)
(let ((primaries (remove-if-not #'primary-method-p methods))
(befores (remove-if-not #'before-method-p methods))
(afters (remove-if-not #'after-method-p methods)))
(when (null primaries)
(error "No primary methods for the™@Q
generic function "S." gf))
(dolist (before befores)
(apply-method before args ()))
(multiple-value-progl
(apply-method (car primaries) args (cdr primaries))
(dolist (after (reverse afters))
(apply-method after args ()))))))

By constraining the context compute-effective-method-function may use in com-
puting its result to just its two arguments, we make it memoizable.® Given a generic
function, a list of methods and a list of arguments, the implementation must call the
effective method function; but, if an effective method function has previously been com-
puted for that generic function and list of methods, the implementation is free to reuse
it.

Separating the original behavior of apply-method into a memoizable part and a part
that is on the direct execution path provides the opportunity for performance improve-
ment. To take advantage of it, we must actually move as many activities as possible out
of the critical path. Looking at the above method, we can see that there is no reason
to sift through the list of applicable methods every time the effective method function is

§

5In the full MOP, the corresponding contextual constraints are somewhat more complex. Redefinition of
the generic function requires that any memoized effective method function be discarded.

Protocol Design 127

called; instead, it can be done in advance. The check to ensure that there is at least one
primary method can also be done in advance. This can be expressed by rearranging the
above method, pulling code from inside the lambda to outside it:

n (defmethod compute-effective-method-function
((gf standard-generic-function) methods)

(let ((primaries (remove-if-not #'primary-method-p methods))
(befores (remove-if-not #'before-method-p methods))
(reverse-afters

(reverse (remove-if-not #'after-method-p methods))))
(wvhen (null primaries)
(error "No primary methods for the @
generic function ~S." gf))
#'(lambda (args)
(dolist (before befores)
(apply-method before args ()))
(multiple-value-progil
(apply-method
(car primaries) args (cdr primaries))
(dolist (after reverse-afters)
(apply-method after args ()))))))

4.4.2 WMethod Functions

The above technique can also be profitably applied to apply-method. Instead of mandat-
ing that the generic function apply-method be invoked every time a method is applied,
this procedural protocol is replaced by a functional protocol, compute-method-function,

that computes a method function which will be called whenever the method is invoked.
We re-express:

(apply-method (method) (args) (nezt-methods))

as

(funcall (compute-method-function (method))
(args)
(nezt-methods))

128 Chapter 4

In this case, the opportunity for memoization is straightforward. The method func-
tions, being a function of only the method, can be computed once and stored with the
method metaobject.’

It is still possible to use this new protocol to count calls to methods, although we can’t
use a before-method as we did with apply-method. In the following method, call-
next-method is first used to obtain the standard method function. Then a new method
function is returned which first increments the call count, and then calls the standard
method function.

(defmethod compute-method-function ((method counting-method))
(let ((normal-method-function (call-mext-method)))
#'(lambda (args next-methods)
(incf (call-count method))
(funcall normal-method-function args next-methods))))

4.4.3 Discriminating Functions

Finally, this technique can be applied to apply-generic-function. Again, we divide the
procedural protocol into a functional protocol that returns a function which will itself be
called whenever the generic function is invoked. These functions are called discriminating
functions because their primary task is to discriminate on the arguments to determine
which methods are to be applied. The generic function that computes them is called
compute-discriminating-function. We re-express the root call:

(apply-generic-function (gf) (args))
as
(apply (compute-discriminating-function (gf)) (args))

The standard method on this new generic function returns a function that does what
the standard method on apply-generic-function (p. 121) did:

$The standard method in Appendix D explains what else this involves. To allow real CLOS implementations
to compile code during file compilation, the full MOP adjusts this protocol even further.

Protocol Design 129

m (defgeneric compute-discriminating-function {(gf))
(defmethod compute-discriminating-function
((gf standard-generic-function))
#'(lambda (&rest args) |
(let ((applicable-methods
(compute-applicable-methods-using-classes 7
gf
(mapcar #'class-of
(required-portion gf args)))))
(if (null applicable-methods)
(error "No matching method for the~™@
generic function “S,7@
when called with arguments ~:S." gf args)
(apply-methods gf args applicable-methods))))) |

To make this protocol memoizable, we restrict compute-discriminating-function
to depend only on the class of the generic function and its set of methods. Whenever a
method is added to the generic function, a new discriminating function must be computed
and stored. Since discriminating functions accept the same arguments as the generic
function itself, the implementation is free to arrange for calls to a generic function to go
straight to its discriminating function. ,

Again, call-counting in this new framework can be done quite simply:

R (defmethod compute-discriminating-function ((gf counting-gf))
(let ((normal-dfun (call-next-method)))
#' (lambda (&rest args)
(incf (call-count gf))
(apply normal-dfun args))))

4.4.4 Streamlined Generic Function Invocation !

We now present, from the perspective of the implementor, a more in-depth look at the
freedom this revised protocol offers. We will show one way to take advantage of this
freedom to optimize the performance of generic function invocation.

The optimization strategy is based on memoization, as allowed by the protocol, of
three values: effective method functions, method functions and discriminating functions.

Memoization of discriminating functions is done when the generic function metaobject
is first created. The discriminating function is stored, and we arrange for all calls to the
generic function to go directly to the discriminating function.

130 Chapter 4

Memoization of method functions is done similarly. When the method metaobject
is initialized, compute-method-function is called and the resulting method function is
saved and used for all subsequent calls to the method.

The more complex case is memoization of effective method functions. This is done
on a per generic function basis, using a table which maps from classes of arguments to
effective method functions (along the lines of Exercise 1.1).

The “fast path” sequence of activities for a call to a generic function, from the time
the discriminating function is entered, is: get the classes of the arguments, use them as
the key to find an effective method function in the primary table, and apply the effective
method function to the arguments. In this way, the discrimination overhead is reduced
to that of determining the classes of the arguments, performing the table lookup and
calling the effective method function.

The slower path is taken when an effective method function can’t be found in the
table; this involves finding out what methods are applicable to this class of argument
and then computing an effective method function for that list of applicable methods. It
is only along this route that compute-applicable-methods-using-classes, method-
more-specific-p, and compute-effective-method-function are called.

Our implementation involves replacing the previous method on compute-
discriminating-function:

n (defmethod compute-discriminating-function
((gf standard-generic-function))
(let ((classes-to-emf-table (make-hash-table :test #'equal)))
#'(lambda (&rest args)
(let* ((classes (mapcar #'class-of
(required-portion gf args)))
(emfun (gethash classes classes-to-emf-table nil)))

(if emfun
(funcall emfun args)
(slow-method-lookup gf args classes classes-to-emf-table))))))

Protocol Design 131

m (defun slow-method-lookup
(gf args classes classes-to-emf-table)
(let* ((applicable-methods
(compute-applicable-methods-using-classes gf classes))
(emfun
(compute-effective-method-function
gf applicable-methods)))
(setf (gethash classes classes-to-emf-table) emfun)
(funcall emfun args)))

A number of issues remain to fully optimize generic function invocation. First, there
are a number of calls to apply-methods, which we have not yet converted into memoized
calls to compute-effective-method-function. These are all related to call-next-
method; they include the call from within the body of call-next-method itself and the
call from within the body of effective method functions. (The code in Appendix D reflects
these further optimizations.)

Another important optimization is that table lookups should be based only on the
arguments which are actually specialized instead of on all required arguments. A related
issue is the design of the table data structures and the hashing strategy used within them.
While we have not discussed these, the discussion above is indicative of the basic structure
of an optimized implementation strategy; similar approaches have proven effective in
several full CLOS implementations [Dussud 89, Moon 86, Kiczales&Rodriguez 90].

4.5 Protocol Design Summary

We have explored some (but certainly not all) of the issues that face designers of meta-
object protocols and object-oriented protocols in general. It is instructive to recap the
major points about protocol design:

® There are two broad categories of object-oriented protocols: functional and procedural.
Functional protocols can be designed to make memoization possible while allowing the
user to control what answer is computed. On the other hand, memoization is not
Possible with procedural protocols, where the operative notion is one of temporal
predictability. Procedural protocols can be designed so that the user can reliably
predict when certain activities will take place in relation to other significant activities.
Procedural protocols that allow some activities to be overridden are more flexible, but

less predictable, than ones that allow new activities to augment existing ones but not
to replace them.

132 Chapter 4

¢ Providing several layers of protocols makes customizing the implementation easier.
The lower layer protocols make it easy to make small changes to particular aspects.
The higher layer protocols are used to make more sweeping changes, but are inevitably
more complex. On the other hand, by being defined at a higher level, they generally
avoid having to deal with details of concern to the lower layers.

e Procedural protocols that lie along the execution critical path can be pulled apart into
a functional protocol that computes a procedure. The procedure gets called on the
critical path; computing the procedure itself can either be done once and cached, or
moved off the critical path entirely by precomputing it.

Exercise 4.5 We began the chapter with a simple metaobject protocol for controlling generic
function invocation: the generic functions apply-generic-function and apply-method.
Now, these have been replaced by compute-discriminating-function and compute-
method-function.

One way to view the original protocol is to see that its generic functions were directly
implementing the basic operations of generic function invocation. From this same perspective,
the generic functions in the revised protocol can be seen as returning functional results which
directly implement the same basic operations.

A further step in this same direction would be to have the generic functions in the protocol
return source code which, when compiled, would directly implement the basic operations. In
such a protocol, the specialized method for counting generic functions might be as follows:

(defmethod compute-discriminating-lambda ((gf counting-gf))
(let ((normal-lambda {(call-next-method)))
‘(lambda (&rest args)
(incf (call-count ',gf))
(apply #',normal-lambda args))))

Design and implement the rest of this protocol in terms of the protocol we have already
developed. Evaluate your design by considering how it supports each of the examples we
have seen.

H H A METAOBJECT PROTOCOL FOR CLOS

135

In this part of the book, we provide the detailed specification of a metaobject protocol
for CLOS. Our work with this protocol has always been rooted in our own implementation
of CLOS, PCL. This has made it possible for us to have a user community, which in turn
has provided us with feedback on this protocol as it has evolved. As a result, much of the
design presented here is well-tested and stable. As this is being written, those parts have
been implemented not only in PCL, but in at least three other CLOS implementations
we know of. Other parts of the protocol, even though they have been implemented in
one form or another in PCL and other implementations, are less well worked out. Work
remains to improve not only the ease of use of these protocols, but also the balance they
provide between user extensibility and implementor freedom.

In preparing this specification, it is our hope that it will provide a basis for the users
and implementors who wish to work with a metaobject protocol for CLOS. This docu-
ment should not be construed as any sort of final word or standard, but rather only as
documentation of what has been done so far. We look forward to seeing the improve-
ments, both small and large, which we hope this publication will catalyze.

To this end, for Part IT only (chapters 5 and 6), we grant permission to prepare revisions
or other derivative works including any amount of the original text. We ask only that
you properly acknowledge the source of the original text and explicitly allow subsequent
revisions and derivative works under the same terms. To further facilitate improvements
in this work, we have made the electronic source for these chapters publicly available; it
can be accessed by anonymous FTP from the /pcl/mop directory on arisia.xerox.com.

In addition to the valuable feedback from users of PCL, the protocol design presented
here has benefited from detailed comments and suggestions by the following people:
Kim Barrett, Scott Cyphers, Harley Davis, Patrick Dussud, John Foderaro, Richard
P. Gabriel, David Gray, David A. Moon, Andreas Paepcke, Chris Richardson, Walter
van Roggen, and Jon L. White. We are very grateful to each of them. Any remaining
errors, inconsistencies or design deficiencies are the responsibility of the authors alone.

m Concepts

5.1 Introduction

The CLOS Specification [X3J13, CLtLII] describes the standard Programmer Interface
for the Common Lisp Object System (CLOS). This document extends that specification
by defining a metaobject protocol for CLOS—that is, a description of CLOS itself as
an extensible CLOS program. In this description, the fundamental elements of CLOS
programs (classes, slot definitions, generic functions, methods, specializers and method
combinations) are represented by first-class objects. The behavior of CLOS is provided
by these objects, or, more precisely, by methods specialized to the classes of these objects.

Because these objects represent pieces of CLOS programs, and because their behavior
provides the behavior of the CLOS language itself, they are considered meta-level objects
or metaobjects. The protocol followed by the metaobjects to provide the behavior of
CLOS is called the CLOS Metaobject Protocol (MOP).

5.2 Metaobjects

For each kind of program element there is a corresponding basic metaobject class. These
are the classes: class, slot-definition, generic-function, method and method-
combination. A metaobject class is a subclass of exactly one of these classes. The
results are undefined if an attempt is made to define a class that is a subclass of more
than one basic metaobject class. A metaobject is an instance of a metaobject class.

Each metaobject represents one program element. Associated with each metaobject
is the information required to serve its role. This includes information that might be
provided directly in a user interface macro such as defclass or defmethod. It also
includes information computed indirectly from other metaobjects such as that computed
from class inheritance or the full set of methods associated with a generic function.

Much of the information associated with a metaobject is in the form of connections to
other metaobjects. This interconnection means that the role of a metaobject is always
based on that of other metaobjects. As an introduction to this interconnected structure,
this section presents a partial enumeration of the kinds of information associated with
each kind of metaobject. More detailed information is presented later.

5.2.1 Classes

A class metaobject determines the structure and the default behavior of its instances.
The following information is associated with class metaobjects:

138 Chapter 5

¢ The name, if there is one, is available as an object.

e The direct subclasses, direct superclasses and class precedence list are available as lists
of class metaobjects.

e The slots defined directly in the class are available as a list of direct slot definition
metaobjects. The slots which are accessible in instances of the class are available as a
list of effective slot definition metaobjects.

e The documentation is available as a string or nil.

e The methods which use the class as a specializer, and the generic functions associated
with those methods are available as lists of method and generic function metaobjects
respectively.

5.2.2 Slot Definitions

A slot definition metaobject contains information about the definition of a slot. There
are two kinds of slot definition metaobjects. A direct slot definition metaobject is used
to represent the direct definition of a slot in a class. This corresponds roughly to the
slot specifiers found in defclass forms. An effective slot definition metaobject is used to
represent information, including inherited information, about a slot which is accessible
in instances of a particular class.

Associated with each class metaobject is a list of direct slot definition metaobjects rep-
resenting the slots defined directly in the class. Also associated with each class metaobject
is a list of effective slot definition metaobjects representing the set of slots accessible in
instances of that class.

The following information is associated with both direct and effective slot definitions
metaobjects:

e The name, allocation, and type are available as forms that could appear in a defclass
form.

e The initialization form, if there is one, is available as a form that could appear in a
defclass form. The initialization form together with its lexical environment is available
as a function of no arguments which, when called, returns the result of evaluating the
initialization form in its lexical environment. This is called the initfunction of the slot.

e The slot filling initialization arguments are available as a list of symbols.

¢ The documentation is available as a string or nil.

Certain other information is only associated with direct slot definition metaobjects.
This information applies only to the direct definition of the slot in the class (it is not
inherited).

¢ The function names of those generic functions for which there are automatically gen-
erated reader and writer methods. This information is available as lists of function

Concepts 139

names. Any accessors specified in the defclass form are broken down into their equiv-
alent readers and writers in the direct slot definition.

Information, including inherited information, which applies to the definition of a slot in

a particular class in which it is accessible is associated only with effective slot definition
metaobjects.

For certain slots, the location of the slot in instances of the class is available.

5.2.3 Generic Functions

A generic function metaobject contains information about a generic function over and
above the information associated with each of the generic function’s methods.

The name is available as a function name.

The methods associated with the generic function are available as a list of method

metaobjects.

The default class for this generic function’s method metaobjects is available as a class

metaobject.

The lambda list is available as a list.

The method combination is available as a method combination metaobject.

The documentation is available as a string or nil.

The argument precedence order is available as a permutation of those symbols from

the lambda list which name the required arguments of the generic function.

The declarations are available as a list of declarations.
Terminology Note:
There is some ambiguity in Common Lisp about the terms used to identify the
various parts of declare special forms. In this document, the term declaration is
used to refer to an object that could be an argument to a declare special form. For
example, in the special form (declare (special *g1*)), the list (special *g1*) is
a declaration.

5.2.4 Methods

A method metaobject contains information about a specific method.

The qualifiers are available as a list of of non-null atoms.

The lambda list is available as a list.

The specializers are available as a list of specializer metaobjects.

The function is available as a function. This function can be applied to arguments and
a list of next methods using apply or funcall.

140 Chapter 5

e When the method is associated with a generic function, that generic function metaob-
ject is available. A method can be associated with at most one generic function at a
time.

e The documentation is available as a string or nil.

5.2.5 Specializers

A specializer metaobject represents the specializers of a method. Class metaobjects are
themselves specializer metaobjects. A special kind of specializer metaobject is used for
eql specializers.

5.2.6 Method Combinations

A method combination metaobject represents the information about the method combi-
nation being used by a generic function.
Note:

This document does not specify the structure of method combination metaobjects.

5.3 Inheritance Structure of Metaobject Classes

The inheritance structure of the specified metaobject classes is shown in Table 5.1.

Each class marked with a “x” is an abstract class and is not intended to be instantiated.
The results are undefined if an attempt is made to make an instance of one of these classes
with make-instance.

The classes standard-class, standard-direct-slot-definition, standard-effective-
slot-definition, standard-method, standard-reader-method, standard-writer-
method and standard-generic-function are called standard metaobject classes. For
each kind of metaobject, this is the class the user interface macros presented in the CLOS
Specification use by default. These are also the classes on which user specializations are
normally based.

The classes built-in-class, funcallable-standard-class and forward-referenced-
class are special-purpose class metaobject classes. Built-in classes are instances of the
class built-in-class. The class funcallable-standard-class provides a special kind of
instances described in the section called “Funcallable Instances.” When the definition of
a class references another class which has not yet been defined, an instance of forward-
referenced-class is used as a stand-in until the class is actually defined.

The class standard-object is the default direct superclass of the class standard-
class. When an instance of the class standard-class is created, and no direct super-
classes are explicitly specified, it defaults to the class standard-object. In this way, any

Concepts

141

Metaobject Class

Direct Superclasses

standard-object
funcallable-standard-ob ject
+ metaobject
* generic-function

standard-generic-function
*+ method
standard-method
+ standard-accessor-method
standard-reader-method
standard-writer-method
method-combination
slot-definition
direct-slot-definition
effective-slot-definition
standard-slot-definition
standard-direct-slot-
definition
standard-effective-slot-
definition
* specializer
eql-specializer
* class

E S .

built-in-class
forward-referenced-class
standard-class
funcallable-standard-class

(t)

(standard-object function)

(standard-ob ject)

(metaobject
funcallable-standard-object)

(generic-function)

(metaobject)

(method)

(standard-method)

(standard-accessor-method)

(standard-accessor-method)

(metaobject)

(metaobject)

(slot-definition)

(slot-definition)

(slot-definition)

(standard-slot-definition
direct-slot-definition)

(standard-slot-definition
effective-slot-definition)

(metaobject)

(specializer)

(specializer)

(class)

(class)

(class)

(class)

Table 5.1 Direct superclass relationships among the specified metaobject classes.
The class of every class shown is standard-class except for the class t which is an in-
stance of the class built-in-class and the classes generic-function and standard-
generic-function which are instances of the class funcallable-standard-class.

142 Chapter 5

behavior associated with the class standard-object will be inherited, directly or indi-
rectly, by all instances of the class standard-class. A subclass of standard-class may
have a different class as its default direct superclass, but that class must be a subclass
of the class standard-object.

The same is true for funcallable-standard-class and funcallable-standard-object.

The class specializer captures only the most basic behavior of method specializers,
and is not itself intended to be instantiated. The class class is a direct subclass of
specializer reflecting the property that classes by themselves can be used as method
specializers. The class eql-specializer is used for eql specializers.

5.3.1 Implementation and User Specialization

The purpose of the Metaobject Protocol is to provide users with a powerful mechanism
for extending and customizing the basic behavior of the Common Lisp Object System.
As an object-oriented description of the basic CLOS behavior, the Metaobject Protocol
makes it possible to create these extensions by defining specialized subclasses of existing
metaobject classes.

The Metaobject Protocol provides this capability without interfering with the imple-
mentor’s ability to develop high-performance implementations. This balance between
user extensibility and implementor freedom is mediated by placing explicit restrictions
on each. Some of these restrictions are general—they apply to the entire class graph and
the applicability of all methods. These are presented in this section.

The following additional terminology is used to present these restrictions:

e Metaobjects are divided into three categories. Those defined in this document are
called specified; those defined by an implementation but not mentioned in this docu-
ment are called implementation-specific; and those defined by a portable program are
called portable.

o A class I is interposed between two other classes C1 and Cs if and only if there is some
path, following direct superclasses, from the class C; to the class C, which includes I.

o A method is specialized to a class if and only if that class is in the list of specializers
associated with the method; and the method is in the list of methods associated with
some generic function.

e In a given implementation, a specified method is said to have been promoted if and
only if the specializers of the method, S ... S, are defined in this specification as the
classes C...C,, but in the implementation, one or more of the specializers S;, is a
superclass of the class given in the specification C;.

o For a given generic function and set of arguments, a method M, extends a method M
if and only if:

Concepts 143

(i) M1 and M, are both associated with the given generic function,

(if) My and M, are both applicable to the given arguments,

(iii) the specializers and qualifiers of the methods are such that when the generic
function is called, M, is executed before M,

(iv) M, will be executed if and only if call-next-method is invoked from within
the body of M and

(v) call-next-method is invoked from within the body of M,, thereby causing M,
to be executed.

e For a given generic function and set of arguments, a method M, overrides a method
M, if and only if conditions i through iv above hold and

(v') call-next-method is not invoked from within the body of M, thereby pre-
venting M, from being executed.

Restrictions on Implementations Implementations are allowed latitude to mod-
ify the structure of specified classes and methods. This includes: the interposition of
implementation-specific classes; the promotion of specified methods; and the consolida-
tion of two or more specified methods into a single method specialized to interposed
classes.

Any such modifications are permitted only so long as for any portable class Cp that
is a subclass of one or more specified classes Cj . .. C;, the following conditions are met:

¢ In the actual class precedence list of Cp, the classes Cy ... C; must appear in the same
order as they would have if no implementation-specific modifications had been made.

e The method applicability of any specified generic function must be the same in terms
of behavior as it would have been had no implementation-specific changes been made.
This includes specified generic functions that have had portable methods added. In
this context, the expression “the same in terms of behavior” means that methods with
the same behavior as those specified are applicable, and in the same order.

* No portable class Cp may inherit, by virtue of being a direct or indirect subclass of
a specified class, any slot for which the name is a symbol accessible in the common-
lisp-user package or exported by any package defined in the ANSI Common Lisp
standard.

¢ Implementations are free to define implementation-specific before- and after-methods
on specified generic functions. Implementations are also free to define implementation-
specific around-methods with extending behavior.

Restrictions on Portable Programs Portable programs are allowed to define sub-
classes of specified classes, and are permitted to define methods on specified generic

144 Chapter 5

functions, with the following restrictions. The results are undefined if any of these re-
strictions is violated.

o Portable programs must not redefine any specified classes, generic functions, methods
or method combinations. Any method defined by a portable program on a specified
generic function must have at least one specializer that is neither a specified class nor
an eql specializer whose associated value is an instance of a specified class.

e Portable programs may define methods that extend specified methods unless the de-
scription of the specified method explicitly prohibits this. Unless there is a specific
statement to the contrary, these extending methods must return whatever value was
returned by the call to call-next-method.

¢ Portable programs may define methods that override specified methods only when the
description of the specified method explicitly allows this. Typically, when a method is
allowed to be overridden, a small number of related methods will need to be overridden
as well.

An example of this is the specified methods on the generic functions add-depend-
ent, remove-dependent and map-dependents. Overriding a specified method on
one of these generic functions requires that the corresponding method on the other
two generic functions be overridden as well.

e Portable methods on specified generic functions specialized to portable metaobject
classes must be defined before any instances of those classes (or any subclasses) are
created, either directly or indirectly by a call to make-instance. Methods can be de-
fined after instances are created by allocate-instance however. Portable metaobject
classes cannot be redefined.

Implementation Note:

The purpose of this last restriction is to permit implementations to provide perfor-

mance optimizations by analyzing, at the time the first instance of a metaobject

class is initialized, what portable methods will be applicable to it. This can make
it possible to optimize calls to those specified generic functions which would have
no applicable portable methods.

Note:

The specification technology used in this document needs further development. The

concepts of object-oriented protocols and subclass specialization are intuitively fa-

miliar to programmers of object-oriented systems; the protocols presented here fit
quite naturally into this framework. Nonetheless, in preparing this document, we
have found it difficult to give specification-quality descriptions of the protocols in

a way that makes it clear what extensions users can and cannot write. Object-

oriented protocol specification is inherently about specifying leeway, and this seems

difficult using current technology.

Concepts 145

5.4 Processing of the User Interface Macros

A list in which the first element is one of the symbols defclass, defmethod, def-
generic, define-method-combination, generic-function, generic-flet or generic-
labels, and which has proper syntax for that macro is called a user interface macro
form. This document provides an extended specification of the defclass, defmethod
and defgeneric macros.

The user interface macros defclass, defgeneric and defmethod can be used not only
to define metaobjects that are instances of the corresponding standard metaobject class,
but also to define metaobjects that are instances of appropriate portable metaobject
classes. To make it possible for portable metaobject classes to properly process the
information appearing in the macro form, this document provides a limited specification
of the processing of these macro forms.

User interface macro forms can be evaluated or compiled and later executed. The effect
of evaluating or executing a user interface macro form is specified in terms of calls to
specified functions and generic functions which provide the actual behavior of the macro.
The arguments received by these functions and generic functions are derived in a specified
way from the macro form.

Converting a user interface macro form into the arguments to the appropriate functions
and generic functions has two major aspects: the conversion of the macro argument syn-
tax into a form more suitable for later processing, and the processing of macro arguments
which are forms to be evaluated (including method bodies).

In the syntax of the defclass macro, the initform and default-initarg-initial-value-form
arguments are forms which will be evaluated one or more times after the macro form is
evaluated or executed. Special processing must be done on these arguments to ensure
that the lexical scope of the forms is captured properly. This is done by building a
function of zero arguments which, when called, returns the result of evaluating the form
in the proper lexical environment.

In the syntax of the defmethod macro the form* argument is a list of forms that
comprise the body of the method definition. This list of forms must be processed spe-
cially to capture the lexical scope of the macro form. In addition, the lexical functions
available only in the body of methods must be introduced. To allow this and any other
special processing (such as slot access optimization), a specializable protocol is used for

processing the body of methods. This is discussed in the section “Processing Method
Bodies.”

146 Chapter 5

5.4.1 Compile-file Processing of the User Interface Macros

It is common practice for Common Lisp compilers, while processing a file or set of files, to
maintain information about the definitions that have been compiled so far. Among other
things, this makes it possible to ensure that a global macro definition (defmacro form)
which appears in a file will affect uses of the macro later in that file. This information
about the state of the compilation is called the compile-file environment.

When compiling files containing CLOS definitions, it is useful to maintain certain
additional information in the compile-file environment. This can make it possible to issue
various kinds of warnings (e.g., lambda list congruence) and to do various performance
optimizations that would not otherwise be possible.

At this time, there is such significant variance in the way existing Common Lisp im-
plementations handle compile-file environments that it would be premature to specify
this mechanism. Consequently, this document specifies only the behavior of evaluat-
ing or executing user interface macro forms. What functions and generic functions are
called during compile-file processing of a user interface macro form is not specified. Im-
plementations are free to define and document their own behavior. Users may need to
check implementation-specific behavior before attempting to compile certain portable
programs.

5.4.2 The defclass Macro

The evaluation or execution of a defclass form results in a call to the ensure-class
function. The arguments received by ensure-class are derived from the defclass form
in a defined way. The exact macro-expansion of the defclass form is not defined, only the
relationship between the arguments to the defclass macro and the arguments received by
the ensure-class function. Examples of typical defclass forms and sample expansions
are shown in Figures 5.1 and 5.2.

e The name argument to defclass becomes the value of the first argument to ensure-
class. This is the only positional argument accepted by ensure-class; all other argu-
ments are keyword arguments.

e The direct-superclasses argument to defclass becomes the value of the :direct-
superclasses keyword argument to ensure-class.

e The direct slots argument to defclass becomes the value of the :direct-slots keyword
argument to ensure-class. Special processing of this value is done to regularize the
form of each slot specification and to properly capture the lexical scope of the initial-
ization forms. This is done by converting each slot specification to a property list called
a canonicalized slot specification. The resulting list of canonicalized slot specifications
is the value of the :direct-slots keyword argument.

Concepts 147

(defclass plane (moving-object graphics-object)
((altitude :initform O :accessor plane-altitude)
(speed))
(:default-initargs :engine *jet*))

AmbmmMMuwwwmm 'plane
':direct-superclasses '(moving-object graphics-object)
':direct-slots (list (list ':name 'altitude
‘:initform '0
':initfunction #'(lambda () 0)
':readers '(plane-altitude)
:writers '((setf plane-altitude)))
(list ':name 'speed))
':direct-default-initargs (list (list ':engine
'kjet*
#'(lambda () *jet#*))))

Figure 5.1 A defclass form with standard slot and class options and an expansion of it that
would result in the proper call to ensure-class.

Canonicalized slot specifications are later used as the keyword arguments to a generic
function which will, in turn, pass them to make-instance for use as a set of initializa-
tion arguments. Each canonicalized slot specification is formed from the corresponding
slot specification as follows:

e The name of the slot is the value of the :name property. This property appears in
every canonicalized slot specification.

e When the :initform slot option is present in the slot specification, then both the
tinitform and :initfunction properties are present in the canonicalized slot spec-
ification. The value of the :initform property is the initialization form. The value
of the :initfunction property is a function of zero arguments which, when called,
returns the result of evaluating the initialization form in its proper lexical environ-
ment.

If the :initform slot option is not present in the slot specification, then either the
:initfunction property will not appear, or its value will be false. In such cases, the
value of the :initform property, or whether it appears, is unspecified.

® The value of the :initargs property is a list of the values of each :initarg slot
option. If there are no :initarg slot options, then either the :initargs property will
not appear or its value will be the empty list.

148 Chapter 5

(defclass sst (plane)
((mach mag-step 2
locator sst-mach
locator mach-location
Y :reader mach-speed
:reader mach))
(:metaclass faster-class)
(another-option foo bar))

(ensure-class 'sst

':direct-superclasses '(plane)

':direct-slots (list (list ':name 'mach
':readers '(mach-speed mach)
'mag-step '2
'locator '(sst-mach mach-location)))

':metaclass 'faster-class

'another-option '(foo bar))

Figure 5.2 A defclass form with non-standard class and slot options, and an expansion of it
which results in the proper call to ensure-class. Note that the order of the slot options has not
affected the order of the properties in the canonicalized slot specification, but has affected the
order of the elements in the lists which are the values of those properties.

e The value of the :readers property is a list of the values of each :reader and
:accessor slot option. If there are no :reader or :accessor slot options, then either
the :readers property will not appear or its value will be the empty list.

e The value of the :writers property is a list of the values specified by each :writer
and :accessor slot option. The value specified by a :writer slot option is just the
value of the slot option. The value specified by an :accessor slot option is a two
element list: the first element is the symbol setf, the second element is the value of
the slot option. If there are no :writer or :accessor slot options, then either the
:writers property will not appear or its value will be the empty list.

e The value of the :documentation property is the value of the :documentation slot
option. If there is no :documentation slot option, then either the :documentation
property will not appear or its value will be false.

e All other slot options appear as the values of properties with the same name as the
slot option. Note that this includes not only the remaining standard slot options
(:allocation and :type), but also any other options and values appearing in the

Concepts 149

slot specification. If one of these slot options appears more than once, the value of
the property will be a list of the specified values.

e An implementation is free to add additional properties to the canonicalized slot
specification provided these are not symbols accessible in the common-lisp-user
package, or exported by any package defined in the ANSI Common Lisp standard.

Returning to the correspondence between arguments to the defclass macro and the

. arguments received by the ensure-class function:

o\/ The default initargs class option, if it is present in the defclass form, becomes the
value of the :direct-default-initargs keyword argument to ensure-class. Special
processing of this value is done to properly capture the lexical scope of the default
value forms. This is done by converting each default initarg in the class option into a
canonicalized default initarg. The resulting list of canonicalized default initargs is the
value of the :direct-default-initargs keyword argument to ensure-class.

A canonicalized default initarg is a list of three elements. The first element is the
name; the second is the actual form itself; and the third is a function of zero arguments
which, when called, returns the result of evaluating the default value form in its proper
lexical environment.

e The metaclass class option, if it is present in the defclass form, becomes the value of
the :metaclass keyword argument to ensure-class.

® The documentation class option, if it is present in the defclass form, becomes the
value of the :documentation keyword argument to ensure-class.

¢ Any other class options become the value of keyword arguments with the same name.
The value of the keyword argument is the tail of the class option. An error is signaled
if any class option appears more than once in the defclass form.

In the call to ensure-class, every element of its arguments appears in the same left-to-
right order as the corresponding element of the defclass form, except that the order of
the properties of canonicalized slot specifications is unspecified. The values of properties
in canonicalized slot specifications do follow this ordering requirement. Other ordering
relationships in the keyword arguments to ensure-class are unspecified.

The result of the call to ensure-class is returned as the result of evaluating or exe-
cuting the defclass form.

5.4.3 The defmethod Macro

The evaluation or execution of a defmethod form requires first that the body of the
method be converted to a method function. This process is described in the next section.
The result of this process is a method function and a set of additional initialization

150 Chapter 5

arguments to be used when creating the new method. Given these two values, the
evaluation or execution of a defmethod form proceeds in three steps.

The first step ensures the existence of a generic function with the specified name. This
is done by calling the function ensure-generic-function. The first argument in this
call is the generic function name specified in the defmethod form.

The second step is the creation of the new method metaobject by calling make-
instance. The class of the new method metaobject is determined by calling generic-
function-method-class on the result of the call to ensure-generic-function from the
first step.

The initialization arguments received by the call to make-instance are as follows:

e The value of the :qualifiers initialization argument is a list of the qualifiers which
appeared in the defmethod form. No special processing is done on these values. The
order of the elements of this list is the same as in the defmethod form.

e The value of the :lambda-list initialization argument is the unspecialized lambda list
from the defmethod form.

e The value of the :specializers initialization argument is a list of the specializers for
the method. For specializers which are classes, the specializer is the class metaobject
itself. In the case of eql specializers, it will be an eql-specializer metaobject obtained
by calling intern-eql-specializer on the result of evaluating the eql specializer form
in the lexical environment of the defimethod form.

e The value of the :function initialization argument is the method function.

o The value of the :declarations initialization argument is a list of the declarations from
the defmethod form. If there are no declarations in the macro form, this initialization
argument either doesn’t appear, or appears with a value of the empty list.

o The value of the :documentation initialization argument is the documentation string
from the defmethod form. If there is no documentation string in the macro form this
initialization argument either doesn’t appear, or appears with a value of false.

o Any other initialization argument produced in conjunction with the method function
are also included.

e The implementation is free to include additional initialization arguments provided
these are not symbols accessible in the common-lisp-user package, or exported by
any package defined in the ANSI Common Lisp standard.

In the third step, add-method is called to add the newly created method to the set
of methods associated with the generic function metaobject.

N
/

Concepts 151

(defmethod move :before ((p position) (1 (eql 0))
&optional (visiblyp t)
&key color)
(set-to-origin p)
(when visiblyp (show-move p 0 color)))

(let ((#:g001 (ensure-generic-function ‘'move)))
(add-method #:g001

) (make-instance (generic-function-method-class #:g001)

':qualifiers '(:before)
':specializers (list (find-class 'position)
(intern-eql-specializer 0))

':lambda-list '(p 1 &optional (visiblyp t)

&key color)
':function (function method-lambda)
'additional-initarg-1 't
'additional-initarg-2 '39)))

Figure 5.3 An example defmethod form and one possible correct expansion. In the expansion,
method-lambda is the result of calling make-method-lambda as described in the section “Pro-
cessing Method Bodies”. The initargs appearing after :function are assumed to be additional
initargs returned from the call to make-method-lambda.

The result of the call to add-method is returned as the result of evaluating or exe-
cuting the defmethod form.

An example showing a typical defmethod form and a sample expansion is shown in
Figure 5.3. The processing of the method body for this method is shown in Figure 5.4.

5.4.4 Processing Method Bodies

Before a method can be created, the list of forms comprising the method body must be
converted to a method function. This conversion is a two step process.
Note:
The body of methods can also appear in the :initial-methods option of defgeneric
forms. Initial methods are not considered by any of the protocols specified in this
document.
The first step occurs during macro-expansion of the macro form. In this step, the
method lambda list, declarations and body are converted to a lambda expression called

152 Chapter 5

(let ((gf (ensure-generic-function 'move)))
(make-method-lambda

Mwwmmuvwogd%vm (generic-function-method-class gf))
'(lambda (p 1 &optional (visiblyp t) &key color)
(set-to-origin p)
(when visiblyp (show-move p 0O color)))
environment))

Figure 5.4 During macro-expansion of the defmethod macro shown in Figure 5.3, code similar
to this would be run to produce the method lambda and additional initargs. In this example,
environment is the macroexpansion environment of the defmethod macro form.

a method lambda. This conversion is based on information associated with the generic
function definition in effect at the time the macro form is expanded.

The generic function definition is obtained by calling ensure-generic-function with
a first argument of the generic function name specified in the macro form. The :lambda-
list keyword argument is not passed in this call.

Given the generic function, production of the method lambda proceeds by calling
make-method-lambda. The first argument in this call is the generic function obtained
as described above. The second argument is the result of calling class-prototype on
the result of calling generic-function-method-class on the generic function. The third
argument is a lambda expression formed from the method lambda list, declarations and
body. The fourth argument is the macro-expansion environment of the macro form; this
is the value of the &environment argument to the defmethod macro.

The generic function make-method-lambda returns two values. The first is the
method lambda itself. The second is a list of initialization arguments and values. These
are included in the initialization arguments when the method is created.

In the second step, the method lambda is converted to a function which properly
captures the lexical scope of the macro form. This is done by having the method lambda
appear in the macro-expansion as the argument of the function special form. During
the subsequent evaluation of the macro-expansion, the result of the function special
form is the method function.

5.4.5 The defgeneric Macro

The evaluation or execution of a defgeneric form results in a call to the ensure-generic-
function function. The arguments received by ensure-generic-function are derived
from the defgeneric form in a defined way. As with defclass and defmethod, the exact

Concepts 153

macro-expansion of the defgeneric form is not defined, only the relationship between
the arguments to the macro and the arguments received by ensure-generic-function.

o The function-name argument to defgeneric becomes the first argument to ensure-
generic-function. This is the only positional argument accepted by ensure-generic-
function; all other arguments are keyword arguments.

e The lambda-list argument to defgeneric becomes the value of the :lambda-list key-
word argument to ensure-generic-function.

o For each of the options :argument-precedence-order, :documentation, :generic-
function-class and :method-class, the value of the option becomes the value of the
keyword argument with the same name. If the option does not appear in the macro
form, the keyword argument does not appear in the resulting call to ensure-generic-
function.

e For the option declare, the list of declarations becomes the value of the :declarations
keyword argument. If the declare option does not appear in the macro form, the
:declarations keyword argument does not appear in the call to ensure-generic-
function.

¢ The handling of the :method-combination option is not specified.

The result of the call to ensure-generic-function is returned as the result of evalu-
ating or executing the defgeneric form.

5.5 Subprotocols

This section provides an overview of the Metaobject Protocols. The detailed behavior
of each function, generic function and macro in the Metaobject Protocol is presented in
Chapter 6. The remainder of this chapter is intended to emphasize connections among
the parts of the Metaobject Protocol, and to provide some examples of the kinds of
specializations and extensions the protocols are designed to support.

5.5.1 Metaobject Initialization Protocols

Like other objects, metaobjects can be created by calling make-instance. The initial-
ization arguments passed to make-instance are used to initialize the metaobject in the
usual way. The set of legal initialization arguments, and their interpretation, depends
on the kind of metaobject being created. Implementations and portable programs are
free to extend the set of legal initialization arguments. Detailed information about the
initialization of each kind of metaobject are provided in Chapter 6; this section provides
an overview and examples of this behavior.

154 Chapter 5

Initialization of Class Metaobjects Class metaobjects created with make-
instance are usually anonymous; that is, they have no proper name. An anonymous class
metaobject can be given a proper name using (setf find-class) and (setf class-name).

When a class metaobject is created with make-instance, it is initialized in the usual
way. The initialization arguments passed to make-instance are use to establish the
ammiwﬂwus of the class. Each initialization argument is checked for errors and associated
with the class metaobject. The initialization arguments correspond roughly to the argu-
ments accepted by the defclass macro, and more closely to the arguments accepted by
the ensure-class function.

Some class metaobject classes allow their instances to be redefined. When permissible,
this is done by calling reinitialize-instance. This is discussed in the next section.

An example of creating an anonymous class directly using make-instance follows:

(flet ((zero () 0)
(propellor () *propellor*))
(make-instance 'standard-class
:name '(my-class foo)
:direct-superclasses (list (find-class 'plane)
another-anonymous-class)
:direct-slots ‘((:name x
:initform O
:initfunction ,#'zero
:initargs (:x)
:readers (position-x)
:writers ((setf position-x)))
(:name y
:initform O
:initfunction ,#'zero
:initargs (:y)
:readers (position-y)
:writers ((setf position-y))))
:direct-default-initargs ‘((:engine *propellor* ,#'propellor))))

Reinitialization of Class Metaobjects Some class metaobject classes allow their
instances to be reinitialized. This is done by calling reinitialize-instance. The initial-
ization arguments have the same interpretation as in class initialization.

If the class metaobject was finalized before the call to reinitialize-instance, finalize-
inheritance will be called again once all the initialization arguments have been processed

Concepts 155

and associated with the class metaobject. In addition, once finalization is complete, any
dependents of the class metaobject will be updated by calling update-dependent.

Initialization of Generic Function and Method Metaobjects An example of
creating a generic function and a method metaobject, and then adding the method to
the generic function is shown below. This example is comparable to the method definition

m:oéd/fc Figure 5.3.

(let* ((gf (make-instance 'standard-generic-function
:lambda-list '(p 1 &optional visiblyp &key)))
(method-class (generic-function-method-class gf)))
(multiple-value-bind (lambda initargs)
(make-method-lambda
gt
(class-prototype method-class)
'(lambda (p 1 &optional (visiblyp t) &key color)
(set-to-origin p)
(when visiblyp (show-move p 0 color)))
nil)
(add-method gf
(apply #'make-instance method-class
:function (compile nil lambda)
:specializers (list (find-class 'position)
(intern-eql-specializer 0))
:qualifiers ()
:lambda-list '(p 1 &optional (visiblyp t)
&key color)
initargs))))

5.5.2 Class Finalization Protocol

Class finalization is the process of computing the information a class inherits from its
superclasses and preparing to actually allocate instances of the class. The class final-
ization process includes computing the class’s class precedence list, the full set of slots
accessible in instances of the class and the full set of default initialization arguments for
the class. These values are associated with the class metaobject and can be accessed by
calling the appropriate reader. In addition, the class finalization process makes decisions
about how instances of the class will be implemented.

To support forward-referenced superclasses, and to account for the fact that not all
classes are actually instantiated, class finalization is not done as part of the initialization

156 Chapter 5

of the class metaobject. Instead, finalization is done as a separate protocol, invoked by
calling the generic function finalize-inheritance. The exact point at which finalize-
inheritance is called depends on the class of the class metaobject; for standard-class
it is called sometime after all the classes superclasses are defined, but no later than when
the first instance of the class is allocated (by allocate-instance).

The first step of class finalization is computing the class precedence list. Doing this

\/@nmﬂ allows subsequent steps to access the class precedence list. This step is performed
by calling the generic function compute-class-precedence-list. The value returned
from this call is associated with the class metaobject and can be accessed by calling the
class-precedence-list generic function.

The second step is computing the full set of slots that will be accessible in instances
of the class. This step is performed by calling the generic function compute-slots. The
result of this call is a list of effective slot definition metaobjects. This value is associated
with the class metaobject and can be accessed by calling the class-slots generic function.

The behavior of compute-slots is itself layered, consisting of calls to effective-slot-
definition-class and compute-effective-slot-definition.

The final step of class finalization is computing the full set of initialization arguments
for the class. This is done by calling the generic function compute-default-initargs.
The value returned by this generic function is associated with the class metaobject and
can be accessed by calling class-default-initargs.

If the class was previously finalized, finalize-inheritance may call make-instances-
obsolete. The circumstances under which this happens are describe in the section of
the CLOS specification called “Redefining Classes.”

Forward-referenced classes, which provide a temporary definition for a class which
has been referenced but not yet defined, can never be finalized. An error is signalled if
finalize-inheritance is called on a forward-referenced class.

5.5.3 Instance Structure Protocol

The instance structure protocol is responsible for implementing the behavior of the slot
access functions like slot-value and (setf slot-value).

For each CLOS slot access function other than slot-exists-p, there is a corresponding
generic function which actually provides the behavior of the function. When called,
the slot access function finds the pertinent effective slot definition metaobject, calls the
corresponding generic function and returns its result. The arguments passed on to the
generic function include one additional value, the class of the object argument, which
always immediately precedes the object argument.

Concepts 157

The correspondences between slot access function and underlying slot access generic
function are as follows:

Slot Access Function Corresponding Slot Access
Generic Function

: slot-boundp slot-boundp-using-class

// slot-makunbound slot-makunbound-using-class
slot-value slot-value-using-class
(setf slot-value) (setf slot-value-using-class)

At the lowest level, the instance structure protocol provides only limited mechanisms
for portable programs to control the implementation of instances and to directly access
the storage associated with instances without going through the indirection of slot access.
This is done to allow portable programs to perform certain commonly requested slot
access optimizations.

In particular, portable programs can control the implementation of, and obtain direct
access to, slots with allocation :instance and type t. These are called directly accessible
slots.

The relevant specified around-method on compute-slots determines the implemen-
tation of instances by deciding how each slot in the instance will be stored. For each
directly accessible slot, this method allocates a location and associates it with the effective
slot definition metaobject. The location can be accessed by calling the slot-definition-
location generic function. Locations are non-negative integers. For a given class, the
locations increase consecutively, in the order that the directly accessible slots appear in
the list of effective slots. (Note that here, the next paragraph, and the specification of
this around-method are the only places where the value returned by compute-slots is
described as a list rather than a set.)

Given the location of a directly accessible slot, the value of that slot in an instance
can be accessed with the appropriate accessor. For standard-class, this accessor is the
function standard-instance-access. For funcallable-standard-class, this accessor is
the function funcallable-standard-instance-access. In each case, the arguments to
the accessor are the instance and the slot location, in that order. See the definition of
each accessor in Chapter 6 for additional restrictions on the use of these function.

Portable programs are permitted to affect and rely on the allocation of locations only
in the following limited way: By first defining a portable primary method on compute-
slots which orders the returned value in a predictable way, and then relying on the defined
behavior of the specified around-method to assign locations to all directly accessible slots.

158 Chapter 5

Portable programs may compile-in calls to low-level accessors which take advantage of
the resulting predictable allocation of slot locations.
Example:
The following example shows the use of this mechanism to implement a new class
metaobject class, ordered-class and class option :slot-order. This option provides
control over the allocation of slot locations. In this simple example implementation,

the :slot-order option is not inherited by subclasses; it controls only instances of the
class itself.

TN
(defclass ordered-class (standard-class)

((slot-order :initform ()
:initarg :slot-order
:reader class-slot-order)))

(defmethod compute-slots ((class ordered-class))
(let ((order (class-slot-order class)))
(sort (copy-list (call-next-method))
#' (lambda (a b)
(< (position (slot-definition-name a) order)
(position (slot-definition-name a) order))))))

Following is the source code the user of this extension would write. Note that because
the code above doesn’t implement inheritance of the :slot-order option, the function
distance must not be called on instances of subclasses of point; it can only be called
on instances of point itself.

(defclass point ()
((x :initform 0)
(y :initform 0))
(:metaclass ordered-class)
(:slot-order x y))

(defun distance (point)
(sqrt (/ (+ (expt (standard-instance-access point 0) 2)
(expt (standard-instance-access point 1) 2))

2.0)))

In more realistic uses of this mechanism, the calls to the low-level instance structure
accessors would not actually appear textually in the source program, but rather would

be generated by a meta-level analysis program run during the process of compiling
the source program.

Concepts 159

5.5.4 Funcallable Instances

Instances of classes which are themselves instances of funcallable-standard-class or
one of its subclasses are called funcallable instances. Funcallable instances can only be
created by allocate-instance (funcallable-standard-class).

Like standard instances, funcallable instances have slots with the normal behavior.
They differ from standard instances in that they can be used as functions as well; that
is, they can be passed to funcall and apply, and they can be stored as the definition
of a ?ﬁmﬂos name. Associated with each funcallable instance is the function which it
runs when it is called. This function can be changed with set-funcallable-instance-
function.

Example:

The following simple example shows the use of funcallable instances to create a simple,

defstruct-like facility. (Funcallable instances are useful when a program needs to

construct and maintain a set of functions and information about those functions.

They make it possible to maintain both as the same object rather than two separate

objects linked, for example, by hash tables.)

(defclass constructor ()
((name :initarg :name :accessor constructor-name)
(fields :initarg :fields :accessor constructor-fields))
(:metaclass funcallable-standard-class))

(defmethod initialize-instance :after ((c constructor) &key)
(with-slots (name fields) c
(set-funcallable-instance-function
c
#' (lambda ()
(let ((new (make-array (1+ (length fields)))))
(setf (aref new 0) name)

new)))))

(setq c1 (make-instance 'constructor
:name 'position :fields '(x y)))
#<CONSTRUCTOR 262437>

(setq p1 (funcall c1))
#<ARRAY 3 263674>

160 Chapter 5

5.5.5 Generic Function Invocation Protocol

Associated with each generic function is its discriminating function. Each time the
generic function is called, the discriminating function is called to provide the behavior
of the generic function. The discriminating function receives the full set of arguments
received by the generic function. It must lookup and execute the appropriate methods,
and return the appropriate values.

The discriminating function is computed by the highest layer of the generic function
invocation protocol, compute-discriminating-function. Whenever a generic function
metaobject is initialized, reinitialized, or a method is added or removed, the discrim-
inating function is recomputed. The new discriminating function is then stored with
set-funcallable-instance-function.

Discriminating functions call compute-applicable-methods and compute-
applicable-methods-using-classes to @Bv:dm the methods applicable to the generic
functions arguments. Applicable methods are combined by compute-effective-method
to produce an effective method. Provisions are made to allow memoization of the method
applicability and effective methods computations. (See the description of compute-
discriminating-function for details.)

The body of method definitions are processed by make-method-lambda. The result
of this generic function is a lambda expression which is processed by either compile or
the file compiler to produce a method function. The arguments received by the method
function are controlled by the call-method forms appearing in the effective methods.
By default, method functions accept two arguments: a list of arguments to the generic
function, and a list of next methods. The list of next methods corresponds to the next
methods argument to call-method. If call-method appears with additional arguments,
these will be passed to the method functions as well; in these cases, make-method-
lambda must have created the method lambdas to expect additional arguments.

5.5.6 Dependent Maintenance Protocol

It is convenient for portable metaobjects to be able to memoize information about other
metaobjects, portable or otherwise. Because class and generic function metaobjects
can be reinitialized, and generic function metaobjects can be modified by adding and
removing methods, a means must be provided to update this memoized information.
The dependent maintenance protocol supports this by providing a way to register an
object which should be notified whenever a class or generic function is modified. An
object which has been registered this way is called a dependent of the class or generic
function metaobject. The dependents of class and generic function metaobjects are
maintained with add-dependent and remove-dependent. The dependents of a class

Concepts 161

or generic function metaobject can be accessed with map-dependents. Dependents
are notified about a modification by calling update-dependent. (See the specification
of update-dependent for detailed description of the circumstances under which it is
called.)

To prevent conflicts between two portable programs, or between portable programs
and the implementation, portable code must not register metaobjects themselves as de-
pendents. Instead, portable programs which need to record a metaobject as a dependent,
should encapsulate that metaobject in some other kind of object, and record that object
as the dependent. The results are undefined if this restriction is violated.

Example:

This example shows a general facility for encapsulating metaobjects before recording

them as dependents. The facility defines a basic kind of encapsulating object: an

updater. Specializations of the basic class can be defined with appropriate special
updating behavior. In this way, information about the updating required is associated
with each updater rather than with the metaobject being updated.

Updaters are used to encapsulate any metaobject which requires updating when a
given class or generic function is modified. The function record-updater is called to
both create an updater and add it to the dependents of the class or generic function.
Methods on the generic function update-dependent, specialized to the specific class
of updater do the appropriate update work.

(defclass updater (),
((dependent :initarg :dependent :reader dependent)))

(defun record-updater (class dependee dependent &rest initargs)
(let ((updater (apply #'make-instance class :dependent dependent
initargs)))
(add-dependent dependee updater)
updater))

A flush-cache-updater simply flushes the cache of the dependent when it is up-
dated.

(defclass flush-cache-updater (updater) ())

(defmethod update-dependent (dependee (updater flush-cache-updater)
&rest args)
(declare (ignore args))
(flush-cache (dependent updater)))

m Generic Functions and Methods

This chapter describes each of the functions and generic functions that make up the
CLOS Metaobject Protocol. The descriptions appear in alphabetical order with the
exception that all the reader generic functions for each kind of metaobject are grouped
together. So, for example, method-function would be found with method-qualifiers
and other method metaobject readers under “Readers for Method Metaobjects.”

The description of functions follows the same form as used in the CLOS specification.
The description of generic functions is similar to that in the CLOS specification, but
some minor changes have been made in the way methods are presented.

The following is an example of the format for the syntax description of a generic
function:

gfl ﬁ

z y &optional z &key k

This description indicates that gfl is a generic function with two required parameters, z
and y, an optional parameter z and a keyword parameter k.

The description of a generic function includes a description of its behavior. This
provides the general behavior, or protocol of the generic function. All methods defined
on the generic function, both portable and specified, must have behavior consistent with
this description.

Every generic function described in this section is an instance of the class standard-
generic-function and uses standard method combination.

The description of a generic function also includes descriptions of the specified methods
for that generic function. In the description of these methods, a method signature is used
to describe the parameters and parameter specializers of each method. The following is
an example of the format for a method signature:

gfl Primary Method
(z class) y &optional 2 &key k

This signature indicates that this primary method on the generic function gfl has two
required parameters, named z and y. In addition, there is an optional parameter 2z
and a keyword parameter k. This signature also indicates that the method’s parameter
specializers are the classes named class and t.

The description of each method includes a description of the behavior particular to
that method.

An abbreviated syntax is used when referring to a method defined elsewhere in
the document. This abbreviated syntax includes the name of the generic function,

164 add-dependent Chapter 6

the qualifiers, and the parameter specializers. A reference to the method with the
signature shown above is written as: gfl (class t).

add-dependent Generic Function

SYNTAX
add-dependent
metaobject dependent

ARGUMENTS
The metaobject argument is a class or generic function metaobject.
The &%m:Nmi argument is an object.

VALUES
The value returned by this generic function is unspecified.

PURPOSE
This generic function adds dependent to the dependents of metaobject. If dependent is
already in the set of dependents it is not added again (no error is signaled).

The generic function map-dependents can be called to access the set of dependents
of a class or generic function. The generic function remove-dependent can be called
to remove an object from the set of dependents of a class or generic function. The effect
of calling add-dependent or remove-dependent while a call to map-dependents on
the same class or generic function is in progress is unspecified.

The situations in which add-dependent is called are not specified.

METHODS
add-dependent Primary Method
(class standard-class) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
remove-dependent (standard-class t)
map-dependents (standard-class t)

Generic Functions and Methods add-direct-method 165

add-dependent Primary Method
(class funcallable-standard-class) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
remove-dependent (funcallable-standard-class t)
map-dependents (funcallable-standard-class t)

add-dependent Primary Method
(generic-function standard-generic-function) dependent

Zovm:mio:mvmommmamoﬂ;im:a?oa wm%o:a:HmeSrmowmmmvoommoamg;m mmcmlo
function. ﬂ
This method cannot be overridden unless the following methods are overridden as
well:
remove-dependent (standard-generic-function t)
map-dependents (standard-generic-function t)

REMARKS
See the “Dependent Maintenance Protocol” section for remarks about the use of this
facility.

add-direct-method Generic Function

SYNTAX
add-direct-method
specializer method

ARGUMENTS
The specializer argument is a specializer metaobject.
The method argument is a method metaobject.
VALUES
The value returned by this generic function is unspecified.

PurpPoOSE

This generic function is called to maintain a set of backpointers from a specializer to the
set of methods specialized to it. If method is already in the set, it is not added again (no
error is signaled).

166 add-direct-subclass Chapter 6

This set can be accessed as a list by calling the generic function specializer-direct-
methods. Methods are removed from the set by remove-direct-method.

The generic function add-direct-method is called by add-method whenever a
method is added to a generic function. It is called once for each of the specializers
of the method. Note that in cases where a specializer appears more than once in the
specializers of a method, this generic function will be called more than once with the
same specializer as argument.

The results are undefined if the specializer argument is not one of the specializers of
the method argument.

METHODS
add-direct-method Primary Method

(specializer class)

A%M‘Se& method)
This method implements the behavior of the generic function for class specializers. No
behavior is specified for this method beyond that which is specified for the generic
function.

This method cannot be overridden unless the following methods are overridden as
well:

remove-direct-method (class method)

specializer-direct-generic-functions (class)
specializer-direct-methods (class)

add-direct-method Primary Method
(specializer eql-specializer)
(method method)

This method implements the behavior of the generic function for eql specializers. No
behavior is specified for this method beyond that which is specified for the generic
function.

add-direct-subclass Generic Function

SYNTAX
add-direct-subclass
superclass subclass

ARGUMENTS
The superclass argument is a class metaobject.

Generic Functions and Methods add-method 167

The subclass argument is a class metaobject.

VALUES
The value returned by this generic function is unspecified.

PURPOSE X
This generic function is called to maintain a set of backpointers from a class to its
direct subclasses. This generic function adds subclass to the set of direct subclasses of
superclass.

When a class is initialized, this generic function is called once for each direct superclass
of the class.

When a class is reinitialized, this generic function is called once for each added direct

superclass of the class. The generic function remove-direct-subclass is called once for
each a\mﬁmmmm direct superclass of the class.

METHODS

add-direct-subclass Primary Method
(superclass class)
(subclass class)

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
remove-direct-subclass (class class)
class-direct-subclasses (class)

add-method Generic Function

SYNTAX
add-method
generic-function method

ARGUMENTS
The generic-function argument is a generic function metaobject.
The method argument is a method metaobject.

VALUEs
The generic-function argument is returned.

168 allocate-instance Chapter 6

PURPOSE
This generic function associates an unattached method with a generic function.

An error is signaled if the lambda list of the method is not congruent with the lambda
list of the generic function. An error is also signaled if the method is already associated
with some other generic function.

If the given method agrees with an existing method of the generic function on pa-
rameter specializers and qualifiers, the existing method is removed by calling remove-
method before the new method is added. See the section of the CLOS Specification
called “Agreement on Parameter Specializers and Qualifiers” for a definition of agreement
in this context.

Associating the method with the generic function then proceeds in four steps: (i) add
method to the set returned by generic-function-methods and arrange for method-
generic-function to return generic-function; (i) call add-direct-method for each of
the method’s specializers; (iii) call compute-discriminating-function and install its
result with set-funcallable-instance-function; and (iv) update the dependents of the
generic function.

The generic function add-method can be called by the user or the implementation.

METHODS

add-method Primary Method
(generic-function standard-generic-function)
(method standard-method)

No behavior is specified for this method beyond that which is specified for the generic
function.

allocate-instance Generic Function

SYNTAX
allocate-instance
class &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The initargs argument consists of alternating initialization argument names and values.

VALUES
The value returned is a newly allocated instance of class.

Generic Functions and Methods class-. .. 169

PURPOSE
This generic function is called to create a new, uninitialized instance of a class. The inter-
pretation of the concept of an “uninitialized” instance depends on the class metaobject
class.

Before allocating the new instance, class-finalized-p is called to see if class has been
finalized. If it has not been finalized, finalize-inheritance is called before the new
instance is allocated.

METHODS

allocate-instance Primary Method
(class standard-class) &rest initargs

This method allocates storage in the instance for each slot with allocation :instance.
These slots are unbound. Slots with any other allocation are ignored by this method
{no error is signaled).
N
allocate-instance Primary Method
(class funcallable-standard-class) &rest initargs

This method allocates storage in the instance for each slot with allocation :instance.
These slots are unbound. Slots with any other allocation are ignored by this method
(no error is signaled).

The funcallable instance function of the instance is undefined—the results are un-
defined if the instance is applied to arguments before set-funcallable-instance-
function has been used to set the funcallable instance function.

allocate-instance Primary Method
(class built-in-class) &rest initargs

This method signals an error.

class-. .. Generic Function

The following generic functions are described together under “Readers for Class Meta-
objects” (page 212): class-default-initargs, class-direct-default-initargs, class-
direct-slots, class-direct-subclasses, class-direct-superclasses, class-finalized-p,
class-name, class-precedence-list, class-prototype and class-slots.

170 compute-applicable-methods Chapter 6

compute-applicable-methods Generic Function

SYNTAX
compute-applicable-methods
generic-function arguments

ARGUMENTS
The generic-function argument is a generic function metaobject.
The arguments argument is a list of objects.

VALUES
This generic function returns a possibly empty list of method metaobjects.

PURPOSE

This generic function determines the method applicability of a generic function given a list
‘of tequired arguments. The returned list of method metaobjects is sorted by precedence
order with the most specific method appearing first. If no methods are applicable to the
supplied arguments the empty list is returned.

When a generic function is invoked, the discriminating function must determine the
ordered list of methods applicable to the arguments. Depending on the generic function
and the arguments, this is done in one of three ways: using a memoized value; call-
ing compute-applicable-methods-using-classes; or calling compute-applicable-
methods. (Refer to the description of compute-discriminating-function for the
details of this process.)

The arguments argument is permitted to contain more elements than the generic func-
tion accepts required arguments; in these cases the extra arguments will be ignored. An
error is signaled if arguments contains fewer elements than the generic function accepts
required arguments.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

METHODS

compute-applicable-methods Primary Method
(generic-function standard-generic-function)
arguments

This method signals an error if any method of the generic function has a specializer
which is neither a class metaobject nor an eql specializer metaobject.

Generic Functions and Methods compute-applicable-methods-using-classes 171

Otherwise, this method computes the sorted list of applicable methods according to
the rules described in the section of the CLOS Specification called “Method Selection
and Combination.”

This method can be overridden. Because of the consistency requirements
between this generic function and compute-applicable-methods-using-classes,
doing so may require also overriding compute-applicable-methods-using-classes
(standard-generic-function t).

compute-applicable-methods-using-classes Generic Function

SYNTAX
compute-applicable-methods-using-classes
generic-function classes

A MENTS
The generic-function argument is a generic function metaobject.
The classes argument is a list of class metaobjects.

VALUES
This generic function returns two values. The first is a possibly empty list of method
metaobjects. The second is either true or false.

PURPOSE
This generic function is called to attempt to determine the method applicability of a
generic function given only the classes of the required arguments.

If it is possible to completely determine the ordered list of applicable methods based
only on the supplied classes, this generic function returns that list as its first value and
true as its second value. The returned list of method metaobjects is sorted by precedence
order, the most specific method coming first. If no methods are applicable to arguments
with the specified classes, the empty list and true are returned.

If it is not possible to completely determine the ordered list of applicable methods
based only on the supplied classes, this generic function returns an unspecified first value
and false as its second value.

When a generic function is invoked, the discriminating function must determine the
ordered list of methods applicable to the arguments. Depending on the generic function
and the arguments, this is done in one of three ways: using a memoized value; call-
ing compute-applicable-methods-using-classes; or calling compute-applicable-
methods. (Refer to the description of compute-discriminating-function for the
details of this process.)

172 compute-applicable-methods-using-classes Chapter 6

The following consistency relationship between compute-applicable-methods-
using-classes and compute-applicable-methods must be maintained: for any given
generic function and set of arguments, if compute-applicable-methods-using-classes
returns a second value of true, the first value must be equal to the value that would be
returned by a corresponding call to compute-applicable-methods. The results are
undefined if a portable method on either of these generic functions causes this consistency
to be violated.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

METHODS

compute-applicable-methods-using-classes Primary Method
(generic-function standard-generic-function)
classes

Jm any method of the generic function has a specializer which is neither a class meta-
object nor an eql specializer metaobject, this method signals an error.

In cases where the generic function has no methods with eql specializers, or has no
methods with eql specializers that could be applicable to arguments of the supplied
classes, this method returns the ordered list of applicable methods as its first value
and true as its second value.

Otherwise this method returns an unspecified first value and false as its second value.

This method can be overridden. Because of the consistency requirements between
this generic function and compute-applicable-methods, doing so may require also
overriding compute-applicable-methods (standard-generic-function t).

REMARKS

This generic function exists to allow user extensions which alter method lookup rules, but
which base the new rules only on the classes of the required arguments, to take advantage
of the class-based method lookup memoization found in many implementations. (There
is of course no requirement for an implementation to provide this optimization.)

Such an extension can be implemented by two methods, one on this generic function
and one on compute-applicable-methods. Whenever the user extension is in effect,
the first method will return a second value of true. This should allow the implementation
to absorb these cases into its own memoization scheme.

To get appropriate performance, other kinds of extensions may require methods on
compute-discriminating-function which implement their own memoization scheme.

Generic Functions and Methods compute-class-precedence-list 173

compute-class-precedence-list Generic Function

SYNTAX
compute-class-precedence-list
class

ARGUMENTS
The class argument is a class metaobject.

VALUES
The value returned by this generic function is a list of class metaobjects.

PURPOSE
This generic-function is called to determine the class precedence list of a class.

The result is a list which contains each of class and its superclasses once and only
oncexThe first element of the list is class and the last element is the class named t.

All methods on this generic function must compute the class precedence list as a
function of the ordered direct superclasses of the superclasses of class. The results are
undefined if the rules used to compute the class precedence list depend on any other
factors.

When a class is finalized, finalize-inheritance calls this generic function and asso-
ciates the returned value with the class metaobject. The value can then be accessed by
calling class-precedence-list.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

METHODS
compute-class-precedence-list Primary Method
(class class)

This method computes the class precedence list according to the rules described in the
section of the CLOS Specification called “Determining the Class Precedence List.”

This method signals an error if class or any of its superclasses is a forward referenced
class.

This method can be overridden.

174 compute-default-initargs Chapter 6

compute-default-initargs Generic Function

SYNTAX
compute-default-initargs
class

ARGUMENTS
The class argument is a class metaobject.

VALUES

The value returned by this generic function is a list of canonicalized default initialization
arguments.

PURPOSE
This generic-function is called to determine the default initialization arguments for a
\/Am@w.

The result is a list of canonicalized default initialization arguments, with no duplication
among initialization argument names.

All methods on this generic function must compute the default initialization arguments
as a function of only: (i) the class precedence list of class, and (ii} the direct default
initialization arguments of each class in that list. The results are undefined if the rules
used to compute the default initialization arguments depend on any other factors.

When a class is finalized, finalize-inheritance calls this generic function and asso-
ciates the returned value with the class metaobject. The value can then be accessed by
calling class-default-initargs.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

METHODS
compute-default-initargs Primary Method
(class standard-class)

compute-default-initargs Primary Method
(class funcallable-standard-class)

These methods compute the default initialization arguments according to the rules
described in the section of the CLOS Specification called “Defaulting of Initialization
Arguments.”

Generic Functions and Methods compute-discriminating-function 175

These methods signal an error if class or any of its superclasses is a forward refer-
enced class.

These methods can be overridden.

compute-discriminating-function Generic Function

SYNTAX
compute-discriminating-function
generic-function

ARGUMENTS
The generic-function argument is a generic function metaobject.

VALUES
The value returned by this generic function is a function.

\T/C/ﬁuOmm

This generic function is called to determine the discriminating function for a generic
function. When a generic function is called, the installed discriminating function is
called with the full set of arguments received by the generic function, and must implement
the behavior of calling the generic function: determining the ordered set of applicable
methods, determining the effective method, and running the effective method.

To determine the ordered set of applicable methods, the discriminating function
first calls compute-applicable-methods-using-classes. If compute-applicable-
methods-using-classes returns a second value of false, the discriminating function
then calls compute-applicable-methods.

When compute-applicable-methods-using-classes returns a second value of true,
the discriminating function is permitted to memoize the first returned value as follows.
The discriminating function may reuse the list of applicable methods without calling
compute-applicable-methods-using-classes again provided that:

(i) the generic function is being called again with required arguments which are
instances of the same classes,

(ii) the generic function has not been reinitialized,

(iii) no method has been added to or removed from the generic function,

(iv) for all the specializers of all the generic function’s methods which are classes,
their class precedence lists have not changed and

(v) for any such memoized value, the class precedence list of the class of each of
the required arguments has not changed.

176 compute-effective-method Chapter 6

Determination of the effective method is done by calling compute-effective-method.
When the effective method is run, each method’s function is called, and receives as
arguments: (i) a list of the arguments to the generic function, and (ii) whatever other
arguments are specified in the call-method form indicating that the method should be
called. (See make-method-lambda for more information about how method functions
are called.)

The generic function compute-discriminating-function is called, and its result
installed, by add-method, remove-method, initialize-instance and reinitialize-
instance.

METHODS
compute-discriminating-function Primary Method
(generic-function standard-generic-function)

No behavior is specified for this method beyond that specified for the generic function.
This method can be overridden.

compute-effective-method Generic Function

SYNTAX
compute-effective-method
generic-function method-combination methods

ARGUMENTS

The generic-function argument is a generic function metaobject.
The method-combination argument is a method combination metaobject.
The methods argument is a list of method metaobjects.

VALUES
This generic function returns two values. The first is an effective method, the second is

a list of effective method options.

PURPOSE
This generic function is called to determine the effective method from a sorted list of
method metaobjects.

An effective method is a form that describes how the applicable methods are to be
combined. Inside of effective method forms are call-method forms which indicate that
a particular method is to be called. The arguments to the call-method form indicate
exactly how the method function of the method should be called. (See make-method-
lambda for more details about method functions.)

Generic Functions and Methods compute-effective-slot-definition 177

An effective method option has the same interpretation and syntax as either the
:arguments or the :generic-function option in the long form of define-method-
combination.

More information about the form and interpretation of effective methods and effective
method options can be found under the description of the define-method-combination
macro in the CLOS specification.

This generic function can be called by the user or the implementation. It is called by
discriminating functions whenever a sorted list of applicable methods must be converted
to an effective method.

METHODS

compute-effective-method Primary Method
(generic-function standard-generic-function)
method-combination
methods

-~ This method computes the effective method according to the rules of the method
combination type implemented by method-combination.
This method can be overridden.

compute-effective-slot-definition Generic Function

SYNTAX
compute-effective-slot-definition
class name direct-slot-definitions

ARGUMENTS
The class argument is a class metaobject.

The name argument is a slot name.

The direct-slot-definitions argument is an ordered list of direct slot definition metaob-
jects. The most specific direct slot definition metaobject appears first in the list.

VALUEs
The value returned by this generic function is an effective slot definition metaobject.

PURPOSE
This generic function determines the effective slot definition for a slot in a class. It is
called by compute-slots once for each slot accessible in instances of class.

This generic function uses the supplied list of direct slot definition metaobjects to
compute the inheritance of slot properties for a single slot. The returned effective slot

/

178 compute-slots Chapter 6

definition represents the result of computing the inheritance. The name of the new
effective slot definition is the same as the name of the direct slot definitions supplied.

The class of the effective slot definition metaobject is determined by calling effective-
slot-definition-class. The effective slot definition is then created by calling make-
instance. The initialization arguments passed in this call to make-instance are used to
initialize the new effective slot definition metaobject. See “Initialization of Slot Definition
Metaobjects” for details.

METHODS

compute-effective-slot-definition Primary Method
(class standard-class)
name
direct-slot-definitions

This method implements the inheritance and defaulting of slot options following the
rules described in the “Inheritance of Slots and Options” section of the CLOS Speci-
fication.

This method can be extended, but the value returned by the extending method must
be the value returned by this method.

compute-effective-slot-definition Primary Method
(class funcallable-standard-class)
name
direct-slot-definitions

This method implements the inheritance and defaulting of slot options following the
rules described in the “Inheritance of Slots and Options” section of the CLOS Speci-
fication.

This method can be extended, but the value returned by the extending method must
be the value returned by this method.

compute-slots Generic Function

SYNTAX
compute-slots
class

ARGUMENTS
The class argument is a class metaobject.

Generic Functions and Methods compute-slots 179

VALUES
The value returned is a set of effective slot definition metaobjects.

PURPOSE

This generic function computes a set of effective slot definition metaobjects for the class
class. The result is a list of effective slot definition metaobjects: one for each slot that
will be accessible in instances of class.

This generic function proceeds in 3 steps:

The first step collects the full set of direct slot definitions from the superclasses of
class.

The direct slot definitions are then collected into individual lists, one list for each slot
name associated with any of the direct slot definitions. The slot names are compared
with eql. Each such list is then sorted into class precedence list order. Direct slot
definitions coming from classes earlier in the class precedence list of class appear before
those coming from classes later in the class precedence list. For each slot name, the
generic function compute-effective-slot-definition is called to compute an effective
slot definition. The result of compute-slots is a list of these effective slot definitions,
in unspecified order.

In the final step, the location for each effective slot definition is set. This is done by
specified around-methods; portable methods cannot take over this behavior. For more
information on the slot definition locations, see the section “Instance Structure Protocol.”

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

METHODS

compute-slots Primary Method
(class standard-class)

This method implements the specified behavior of the generic function.
This method can be overridden.
compute-slots Primary Method

(class funcallable-standard-class)

This method implements the specified behavior of the generic function.
This method can be overridden.

180 direct-slot-definition-class Chapter 6

compute-slots Around-Method
(class standard-class)

This method implements the specified behavior of computing and storing slot locations.
This method cannot be overridden.
compute-slots Around-Method

(class funcallable-standard-class)

This method implements the specified behavior of computing and storing slot locations.
This method cannot be overridden.

direct-slot-definition-class Generic Function

SYNTAX
direct-slot-definition-class
class grest initargs

ARGUMENTS
The class argument is a class- metaobject.
The initargs argument is a set of initialization arguments and values.

VALUES
The value returned is a subclass of the class direct-slot-definition.

PURPOSE
When a class is initialized, each of the canonicalized slot specifications must be converted
to a direct slot definition metaobject. This generic function is called to determine the
class of that direct slot definition metaobject.

The initargs argument is simply the canonicalized slot specification for the slot.

METHODS

direct-slot-definition-class Primary Method
(class standard-class)
&rest initargs

This method returns the class standard-direct-slot-definition.
This method can be overridden.

Generic Functions and Methods effective-slot-definition-class 181

direct-slot-definition-class Primary Method
(class funcallable-standard-class)
&rest initargs

This method returns the class standard-direct-slot-definition.
This method can be overridden.

effective-slot-definition-class Generic Function

SYNTAX
effective-slot-definition-class
class &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The initargs argument is a set of initialization arguments and values.

VALUES
The value returned is a subclass of the class effective-slot-definition-class.

PURPOSE

This generic function is called by compute-effective-slot-definition to determine the
class of the resulting effective slot definition metaobject. The initargs argument is the
set of initialization arguments and values that will be passed to make-instance when
the effective slot definition metaobject is created.

METHODS

effective-slot-definition-class Primary Method
(class standard-class)
&rest initargs

This method returns the class standard-effective-slot-definition.
This method can be overridden.

effective-slot-definition-class Primary Method
(class funcallable-standard-class)
&rest initargs

This method returns the class standard-effective-slot-definition.
This method can be overridden.

182 ensure-class Chapter 6

ensure-class Function

SYNTAX
ensure-class
name &key &allow-other-keys

ARGUMENTS
The name argument is a symbol.

Some of the keyword arguments accepted by this function are actually processed by
ensure-class-using-class, others are processed during initialization of the class meta-
object (as described in the section called “Initialization of Class Metaobjects”).

VALUES
The result is a class metaobject.

PURPOSE

This function is called to define or redefine a class with the specified name, and can be
called by the user or the implementation. It is the functional equivalent of defclass, and
is called by the expansion of the defclass macro.

The behavior of this function is actually implemented by the generic function ensure-
class-using-class. When ensure-class is called, it immediately calls ensure-class-
using-class and returns that result as its own.

The first argument to ensure-class-using-class is computed as follows:

e If name names a class (find-class returns a class when called with name) use that
class.
e Otherwise use nil.

The second argument is name. The remaining arguments are the complete set of keyword
arguments received by the ensure-class function.

Generic Functions and Methods ensure-class-using-class 183

ensure-class-using-class Generic Function

SYNTAX
ensure-class-using-class
class name &key :direct-default-initargs :direct-slots
:direct-superclasses :name
:metaclass

&allow-other-keys

ARGUMENTS
The class argument is a class metaobject or nil.

The name argument is a class name.

The :metaclass argument is a class metaobject class or a class metaobject class name.
If this argument is not supplied, it defaults to the class named standard-class. If a class
name is supplied, it is interpreted as the class with that name. If a class name is supplied,
but there is no such class, an error is signaled.

The :direct-superclasses argument is a list of which each element is a class metaob-
ject or aclass name. An error is signaled if this argument is not a proper list.

For the interpretation of additional keyword arguments, see “Initialization of Class
Metaobjects” (page 193).

VALUES
The result is a class metaobject.

PURPOSE
This generic function is called to define or modify the definition of a named class. It is
called by the ensure-class function. It can also be called directly.

The first step performed by this generic function is to compute the set of initialization
arguments which will be used to create or reinitialize the named class. The initialization
arguments are computed from the full set of keyword arguments received by this generic
function as follows:

® The :metaclass argument is not included in the initialization arguments.
¢ If the :direct-superclasses argument was received by this generic function, it is
converted into a list of class metaobjects. This conversion does not affect the structure

of the supplied :direct-superclasses argument. For each element in the :direct-
superclasses argument:

o If the element is a class metaobject, that class metaobject is used.

184 ensure-class-using-class Chapter 6

o If the element names a class, that class metaobject is used.
e Otherwise an instance of the class forward-referenced-class is created and used.

The proper name of the newly created forward referenced class metaobject is set to
name.

o All other keyword arguments are included directly in the initialization arguments.

If the class argument is nil, a new class metaobject is created by calling the make-
instance generic function with the value of the :metaclass argument as its first argu-
ment, and the previously computed initialization arguments. The proper name of the
newly created class metaobject is set to name. The newly created class metaobject is
returned.

If the class argument is a forward referenced class, change-class is called to change
its class to the value specified by the :metaclass argument. The class metaobject is then
reinitialized with the previously initialization arguments. (This is a documented violation
of the general constraint that change-class not be used with class metaobjects.)

If the class of the class argument is not the same as the class specified by the :meta-
class argument, an error is signaled.

Otherwise, the class metaobject class is redefined by calling the reinitialize-instance
mmcma/_dlmm:oﬁwos with class and the initialization arguments. The class argument is then
returned.

METHODS
ensure-class-using-class Primary Method
(class class)
name
&key :metaclass
:direct-superclasses

4allow-other-keys
This method implements the behavior of the generic function in the case where the

class argument is a class.
This method can be overridden.

i

Generic Functions and Methods ensure-generic-function 185

ensure-class-using-class Primary Method
(class forward-referenced-class)
name
4key :metaclass
:direct-superclasses

4allow-other-keys

This method implements the behavior of the generic function in the case where the
class argument is a forward referenced class.

ensure-class-using-class Primary Method
(class null)
name
&key :metaclass
:direct-superclasses

&allow-other-keys

N
This method implements the behavior of the generic function in the case where the

class argument is nil.

ensure-generic-function Function

SYNTAX
ensure-generic-function
function-name &key &allow-other-keys

ARGUMENTS
The function-name argument is a symbol or a list of the form (setf symbol).

Some of the keyword arguments accepted by this function are actually processed by
ensure-generic-function-using-class, others are processed during initialization of the
generic function metaobject (as described in the section called “Initialization of Generic
Function Metaobjects”).

VALUES
The result is a generic function metaobject.

186 ensure-generic-function-using-class Chapter 6

PURPOSE

This function is called to define a globally named generic function or to specify or modify
options and declarations that pertain to a globally named generic function as a whole.
It can be called by the user or the implementation.

It is the functional equivalent of defgeneric, and is called by the expansion of the
defgeneric and defmethod macros.

The behavior of this function is actually implemented by the generic function ensure-
generic-function-using-class. When ensure-generic-function is called, it immedi-
ately calls ensure-generic-function-using-class and returns that result as its own.

The first argument to ensure-generic-function-using-class is computed as follows:

o If function-name names a non-generic function, a macro, or a special form, an error is
signaled.

e If function-name names a generic function, that generic function metaobject is used.

e Otherwise, nil is used.

The second argument is function-name. The remaining arguments are the complete
set of keyword arguments received by ensure-generic-function.

ensure-generic-function-using-class Generic Function

SYNTAX
ensure-generic-function-using-class
generic-function
function-name
&key :argument-precedence-order :declarations
:documentation :generic-function-class
:lambda-list :method-class
:method-combination :name

&allow-other-keys

ARGUMENTS
The generic-function argument is a generic function metaobject or nil.

The function-name argument is a symbol or a list of the form (setf symbol).

The :generic-function-class argument is a class metaobject or a class name. If it
is not supplied, it defaults to the class named standard-generic-function. If a class
name is supplied, it is interpreted as the class with that name. If a class name is supplied,
but there is no such class, an error is signaled.

Generic Functions and Methods ensure-generic-function-using-class 187

For the interpretation of additional keyword arguments, see “Initialization of Generic
Function Metaobjects” (page 197).

VALUES
The result is a generic function metaobject.

PURPOSE

The generic function ensure-generic-function-using-class is called to define or modify
the definition of a globally named generic function. It is called by the ensure-generic-
function function. It can also be called directly.

The first step performed by this generic function is to compute the set of initialization
arguments which will be used to create or reinitialize the globally named generic function.
These initialization arguments are computed from the full set of keyword arguments
received by this generic function as follows:

e The :generic-function-class argument is not included in the initialization arguments.

e If the :method-class argument was received by this generic function, it is converted
into a class metaobject. This is done by looking up the class name with find-class. If
there is no such class, an error is signalled.

e All other keyword arguments are included directly in the initialization arguments.

If the generic-function argument is nil, an instance of the class specified by the
:generic-function-class argument is created by calling make-instance with the pre-
viously computed initialization arguments. The function name function-name is set to
name the generic function. The newly created generic function metaobject is returned.

If the class of the generic-function argument is not the same as the class specified by
the :generic-function-class argument, an error is signaled.

Otherwise the generic function generic-function is redefined by calling the reinitialize-
instance generic function with generic-function and the initialization arguments. The
generic-function argument is then returned.

METHODS

ensure-generic-function-using-class Primary Method
(generic-function generic-function)
function-name
&key :generic-function-class

&allow-other-keys

This method implements the behavior of the generic function in the case where function-
name names an existing generic function.

188 extract-lambda-list Chapter 6

This method can be overridden.

ensure-generic-function-using-class Primary Method
(generic-function null)
function-name
&key :generic-function-class

&%allow-other-keys

This method implements the behavior of the generic function in the case where function-
name names no function, generic function, macro or special form.

eql-specializer-object Function

SYNTAX
eql-specializer-object
eql-specializer

ARGUMENTS

The eql-specializer argument is an eql specializer metaobject.

VALUES
The value returned by this function is an object.

PURPOSE
This function returns the object associated with egl-specializer during initialization. The
value is guaranteed to be eql to the value originally passed to intern-eql-specializer,
but it is not necessarily eq to that value.

This function signals an error if egl-specializer is not an eql specializer.

extract-lamnbda-list Function

SYNTAX
extract-lambda-list
specialized-lambda-list

ARGUMENTS
The specialized-lambda-list argument is a specialized lambda list as accepted by def-
method.

Generic Functions and Methods extract-lambda-list 189

VALUES
The result is an unspecialized lambda list.

PURPOSE
This function takes a specialized lambda list and returns the lambda, list with the spe-
cializers removed. This is a non-destructive operation. Whether the result shares any
structure with the argument is unspecified.

If the specialized-lambda-list argument does not have legal syntax, an error is signaled.
This syntax checking does not check the syntax of the actual specializer names, only the
syntax of the lambda list and where the specializers appear.

EXAMPLES
(extract-lambda-list '((p position))) ==> (P)
(extract-lambda-list '((p position) x y)) ==> (P X Y)

(extract-lambda-list '(a (b (eql x)) c &rest i)) ==> (A B C &OPTIONAL I)

extract-specializer-names Function

SynTAX —
extract-specializer-names
specialized-lambda-list

ARGUMENTS

The specialized-lambda-list argument is a specialized lambda list as accepted by def-
method.

VALUES
The result is a list of specializer names.

PURPOSE

This function takes a specialized lambda list and returns its specializer names. This is
& non-destructive operation. Whether the result shares structure with the argument is
unspecified. The results are undefined if the result of this function is modified.

The result of this function will be a list with a number of elements equal to the number
of required arguments in specialized-lambda-list. Specializers are defaulted to the symbol
t.

If the specialized-lambda-list argument does not have legal syntax, an error is signaled.
This syntax checking does not check the syntax of the actual specializer names, only the
syntax of the lambda list and where the specializers appear.

190 finalize-inheritance Chapter 6

EXAMPLES
(extract-specializer-names '((p position))) ==> (POSITION)
(extract-specializer-names '((p position) x y)) ==> (POSITION T T)

(extract-specializer-names '(a (b (eql x)) ¢ &rest i)) ==> (T (EQL X) T)

finalize-inheritance Generic Function

SYNTAX
finalize-inheritance
class

ARGUMENTS
The class argument is a class metaobject.

VALUES
The value returned by this generic function is unspecified.

PURPOSE
This generic function is called to finalize a class metaobject. This is described in the
mmoagﬂ%zs@a “Class Finalization Protocol.”

After finalize-inheritance returns, the class metaobject is finalized and the result of
calling class-finalized-p on the class metaobject will be true.

METHODS
finalize-inheritance Primary Method
(class standard-class)

finalize-inheritance Primary Method
(class funcallable-standard-class)

No behavior is specified for these methods beyond that which is specified for the generic
function.
finalize-inheritance Primary Method

(class forward-referenced-class)

This method signals an error.

Generic Functions and Methods find-method-combination 191

find-method-combination Generic Function

SYNTAX

find-method-combination
generic-function
method-combination-type-name
method-combination-options

ARGUMENTS
The generic-function argument is a generic function metaobject.

The method-combination-type-name argument is a symbol which names a type of
method combination.

The method-combination-options argument is a list of arguments to the method com-
bination type.

VALUES
The value returned by this generic function is a method combination metaobject.

PURPOSE
This generic function is called to determine the method combination object used by a
generic function.

REMARKS
Further details of method combination metaobjects are not specified.

funcallable-standard-instance-access Function

SYNTAX
funcallable-standard-instance-access
instance location

ARGUMENTS
The instance argument is an object.
The location argument is a slot location.

VALUES
The result of this function is an object.

192 generic-function-. . . Chapter 6

PURPOSE
This function is called to provide direct access to a slot in an instance. By usurping the
normal slot lookup protocol, this function is intended to provide highly optimized access
to the slots associated with an instance.

The following restrictions apply to the use of this function:

e The instance argument must be a funcallable instance (it must have been returned by
allocate-instance (funcallable-standard-class)).

e The instance argument cannot be an non-updated obsolete instance.

o The location argument must be a location of one of the directly accessible slots of the
instance’s class.

¢ The slot must be bound.

The results are undefined if any of these restrictions are not met.

generic-function-. .. Generic Function

The following generic functions are described together under “Readers for Generic
Function Metaobjects” (page 216): generic-function-argument-precedence-order,
generic-function-declarations, generic-function-lambda-list, generic-function-
method-class, generic-function-method-combination, generic-function-meth-
ods and generic-function-name.

Generic Functions and Methods Initialization of Class Metaobjects 193

Initialization of Class Metaobjects

A class metaobject can be created by calling make-instance. The initialization argu-
ments establish the definition of the class. A class metaobject can be redefined by calling
reinitialize-instance. Some classes of class metaobject do not support redefinition; in
these cases, reinitialize-instance signals an error.

Initialization of a class metaobject must be done by calling make-instance and allow-
ing it to call initialize-instance. Reinitialization of a class metaobject must be done by
calling reinitialize-instance. Portable programs must not call initialize-instance di-
rectly to initialize a class metaobject. Portable programs must not call shared-initialize
directly to initialize or reinitialize a class metaobject. Portable programs must not call
change-class to change the class of any class metaobject or to turn a non-class object
into a class metaobject.

Since metaobject classes may not be redefined, no behavior is specified for the result
of calls to update-instance-for-redefined-class on class metaobjects. Since the class
of class metaobjects may not be changed, no behavior is specified for the result of calls
to update-instance-for-different-class on class metaobjects.

During initialization or reinitialization, each initialization argument is checked for er-
rors and then associated with the class metaobject. The value can then be accessed by
calling M@mvvaovlwam accessor as shown in Table 6.1.

This section begins with a description of the error checking and processing of each
initialization argument. This is followed by a table showing the generic functions that
can be used to access the stored initialization arguments. Initialization behavior specific
to the different specified class metaobject classes comes next. The section ends with
a set of restrictions on portable methods affecting class metaobject initialization and
reinitialization.

In these descriptions, the phrase “this argument defaults to velue” means that when
that initialization argument is not supplied, initialization or reinitialization is performed
as if value had been supplied. For some initialization arguments this could be done by the
use of default initialization arguments, but whether it is done this way is not specified.
Implementations are free to define default initialization arguments for specified class
metaobject classes. Portable programs are free to define default initialization arguments
for portable subclasses of the class class.

Unless there is a specific note to the contrary, then during reinitialization, if an ini-
tialization argument is not supplied, the previously stored value is left unchanged.

e The :direct-default-initargs argument is a list of canonicalized default initialization
arguments.

194 Initialization of Class Metaobjects Chapter 6

An error is signaled if this value is not a proper list, or if any element of the list is
not a canonicalized default initialization argument.

If the class metaobject is being initialized, this argument defaults to the empty list.

e The :direct-slots argument is a list of canonicalized slot specifications.

An error is signaled if this value is not a proper list or if any element of the list is
not a canonicalized slot specification.

After error checking, this value is converted to a list of direct slot definition metaob-
jects before it is associated with the class metaobject. Conversion of each canonicalized
slot specification to a direct slot definition metaobject is a two-step process. First,
the generic function direct-slot-definition-class is called with the class metaobject
and the canonicalized slot specification to determine the class of the new direct slot
definition metaobject; this permits both the class metaobject and the canonicalized
slot specification to control the resulting direct slot definition metaobject class. Sec-
ond, make-instance is applied to the direct slot definition metaobject class and the
canonicalized slot specification. This conversion could be implemented as shown in the
following code:

(defun convert-to-direct-slot-definition (class canonicalized-slot)
(apply #'make-instance
(apply #'direct-slot-definition-class
class canonicalized-slot)
L canonicalized-slot))

If the class metaobject is being initialized, this argument defaults to the empty list.

Once the direct slot definition metaobjects have been created, the specified reader
and writer methods are created. The generic functions reader-method-class and
writer-method-class are called to determine the classes of the method metaobjects
created.

o The :direct-superclasses argument is a list of class metaobjects. Classes which do
not support multiple inheritance signal an error if the list contains more than one
element.

An error is signaled if this value is not a proper list or if validate-superclass
applied to class and any element of this list returns false.

When the class metaobject is being initialized, and this argument is either not
supplied or is the empty list, this argument defaults as follows: if the class is an
instance of standard-class or one of its subclasses the default value is a list of the
class standard-object; if the class is an instance of funcallable-standard-class or
one of its subclasses the default value is list of the class funcallable-standard-ob ject.

Generic Functions and Methods Initialization of Class Metaobjects 195

After any defaulting of the value, the generic function add-direct-subclass is called
once for each element of the list.

When the class metaobject is being reinitialized and this argument is supplied, the
generic function remove-direct-subclass is called once for each class metaob ject in
the previously stored value but not in the new value; the generic function add-direct-
subclass is called once for each class metaobject in the new value but not in the
previously stored value.

e The :documentation argument is a string or nil.

An error is signaled if this value is not a string or nil.

If the class metaobject is being initialized, this argument defaults to nil.
e The :name argument is an object.

If the class is being initialized, this argument defaults to nil.

After the processing and defaulting of initialization arguments described above, the
value of each initialization argument is associated with the class metaob ject. These values
can then be accessed by calling the corresponding generic function. The correspondences
are as follows:

Initialization Argument Generic Function
"&wmon.mmmmc_n-manmwmm class-direct-default-initargs
:direct-slots class-direct-slots
:direct-superclasses class-direct-superclasses
:documentation documentation

:name class-name

Table 6.1 Initialization arguments and accessors for class metaobjects.

Instances of the class standard-class support multiple inheritance and reinitialization.
Instances of the class funcallable-standard-class support multiple inheritance and
reinitialization. For forward referenced classes, all of the initialization arguments default
to nil.

Since built-in classes cannot be created or reinitialized by the user, an error is signaled
if initialize-instance or reinitialize-instance are called to initialize or reinitialize a
derived instance of the class built-in-class.

METHODS

It is not specified which methods provide the initialization and reinitialization behavior
described above. Instead, the information needed to allow portable programs to specialize

196 Initialization of Class Metaobjects Chapter 6

this behavior is presented as a set of restrictions on the methods a portable program
can define. The model is that portable initialization methods have access to the class
metaobject when either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can define on the
generic functions initialize-instance, reinitialize-instance, and shared-initialize.
These restrictions apply only to methods on these generic functions for which the first
specializer is a subclass of the class class. Other portable methods on these generic
functions are not affected by these restrictions.

e Portable programs must not define methods on shared-initialize.
e For initialize-instance and reinitialize-instance:

e Portable programs must not define primary methods.

e Portable programs may define around-methods, but these must be extending, not
overriding methods.

e Portable before-methods must assume that when they are run, none of the initial-
ization behavior described above has been completed.

e Portable after-methods must assume that when they are run, all of the initialization
behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

!

Generic Functions and Methods Initialization of Generic Function Metaobjects 197

Initialization of Generic Function Metaobjects

A generic function metaobject can be created by calling make-instance. The initial-
ization arguments establish the definition of the generic function. A generic function
metaobject can be redefined by calling reinitialize-instance. Some classes of generic
function metaobject do not support redefinition; in these cases, reinitialize-instance
signals an error.

Initialization of a generic function metaob ject must be done by calling make-instance
and allowing it to call initialize-instance. Reinitialization of a generic-function meta-
object must be done by calling reinitialize-instance. Portable programs must not
call initialize-instance directly to initialize a generic function metaobject. Portable
programs must not call shared-initialize directly to initialize or reinitialize a generic
function metaobject. Portable programs must not call change-class to change the class
of any generic function metaob ject or to turn a non-generic-function ob ject into a generic
function metaobject.

Since metaobject classes may not be redefined, no behavior is specified for the result of
calls to update-instance-for-redefined-class on generic function metaobjects. Since
the class of a generic function metaobject may not be changed, no behavior is speci-
fied for the results of calls to update-instance-for-different-class on generic function
metaobjects.

During initialization or reinitialization, each initialization argument is checked for er-
rors and themassociated with the generic function metaobject. The value can then be
accessed by calling the appropriate accessor as shown in Table 6.2.

This section begins with a description of the error checking and processing of each
Initialization argument. This is followed by a table showing the generic functions that
can be used to access the stored initialization arguments. The section ends with a set of
restrictions on portable methods affecting generic function metaob ject initialization and
reinitialization.

In these descriptions, the phrase “this argument defaults to value” means that when
that initialization argument is not supplied, initialization or reinitialization is performed
as if value had been supplied. For some initialization arguments this could be done by the
use of default initialization arguments, but whether it is done this way is not specified.
Implementations are free to define default initialization arguments for specified generic
function metaobject classes. Portable programs are free to define default initialization
arguments for portable subclasses of the class generic-function.

Unless there is a specific note to the contrary, then during reinitialization, if an ini-
tialization argument is not supplied, the previously stored value is left unchanged.

198 Initialization of Generic Function Metaobjects Chapter 6

¢ The :argument-precedence-order argument is a list of symbols.

An error is signaled if this argument appears but the :lambda-list argument does
not appear. An error is signaled if this value is not a proper list or if this value is not
a permutation of the symbols from the required arguments part of the :lambda-list
initialization argument.

When the generic function is being initialized or reinitialized, and this argument is
not supplied, but the :lambda-list argument is supplied, this value defaults to the
symbols from the required arguments part of the :lambda-list argument, in the order
they appear in that argument. If neither argument is supplied, neither are initialized
(see the description of :lambda-list.)

e The :declarations argument is a list of declarations.

An error is signaled if this value is not a proper list or if each of its elements is not
a legal declaration.

When the generic function is being initialized, and this argument is not supplied, it
defaults to the empty list.

e The :documentation argument is a string or nil.

An error is signaled if this value is not a string or nil.

If the generic function is being initialized, this argument defaults to nil.
e The :lambda-list argument is a lambda list.

An error is signaled if this value is not a proper generic function lambda list.

When the generic function is being initialized, and this argument is not supplied, the
mocmao/m@oao:,m lambda list is not initialized. The lambda list will be initialized later,
either when the first method is added to the generic function, or a later reinitialization
of the generic function.

¢ The :method-combination argument is a method combination metaobject.
e The :method-class argument is a class metaobject.

An error is signaled if this value is not a subclass of the class method.

When the generic function is being initialized, and this argument is not supplied, it
defaults to the class standard-method.

e The :name argument is an object.
If the generic function is being initialized, this argument defaults to nil.

After the processing and defaulting of initialization arguments described above, the
value of each initialization argument is associated with the generic function metaobject.
These values can then be accessed by calling the corresponding generic function. The
correspondences are as follows:

Generic Functions and Methods Initialization of Generic Function Metaobjects 199

Initialization Argument Generic Function

:argument-precedence-order generic-function-argument-precedence-order

:declarations generic-function-declarations
:documentation documentation

:lambda-list generic-function-lambda-list
:method-combination generic-function-method-combination
:method-class generic-function-method-class

name generic-function-name

Table 6.2 Initialization arguments and accessors for generic function metaobjects.

METHODS
It is not specified which methods provide the initialization and reinitialization behavior
described above. Instead, the information needed to allow portable programs to specialize
this behavior is presented as a set of restrictions on the methods a portable program
can define. The model is that portable initialization methods have access to the generic
function metaobject when either all or none of the specified initialization has taken effect.
These restrictions govern the methods that a portable program can define on the
generic functions initialize-instance, reinitialize-instance, and shared-initialize.
These ammalo@m apply only to methods on these generic functions for which the first
specializer is @ subclass of the class generic-function. Other portable methods on these
generic functions are not affected by these restrictions.

¢ Portable programs must not define methods on shared-initialize.
e For initialize-instance and reinitialize-instance:

e Portable programs must not define primary methods.

e Portable programs may define around-methods, but these must be extending, not
overriding methods.

e Portable before-methods must assume that when they are run, none of the initial-
ization behavior described above has been completed.

¢ Portable after-methods must assume that when they are run, all of the initialization
behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

200 Initialization of Method Metaobjects Chapter 6

Initialization of Method Metaob jects

A method metaobject can be created by calling make-instance. The initialization
arguments establish the definition of the method. A method metaobject cannot be
redefined; calling reinitialize-instance signals an error.

Initialization of a method metaobject must be done by calling make-instance and
allowing it to call initialize-instance. Portable programs must not call initialize-
instance directly to initialize a method metaoject. Portable programs must not call
shared-initialize directly to initialize a method metaobject. Portable programs must
not call change-class to change the class of any method metaobject or to turn a non-
method object into a method metaobject.

Since metaobject classes may not be redefined, no behavior is specified for the result of
calls to update-instance-for-redefined-class on method metaobjects. Since the class
of a method metaobject cannot be changed, no behavior is specified for the result of calls
to update-instance-for-different-class on method metaobjects.

During initialization, each initialization argument is checked for errors and then as-
sociated with the method metaobject. The value can then be accessed by calling the
appropriate accessor as shown in Table 6.3.

This section begins with a description of the error checking and processing of each
initialization argument. This is followed by a table showing the generic functions that
can be used to access the stored initialization arguments. The section ends with a set of
restrictions’on portable methods affecting method metaobject initialization.

In these descriptions, the phrase “this argument defaults to value” means that when
that initialization argument is not supplied, initialization is performed as if value had
been supplied. For some initialization arguments this could be done by the use of default
initialization arguments, but whether it is done this way is not specified. Implementa-
tions are free to define default initialization arguments for specified method metaobject
classes. Portable programs are free to define default initialization arguments for portable
subclasses of the class method.

e The :qualifiers argument is a list of method qualifiers. An error is signaled if this
value is not a proper list, or if any element of the list is not a non-null atom. This
argument defaults to the empty list.

e The :lambda-list argument is the unspecialized lambda list of the method. An error
is signaled if this value is not a proper lambda list. If this value is not supplied, an
error is signaled.

e The :specializers argument is a list of the specializer metaobjects for the method. An
error is signaled if this value is not a proper list, or if the length of the list differs from

202

Initialization of Method Metaobjects Chapter 6

These restrictions govern the methods that a portable program can define on the
generic functions initialize-instance, reinitialize-instance, and shared-initialize.
These restrictions apply only to methods on these generic functions for which the first
specializer is a subclass of the class method. Other portable methods on these generic
functions are not affected by these restrictions.

e Portable programs must not define methods on shared-initialize or reinitialize-
instance.
e For initialize-instance:

Portable programs must not define primary methods.

Portable programs may define around-methods, but these must be extending, not
overriding methods.

Portable before-methods must assume that when they are run, none of the initial-
ization behavior described above has been completed.

Portable after-methods must assume that when they are run, all of the initialization
behavior described above has been completed.

The results are undefined if any of these restrictions are violated.

Generic Functions and Methods Initialization of Slot Definition Metaobjects 203

Initialization of Slot Definition Metaobjects

A slot definition metaob ject can be created by calling make-instance. The initialization
arguments establish the definition of the slot definition. A slot definition metaobject
cannot be redefined; calling reinitialize-instance signals an error.

Initialization of a slot definition metaobject must be done by calling make-instance
and allowing it to call initialize-instance. Portable programs must not call initialize-
instance directly to initialize a slot definition metaobject. Portable programs must
not call shared-initialize directly to initialize a slot definition metaobject. Portable
programs must not call change-class to change the class of any slot definition metaob ject
or to turn a non-slot-definition ob ject into a slot definition metaob ject.

Since metaobject classes may not be redefined, no behavior is specified for the result of
calls to :vmmnm-mzmnmﬁom-».Ow-wmmmmbma-n_mmm on slot definition metaob jects. Since the
class of a slot definition metaobject cannot be changed, no behavior is specified for the
result of calls to :v&mnm-mbmnwaomlmOw-&m.mwmzn-n_mmm on slot definition metaob jects.

During initialization, each initialization argument is checked for errors and then asso-
ciated with the slot definition metaob Ject. The value can then be accessed by calling the
appropriate accessor as shown in Table 6.4.

This section begins with a description of the error checking and processing of each
initialization argument. This is followed by a table showing the generic functions that
can be used to access the stored initialization arguments.

In %m@&mmoavﬂmozm, the phrase “this argument defaults to value” means that when
that initialization argument is not supplied, initialization is performed as if value had
been supplied. For some initialization arguments this could be done by the use of default
initialization arguments, but whether it is done this way is not specified. Implementations
are free to define default initialization arguments for specified slot definition metaobject
classes. Portable programs are free to define default initialization arguments for portable
subclasses of the class slot-definition.

® The :name argument is a slot name. An error is signaled if this argument is not a
symbol which can be used as a variable name. An error is signaled if this argument is
not supplied.

* The :initform argument is a form. The :initform argument defaults to nil. An error
is signaled if the :initform argument is supplied, but the :initfunction argument is
not supplied.

204 Initialization of Slot Definition Metaobjects Chapter 6

o The :initfunction argument is a function of zero arguments which, when called, eval-
uates the :initform in the appropriate lexical environment. The :initfunction argu-
ment defaults to false. An error is signaled if the :initfunction argument is supplied,
but the :initform argument is not supplied.

o The :type argument is a type specifier name. An error is signaled otherwise. The
:type argument defaults to the symbol t.

e The :allocation argument is a symbol. An error is signaled otherwise. The :alloca-
tion argument defaults to the symbol :instance.

o The :initargs argument is a list of symbols. An error is signaled if this argument is
not a proper list, or if any element of this list is not a symbol. The :initargs argument
defaults to the empty list.

e The :readers argument is a list of function names. An error is signaled if it is not a
proper list, or if any element is not a valid function name. It defaults to the empty
list. An error is signaled if this argument is supplied and the metaobject is not a direct
slot definition.

e The :writers argument is a list of function names. An error is signaled if it is not a
proper list, or if any element is not a valid function name. It defaults to the empty
list. An error is signaled if this argument is supplied and the metaobject is not a direct
slot definition.

e The :documentation argument is a string or nil. An error is signaled otherwise. The
:documentation argument defaults to nil.

“W&mn the processing and defaulting of initialization arguments described above, the
value of each initialization argument is associated with the slot definition metaobject.
These values can then be accessed by calling the corresponding generic function. The
correspondences are as follows:

Generic Functions and Methods Initialization of Slot Definition Metaobjects 205

Initialization Argument Generic Function

:name slot-definition-name
:initform slot-definition-initform
:initfunction slot-definition-initfunction
itype slot-definition-type
:allocation slot-definition-allocation
:initargs slot-definition-initargs
:readers slot-definition-readers
:writers slot-definition-writers
:documentation documentation

Table 6.4 Initialization arguments and accessors for slot definition
metaobjects.

METHODS

It is not specified which methods provide the initialization and reinitialization behavior
described above. Instead, the information needed to allow portable programs to specialize
this behavior is presented as a set of restrictions on the methods a portable program can
define. The model is that portable initialization methods have access to the slot definition
metaobject when either all or none of the specified initialization has taken effect.

These restrictions govern the methods that a portable program can define on the
mmsma.zw\m\hbnao:m initialize-instance, reinitialize-instance, and shared-initialize.
These restrictions apply only to methods on these generic functions for which the first
specializer is a subclass of the class slot-definition. Other portable methods on these
generic functions are not affected by these restrictions.

* Portable programs must not define methods on shared-initialize or reinitialize-
instance.

¢ For initialize-instance:

® Portable programs must not define primary methods.

* Portable programs may define around-methods, but these must be extending, not
overriding methods.

* Portable before-methods must assume that when they are run, none of the initial-
ization behavior described above has been completed.

® Portable after-methods must assume that when they are run, all of the initialization
behavior described above has been completed.

206 make-instance Chapter 6

The results are undefined if any of these restrictions are violated.

intern-eql-specializer Function

SYNTAX
intern-eql-specializer
object

ARGUMENTS
The object argument is any Lisp object.

VALUES
The result is the eql specializer metaobject for object.

PURPOSE

This function returns the unique eql specializer metaobject for object, creating one if
necessary. Two calls to intern-eql-specializer with eql arguments will return the same
(i.e., eq) value.

REMARKS

The result of calling eql-specializer-object on the result of a call to intern-eql-
specializer is only guaranteed to be eql to the original object argument, not necessarily
eq.

G&w?mbmembnm Generic Function

SYNTAX
make-instance
class &rest initargs

ARGUMENTS
The class argument is a class metaobject or a class name.
The initargs argument is a list of alternating initialization argument names and values.

VALUES
The result is a newly allocated and initialized instance of class.

PURPOSE
The generic function make-instance creates and returns a new instance of the given
class. Its behavior and use is described in the CLOS specification.

Generic Functions and Methods make-method-lambda 207

METHODS

make-instance Primary Method
(class symbol) &rest initargs

This method simply invokes make-instance recursively on the arguments (find-
class class) and initargs.
make-instance Primary Method

(class standard-class) &rest initargs

make-instance Primary Method
(class funcallable-standard-class) &rest initargs

These methods implement the behavior of make-instance described in the CLOS
specification section named “Object Creation and Initialization.”

make-method-lambda Generic Function

SyNTAX
make-method-lamnbda
generic-function method lambda-expression environment

ARGUMENTS
The generic-function argument is a generic function metaobject.

The method argument is a (possibly uninitialized) method metaobject.

The lambda-ezpression argument is a lambda expression.

The environment argument is the same as the &environment argument to macro
expansion functions.

VALUES
This generic function returns two values. The first is a lambda expression, the second is
a list of initialization arguments and values.

PURPOSE
This generic function is called to produce a lambda expression which can itself be used to
produce a method function for a method and generic function with the specified classes.
The generic function and method the method function will be used with are not required
to be the given ones. Moreover, the method metaobject may be uninitialized.

Either the function compile, the special form function or the function coerce must
be used to convert the lambda expression a method function. The method function itself
can be applied to arguments with apply or funcall.

208 make-method-lambda Chapter 6

When a method is actually called by an effective method, its first argument will be a
list of the arguments to the generic function. Its remaining arguments will be all but the
first argument passed to call-method. By default, all method functions must accept two
arguments: the list of arguments to the generic function and the list of next methods.

For a given generic function and method class, the applicable methods on make-
method-lambda and compute-effective-method must be consistent in the following
way: each use of call-method returned by the method on compute-effective-method
must have the same number of arguments, and the method lambda returned by the
method on make-method-lambda must accept a corresponding number of arguments.

Note that the system-supplied implementation of call-next-method is not required to
handle extra arguments to the method function. Users who define additional arguments
to the method function must either redefine or forego call-next-method. (See the
example below.)

When the method metaobject is created with make-instance, the method function
must be the value of the :function initialization argument. The additional initialization
arguments, returned as the second value of this generic function, must also be passed in
this call to make-instance.

METHODS

make-method-lambda Primary Method
(generic-function standard-generic-function)

(method standard-method)

lambda-expression

environment

-

This method returns a method lambda which accepts two arguments, the list of ar-
guments to the generic function, and the list of next methods. What initialization
arguments may be returned in the second value are unspecified.

This method can be overridden.

Example:

This example shows how to define a kind of method which, from within the body of
the method, has access to the actual method metaobject for the method. This sim-
plified code overrides whatever method combination is specified for the generic func-
tion, implementing a simple method combination supporting only primary methods,
call-next-method and next-method-p. (In addition, its a simplified version of
call-next-method which does no error checking.)

Generic Functions and Methods make-method-lambda 209

Notice that the extra lexical function bindings get wrapped around the body
before call-next-method is called. In this way, the user’s definition of call-next-
method and next-method-p are sure to override the system’s definitions.

(defclass my-generic-function (standard-generic-function)
)
(:default-initargs :method-class (find-class 'my-method)))

(defclass my-method (standard-method) ())

(defmethod make-method-lambda ((gf my-generic-function)
(method my-method)
lambda-expression
environment)

(declare (ignore environment))
‘(lambda (args next-methods this-method)
(, (call-next-method gf method
‘(lambda , (cadr lambda-expression)
(flet ((this-method () this-method)
(call-next-method (&rest cnm-args)
(funcall (method-function (car next-methods))
(or cnm-args args)
(cdr next-methods)
4 (car next-methods)))
(next-method-p ()
(not (null next-methods))))
,@(cddr lambda-expression)))
environment)
args next-methods)))

(defmethod compute-effective-method ((gf my-generic-function)
method-combination
methods)

‘(call-method ,(car methods) ,(cdr methods) ,(car methods)))

210 map-dependents Chapter 6

map-dependents Generic Function

SYNTAX
map-dependents
metaobject function

ARGUMENTS
The metaobject argument is a class or generic function metaobject.
The function argument is a function which accepts one argument.

VALUES
The value returned is unspecified.

PURPOSE

This generic function applies function to each of the dependents of metaobject. The order
in which the dependents are processed is not specified, but function is applied to each
dependent once and only once. If, during the mapping, add-dependent or remove-
dependent is called to alter the dependents of metaobject, it is not specified whether
the newly added or removed dependent will have function applied to it.

METHODS
map-dependents . Primary Method
(metaobject standard-class) function

_ This method has no specified behavior beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (standard-class t)
remove-dependent (standard-class t)

map-dependents Primary Method
(metaobject funcallable-standard-class) function

This method has no specified behavior beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (funcallable-standard-class t)
remove-dependent (funcallable-standard-class t)

Generic Functions and Methods method-. .. 211

map-dependents Primary Method
(metaobject standard-generic-function) function

This method has no specified behavior beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (standard-generic-function t)
remove-dependent (standard-generic-function t)

REMARKS
See the “Dependent Maintenance Protocol” section for remarks about the use of this
facility.

method-. .. Generic Function

The following generic functions are described together under “Readers for Method
Metaobjects” (page 218): method-function, method-generic-function, method-
lambda-list, method-specializers, method-qualifiers and accessor-method-slot-
definition.

212 Readers for Class Metaobjects Chapter 6

Readers for Class Metaobjects

In this and the immediately following sections, the “reader” generic functions which
simply return information associated with a particular kind of metaobject are presented
together. General information is presented first, followed by a description of the purpose
of each, and ending with the specified methods for these generic functions.

The reader generic functions which simply return information associated with class
metaobjects are presented together in this section.

Each of the reader generic functions for class metaobjects has the same syntax, accept-
ing one required argument called class, which must be an class metaobject; otherwise, an
error is signaled. An error is also signaled if the class metaobject has not been initialized.

These generic functions can be called by the user or the implementation.

For any of these generic functions which returns a list, such lists will not be mutated
by the implementation. The results are undefined if a portable program allows such a
list to be mutated.

class-default-initargs Generic Function
class

Returns a list of the default initialization arguments for class. Each element of this list
is a canonicalized default initialization argument. The empty list is returned if class
has no default initialization arguments.

During finalization finalize-inheritance calls compute-default-initargs to com-
pute the default initialization arguments for the class. That value is associated with
the class metaobject and is returned by class-default-initargs.

This generic function signals an error if class has not been finalized.

-

class-direct-default-initargs Generic Function
class

Returns a list of the direct default initialization arguments for class. Each element of
this list is a canonicalized default initialization argument. The empty list is returned if
class has no direct default initialization arguments. This is the defaulted value of the
:direct-default-initargs initialization argument that was associated with the class
during initialization or reinitialization.

Generic Functions and Methods Readers for Class Metaobjects 213

class-direct-slots Generic Function
class

Returns a set of the direct slots of class. The elements of this set are direct slot
definition metaobjects. If the class has no direct slots, the empty set is returned. This
is the defaulted value of the :direct-slots initialization argument that was associated
with the class during initialization and reinitialization.

class-direct-subclasses Generic Function
class

Returns a set of the direct subclasses of class. The elements of this set are class
metaobjects that all mention this class among their direct superclasses. The empty set
is returned if class has no direct subclasses. This value is maintained by the generic
functions add-direct-subclass and remove-direct-subclass.

class-direct-superclasses Generic Function
class

Returns a list of the direct superclasses of class. The elements of this list are class
metaobjects. The empty list is returned if class has no direct superclasses. This
is the defaulted value of the :direct-superclasses initialization argument that was
associated with the class during initialization or reinitialization.

o_mwmrw@.»w:smauv szmz.nm_::n:o:
class

Returns true if class has been finalized. Returns false otherwise. Also returns false if
the class has not been initialized.

class-name Generic Function
class

Returns the name of class. This value can be any Lisp object, but is usually a symbol,
or nil if the class has no name. This is the defaulted value of the :name initialization
argument that was associated with the class during initialization or reinitialization.
(Also see (setf class-name).)

214 Readers for Class Metaobjects Chapter 6

class-precedence-list Generic Function
class

Returns the class precedence list of class. The elements of this list are class metaob-
jects.

During class finalization finalize-inheritance calls compute-class-precedence-
list to compute the class precedence list of the class. That value is associated with
the class metaobject and is returned by class-precedence-list.

This generic function signals an error if class has not been finalized.

class-prototype Generic Function
class

Returns a prototype instance of class. Whether the instance is initialized is not spec-
ified. The results are undefined if a portable program modifies the binding of any slot
of prototype instance.

This generic function signals an error if class has not been finalized.

class-slots Generic Function
class

Returns a possibly empty set of the slots accessible in instances of class. The elements
of this set are effective slot definition metaobjects.

During class finalization finalize-inheritance calls compute-slots to compute the
slots of the class. That value is associated with the class metaobject and is returned
by class-slots.

This generic function signals an error if class has not been finalized.

METHODS
The specified methods for the class metaobject reader generic functions are presented
below.

Each entry in the table indicates a method on one of the reader generic functions,
specialized to a specified class. The number in each entry is a reference to the full
description of the method. The full descriptions appear after the table.

Generic Functions and Methods Readers for Class Metaobjects 215

standard-class forward- built-in-
and referenced- class
funcallable- class

standard-class

class-default-initargs
class-direct-default-initargs
class-direct-slots
class-direct-subclasses
class-direct-superclasses
class-finalized-p

class-name
class-precedence-list
class-prototype

class-slots

N =N kO =N
W= OO W
N 00 Tt g T D s

—
N S
—
w o
—
L

1. This method returns the value which was associated with the class metaobject during
initialization or reinitialization.

2. This method returns the value associated with the class metaobject by finalize-
inheritance (standard-class) or finalize-inheritance (funcallable-standard-
class).

3. This method signals an error.

4/ This method returns the empty list.

5. This method returns true.

6. This method returns false.

7. This method returns a value derived from the information in Table 5.1, except that
implementation-specific modifications are permitted as described in section “Implemen-
tation and User Specialization.”

8. This method returns the name of the built-in class.

9. This methods returns a value which is maintained by add-direct-subclass (class
class) and remove-direct-subclass (class class). This method can be overridden
only if those methods are overridden as well.

10. No behavior is specified for this method beyond that specified for the generic function.

J

216 Readers for Generic Function Metaobjects Chapter 6

Readers for Generic Function Metaob jects

The reader generic functions which simply return information associated with generic
function metaobjects are presented together in this section.

Each of the reader generic functions for generic function metaobjects has the same
syntax, accepting one required argument called generic-function, which must be a generic
function metaobject; otherwise, an error is signaled. An error is also signaled if the
generic function metaobject has not been initialized.

These generic functions can be called by the user or the implementation.

The list returned by this generic function will not be mutated by the implementation.
The results are undefined if a portable program mutates the list returned by this generic
function.

generic-function-argument-precedence-order Generic Function
generic-function

Returns the argument precedence order of the generic function. This value is a list of
symbols, a permutation of the required parameters in the lambda list of the generic
function. This is the defaulted value of the :argument-precedence-order initial-
ization argument that was associated with the generic function metaobject during
initialization or reinitialization.

generic-function-declarations Generic Function
generic-function

Returns a possibly empty list of the declarations of the generic function. The elements
of this list are declarations. This list is the defaulted value of the :declarations
initialization argument that was associated with the generic function metaobject during
initialization or reinitialization.

generic-function-lambda-list Generic Function
generic-function

Returns the lambda list of the generic function. This is the defaulted value of the
:lambda-list initialization argument that was associated with the generic function
metaobject during initialization or reinitialization. An error is signaled if the lambda
list has yet to be supplied.

Generic Functions and Methods Readers for Generic Function Metaobjects 217

generic-function-method-class Generic Function
generic-function

Returns the default method class of the generic function. This class must be a subclass
of the class method. This is the defaulted value of the :method-class initialization
argument that was associated with the generic function metaobject during initialization
or reinitialization.

generic-function-method-combination Generic Function
generic-function

Returns the method combination of the generic function. This is a method combination
metaobject. This is the defaulted value of the :method-combination initialization
argument that was associated with the generic function metaobject during initialization
or reinitialization.

generic-function-methods Generic Function
generic-function

Returns the set of methods currently connected to the generic function. This is a set of
method metaobjects. This value is maintained by the generic functions add-method
and remove-method.

generic-function-name Generic Function
generic-function

Returns the name of the generic function, or nil if the generic function has no name.
This is the defaulted value of the :name initialization argument that was associated
with the generic function metaobject during initialization or reinitialization. (Also see
(setf generic-function-name).)

-

METHODS
The specified methods for the generic function metaobject reader generic functions are
presented below.

218 Readers for Method Metaobjects Chapter 6

generic-function-argument-precedence-order Primary Method
(generic-function standard-generic-function)

generic-function-declarations Primary Method
(generic-function standard-generic-function)

generic-function-lambda-list Primary Method
(generic-function standard-generic-function)

generic-function-method-class Primary Method
(generic-function standard-generic-function)

generic-function-method-combination Primary Method
(generic-function standard-generic~function)

generic-function-name Primary Method
(generic-function standard-generic-function)

No behavior is specified for these methods beyond that which is specified for their
respective generic functions.

generic-function-methods Primary Method
(generic-function standard-generic-function)

No behavior is specified for this method beyond that which is specified for their re-
spective generic functions.

The value returned by this method is maintained by add-method (standard-
generic-function standard-method) and remove-method (standard-generic-
function standard-method).

Readers for Method Metaobjects

The reader generic functions which simply return information associated with method
metaobjects are presented together here in the format described under “Readers for Class
Metaobjects.”

Each of these reader generic functions have the same syntax, accepting one required
argument called method, which must be a method metaobject; otherwise, an error is
signaled. An error is also signaled if the method metaobject has not been initialized.

These generic functions can be called by the user or the implementation.

Generic Functions and Methods Readers for Method Metaobjects 219

For any of these generic functions which returns a list, such lists will not be mutated
by the implementation. The resuits are undefined if a portable program allows such a
list to be mutated.

method-function Generic Function
method

Returns the method function of method. This is the defaulted value of the :function
initialization argument that was associated with the method during initialization.

method-generic-function Generic Function
method

Returns the generic function that method is currently connected to, or nil if it is not
currently connected to any generic function. This value is either a generic function
metaobject or nil. When a method is first created it is not connected to any generic
function. This connection is maintained by the generic functions add-method and
remove-method.

method-lambda-list Generic FPunction
method

Returns the (unspecialized) lambda list of method. This value is a Common Lisp
lambda, list. This is the defaulted value of the :lambda-list initialization argument
that was associated with the method during initialization.

ethod-specializers Generic Function
method

Returns a list of the specializers of method. This value is a list of specializer metaob-
jects. This is the defaulted value of the :specializers initialization argument that was
associated with the method during initialization.

method-qualifiers Generic Function
method

Returns a (possibly empty) list of the qualifiers of method. This value is a list of non-
nil atoms. This is the defaulted value of the :qualifiers initialization argument that
was associated with the method during initialization.

220 Readers for Method Metaobjects Chapter 6

accessor-method-slot-definition Generic Function
method

This accessor can only be called on accessor methods. It returns the direct slot defi-
nition metaobject that defined this method. This is the value of the :slot-definition
initialization argument associated with the method during initialization.

METHODS
The specified methods for the method metaobject readers are presented below.

method-function Primary Method
(method standard-method)

method-lambda-list Primary Method
(method standard-method)

method-specializers Primary Method
(method standard-method)

method-qualifiers Primary Method
(method standard-method)

No behavior is specified for these methods beyond that which is specified for their
respective generic functions.

method-generic-function Primary Method
(method standard-method)

No behavior is specified for this method beyond that which is specified for its generic
function.

The value returned by this method is maintained by add-method (standard-
generic-function standard-method) and remove-method (standard-generic-
function standard-method).

accessor-method-slot-definition Primary Method
(method standard-accessor-method)

No behavior is specified for this method beyond that which is specified for its generic
function.

Generic Functions and Methods Readers for Slot Definition Metaobjects 221

Readers for Slot Definition Metaob jects

The reader generic functions which simply return information associated with slot defi-
nition metaobjects are presented together here in the format described under “Readers
for Class Metaobjects.”

Each of the reader generic functions for slot definition metaobjects has the same syntax,
accepting one required argument called slot, which must be a slot definition metaobject;
otherwise, an error is signaled. An error is also signaled if the slot definition metaobject
has not been initialized.

These generic functions can be called by the user or the implementation.

For any of these generic functions which returns a list, such lists will not be mutated
by the implementation. The results are undefined if a portable program allows such a
list to be mutated.

GENERIC FUNCTIONS
slot-definition-allocation Generic Function
slot

Returns the allocation of slot. This is a symbol. This is the defaulted value of the :allo-
cation initialization argument that was associated with the slot definition metaobject
during initialization.

slot-definition-initargs Generic Function
slot

| Returns the set of initialization argument keywords for slot. This is the defaulted value

/ of the :initargs initialization argument that was associated with the slot definition
metaobject during initialization.

slot-definition-initform Generic Function
slot

Returns the initialization form of slot. This can be any form. This is the defaulted
value of the :initform initialization argument that was associated with the slot def-
inition metaobject during initialization. When slot has no initialization form, the
value returned is unspecified (however, slot-definition-initfunction is guaranteed to
return nil).

222 Readers for Slot Definition Metaobjects Chapter 6

slot-definition-initfunction Generic Function
slot

Returns the initialization function of slot. This value is either a function of no ar-
guments, or nil, indicating that the slot has no initialization function. This is the
defaulted value of the :initfunction initialization argument that was associated with
the slot definition metaobject during initialization.

slot-definition-name Generic Function
slot

Returns the name of slot. This value is a symbol that can be used as a variable name.
This is the value of the :name initialization argument that was associated with the
slot definition metaobject during initialization.

slot-definition-type Generic Function
slot

Returns the allocation of slot. This is a type specifier name. This is the defaulted
value of the :name initialization argument that was associated with the slot definition
metaobject during initialization.

METHODS
The specified methods for the slot definition metaobject readers are presented below.

Generic Functions and Methods Readers for Slot Definition Metaobjects 223

slot-definition-allocation ; Primary Method
(slot-definition standard-slot-definition)

slot-definition-initargs Primary Method
(slot-definition standard-slot-definition)

slot-definition-initform Primary Method
(slot-definition standard-slot-definition)

slot-definition-initfunction Primary Method
(slot-definition standard-slot-definition)

slot-definition-name Primary Method
(slot-definition standard-slot-definition)

slot-definition-type Primary Method
(slot-definition standard-slot-definition)

No behavior is specified for these methods beyond that which is specified for their
respective generic functions.

DirRECT SLOT DEFINITION METAOBJECTS
The following additional reader generic functions are defined for direct slot definition
metaobjects.

slot-definition-readers Generic Function
direct-slot

) Returns a (possibly empty) set of readers of the direct slot. This value is a list of
function names. This is the defaulted value of the :readers initialization argument
that was associated with the direct slot definition metaob ject during initialization.

slot-definition-writers Generic Function
direct-slot

Returns a (possibly empty) set of writers of the direct slot. This value is a list of
function names. This is the defaulted value of the :writers initialization argument
that was associated with the direct slot definition metaobject during initialization.

224 reader-method-class Chapter 6

slot-definition-readers Primary Method
(direct-slot-definition standard-direct-slot-definition)

slot-definition-writers Primary Method
(direct-slot-definition standard-direct-slot-definition)

No behavior is specified for these methods beyond what is specified for their generic
functions.

EFFECTIVE SLOT DEFINITION METAOBJECTS
The following reader generic function is defined for effective slot definition metaobjects.

slot-definition-location Generic Function
effective-slot-definition
Returns the location of effective-slot-definition. The meaning and interpretation of
this value is described in the section called “Instance Structure Protocol.”
slot-definition-location Primary Method
(effective-slot-definition standard-effective-slot-definition)

This method returns the value stored by compute-slots :around (standard-class)
and compute-slots :around (funcallable-standard-class).

reader-method-class Generic Function

SYNTAX
reader-method-class
class direct-slot &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The direct-slot argument is a direct slot definition metaobject.
The initargs argument consists of alternating initialization argument names and values.

VALUES
The value returned is a class metaobject.

Generic Functions and Methods remove-dependent 225

PURPOSE
This generic function is called to determine the class of reader methods created during
class initialization and reinitialization. The result must be a subclass of standard-
reader-method.

The initargs argument must be the same as will be passed to make-instance to create
the reader method. The initargs must include :slot-definition with slot-definition as
its value.

METHODS

reader-method-class Primary Method
(class standard-class)
(direct-slot standard-direct-slot-definition)
&rest initargs

reader-method-class Primary Method
(class funcallable-standard-class)
(direct-slot standard-direct-slot-definition)
&rest initargs

These methods return the class standard-reader-method. These methods can be
overridden.

remove-dependent Generic Function

SYNTAX
remove-dependent
metaobject dependent

ARGUMENTS
The metaobject argument is a class or generic function metaobject.
The dependent argument is an object.

VALUES
The value returned by this generic function is unspecified.

PURPOSE
This generic function removes dependent from the dependents of metaobject. If dependent
is not one of the dependents of metaobject, no error is signaled.

The generic function map-dependents can be called to access the set of dependents
of a class or generic function. The generic function add-dependent can be called to
add an object from the set of dependents of a class or generic function. The effect of

226 remove-dependent Chapter 6

calling add-dependent or remove-dependent while a call to map-dependents on
the same class or generic function is in progress is unspecified.
The situations in which remove-dependent is called are not specified.

METHODS

remove-dependent Primary Method
(class standard-class) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (standard-class t)
map-dependents (standard-class t)

remove-dependent Primary Method
(class funcallable-standard-class) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (funcallable-standard-class t)
map-dependents (funcallable-standard-class t)

remove-dependent Primary Method
(generic-function standard-generic-function) dependent

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-dependent (standard-generic-function t)
map-dependents (standard-generic-function t)

REMARKS
See the “Dependent Maintenance Protocol” section for remarks about the use of this
facility.

Generic Functions and Methods remove-direct-method 227

remove-direct-method Generic Function

SYNTAX
remove-direct-method
specializer method

ARGUMENTS
The specializer argument is a specializer metaobject.
The method argument is a method metaobject.

VALUES
The value returned by remove-direct-method is unspecified.

PURPOSE
This generic function is called to maintain a set of backpointers from a specializer to the
set of methods specialized to it. If method is in the set it is removed. If it is not, no error
is signaled.

This set can be accessed as a list by calling the generic function specializer-direct-
methods. Methods are added to the set by add-direct-method.

The generic function remove-direct-method is called by remove-method whenever
a method is removed from a generic function. It is called once for each of the specializers
of the method. Note that in cases where a specializer appears more than once in the
specializers of a method, this generic function will be called more than once with the
same specializer as argument.

The results are undefined if the specializer argument is not one of the specializers of
v?m method argument.

METHODS

remove-direct-method Primary Method
(specializer class)
(method method)

This method implements the behavior of the generic function for class specializers. No
behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as

well:

add-direct-method (class method)

specializer-direct-generic-functions (class)

specializer-direct-methods (class)

228 remove-direct-subclass Chapter 6

remove-direct-method Primary Method
(specializer eql-specializer)
(method method)

This method implements the behavior of the generic function for eql specializers. No
behavior is specified for this method beyond that which is specified for the generic
function.

remove-direct-subclass Generic Function

SYNTAX
remove-direct-subclass
superclass subclass

ARGUMENTS
The superclass argument is a class metaobject.
The subclass argument is a class metaobject.

VALUES
The value returned by this generic function is unspecified.

PURPOSE
This generic function is called to maintain a set of backpointers from a class to its direct
subclasses. It removes subclass from the set of direct subclasses of superclass. No error
is signaled if subclass is not in this set.

Whenever a class is reinitialized, this generic function is called once with each deleted
direct superclass of the class.

METHODS

remove-direct-subclass Primary Method
(superclass class)
(subclass class)

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-direct-subclass (class class)
class-direct-subclasses (class)

Generic Functions and Methods remove-method 229

remove-method Generic Function

SYNTAX
remove-method
generic-function method

ARGUMENTS
The generic-function argument is a generic function metaobject.
The method argument is a method metaobject.

VALUES
The generic-function argument is returned.

PURPOSE
This generic function breaks the association between a generic function and one of its
methods.

No error is signaled if the method is not among the methods of the generic function.

Breaking the association between the method and the generic function proceeds in four
steps: (i) remove method from the set returned by generic-function-methods and ar-
range for method-generic-function to return nil; (ii) call remove-direct-method
for each of the method’s specializers; (iii) call compute-discriminating-function and
install its result with set-funcallable-instance-function; and (iv) update the depen-
dents of the generic function.

The generic function remove-method can be called by the user or the implementa-
tion.

METHODS

remove-method Primary Method
(generic-function standard-generic-function)
(method standard-method)

No behavior is specified for this method beyond that which is specified for the generic
function.

230 (setf class-name) Chapter 6

set-funcallable-instance-function Function

SYNTAX
set-funcallable-instance-function
funcallable-instance function

ARGUMENTS

The funcallable-instance argument is a funcallable instance (it must have been returned
by allocate-instance (funcallable-standard-class)).
The function argument is a function.

VALUES
The value returned by this function is unspecified.

PURPOSE

This function is called to set or to change the function of a funcallable instance. After set-
funcallable-instance-function is called, any subsequent calls to funcallable-instance
will run the new function.

(setf class-name) Function
SYNTAX
(setf class-name) Generic Function

new-name class

ARGUMENTS
The class argument is a class metaobject.
The new-name argument is any Lisp object.

RESULTS
This function returns its new-name argument.

PURPOSE
This function changes the name of class to new-name. This value is usually a symbol,
or nil if the class has no name.

This function works by calling reinitialize-instance with class as its first argument,
the symbol :name as its second argument and new-name as its third argument.

Generic Functions and Methods (setf generic-function-name) 231

(setf generic-function-name) Function
SYNTAX
(setf generic-function-name) Generic Function

new-name generic-function

ARGUMENTS
The generic-function argument is a generic function metaobject.
The new-name argument is a function name or nil.

RESULTS
This function returns its new-name argument.

PURPOSE
This function changes the name of generic-function to new-name. This value is usually
a function name (i.e., a symbol or a list of the form (setf symbol)) or nil, if the generic
function is to have no name.

This function works by calling reinitialize-instance with generic-function as its first
argument, the symbol :name as its second argument and new-name as its third argu-
ment.

(setf slot-value-using-class) Generic Function

SYNTAX
(setf slot-value-using-class)
new-value class object slot

ARGUMENTS

The new-value argument is an object.
The class argument is a class metaobject. It is the class of the object argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.

VALUES
This generic function returns the new-value argument.

PuURPOSE
The generic function (setf slot-value-using-class) implements the behavior of the
(setf slot-value) function. It is called by (setf slot-value) with the class of object

232 (setf slot-value-using-class) Chapter 6

as its second argument and the pertinent effective slot definition metaobject as its fourth
argument.

The generic function (setf slot-value-using-class) sets the value contained in the
given slot of the given object to the given new value; any previous value is lost.

The results are undefined if the class argument is not the class of the object argument,
or if the slot argument does not appear among the set of effective slots associated with
the class argument.

METHODS
(setf slot-value-using-class) Primary Method
new-value
(class standard-class)
object
(slot standard-effective-slot-definition)

(setf slot-value-using-class) Primary Method
new-value
(class funcallable-standard-class)
object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for slots with
allocation :instance and :class. If the supplied slot has an allocation other than
:instance or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other methods
in the standard implementation of the slot access protocol.

(setf slot-value-using-class) Primary Method
new-value
(class built-in-class)
object
slot

This method signals an error.

Generic Functions and Methods slot-boundp-using-class 233

slot-boundp-using-class Generic Function

SYNTAX
slot-boundp-using-class
class object slot

ARGUMENTS

The class argument is a class metaobject. It is the class of the object argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.

VALUES
This generic function returns true or false.

PURPOSE
This generic function implements the behavior of the slot-boundp function. It is called
by slot-boundp with the class of object as its first argument and the pertinent effective
slot definition metaobject as its third argument.

The generic function slot-boundp-using-class tests whether a specific slot in an
instance is bound.

The results are undefined if the class argument is not the class of the object argument,
or if the slot argument does not appear among the set of effective slots associated with
the class argument.

METHODS

slot-boundp-using-class Primary Method
(class standard-class)
object
(slot standard-effective-slot-definit ion)

slot-boundp-using-class Primary Method
(class funcallable-standard-class)
object
(slot standard-effective-slot-definit ion)

These methods implement the full behavior of this generic function for slots with
allocation :instance and :class. If the supplied slot has an allocation other than
:sinstance or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other methods
in the standard implementation of the slot access protocol.

234 slot-makunbound-using-class Chapter 6

slot-boundp-using-class Primary Method
(class built-in-class)
object
slot

This method signals an error.

REMARKS

In cases where the class metaobject class does not distinguish unbound slots, true should
be returned.

slot-definition-. . . Generic Function

The following generic functions are described together under “Readers for Slot
Definition Metaobjects” (page 221): slot-definition-allocation, slot-definition-
initargs, slot-definition-initform, slot-definition-initfunction, slot-definition-
location, slot-definition-name, slot-definition-readers, slot-definition-writers
and slot-definition-type.

slot-makunbound-using-class Generic Function

SYNTAX
slot-makunbound-using-class
class object slot

ARGUMENTS

The class argument is a class metaobject. It is the class of the object argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.

VALUES
This generic function returns its object argument.

PURPOSE
This generic function implements the behavior of the slot-makunbound function. It
is called by slot-makunbound with the class of object as its first argument and the
pertinent effective slot definition metaobject as its third argument.

The generic function slot-makunbound-using-class restores a slot in an object to
its unbound state. The interpretation of “restoring a slot to its unbound state” depends
on the class metaobject class.

Generic Functions and Methods slot-value-using-class 235

The results are undefined if the class argument is not the class of the object argument,
or if the slot argument does not appear among the set of effective slots associated with
the class argument.

METHODS

slot-makunbound-using-class Primary Method
(class standard-class)
object
(slot standard-effective-slot-definition)

slot-makunbound-using-class Primary Method
(class funcallable-standard-class)
object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for slots with
allocation :instance and :class. If the supplied slot has an allocation other than
:instance or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other methods
in the standard implementation of the slot access protocol.

slot-makunbound-using-class Primary Method
(class built-in-class)
object
slot

This method signals an error.

slot-value-using-class Generic Function

SYNTAX
slot-value-using-class
class object slot

ARGUMENTS

The class argument is a class metaobject. It is the class of the object argument.
The object argument is an object.
The slot argument is an effective slot definition metaobject.

VALUES
The value returned by this generic function is an object.

236 slot-value-using-class Chapter 6

PURPOSE
This generic function implements the behavior of the slot-value function. It is called by
slot-value with the class of object as its first argument and the pertinent effective slot
definition metaobject as its third argument.

The generic function slot-value-using-class returns the value contained in the given
slot of the given object. If the slot is unbound slot-unbound is called.

The results are undefined if the class argument is not the class of the object argument,
or if the slot argument does not appear among the set of effective slots associated with
the class argument.

METHODS

slot-value-using-class Primary Method
(class standard-class)
object
(slot standard-effective-slot-definition)

slot-value-using-class Primary Method
(class funcallable-standard-class)
object
(slot standard-effective-slot-definition)

These methods implement the full behavior of this generic function for slots with
allocation :instance and :class. If the supplied slot has an allocation other than
:instance or :class an error is signaled.

Overriding these methods is permitted, but may require overriding other methods
in the standard implementation of the slot access protocol.

slot-value-using-class Primary Method
(class built-in-class)
object
slot

This method signals an error.

Generic Functions and Methods

specializer-direct-generic-functions 237
mvmomm:mmw-&wmna-mmsolo-mcsoﬂosm Generic Function
SYNTAX
wvmomwzum?&amon-mm:ml??boﬁozm

specializer
ARGUMENTS

The specializer argument is a specializer metaobject.

VALUES
The result of this generic function is a possibly empty list of generic function metaobjects.

PURPOSE

This generic function returns the possibly empty set of those generic functions which have
a method with specializer as a specializer. The elements of this set are generic function
metaobjects. This value is maintained by the generic functions add-direct-method
and remove-direct-method.

METHODS
mvmnmm:Nm?&—.mon-mmbmla-?:aﬁosm Primary Method
(specializer class)

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-direct-method (class method)
remove-direct-method (class method)
mvoomm_mmmn-&ﬂmon-Bmﬁ-o&m (class)

mﬁoommzson-Q.:.mon-mmsmlon?zoﬁocm Primary Method
(specializer eql-specializer)

No behavior is specified for this method beyond that which is specified for the generic
function.

238 specializer-direct-methods Chapter 6

specializer-direct-methods Generic Function

SYNTAX
specializer-direct-methods
specializer

ARGUMENTS
The specializer argument is a specializer metaobject.

VALUES
The result of this generic function is a possibly empty list of method metaobjects.

PURPOSE

This generic function returns the possibly empty set of those methods, connected to
generic functions, which have specializer as a specializer. The elements of this set are
method metaobjects. This value is maintained by the generic functions add-direct-
method and remove-direct-method.

METHODS
specializer-direct-methods Primary Method
(specializer class)

No behavior is specified for this method beyond that which is specified for the generic
function.
This method cannot be overridden unless the following methods are overridden as
well:
add-direct-method (class method)
remove-direct-method (class method)
specializer-direct-generic-functions (class)

specializer-direct-methods Primary Method
(specializer eql-specializer)

No behavior is specified for this method beyond that which is specified for the generic
function.

Generic Functions and Methods standard-instance-access 239

standard-instance-access Function

SYNTAX
standard-instance-access
instance location

ARGUMENTS
The instance argument is an object.
The location argument is a slot location.

VALUES
The result of this function is an object.

PURPOSE
This function is called to provide direct access to a slot in an instance. By usurping the
normal slot lookup protocol, this function is intended to provide highly optimized access
to the slots associated with an instance.

The following restrictions apply to the use of this function:

¢ The instance argument must be a standard instance (it must have been returned by
allocate-instance (standard-class)).

e The instance argument cannot be an non-updated obsolete instance.

e The location argument must be a location of one of the directly accessible slots of the
instance’s class.

e The slot must be bound.

The results are undefined if any of these restrictions are not met.

update-dependent Generic Function

SYNTAX
update-dependent
metaobject dependent &rest initargs

ARGUMENTS
The metaobject argument is a class or generic function metaobject. It is the metaobject
being reinitialized or otherwise modified.

The dependent argument is an object. It is the dependent being updated.

The initargs argument is a list of the initialization arguments for the metaobject re-
definition.

240 validate-superclass Chapter 6

VALUES
The value returned by update-dependent is unspecified.

PURPOSE
This generic function is called to update a dependent of metaobject.

When a class or a generic function is reinitialized each of its dependents is updated. The
tnitargs argument to update-dependent is the set of initialization arguments received
by reinitialize-instance.

When a method is added to a generic function, each of the generic function’s depen-
dents is updated. The initargs argument is a list of two elements: the symbol add-
method, and the method that was added.

When a method is removed from a generic function, each of the generic function’s
dependents is updated. The initargs argument is a list of two elements: the symbol
remove-method, and the method that was removed.

In each case, map-dependents is used to call update-dependent on each of the
dependents. So, for example, the update of a generic function’s dependents when a
method is added could be performed by the following code:

(map-dependents generic-function
#'(lambda (dep)
(update-dependent generic-function
dep
'add-method
new-method)))

METHODS
There are no specified methods on this generic function.

REMARKS

See the “Dependent Maintenance Protocol” section for remarks about the use of this
facility.

validate-superclass Generic Function

SYNTAX
validate-superclass
class superclass

ARGUMENTS
The class argument is a class metaobject.

Generic Functions and Methods validate-superclass 241

The superclass argument is a class metaobject.

VALUES
This generic function returns true or false.

PURPOSE
This generic function is called to determine whether the class superclass is suitable for
use as a superclass of class.

This generic function can be be called by the implementation or user code. It is called
during class metaobject initialization and reinitialization, before the direct superclasses
are stored. If this generic function returns false, the initialization or reinitialization will
signal an error.

METHODS

validate-superclass Primary Method
(class class)
(superclass class)

This method returns true in three situations:

(i) If the superclass argument is the class named t,

(ii) if the class of the class argument is the same as the class of the superclass
argument or

(iii) if the classes one of the arguments is standard-class and the class of the
other is funcallable-standard-class.

In all other cases, this method returns false.
This method can be overridden.

REMARKS

Defining a method on validate-superclass requires detailed knowledge of of the internal
protocol followed by each of the two class metaobject classes. A method on validate-
superclass which returns true for two different class metaobject classes declares that
they are compatible.

242 writer-method-class Chapter 6
writer-method-class Generic Function
SYNTAX

writer-method-class
class direct-slot &rest initargs

ARGUMENTS
The class argument is a class metaobject.
The direct-slot argument is a direct slot definition metaobject.
The initargs argument is a list of initialization arguments and values.

VALUES
The value returned is a class metaobject.

PURPOSE
This generic function is called to determine the class of writer methods created during
class initialization and reinitialization. The result must be a subclass of standard-
writer-method.

The initargs argument must be the same as will be passed to make-instance to create
the reader method. The initargs must include :slot-definition with slot-definition as
its value.

METHODS

writer-method-class Primary Method
(class standard-class)
(direct-slot standard-direct-slot-definition)
&rest initargs

writer-method-class Primary Method
(class funcallable-standard-class)
(direct-slot standard-direct-slot-definition)
&rest initargs

These methods returns the class standard-writer-method. These methods can be
overridden.

.>. An Introduction to the Common Lisp Object System

In this appendix, we provide a brief introduction to the basic concepts and syntax of
the Common Lisp Object System (CLOS) for people who already have some familiarity
with object-oriented programming. On a topic by topic basis, we compare the concepts
and vocabulary of CLOS with those of two other popular object-oriented languages,
Smalltalk[Goldberg&Robson 83] and C++[Ellis&Stroustrup 90]. For each topic there
is an overview, language specific terminology, a description of the relevant features of
CLOS, followed by brief contrasting descriptions of Smalltalk and C++. A summary
chart comparing terminology and features of CLOS, Smalltalk, and C++ can be found
on page 253.

A.1 Classes and Instances

Object-oriented programs are organized around classes that reflect the domain they are
about; during execution of a program, instances of these classes are created, initialized,
and then manipulated. Classes must be defined before instances can be created. A
class definition specifies instance structure: that is, the named slots each instance must
contain. Class definitions may also contain other information related to these slots; for
example, it may specify the types of values that are allowed to fill them, or expressions
for computing initial values when instances are created. In Smalltalk, slots are called
instance variables. In C++, instances are called objects of a class and slots are called
member data elements.

CLOS class definitions can specify, for each slot, as little as just the name, or can
include a number of slot options. For example, here is a CLOS definition for a class
named rectangle:

(defclass rectangle ()
((height :initarg :start-height
:initform 5
:accessor rectangle-height)
(width :initarg :start-width
:initform 8
:accessor rectangle-width)))

This definition specifies that each instance of rectangle will contain two slots named
height and width. Each slot is specified by a list starting with its slot name, followed
by a number of slot options. A slot option is a keyword (a reserved symbol starting with
a colon) followed by the option value. For example, the slot named height is followed
by three options, with keywords :initarg, :initform, and :accessor. The first two

244 Appendix A

are used to specify information for instance initialization, described below. The value
associated with slot option keyword :accessor is the name of an automatically generated
generic function. This generic function provides access to this slot for instances of this
class. For example, rectangle-height fetches the value of the height slot of instances
of rectangle.

New instances of CLOS classes are created by calling the function make-instance with
the class name as first argument:

(setq rl (make-instance 'rectangle :start-height 50 :start-width 100))

The result of evaluating this expression is to set the variable r1 to a newly created
instance of rectangle. Because of the :initarg options in the definition above, :start-
height and :start-width in this form can serve as keywords to initialize the slots height
and width to 50 and 100, respectively. If an initial value is not provided on a call to
make-instance, the :initform slot option in the class definition supplies a form used
to compute a default initial value for the slot; for a rectangle, the default values for
height and width would be 5 and 8 respectively.

In Smalltalk, only the names of the instance variables are specified in class definitions.
Instances are created by sending the special message new to the class; default initialization
can be included in that method. It is more typical to provide a creation message which
includes initial values to be sent to the class; this allows, for example, a Rectangle to
be created and initialized with 50 and 100 by sending a message like:

Rectangle startHeight: 50 startWidth: 100

In C++, both the name and type of member data elements must be specified in the
class definition. Default initialization expressions can be supplied for each member data
element. Objects of a class are created by calling an automatically defined constructor
function for the class. C++ has mechanisms for defining initial value arguments for the
constructor function; if no value is provided to the constructor, the default initialization
expression in the class definition is used to determine the initial value for a new instance’s
member data element.

A.2 Structure Inheritance

Object-oriented programming languages support the specification of a new class as an
incremental modification of other previously defined classes. A new class is said to inherit
from these other classes, which means that its effective definition is a combination of
what is explicit in its own definition and what is in those of classes that it inherits from.

Introduction to CLOS 245

In CLOS and Smalltalk, the terminology used is that a new subclass is defined as a
specialization of a previously existing superclass. In C++, the terminology used is that
a new derived class is defined in terms of a previously existing base class.

When classes are defined in terms of other classes in this way, if the same slot name
is used in the definition of more than one class, the question arises as to how many
slots associated with that name will appear in any instance. In CLOS, a single slot is
created in each instance for each unique slot name that appears in its class or in any
of its superclasses. If there is more than one definition with the same slot name, the
descriptions of like-named slots are combined. For example, consider this definition of
color-rectangle as a subclass of rectangle:

(defclass color-rectangle (rectangle)
((color :initform 'red
:initarg :color
raccessor color)
(clearp :initform nil
:initarg :clearp
:accessor clearp)
(height :initform 10)))

Given the earlier definition of rectangle, this definition causes instances of color-
rectangle to have four slots: the newly-defined slots color and clearp, and the slots
height and width inherited from rectangle. The last line of the color-rectangle class
definition does not define a new height slot, but provides a new default initial value for
the slot of that name inherited from rectangle. Furthermore, this example illustrates
one way descriptions for like-named slots are combined: the more specific :initform
overrides the inherited one. For the options :accessor and :initarg, on the other
hand, CLOS constructs the union of the specified option values. For the option :type,
not illustrated here, type intersection is used.

In Smalltalk, it is illegal to specify the same name (e.g., height) as an instance variable
in a subclass when it is also specified in a superclass. Given that restriction, and since
Smalltalk class definitions only contain names of instance variables,’ the subclass contains
the simple union of instance variables named in the class definition and in its superclasses.

C++ scoping rules make each class definition be an independent name scope. Hence,
in C++, declaring a like-named member data element in a derived class causes a new
member data element of that name to be part of any object of that class, even if another

I1n this &Ew:nma description, we omit Smalltalk class variables which are accessible to all members of a
class. We also omit the corresponding class variables of CLOS, and static data elements of C++ classes.

246 Appendix A

declaration with the same name appears in a base class. Each declaration carries its own
type specification and its own initialization.

Some of the most complex issues having to do with inheritance only arise when multiple
inheritance is allowed; that is, when a new class can be made to inherit from more than
one superclass. Both CLOS and C++ support use of multiple inheritance. Some versions
of Smalltalk have experimented with multiple inheritance; however, it is not a generally
supported feature.

One typical way multiple inheritance is used is to define mizin classes that capture
useful independent fragments of structure and behavior. Such mixins are usually not
designed to be instantiated on their own. Instantiable classes are then defined in terms
of one principal class and one or more these mixins. For example, a color-mixin class
might capture the behavior and structure peculiar to colored objects, and be used in the
following alternative definition of color-rectangle:

(defclass color-mixin ()
((color :initform 'red
:initarg :color
raccessor color)))

(defclass color-rectangle (color-mixin rectangle)
((clearp :initform nil
:initarg :clearp
:accessor clearp)
(height :initform 10)))

This definition of color-mixin incorporates a description of the slot color; behavior
associated with colored objects (for example, changing the color) would also be associated
with this mixin.

When mixins are not independent, rules for combinations must be used. In CLOS,
the combination rules depend on use of a linearization of the set of superclasses which
will not be described here. In C++, users are forced to explicitly resolve clashes from
multiple base classes.

A.3 Classes and Operations

In object-oriented programming languages, operations are composed of independently
defined implementations specific to particular classes. In CLOS and Smalltalk, the inde-
pendently defined implementations are called methods. In C++, they are called virtual

Introduction to CLOS 247

member functions. When an operation is invoked, a runtime dispatch selects the appro-

priate implementation. In CLOS, the terminology for invoking an operation is calling o

generic function; in Smalltalk, sending a message; in C++, calling a member function. 7
Object-oriented programming languages differ on how methods are associated with a
class and how the dispatch is implemented.

If a method for a particular operation is defined on both a subclass and one of its
superclasses, the first is said to shadow the second, meaning that only the more specific
one will automatically be executed. All object-oriented programming languages provide
some way for the more specific method to invoke the shadowed method explicitly. If the
shadowed method is executed, the more specific method is said to eztend the shadowed
method; if the shadowed method is not executed, then the more specific method is said |
to override the shadowed method.

CLOS, Smalitalk and C++ use significantly different ways of associating a method i
with a class, syntax for invoking a generic operation, mechanisms for dispatch to the
appropriate implementation, and syntax for invoking a shadowed method.

In CLOS, methods are associated as much with generic functions as with classes. Sep-
arately defined methods implement the generic function’s behavior for different classes.
A generic function definition specifies the interface common to all methods, namely, the
generic function name and argument list: !

(defgeneric paint (shape medium))

A method is associated with a class if a parameter of the method is specialized to that

class. Semantically, what this means is that an argument bound to that parameter must

be an instance of that class (or any of its subclasses). Here are two methods for paint, |
one specialized to rectangle and another to circle (the definition of the class circle

is not shown):

(defmethod paint ((shape rectangle) medium) ; method 1
(vertical-stroke (rectangle-height shape)
(rectangle-width shape)
medium))

(defmethod paint ((shape circle) medium) ; method 2
(draw-circle (radius shape)
medium))

In this notation, the argument list to the method indicates how the method is specialized.
Each element of the argument list is either a parameter name (e.g., medium), or a pair
consisting of a parameter name and the name of a class (e.g., shape and rectangle). For

248 Appendix A

method 1 to be applicable, that is used on a call to the generic function, the parameter
bound to shape must be an instance of the class rectangle (or any of its subclasses).
In this use, the class name rectangle is called a specializer.

A call to a generic function looks exactly like a call to an ordinary function:

(paint rl1 *standard-display*)

If r1 is bound to an instance of a rectangle, this call to the generic function would
dispatch to method 1 specialized for rectangle. If it were an instance of circle, dispatch
would be to method 2. Object-oriented runtime dispatch is supported by code in the
generic function that automatically selects and invokes the applicable method.

To invoke a shadowed method in CLOS, the function call-next-method is used within
the body of a method. For example, in CLOS we might have:

(defmethod paint ((shape color-rectangle) medium) ; method 3
(unless (clearp shape)
(call-next-method)))

This method, specialized on color-rectangle, shadows the method on rectangle. Un-
less (clearp shape) is true, the shadowed method is called, passing the same arguments.
In Smalltalk, a method is usually associated with a class through a visual browser, since
Smalltalk is almost always used in a residential environment.? The operation associated
with the method is identified by a symbol called the method selector. When behavior is
invoked by sending a message to an instance, the message will consist of the selector and
other arguments for the operation. The method to be run is located using the selector
as a key in a method table associated with the class of the object. If the selector is not
found in that table, the corresponding search is made in the superclass of the class.
The Smalltalk syntax for sending a message emphasizes the receiver of the message,
putting the object first, followed by the selector, and then any other arguments; e.g.

rl paint: standardDisplay

Within a method, to send a different message to the same object, a message is sent
to the pseudo-variable self. To invoke a shadowed method, a message is sent to the
pseudo-variable super:

super paint: standardDisplay

2A Smalltalk file-based syntax is defined but is almost never used by programmers; it is generated by the
system when saving definitions for reloading.

Introduction to CLOS 249

The only difference between sending a message to self and super is that the search for
the appropriate method associated with the selector skips the class of the object itself
when the message is sent to super.

C++ is a language based on static scoping rules. Specific virtual member functions
are associated with a class by appearing within the name scope of that class definition.
Virtual member functions support run-time lookup. Because C++ is a compile/link
language, a linear index can be created for each class at link time which specifies the
appropriate implementation to call; invocation thus involves only an indexed lookup
before dispatch to the specific code. Not all member functions in a C++ are declared
virtual. For polymorphic non-virtual functions, choice of implementation is made at
compile time based on declarations. Because of this compile-time choice, these non-
virtual member functions do not support object-oriented specialization.

The C++ syntax emphasizes the selection of the function based on the object, with
other arguments being in standard position. To invoke paint on ri, for example, C++
uses:

rl.paint(standard_display)

This is the same syntax used to invoke other kinds of member functions. If another virtual
member function is to be invoked on the same object, the pseudo-variable this can be
used. To invoke a shadowed virtual member function, a qualified name involving the
base class must be used (e.g., if rectangle is the base class in which there is a shadowed
virtual member function for paint, then the qualified name rectangle: :paint can be
used to refer to that virtual member function). If there is more than one base class for
a derived class, shadowed methods in any or all base classes can be invoked using the
appropriately qualified name.

A.4 Multiple argument dispatch

For some operations, it is often natural for the implementation to depend on the class of
more than one argument. In our example for paint, the code should depend on both the
shape and the medium. Code for painting a circle on a bitmap is clearly different from
that for drawing a circle in a page-description language, and is different from that for
painting a rectangle on either.

In CLOS, method definitions can directly specify the required classes of more than one
argument. Methods where more than one argument has an explicit specializer are called
multi-methods. As an example, consider the following code sketch:

(defmethod paint ((shape rectangle) (medium vector-display)) ; method 4
draw vectors on display ...)

250 Appendix A

(defmethod paint ((shape rectangle) (medium bitmap-display)) ; method §
... paint pizels on display ...)
(defmethod paint ((shape rectangle) (medium pdl-stream)) ; method 6
create PS lines...)
(defmethod paint ((shape circle) (medium pdl-stream)) ; method 7

create PS circle ...)

Both arguments to paint are specialized; for a multi-method to be applicable, each
parameter must be bound to an instance of the associated specializer class. For example,
for method 4 to be applicable, the first argument must be an instance of rectangle, and
the second, an instance of vector-display.

Multi-methods are a useful extension of the notion of object-oriented programming,
but are the primary place where CLOS breaks the intuition that a method belongs to
exactly one class. Multi-method dispatch for generic functions allows a finer breakdown
of the operation into appropriate pieces.

In Smalltalk, selection of an implementation based on the types of more than one
argument to a method can be accomplished with a “chained dispatch” [Ingalls 86]. In this
example, each method for paint: would be specialized to a shape; all shape-specialized
methods send a secondary message whose selector incorporates the shape name; so the
paint: method on circle sends a paint-circle: message to the medium with self as
the argument.

medium paint-circle: self

The code for paint-circle: is then specialized for the medium; the selector implies the
shape is to be painted.

The corresponding pair of virtual member functions would be used to achieve this
run-time multi-argument selection in C++.

A.5 Structure Encapsulation

In object-oriented programming languages, the structure of an object is intended to
be opaque outside of certain restricted scopes. Access to the structure is provided by
operations associated with the class of the object. Of course, each language provides
loopholes that allow access from outside that scope.

In CLOS, the intended public access to a slot is provided by the automatically gen-
erated access functions that can be specified in a class definition using the slot option

Introduction to CLOS 251

:accessor. For example, in the definition for rectangle, the :accessor rectangle-
height slot option causes automatic definition of two generic functions: rectangle-
height, to read the value of the slot height, and (setf rectangle-height),? to set
the value of that slot. Examples of the use of these functions are:

(rectangle-height r1) ;fetches the value of the height slot
(setf (rectangle-height ri) 75) ;sets the value of height slot to 75

Direct access to named slots is provided by slot-value. Accessor generic functions
are defined in terms of slot-value. Here are examples of the use of slot-value:

(slot-value rl 'height)
(setf (slot-value rl 'height) 75)

Direct access using slot-value can be used in any context. The only requirement is that
the slot name be known. However, it is better practice to use the accessors since they
provide the intended public access. In addition, this allows these generic functions to be
specialized, for example, replacing direct access by a computation, without requiring any
change to client code.

In Smalltalk, instance variables specified in a class C or any superclass of C' are accessi-
ble by name in methods defined on the class C. Outside of such methods only user-defined
methods and low-level implementation loopholes can access instance variables.

Because C++ classes define a name scope, virtual member functions defined within
that name scope have access to the member data elements by name. By default, virtual
member functions in derived classes do not have access to member data elements declared
in base classes. To extend this private naming scope to derived classes, C++ provides a
protected specifier for member data elements; to extend the named access to all scopes, a
corresponding public specifier is available. C++ has many different loopholes to break
encapsulation. However, the preferred style for public access is through user-defined
virtual member functions for the same reason that accessor functions are preferred in

CLOS.

A.6 Methods in combination

Sometimes, in order to support flexibility in specializations, it is useful to design a set of
interacting operations. For example, in painting it might be useful to allow specializations

3This list is indeed the name of a generic function, an example of a composite name now used in Common
Lisp for functions that set values of fields.

252 Appendix A

to define an independent method that sets up initial conditions for painting, or does some
cleanup afterwards.

In any language, one might write the general method for paint so that it calls prepaint
and postpaint around a call to primary-paint. One could then define default methods
for the former two. This would allow specializations to just add preparation operations,
for example. In a language with multiple inheritance, mixins could be used to add such
incremental behavior.

This pattern of coding was used frequently in earlier Lisp multiple inheritance object-
oriented programming languages. Language support for this idiom is provided by CLOS.
In addition to primary methods such as those we have seen, CLOS allows the definition
of before-methods and after-methods that play specialized roles in the invocation of a
generic function. For example, in CLOS we can define a before-method specialized on
color-mixin that will set the brush color before painting by writing:

(defmethod paint :before ((shape color-mixin))
(set-brush-color (color shape)))

In general, when a generic function is invoked, all the applicable before-methods are
called, then the most specific primary method, followed by all the after-methods. Be-
cause of the order in which they are run, before-methods are usually used to do error
checking and/or preprocessing, and after-methods are used for cleanup and/or auxiliary
processing. The automatic invocation of before-methods, after-methods, and primary
methods in the pattern described is called standard method combination.

Neither Smalltalk nor C++ provide any facilities for automatic method combination.

Introduction to CLOS

A.7 Summary

253

_ [cLos Smalltalk | C++
Class class class class
Instance instance instance object of class
Instance structure slots instance variables | member data
elements
Inheritance subclass subclass derived class
direct superclasses superclass base classes
Slot name name name
descriptions initial value forms type
accessor function initial value forms
initializer keywords
Slot one per name one per name one per
inheritance (combine duplicates) | (no duplicates) declaration

Invoking an

calling a

sending a message

calling a virtual

operation generic function member function
Implementation for || method method virtual member
instances of a class function

Linking operation specializers in through browser defined in

to class parameter list class scope

Multi-argument

multi-methods

chained dispatch

chained dispatch

dispatch
Whole object name in self this
reference parameter list

Invocation of
shadowed method

call-next-method

message to super

call virtual member
function with
qualified name

Public access to
instance state

accessor functions
user methods

user methods

user methods
public declaration

Direct access
to instance state

slot-value

by name within
method scope

by name within
class scope

Automatic method
combination

yes

no

no

w Solutions to Selected Exercises

Exercise 1.1 (p. 45) The computation performed by compute-applicable~methods-
using-classes depends only on the generic function and the list of classes. This means
it can be memoized using these two values as keys. The memoization is done in two
parts: (i) associated with each generic function is a table which, (ii) maps from a list of
classes to a list of applicable methods. For simplicity, the table is just a Common Lisp
hash table.

The definition of standard-generic-function is updated to include a slot for the
table.

n (defclass standard-generic-function ()
((name :initarg :name :accessor generic-function-name)
(lambda-list :initarg :lambda-list

raccessor generic-function-lambda-list)
(methods :initform ()

:accessor generic-function-methods)
(table :initform (make-hash-table :test #'equal)
:accessor classes-to-applicable-methods-table)))

apply-generic-function is then rewritten as follows:

n (defun apply-generic-function (gf args)
(let* ((required-classes
(mapcar #'class-of (required-portion gf args)))
(applicable-methods
(or (gethash required-classes
(classes-to-applicable-methods-table gf)
nil)
(setf (gethash required-classes
(classes-to-applicable-methods-table gf))
(compute-applicable-methods-using-classes
gt
required-classes)))))
(if (null applicable-methods)
(error "No matching method for the™@
generic function “S,"@
when called with arguments ~:S." gf args)
(apply-methods gf args applicable-methods))))

256 Appendix B

The memoized values may become invalid when a new method is added to the generic
function. In the subset of CLOS we are working with, no other events can invalidate
these entries.! This means that add-method must be modified to clear the table.

ﬂ (defun add-method (gf method)
(setf (method-generic-function method) gf)
(push method (generic-function-methods gf))
(dolist (specializer (method-specializers method))
(pushnew method (class-direct-methods specializer)))
(clrhash (classes-to-applicable-methods-table gf))
method)

Note that these modifications cannot be made to the complete Closette in Appendix D

because the code there reflects revisions made in the course of Chapter 4. One effect of
those revisions is to introduce this optimization.
Exercise 2.1 (p. 51) A list of all classes in the system is kept in some global variable,
call it *all-classes*. The after-method on initialize-instance for class metaobjects
(page 23) is modified to push classes onto this list rather than create the direct subclass
links. This is done by replacing these two lines of that method

n (dolist (superclass (class-direct-superclasses class))
(push class (class-direct-subclasses superclass)))

with
n (push class *all-classes*)

Then class-direct-subclasses can be computed from the global list as follows:

m (defun class-direct-subclasses (class)
(remove-if-not #'(lambda (c)
(member class (class-direct-superclasses c)))
all-classes))

This strategy depends on the freedom provided by the second rule since each call to
class-direct-subclasses constructs and returns a fresh list structure.
Exercise 2.2 (p. 58) A class is at the apex of a diamond if it has two distinct direct
subclasses which themselves have a common subclass:

Hn full CLOS, where both classes and generic functions can be redefined, there are many more situations
which would cause these memoized values to become invalid. As a result, the memoization scheme used in a
real CLOS implementation, while similar in concept, is usually much more complex.

Solutions to Selected Exercises 257

(defun has-diamond-p (class)
(some #'(lambda (pair)
(not (null (common-subclasses* (car pair)
(cadr pair)))))
(all-distinct-pairs (class-direct-subclasses class))))

(defun common-subclasses* (class-1 class-2)
(intersection (subclasses* class-1) (subclasses* class-2)))

The helping function all-distinct-pairs returns the set of all distinct two-element
subsets of a given set.

(defun all-distinct-pairs (set)
(if (null set)
O
(append (mapcar #'(lambda (rest)
(list (car set) rest))
(cdr set))
(all-distinct-pairs (cdr set)))))

Exercise 2.3 (p. 64). Essentially, the exercise is to produce a form which describes |

the actions which apply-generic-function and apply-methods would actually take.

The solution is a straightforward adaptation of those functions. Free use is made of |

several internal functions from Closette, all of which could have been defined using the ﬁ

documented metaobject accessors. |
|
,

s&\anmmcb display-effective-method (gf args)
(let ((applicable-methods
(compute-applicable-methods-using-classes
gf (mapcar #'class-of (required-portion gf args))))) ,
(pprint
(if (null applicable-methods)
'(error "No applicable methods.")
(generate-effective-method gf applicable-methods)))))

258 Appendix B

hm\Anmmﬁb generate-effective-method (gf methods)
(declare (ignore gf))
(labels ((generate-method (method)
¢ (method ,@(cdr (generate—defmethod
method :show-body t))))
(generate-call-method (method next-methods)
‘(call-method
, (generate-method method)
, (mapcar #'generate-method next-methods))))
(let ((primaries (remove-if-not #'primary-method-p methods))
(befores (remove-if-not #'before-method-p methods))
(afters (remove-if-not #'after-method-p methods)))
(if (null primaries)
'(error "No primary method")
‘ (progn
,@(mapcar
#'(lambda (method)
(generate-call-method method ()))
befores)
(multiple-value-progl
, (generate-call-method (car primaries)
(cdr primaries))
,@(mapcar
#' (lambda (method)
(generate-call-method method ()))
(reverse afters))))))))

Exercise 2.4 (p. 66) The first approach can be implemented by adding a single new
slot to method metaobjects. When its value is reader, the method is a reader; when its

value is writer, the method is a writer; and when its value is nil, the method is neither
a reader nor a writer.

n (defclass standard-method ()
(..
(reader/writer :initform nil
:initarg :reader/writer)

)

Solutions to Selected Exercises 259

To properly initialize this slot, the functions add-reader-method and add-writer-
method (p. 39) must be updated to supply the :reader/writer initialization argument.
The predicates can then be implemented as:

(defun reader-method-p (%)
(and (eq (class-of x) (find-class 'standard-method))
(eq (slot-value x 'reader/writer) 'reader)))

(defun writer-method-p (%)
(and (eq (class-of x) (find-class 'standard-method))
(eq (slot-value x 'reader/writer) 'writer)))

The second approach requires two new class definitions, standard-reader-method and
standard-writer-method. Each is defined as a subclass of standard-method. In this
case, add-reader-method and add-writer-method must be modified to create instances
of these new classes rather than standard-method. This is done by merging the previous
code for these functions with the code for ensure-method (p. 38). (Only add-reader-
method is shown, the definition of add-writer-method is analogous.)

(defun add-reader-method (class fn-name slot-name)
(add-method
(ensure-generic-function fn-name :lambda-1list '(object))
(make-instance 'standard-reader—-method
:lambda-list '(object)
:qualifiers (O
:specializers (list class)
:body ¢(slot-value object ' ,slot-name)
:environment Adovnwo<mwnmu<wﬂonaounvvv
(values))

Each strategy is effective at capturing a difference between objects. In the first case,
the difference is captured in the value of a slot. In the second, it is captured in the class
of the object. Each strategy is appropriate in certain situations, and often the choice of
which to use is simply a matter of taste. But, in general, using the class of the object
will make the implementation more extensible. Notice, for example, that the eq test on
the class of the object in the first solution effectively prohibits subclassing of standard-
method. In the full MOP, the latter solution is taken; there are special classes for reader
and writer methods.

Exercise 3.1 (p. 83) As suggested in the exercise, an around-method is used to
default the :direct-superclasses initialization argument. When the supplied value

260 Appendix B

is the empty list, a list of just vanilla-flavor is used instead. The class vanilla-
flavor is itself defined as a subclass of standard-object, so the class precedence list
of any pure flavors class will end in (... vanilla-flavor standard-object t). To
avoid circularity problems, the class vanilla-flavor itself is defined as an instance of
standard-class.?

kammnwmmm vanilla-flavor () ())

(defmethod initialize-instance :around ((class flavors-class)
&rest all-keys
&key direct-superclasses)
(apply #'call-next-method
class
:direct-superclasses (or direct-superclasses
(list (find-class 'vanilla-flavor)))

all-keys))

Exercise 3.2 (p. 89) The solution is based on two important properties of the desired
behavior. First, that slots in encapsulated classes are effectively named by a pair of val-
ues: the slot and class names from the defclass macro. Second, there is no combination
of like-named slots in the inheritance process; i.e., the class c¢2 has two slots “named”
foo, one named (foo, c1) and one named (foo, c2).

This suggests a way to use the existing slot inheritance mechanism to get the desired
behavior. First, each direct slot is assigned a unique name, which replaces the pretty
name specified in the defclass form. A mapping is maintained from pairs of (pretty-
name, class) to the unique names. Because each direct slot has a unique name, no
combination of (what would otherwise be) like-named slots is done. Given a pretty name
and a class, the unique name can be determined, and access can then be done in the
normal way.

The earliest convenient point to assign unique names is during initialization of the
class metaobject. A specialized around-method edits the slot property lists before calling
call-next-method.3

kammnwmmm encapsulated-class (standard-class) ())

2Full CLOS supports default initialization arguments a powerful mechanism for handling this sort of situ-
ation. When using the full MOP, where full CLOS is available, it would be appropriate for this code to use
them. (Default initialization arguments are discussed at greater length in Section 3.6.)

31n the full MOP, the solution is somewhat more complicated because, when a class is redefined, arrange-
ments need to be made to preserve the previous unique name of a slot.

Solutions to Selected Exercises 261

hm\nammsmnwOn initialize-instance :around ((class encapsulated-class)
&rest all-keys
&key direct-slots)
(let ((revised-direct-slots
(mapcar
#'(lambda (slot-properties)
(let ((pretty-name (getf slot-properties ':name))
(new-properties (copy-list slot-properties)))*
(setf (getf* new-properties ':name) (gensym))
(setf (getf* new-properties ':pretty-name) pretty-name)
new-properties))
direct-slots)))
(apply #'call-next-method class
:direct-slots revised-direct-slots
all-keys)))

The pretty name is hung on the :pretty-name property, with the assumption that it
will be stored with the direct slot definition metaobject where it can later be retrieved
with the function slot-definition-pretty-name. These accessors could be defined in
the same way as slot-definition-initform (290).

The function private-slot-value and its allies are all defined in terms of private-
slot-name which searches a class’s list of direct slots looking for one with a given pretty

name, returning the unique name of the slot if it finds one and reporting an error if it
doesn’t.

(defun private-slot-value (instance slot-name class)
(slot-value instance (private-slot-name slot-name class)))

(defun private-slot-name (slot-name class)
(let ((slot (find slot-name (class-direct-slots class)
:key #'slot-definition-pretty-name)))
(if slot
(slot-definition-name slot)
(error "The class “S has no private slot named ~S."
class slot-name))))

Notice that by renaming the slots before initialization, any automatically generated
accessor methods will be defined with the unique names, and so have the desired behavior.

4The :name property needs to be changed. But, the restrictions outlined in Chapter 2 prohibit destructive
modifications of the arguments, so a copy must be made and used instead.

262 Appendix B

Exercise 3.3 (p. 94) The specialized method handles the :default-initargs op-
tion, expanding it according to the rules described earlier. If the option is not :default-
initargs, call-next-method is invoked which will cause the standard method to signal
the appropriate error.

(defmethod canonicalize-defclass-option
((sample-class default-initargs-class) option)
(case (car optiom)
(:default-initargs
‘(:direct-default-initargs
(list ,Q(apply #'append
(mapplist® #'(lambda (key value)
“(',key ,value))
(cdr option))))))
(t (call-next-method))))

Note that bootstrapping concerns mean that the Closette source code in Appendix D

cannot simply be edited to include this version of defclass. One simple way to add it
however is to define it after Closette is already loaded, perhaps by adding it to the end
of the file.
Exercise 3.4 (p. 104) The solution simply assumes the existence of an :allocation
option, which defaults to :instance. Given this, the previous specialized method on
compute-effective-slot-definition is no longer needed since the standard inheri-
tance allocation is what is desired.

The key difference of the change is that some slots of the class will have :dynamic allo-
cation while others have :instance allocation. This means that the previous specialized
method definitions need to be revised to check the allocation of slots rather than simply
assuming they are all dynamic. allocate-instance is modified to only allocate a table
entry when one or more slots are dynamically allocated.

(defmethod allocate-instance ((class dynamic-slot-class))
(let ((instance (call-next-method)))
(vhen (some #'dynamic-slot-p (class-slots class))
(allocate-table-entry instance))
instance))

The specialized methods on the slot access generic functions are revised so that they
do not interfere with access to non-dynamic slots. Notice that by invoking call-next-
method not only when the slot is not dynamic, but also when there is no slot with the

5The non-standard mapping mapplist (281) maps over property lists.

Solutions to Selected Exercises 263

given name, we allow the standard method to handle the missing slot error. (Only
slot-value-using-class is shown, the others are similar.)

hm\ﬁammsmduoa slot-value-using-class ((class dynamic-slot-class)
instance slot-name)
(let ((slot (find slot-name (class-slots class)
:key #'slot-definition-name)))
(if (and slot (dynamic-slot-p slot))
(read-dynamic-slot-value instance slot-name)
(call-next-method))))

Exercise 3.5 (p. 105) This solution is similar to the implementation of dynamic
slots except that instead of using a separate table for the class slots, they are stored in
the class metaobject. Furthermore, as defined in CLOS, the initialization forms for class
slots are evaluated at the time the class is defined.

(defclass class-slot-class (standard-class)
((class-allocated-slots
:initform ()
:accessor class-allocated-slots)))

(defun class-slot-p (slot)
(eq (slot-definition-allocation slot) ':class))

Evaluation of the initialization forms and allocation of the class slot storage is handled
by a specialized method on initialize-instance. A special value is used to record
that a class slot is unbound.

Kammvmu.m.amnmw. unbound-class-slot (list "unbound class slot"))

264 Appendix B

sm\ﬁammsmnWOQ initialize-instance :after
((class class-slot-class) &key)
(setf (class-allocated-slots class)
(mapcar
#'(lambda (slot)
(let ((initfunction
(slot-definition-initfunction slot)))
(cons (slot-definition-name slot)
(if (not (null initfunction))
(funcall initfunction)
unbound-class-slot))))
(remove-if-not #'class-slot-p
(class-direct-slots class)))))

Specialized methods on the slot access generic functions first check whether the slot is a
class slot, and if it is they access the class slot storage. (Only slot-value-using-class
is shown, the others are similar.)

(defmethod slot-value-using-class ((class class-slot-class)
instance
slot-name)
(let ((slot (find slot-name (class-slots class)
:key #'slot-definition-name)))
(if (and slot (class-slot-p slot))
(class-slot-value class slot-name)
(call-next-method))))

The class slot storage is found by searching, in order, the direct slots of each class in the
class precedence list.

Solutions to Selected Exercises 265

hm\ﬁammcu class-slot-value (class slot-name)
(dolist (super (class-precedence-list class))
(let ((slot (find slot-name
(class-direct-slots super)
:key #'slot-definition-name)))
(when slot
(let ((value (cdr (assoc slot-name
(class-allocated-slots super)))))
(when (eq value unbound-class-slot)
(error "The class slot “S is umbound in the class ~S."
slot-name class))
(return-from class-slot-value value))))))

In full CLOS, change-class and update-instance-for-different-class handle
class slots in a special way which this solution does not support. In particular, they
provide reasonable behavior for what happens when the allocation of a slot changes.
How would you modify the existing protocol so that these operations could be extended
to handle class slots?

Exercise 4.1 (p. 110) A flag stored with the generic function metaobject keeps track
of whether tracing is currently on or off. A method on apply-generic-function checks
the flag, and when it is set, prints out appropriate information.

kammnwwmm traceable-gf (standard-generic-function)
((tracing :initform nil :accessor tracing-enabled-p)))

(defun trace-generic-function (gf-name new-value)
(let ((gf (fdefinition gf-name)))
(setf (tracing-enabled-p gf) new-value)))

266 Appendix B

sA\AammEodWOQ apply-generic-function ((gf traceable-gf) args)
(if (not (tracing-enabled-p gf))
(call-next-method)
(progn
(format *trace-output*
"Entering generic function “S7@
with arguments ~:S.7%" gf args)
(let ((results (multiple-value-list (call-next-method))))
(format *trace-output*
"Leaving generic function “S7@
value(s) being returned are:
(values-list results)))))

:8.7%" gf results)

Note that this solution cannot be added directly to the version of Closette that appears
in Appendix D because the code there reflects the revised version of the generic function
invocation protocol developed late in Chapter 4. (Also see the remarks at the beginning
of Appendix D concerning fdefinition.)

Exercise 4.2 (p. 124) The solution is to store the argument precedence order in
the generic function metaobject, and then specialize method-more-specific-p so that
it consults the stored value when ordering methods.

Kammnwwmm apo-gf (standard-generic-function)
((argument-precedence-order
:initarg :argument-precedence-order
:accessor argument-precedence-order)))

The argument precedence order is initialized from the :argument-precedence-order
option to defgeneric; the value is a permuted list of the required argument names. The
logical default value is the required portion of the generic function’s lambda list, which
means that any defaulting must be done after the lambda list has been initialized.

hm\mammsmdwoa initialize-instance :after ((gf apo-gf) &key)
(unless (slot-boundp gf 'argument-precedence-order)
(setf (argument-precedence-order gf)
(gf-required-arglist gf))))

The specialized method on method-more-specific-p operates as before; the difference
is that the order of the comparison now comes from the argument precedence order.

Solutions to Selected Exercises 267

h&\ﬂnmmsmdwoa method-more-specific-p
((gf apo-gf) methodl method2 required-classes)
(flet ((apo-permute (list)
(mapcar #'(lambda (arg-name)
(nth (position arg-name
(gf-required-arglist gf))
list))
(argument-precedence-order gf))))
(mapc #'(lambda (specl spec2 arg-class)
(unless (eq specl spec2)
(return-from method-more-specific-p
(sub-specializer-p specl spec2 arg-class))))
(apo-permute (method-specializers method1))
(apo-permute (method-specializers method2))
(apo-permute required-classes))
nil))

Exercise 4.3 (p. 124) Beta invokes primary methods in the opposite order of CLOS;
that is, in least-specific-first order. This effect can be achieved simply by reversing the
sense of method-more-specific-p, which will cause compute-applicable-methods-
using-classes to sort the list of methods in least-specific-first order.

(defclass beta-gf (standard-generic-function) ())
(defclass beta-method (standard-method) ())

(defmethod method-more-specific-p ((gf beta-gf) methodl method2 classes)
(if (equal (method-specializers methodl)
(method-specializers method2))
nil
(not (call-next-method))))

Alternatively, apply-methods can be specialized to pull methods off the opposite end
of the list:

kammsmawsa apply-methods ((gf beta-gf) args methods)
(when (null methods)
(error "No primary methods for the~@
generic function ~S." gf))
(apply-method (car (last methods)) args (butlast methods)))

268 Appendix B

Either way, inner is implemented just like call-next-method. A specialized method on

extra-function-bindings returns an entry for inner.

K (defmethod extra-function-bindings ((method beta-method)
args next-methods)

(list
(list 'inner
#' (lambda ()
(if (null next-methods)
nil
(apply-methods (method-generic-function method)

args
next-methods))))))

Note that neither of these solutions can be added directly to the version of Closette
that appears in Appendix D because the code there reflects the revised version of the

generic function invocation protocol developed late in Chapter 4.

M_

Living with Circularity

In contrast to normal metacircular interpreters, the program developed in the body
of Part I would not work if simply typed in to a running CLOS implementation (even if
the names were changed to avoid clashes with existing symbols). This program contains
several kinds of wvicious circularities; e.g., objects that must exist before they can be
created, and recursions without base cases.

For example, consider what would be involved in executing the defclass form on
page 1.3, which is intended to create the class metaobject for the class standard-class.
This new class metaobject is itself supposed to be an instance of standard-class; in
effect, we are asking the system to evaluate something like

(make-instance 'standard-class :name 'standard-class ...)

This is a classic chicken-and-egg problem: an object cannot be created until its class
exists, but this class metaobject needs to be an instance of itself. Clearly, it will take
further thought to see how to get an actual implementation off the ground.

As a second example, consider what is involved in accessing the width slot of a color-
rectangle such as the door object (page 16). The function slot-value calls slot-
value-using-class, which in turn calls slot-location to ascertain the location of the
slot within the instance. Then slot-location calls class-slots on the class metaobject
color-rectangle to get the class’s list of effective slot definition metaobjects so that it
can locate the slot named width:

(defun slot-value (instance slot-name)
(slot-value-using-class (class-of instance) instance slot-name))

(defun slot-value-using-class ((class standard-class) instance slot-name)
(slot-location class slot-name) ...))

(defun slot-location (class slot-name)
(class-slots class) ...)

In this case, the applicable method on class-slots is a reader method specialized to
standard-class, whose body consists of a single call to slot-value to access the class
metaobject’s slot named effective-slots:

(defmethod class-slots ((class standard-class))
(slot-value class 'effective-slots))

But now we are back to slot-value, which will be evaluated in the same manner as

the original. What we have is a non-well-founded recursion path, which would cause the
implementation to loop indefinitely.

270 Appendix C

Although, for reasons of this sort, the program presented in the main text of Part I
cannot be run as given, something very close to it can be run on a bare Common Lisp
system (i.e., sans object system), and that something is presented in Appendix D. In
this appendix we discuss the origins of the problematic circularities, and explain how to
get around them.

The heart of the matter is that the introduction of metaobject protocols makes CLOS
into a procedurally reflective language [Smith 84] and the code presented in the main text
is a reflective processor program for CLOS, rather than a conventional metacircular pro-
cessor program. The examples given above illustrate two general categories of circularity
that arise in procedurally reflective systems:

Bootstrapping issues which are involved with how to get the system up and running in
the first place, and

Metastability issues which have to do with how the system manages to run, and to stay
running even while fundamental aspects of the implementation are being changed.

The issue of how the class metaobject for standard-class comes into existence is a
bootstrapping issue; once this class metaobject exists, the problem evaporates. How
slot-value will manage to avoid the apparent infinite regress is a metastability issue that
does not go away even after the system has been bootstrapped. Another metastability
issue has to do with compute-discriminating-function. When a method is added
to this generic function, its discriminating function becomes invalid and so much be
recomputed, which requires calling compute-discriminating-function.

Developing a correct implementation involves finding and breaking all vicious circles,
but the techniques differ for the two kinds of cases. Because they occur before any user
code has to be run, bootstrapping issues can often be dispatched by quick and dirty
means. Addressing the metastability issues, on the other hand, requires taking care to
ensure the (necessary) shortcuts do not invalidate the correctness of any user code. In
spite of these differences, however, approaches that address one kind of issue sometimes
provide solutions to the other kind; fortunately, that is the case for Closette, as the rest of
this appendix will explain. A more thorough discussion of the problems associated with
implementing procedurally reflective languages can be found in [des Riviéres&Smith 84].

C.1 Bootstrapping Issues

Bootstrapping Closette involves two general initialization tasks: creating the initial class
hierarchy and defining the standard generic functions, along with their standard methods.
The insight underlying our bootstrapping technique is that there are only a finite number
of initial metaobjects, and the values of their slots can all be figured out in advance (by

Living with Circularity 27

us, the implementors). This means that these metaobjects can all be created by special
hand-coded mechanisms. The only real challenge, in fact, is to find a way to create these
initial metaobjects without having to write too much code that serves no other purpose.

The first circularity in the class hierarchy that must be dissolved is the fact that the
class standard-class must exist before any metaobjects can be created with allocate-
instance, which expects a class metaobject as an argument. The solution is to create
standard-class entirely by other means; it can then be used in the creation of the other
class metaobjects.

A second, more general, problem stems from the fact that classes and generic functions
are thoroughly entangled: the creation of classes requires the prior existence of certain
generic functions; conversely, the creation of generic functions and methods requires the
prior existence of certain classes. These circularities need to be broken.

To see how we can do this, note that the reasons metaobject protocols are based on
generic functions is that the method lookup mechanism provides both flexibility and
extensibility. Neither property, however, is needed during initialization, since the initial
metaobjects are always instances of the standard metaobject classes. Extensibility, that
is to say, will not be needed until the user’s code is read. It follows, therefore, that
although we want to call generic functions during startup, there is no need to use the
fully general method lookup mechanism. This can save us from the problem that the
method lookup mechanism cannot work until most of the system is created. And thus we
arrive at a simple solution: carry out calls to generic functions without using the method
lookup mechanism until all classes, generic functions, and methods have been created.

There are a variety of ways in which this strategy is achieved. We need to be able
to execute a defclass form for one of the initial classes while steering clear of the
method lookup mechanism (the same story applies to defgenerics and defmethods).
The documented execution of a defclass involves a call to ensure-class, which in
turn calls the generic function make-instance. This last is in fact the principle generic
function call; all other interesting generic function calls (e.g., to allocate-instance and
compute-slots) are in service of this one call to make-instance. Notice, however, that
when ensure-class calls make-instance, passing the class metaobject class as the first
argument, the only one that can arise, during this startup phase, is standard-class.
Because standard-class is a known quantity, we can predict exactly which methods of
which generic functions will be invoked. This allows us to modify ensure-class to catch
this case and call a normal function make-instance-standard-class with exactly the
same net behavior as that call to make-instance. In other words, the definition

n (defun ensure-class (...)

(apply #'make-instance metaclass ...) ...)

272 Appendix C

can be changed to

n (defun ensure-class (...)
... (apply (if (eq metaclass (find-class 'standard-class))
#'make-instance-standard-class
#'make-instance)
metaclass ...) ...)

Mostly, what make-instance-standard-class does is to initialize slots from initial-
ization arguments; this can be accomplished with inline calls to the metaobject slot acces-
sors. Other initialization is performed by a class-specific after-method on initialize-
instance and by finalize-inheritance. We can avoid unnecessary code duplication
by moving most of the code from the standard methods into independently callable
functions. E.g., the standard method for finalize-inheritance:

m (defmethod finalize-inheritance ((class standard-class))
(body))

can be split into a minimal method that calls a normal function named std-finalize-
inheritance that does all the actual work:

n (defmethod finalize-inheritance ((class standard-class))
(std-finalize-inheritance class))
(defun std-finalize-inheritance (class)

{body))

This allows the callers of the generic function the option of directly invoking the standard
method in cases when it is known that only the standard method would be applicable.
For example, the call

(finalize-inheritance class)
can be rewritten as

(funcall (if (eq (class-of class) (find-class 'standard-class))
#'std-finalize-inheritance
#'finalize-inheritance)
class)

because it is a sure bet that instances of standard-class will be finalized in the regular
way.

Living with Circularity 273

Since all classes during startup are instances of standard-class, the full method
lookup mechanism is bypassed during startup. But when an instance of a specialized
subclass of standard-class comes along later, the real method lookup mechanism for
finalize-inheritance will be properly activated.

The bulk of the generic function calls are to the metaobject slot accessors (e.g., class-
slots). There is no particular reason in Closette why these accessors need to be generic
functions at all, so we have rewritten them as regular functions. This leaves only about
a dozen generic functions calls that need to be special-cased in the way described above.

C.2 Maetastability Issues

Once the implementation is up and running, it is still a trick to keep it running. In a
normal, closed implementation, this is not a problem; in a system with metaobject proto-
cols that allow the implementation to be extended, there is the potential for spectacular
failure modes if certain situations are not properly anticipated.

In one of the examples we looked at above, one step in accessing a slot in a standard
instance involves finding the relevant effective slot definition metaobject. The list of
effective slot definition metaobjects to look through is stored in the class metaobject,
which, unfortunately, requires another slot access to retrieve. Thus the nested chain of
calls looks as follows:

(slot-value door 'width)
(slot-value-using-class (class-of door) door 'width)
(slot-location (class-of door) 'width)
(class-slots (class-of door))
(slot-value (class-of door) 'effective-slots)
(slot-value-using-class (class-of (class-of door))
(class-of door)
‘effective-slots)
(slot-location (class-of (class-of door))
'effective—-slots)
(class-slots (class-of (class-of door)))
(slot-value (class—of (class-of door)) 'effective-slots)

This loop can be broken in slot-location (282) by special-casing the slot named
effective-slots of the class metaobject for standard-class. That is, by ensuring
that

(slot-location (find-class 'standard-class) 'effective-slots)

274 Appendix C

returns the known and fixed location of this particular slot of this particular class meta-
object without recourse to further slot accesses. Catching this one special case breaks

the circularity because standard-class is always guaranteed to turn up eventually in
the sequence

(class-of (z))
(class-of (class-of (z)))
(class-of (class-of (class-of (z})))

The fact that the class standard-class sits at the top of all class-of chains is a crucial
property of the MOP—without it, there would not be any obvious base cases.

What is going on here is actually perfectly standard. Like any well-founded recursion,
the implementation must bottom out on some known base cases. Furthermore, the tech-
nique applies to most other issues of metastability as well: the base cases are calls to
system-defined generic functions with standard metaobjects as arguments—for example,
computing the class precedence list of an instance of standard-class, computing the
discriminating function of an instance of standard-generic-function, and computing
the method function of an instance of standard-method. The implementation must
somehow guarantee that all these base cases can be handled no matter what special-
izations the user may later introduce. This is one of the reasons why users cannot be
allowed to add new methods that would be applicable to standard metaobjects; without
such a restriction, there would be no base cases.

To see how this all matters, consider what is supposed to happen when a specialized
method is added to compute-discriminating-function. Suppose we were to start, for
example, with the following call:

(add-method #'compute-discriminating-function (new-method))

The function add-method will cause the discriminating function for the generic function
metaobject (compute-discriminating-function in this case) to be recomputed because
adding a new method constitutes a change in the context upon which the generic func-
tion’s discriminating function may legitimately depend. The generic function compute-
discriminating-function must be called to compute this discriminating function. In
other words, we find the implementation needing to make the following self-referential
call:

(compute-discriminating-function #'compute-discriminating-function)

If the implementation really tried to call compute-discriminating-function in order
to come up with the discriminating function for compute-discriminating-function,

Living with Circularity 275

the game would of course be over. On the other hand, since compute-discriminating-
function is an instance of standard-generic-function, this is a base case, which can
be handled by the function std-compute-discriminating-function. As long as std-
compute-discriminating-function is called in this case, therefore, and assuming that
it is guaranteed to return a value, this metastability issue has been resolved. Thus we
see how the calls, already recast in the form

(funcall (if (eq (class-of gf) (find-class 'standard-generic-function))
#'std-compute-discriminating-function
#'compute-discriminating-function)

gf)

for bootstrapping reasons, also solve Closette’s issues of metastability.

”—u A Working Closette Implementation

This appendix contains the complete source code for Closette, as presented in Part I. It
should run in any standard Common Lisp {CLtLII], including ones without built-in sup-
port for CLOS.! Except for some differences dealing with (setf foo) as a function name,
the code here is also completely in line with the older version of Common Lisp [CLtL].

Besides the features of basic CLOS, this implementation includes almost all of the
metaobject protocols developed in Chapters 2 and 3 of Part I. The streamlined meta-
object protocols for generic function invocation that were presented in Section 4.4.4
are included in lieu of the apply-... versions from the early part of Chapter 4 (the
latter are retained as normal functions which are defined in terms of the fast ones).
Discriminating functions are precomputed and stored with the generic function meta-
object. Effective method functions are computed on the critical path and memoized as
shown in the text; however, the tables themselves are stored with the generic function
metaobject (as opposed to being stored in lexical variables visible only to the regular dis-
criminating function). Method functions are precomputed and stored with the method
metaobject. Regular method functions have been reformulated so that they don’t need
eval and run-time environments; unfortunately, this change necessitates omitting the
extra-method-bindings protocol.

This implementation also handles around-methods, method redefinition, and
describe-object.

The only other noticeable difference from the code for Closette in Part I has to do
with generic functions. Common Lisp only allows true function to be stored as the
function value of a symbol. Since our generic function metaobjects are not true functions
(technically, they are a kind of structure), Common Lisp refuses to store them there. We
work around this by storing the discriminating function as the symbol’s function value,
and putting the generic function metaobject into an auxiliary table where it can be
retrieved by name with a function called find-generic-function (exactly analogous to
find-class). This solution does not support anonymous generic functions, and trouble
can arise if a named generic function is passed as a functional argument. You must write
(fdefinition ’paint) or #’paint when you need something that can be funcalled
or apply’d, but you must use (find-generic-function ’paint) when you really need
the generic function metaobject.

The remaining differences between this code and that presented in Part I happen truly
backstage, and have to do with the issues of circularity discussed in Appendix C.

11t has been tested in Macintosh Allegro Common Lisp Version 1.2.2, Lucid/Sun Common Lisp 3.0.1 (Sun-4
Version for SunOS 4.0), Franz Allegro Common Lisp 3.1.13.1 (Sun 4), and Symbolics Genera Version 8.0.

278 Appendix D

There are two files: closette.lisp, which contains all of the code for Closette; and
newcl.lisp (page 313), which contains some definitions that allow the first file to run
in older versions of Common Lisp.

;3 ;—*-Mode:LISP; Package: (CLOSETTE :USE LISP); Base:10; Syntax:Common-lisp —-*-

;;; Closette Version 1.0 (February 10, 1991)

;33 Copyright (c) 1990, 1991 Xerox Corporation.
;35 All rights reserved.

;33 Use and copying of this software and preparation of derivative works
;;; based upon this software are permitted. Any distribution of this
;3; software or derivative works must comply with all applicable United
;33 States export control laws.

;;; This software is made available AS IS, and Xerox Corporation makes no
;3; warranty about the software, its performance or its conformity to any
;33 specification.

;;; Closette is an implementation of a subset of CLOS with a metaobject
;33 protocol as described in "The Art of The Metaobject Protocol”,
;33 MIT Press, 1991.

;;; This program is available by anonymous FTP, from the /pcl/mop
;33 directory on arisia.xerox.com.

;335 This is the file closette.lisp
(in-package 'closette :use '(lisp))

;3; When running in a Common Lisp that doesn't yet support function names like
;3 (setf foo), you should first load the file newcl.lisp. This next little
;33 bit imports stuff from there as needed.

#-Genera
(import '(newcl:print-unreadable-object))

#-Genera
(shadowing-import '(mewcl:defun newcl:fboundp newcl:fmakunbound
newcl:fdefinition))

#-Genera
(export '(newcl:defun newcl:fboundp newcl:fmakunbound newcl:fdefinition))

A Working Closette Implementation 279

#+Genera

(shadowing-import '(future-common-lisp:setf
future-common-lisp:fboundp
future-common-lisp:fmakunbound
future-common-lisp:fdefinition
future-common-lisp:print-unreadable-object))

#+Genera

(export '(future-common-lisp:setf
future-common-1lisp: fboundp
future-common-1lisp:fmakunbound
future-common-lisp:fdefinition
future-common-lisp:print-unreadable-object))

(defvar exports

' (defclass defgeneric defmethod
find-class class-of
call-next-method next-method-p
slot-value slot-boundp slot-exists-p slot-makunbound
make-instance change-class
initialize~instance reinitialize-instance shared-initialize
update-instance-for-different-class
print-object

standard-object
standard-class standard-generic-function standard-method
class-name

class-direct-superclasses class-direct-slots
class-precedence-list class-slots class-direct-subclasses
class-direct-methods

generic-function-name generic-function-lambda-list
generic-function-methods generic-function-discriminating-function
generic-function-method-class

method-lambda-list method-qualifiers method-specializers method-body
method-environment method-generic-function method-function
slot-definition-name slot-definition-initfunction
slot-definition-initform slot-definition-initargs
slot-definition-readers slot-definition-writers
slot-definition-allocation

HY

;3 Class-related metaobject protocol

Y

compute-class-precedence-list compute-slots
compute-effective-slot-definition

280 Appendix D

finalize-inheritance allocate-instance

slot-value-using-class slot-boundp-using-class
slot-exists—p-using-class slot-makunbound-using-class

s

;; Generic function related metacbject protocol

]

compute-discriminating-function
compute-applicable-methods-using-classes method-more-specific-p
compute-effective-method-function compute-method-function

apply-methods apply-method
find-generic-function ; Necessary artifact of this implementation

))

(export exports)

;55 Utilities

push-on-end is like push except it uses the other end:

(defmacro push-on-end (value location)
‘(setf ,location (nconc ,location (list ,value))))

(setf getfx) is like (setf getf) except that it always changes the list,
which must be non-nil.

11

118

(defun (setf getf*) (new-value plist key)
(block body
(do ((x plist (cddr x)))
((null x))
(when (eq (car x) key)
(setf (car (cdr x)) new-value)
(return-from body new-value)))
(push-on-end key plist)
(push-on-end new-value plist)
new-value))
;;; mapappend is like mapcar except that the results are appended together:
(defun mapappend (fun &rest args)
(if (some #'null args)
O
(append (apply fun (mapcar #'car args))
(apply #'mapappend fun (mapcar #'cdr args)))))

A Working Closette Implementation 281

;3 mapplist is mapcar for property lists:

(defun mapplist (fun x)
(if (null x)
O
(cons (funcall fun (car x) (cadr x))
(mapplist fun (ecddr x)))))

;;; Standard imstances

;;; This implementation uses structures for instances, because they're the only
;3; kind of Lisp object that can be easily made to print whatever way we want.

(defstruct (std-instance (:constructor allocate-std-instance (class slots))
(:predicate std-instance-p)
(:print-function print-std-instance))
class
slots)

(defun print-std-instance (instance stream depth)
(declare (ignore depth))
(print-object instance stream))

;3: Standard instance allocation
(defparameter secret-unbound-value (list "slot unbound"))

(defun instance-slot-p (slot)
(eq (slot-definition-allocation slot) ':instance))

(defun std-allocate-instance {(class)
(allocate-std-instance
class
(allocate-slot-storage (count-if #'instance-slot-p (class-slots class))
secret-unbound-value)))

;3; Simple vectors are used for slot storage.

(defun allocate-slot-storage (size initial-value)
(make-array size :initial-element initial-value))

;33 Standard instance slot access

;33 N.B. The location of the effective-slots slots in the class metaobject for
;;; standard-class must be determined without making any further slot

282

Appendix D
;33 references.
(defvar the-slots-of-standard-class) ;standard-class's class-slots
(defvar the-class-standard-class) ;standard-class's class metaobject

(defun slot-location (class slot-name)
(if (and (eq slot-name 'effective-slots)
(eq class the-class-standard-class))
(position 'effective-slots the-slots-of-standard-class
:key #'slot-definition-name)
(let ((slot (find slot-name
(class-slots class)
:key #'slot-definition-name)))
(if (null slot)
(error "The slot ~S is missing from the class ~S."
slot-name class)
(let ((pos (position slot
(remove-if-not #'instance-slot-p
(class-slots class)))))
(if (null pos)
(error "The slot "S is not an instance”™@
slot in the class "S."
slot-name class)

pos))))))

(defun slot-contents (slots location)
(svref slots location))

(defun (setf slot-contents) (new-value slots location)
(setf (svref slots location) new-value))

(defun std-slot-value (instance slot-name)
(let* ((location (slot-location (class-of instance) slot-name))
(slots (std-instance-slots instance))
(val (slot-contents slots location)))
(if (eq secret-umbound-value val)
(error "The slot “S is unbound in the object "S."
slot-name instance)
val)))
(defun slot-value (object slot-name)
(if (eq (class-of (class-of object)) the-class-standard-class)
(std-slot-value object slot-name)
(slot-value-using-class (class-of object) object slot-name)))

(defun (setf std-slot-value) (new-value instance slot-name)
(let ((location (slot-location (class-of instance) slot-name))

A Working Closette Implementation

(slots (std-instance-slots instance)))
(setf (slot-contents slots location) new-value)))
(defun (setf slot-value) (new-value object slot-name)

(if (eq (class-of (class-of object)) the-class-standard-class)
(setf (std-slot-value object slot-name) new-value)
(setf-slot-value-using-class

new-value (class-of object) object slot-name)))

(defun std-slot-boundp (instance slot-name)
(let ((location (slot-location (class-of instance) slot-name))
(slots (std-instance-slots instance)))
(not (eq secret-unbound-value (slot-contents slots location)))))
(defun slot-boundp (object slot-name)
(if (eq (class-of (class-of object)) the-class-standard-class)
(std-slot-boundp object slot-name)
(slot-boundp-using-class (class-of object) object slot-name)))

(defun std-slot-makunbound (instance slot-name)
(let ((location (slot-location (class-of instance) slot-name))
(slots (std-instance-slots instance)))
(setf (slot-contents slots location) secret-unbound-value))
instance)
(defun slot-makunbound (object slot-name)
(if (eq (class-of (class-of object)) the-class-standard-class)
(std-slot-makunbound object slot-name)
(slot-makunbound-using-class (class-of object) object slot-name)))

(defun std-slot-exists-p (instance slot-name)
(not (null (find slot-name (class-slots (class-of instance))
:key #'slot-definition-name))))
(defun slot-exists-p (object slot-name)
(if (eq (class-of (class-of object)) the-class-standard-class)
(std-slot-exists-p object slot-name)
(slot-exists-p-using-class (class-of object) object slot-name)))

;33 class-of

(defun class-of (x)
(if (std-instance-p x)
(std-instance-class x)
(built-in-class-of x)))

;33 N.B. This version of built-in-class-of is straightforward but very slow.

(defun built-in-class-of (x)
(typecase x

283

284

(null

((and symbol (not null))

((complex *)
((integer * x)
((float * %)
(cons
(character
(hash-table
(package
(pathname
(readtable
(stream

((and number (not (or integer complex float)))

((string *)
((bit-vector x)

((and (vector * x) (not (or string vector)))

((and (array * *) (not vector))

((and sequence (not (or vector list)))

(function
(t

;3; subclassp and sub-specializer-p

(defun subclassp (cl c2)
(not (null (find c2 (class-precedence-list c1)))))

(defun sub-specializer-p (¢l ¢2 c-arg)

(let ((cpl (class-precedence-list c-arg)))

1

(defparameter the-defclass-standard-class

(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class
(find-class

(not (null (find c2 (cdr (member cil cpl)))))))

;; Class metaobjects and standard-class

' (defclass standard-class ()
((name :initarg :name)
(direct-superclasses

:initarg :direct-superclasses)

;33 Defining the metaobject slot accessor

(direct-slots)

(class-precedence-1list)
(effective-slots)

(direct-subclasses
(direct-methods

tinitform ())
rinitform ()))))

function as

Appendix D

'null))
'symbol))
'complex))
'integer))
'float))
'cons))
'character))
'hash-table))
'package))
'pathname))
'readtable))
'stream))
'number))
'string))
'bit-vector))
'vector))
'array))
'sequence))
'function))

't))))

;standard~class's defclass form

;accessor class-name
raccessor class-direct-superclasses

raccessor class-direct-slots
raccessor class-precedence-list
:accessor class-slots

;accessor class-direct-subclasses
raccessor class-direct-methods

regular functions

A Working Closette Implementation

;i greatly simplifies the implementation without removing functiomality.

(defun class-name (class) (std-slot-value class 'name))
(defun (setf class-name) (new-value class)
(setf (slot-value class 'name) new-value))

(defun class-direct-superclasses (class)
(slot-value class 'direct-superclasses))

(defun (setf class-direct-superclasses) (new-value class)
(setf (slot-value class 'direct-superclasses) new-value))

(defun class-direct-slots (class)
(slot-value class 'direct-slots))

(defun (setf class-direct-slots) (new-value class)
(setf (slot-value class 'direct-slots) new-value))

(defun class-precedence-list (class)
(slot-value class 'class-precedence-list))
(defun (setf class-precedence-list) (new-value class)
(setf (slot-value class 'class-precedence-list) new-value))

(defun class-slots (class)
(slot-value class 'effective-slots))
(defun (setf class-slots) (new-value class)
(setf (slot-value class 'effective-slots) new-value))

(defun class-direct-subclasses (class)
(slot-value class 'direct-subclasses))

(defun (setf class—-direct-subclasses) (new-value class)
(setf (slot-value class 'direct-subclasses) new-value))

(defun class-direct-methods (class)
(slot-value class 'direct-methods))

(defun (setf class-direct-methods) (new-value class)
(setf (slot-value class 'direct-methods) new-value))

;33 defclass

(defmacro defclass (name direct-superclasses direct-slots
&rest options)
‘ (ensure-class ',name
:direct-superclasses
, (canonicalize-direct-superclasses direct-superclasses)
:direct-slots
, (canonicalize-direct-slots direct-slots)
,@(canonicalize-defclass-options options)))

285

286 Appendix D

(defun canonicalize-direct-slots (direct-siots)
‘(list ,@(mapcar #'canonicalize-direct-slot direct-slots)))

(defun canonicalize-direct-slot (spec)
(if (symbolp spec)
‘(list :name ',spec)
(let ((name (car spec))
(initfunction nil)
(initform nil)
(initargs ())
(readers ())
(writers ())
(other-options ()))
(do ((olist (cdr spec) (cddr olist)))
((null olist))
(case (car olist)
(:initform
(setq initfunction
‘(function (lambda () ,(cadr olist))))
(setq initform ‘', (cadr olist)))
(:initarg
(push-on-end (cadr olist) initargs))
(:reader
(push-on-end (cadr olist) readers))
(:writer
(push-on-end (cadr olist) writers))
(:accessor
(push-on-end (cadr olist) readers)
(push-on-end ‘(setf ,(cadr olist)) writers))
(otherwise
(push-on-end ‘', (car olist) other-options)
(push-on-end ‘', (cadr olist) other-optioms))))
‘(list
:name ',name
,@(when initfunction
‘(:initform ,initform
:initfunction ,initfunction))
,@(when initargs ‘(:initargs ',initargs))
,8(when readers ‘(:readers ',readers))
,0(when writers ‘(:writers ',writers))
,Qother-options))))

(defun canonicalize-direct-superclasses (direct-superclasses)
‘(list ,@(mapcar #'canonicalize-direct-superclass direct-superclasses)))

A Working Closette Implementation

(defun canonicalize-direct-superclass (class-name)
‘(find-class ',class-name))

(defun canonicalize-defclass-options (optiomns)
(mapappend #'canonicalize-defclass-option options))

(defun canonicalize-defclass-option (option)
(case (car option)
(:metaclass
(list ':metaclass
‘(find-class ', (cadr option))))
(:default-initargs
(list
':direct-default-initargs
‘(list ,@(mapappend
#' (lambda (x) x)
(mapplist
#' (lambda (key value)
“(',key ,value))
(cdr option))))))
(t (1ist ‘', (car option) ‘', (cadr optiomn)))))

;33 find-class
(let ((class-table (make-hash-table :test #'eq)))

(defun find-class (symbol &optional (errorp t))
(let ((class (gethash symbol class-table nil)))
(if (and (null class) errorp)

(error "No class named ~S." symbol)
class)))

(defun (setf find-class) (new-value symbol)
(setf (gethash symbol class-table) new-value))

(defun forget-all-classes ()
(clrhash class-table)
(values))

) ;end let class-table

;33 Ensure class

(defun ensure-class (name &rest all-keys

gkey (metaclass the-class-standard-class)

%allow-other-keys)
(if (find-class name nil)

287

288 Appendix D

(error "Can't redefine the class named ~S." name)
(let ((class (apply (if (eq metaclass the-class-standard-class)
#'make-instance-standard-class
#'make-instance)
metaclass :name name all-keys)))
(setf (find-class name) class)
class)))

;;; make-instance-standard-class creates and initializes an instance of
;3 standard-class without falling into method lookup. However, it cannot be
;33 called until standard-class itself exists.

(defun make-instance-standard-class
(metaclass &key name direct-superclasses direct-slots
&allow-other-keys)
(declare (ignore metaclass))
(let ((class (std-allocate-instance the-class-standard-class)))
(setf (class-name class) name)
(setf (class-direct-subclasses class) ())
(setf (class-direct-methods class) ())
(std-after-initialization-for-classes class
:direct-slots direct-slots
:direct-superclasses direct-superclasses)
class))

(defun std-after-initialization-for-classes
(class &key direct-superclasses direct-slots &allow-other-keys)
(let ((supers
(or direct-superclasses
(list (find-class 'standard-object)))))
(setf (class-direct-superclasses class) supers)
(dolist (superclass supers)
(push class (class-direct-subclasses superclass))))
(let ((slots
(mapcar #'(lambda (slot-properties)
(apply #'make-direct-slot-definition
slot-properties))
direct-slots)))
(setf (class-direct-slots class) slots)
(dolist (direct-slot slots)
(dolist (reader (slot-definition-readers direct-slot))
(add-reader-method
class reader (slot-definition-name direct-slot)))
(dolist (writer (slot-defimition-writers direct-slot))
(add-writer-method

A Working Closette Implementation 289

class writer (slot-definition-name direct-slot)))))
(funcall (if (eq (class-of class) the-class-standard-class)
#'std-finalize-inheritance
#'finalize-inheritance)
class)
(values))

; Slot definition metaobjects

; N.B. Quietly retain all unknown slot options (rather than signaling an
; error), so that it's easy to add new ones.

(defun make-direct-slot-definition
(&rest properties
kkey name (initargs ()) (initform nil) (initfunctiom nil)
(readers ()) (writers ()) (allocation :instance)
&allow-other-keys)
(let ((slot (copy-list properties))) ; Don't want to side effect &rest list

(setf (getf* slot ':name) name)

(setf (getf* slot ':initargs) initargs)

(setf (getf* slot ':initform) initform)

(setf (getf* slot ':initfunction) initfunction)

(setf (getf* slot ':readers) readers)

(setf (getf* slot ':writers) writers)

(setf (getf* slot ':allocation) allocation)

slot))

(defun make-effective-slot-definition
(&rest properties
gkey name (initargs ()) (initform nil) (initfunction nil)
(allocation :instance)
%allow-other-keys)
(let ((slot (copy-list properties))) ; Don't want to side effect &rest list
(setf (getf* slot ':name) name)
(setf (getf* slot ':initargs) initargs)
(setf (getf* slot ':initform) initform)
(setf (getf* slot ':initfunction) initfunctionm)
(setf (getf* slot ':allocation) allocation)
slot))

(defun slot-definition-name (slot)
(getf slot ':name))

(defun (setf slot-definition-name) (new-value slot)
(setf (getf* slot ':name) new-value))

(defun slot-definition-initfunction (slot)

290 Appendix D

(getf slot ':initfunctionm))
(defun (setf slot-definition-initfunction) (new-value slot)
(setf (getf* slot ':initfunction) new-value))

(defun slot-definition-initform (slot)

(getf slot ':initform)) ”
(defun (setf slot-definition-initform) (new-value slot)

(setf (getf* slot ':initform) new-value)) |

(defun slot-definition-initargs (slot) _
(getf slot ':initargs)) _
(defun (setf slot-definition-initargs) (new-value slot) ;
(setf (getf* slot ':initargs) new-value)) w

1

(defun slot-definition-readers (slot)
(getf slot ':readers))

(defun (setf slot-definition-readers) (new-value slot)
(setf (getf* slot ':readers) new-value))

(defun slot-definition-writers (slot)
(getf slot ':writers))
(defun (setf slot-definition-writers) (new-value slot)
(setf (getf* slot ':writers) new-value)) ,

(defun slot-definition-allocation (slot)
(getf slot ':allocatiom))

(defun (setf slot-definition-allocation) (new-value slot) [
(setf (getf* slot ':allocation) new-value))

;33 finalize-inheritance

(defun std-finalize-inheritance (class)
(setf (class-precedence-list class)

(funcall (if (eq (class-of class) the-class-standard-class)
#'std-compute~class-precedence-list
#'compute-class-precedence-list)

class))
(setf (class-slots class)

(funcall (if (eq (class-of class) the-class-standard-class)
#'std-compute-slots
#'compute-slots)

class))
(values))

;33 Class precedence lists

A Working Closette Implementation

(defun std-compute-class-precedence-list (class)
(let ((classes-to-order (collect-superclasses* class)))
(topological-sort classes-to-order
(remove-duplicates
(mapappend #'local-precedence-ordering
classes-to-order))
#'std-tie-breaker-rule)))

;3 topological-sort implements the standard algorithm for topologically
;3; sorting an arbitrary set of elements while honoring the precedence

;;; constraints given by a set of (X,Y) pairs that indicate that element
;3; X must precede element Y. The tie-breaker procedure is called when it
;3; is necessary to choose from multiple minimal elements; both a list of
;;; candidates and the ordering so far are provided as arguments.

(defun topological-sort (elements constraints tie-breaker)
(let ((remaining-constraints constraints)
(remaining-elements elements)
(result ()))
(loop
(let ((minimal-elements
(remove-if
#'(lambda (class)
(member class remaining-constraints
:key #'cadr))
remaining-elements)))
(when (null minimal-elements)
(if (null remaining-elements)
(return-from topological-sort result)
(error "Inconsistent precedence graph.")))
(let ((choice (if (null (cdr minimal-elements))
(car minimal-elements)
(funcall tie-breaker
minimal-elements
result))))
(setq result (append result (list choice)))
(setq remaining-elements
(remove choice remaining-elements))
(setq remaining-constraints
(remove choice
remaining-constraints
:test #'member)))))))

;3; In the event of a tie while topologically sorting class precedence lists,
;;; the CLOS Specification says to "select the one that has a direct subclass

291

292 Appendix D

;;; rightmost in the class precedence list computed so far." The same result
;;; is obtained by inspecting the partially constructed class precedence list
;;; from right to left, looking for the first minimal element to show up among
;;; the direct superclasses of the class precedence list constituent.

:;; (There's a lemma that shows that this rule yields a unique result.)

(defun std-tie-breaker-rule (minimal-elements cpl-so-far)
(dolist (cpl-constituent (reverse cpl-so-far))
(let* ((supers (class-direct-superclasses cpl-constituent))
(common (intersection minimal-elements supers)))
(when (not (null common))
(return-from std-tie-breaker-rule (car common))))))

:;; This version of collect-superclasses* isn't bothered by cycles in the class
;;; hierarchy, which sometimes happen by accident.

(defun collect-superclasses* (class)
(labels ((all-superclasses-loop (seen superclasses)
(let ((to-be-processed
(set-difference superclasses seen)))
(if (null to-be-processed)
superclasses
(let ((class-to-process
(car to-be-processed)))
(all-superclasses—loop
(cons class-to-process seen)
(union (class-direct-superclasses
class-to-process)
superclasses))))})))
(all-superclasses-loop () (list class))))

;33 The local precedence ordering of a class C with direct superclasses C_1,
;5; C_2, ..., C_n is the set ({(C C_1) (C_1 C_2) ...(C_n-1 C_m)).

(defun local-precedence-ordering (class)
(mapcar #'list
(cons class
(butlast (class-direct-superclasses class)))
(class-direct-superclasses class)))

;3; Slot inheritance

(defun std-compute-slots (class)
(let* ((all-slots (mapappend #'class-direct-slots
(class-precedence-list class)))
(all-names (remove-duplicates

A Working Closette Implementation

(mapcar #'slot-definition-name all-slots))))
(mapcar #'(lambda (name)
(funcall
(if (eq (class-of class) the-class-standard-class)
#'std-compute-effective-slot-definition
#'compute-effective-slot-definition)
class
(remove name all-slots
:key #'slot-definition-name
itest-not #'eq)))
all-names)))

(defun std-compute-effective-slot-definition (class direct-slots)
(declare (ignore class))
(let ((initer (find-if-not #'null direct-slots
:key #'slot-definition-initfunction)))
(make-effective-slot-definition
:name (slot-definition-name (car direct-slots))
tinitform (if initer
(slot-definition-initform initer)
nil)
:initfunction (if initer
(slot-definition-initfunction initer)
nil)
:initargs (remove-duplicates
(mapappend #'slot-definition-initargs
direct-slots))
:allocation (slot-definition-allocation (car direct-slots)))))

;55 Generic function metaobjects and standard-generic-function
(defparameter the-defclass-standard-generic-function
'(defclass standard-generic-function ()

((name :initarg :name) ; raccessor generic-function-name
(lambda-list ; raccessor generic-function-lambda-list
:initarg :lambda-list)
(methods :initform ()) ; raccessor generic-function-methods
(method-class ; ‘accessor generic-function-method-class
:initarg :method-class)
(discriminating-function) ; :accessor generic-function-
; -discriminating-function
(classes-to-emf-table ; raccessor classes-to-emf-table

‘initform (make-hash-table :test #'equal)))))

293

294 Appendix D

(defvar the-class-standard-gf) ;standard-generic-function's class metaobject

(defun generic-function-name (gf)
(slot-value gf 'mame))

(defun (setf generic-function-name) (new-value gf)
(setf (slot-value gf 'name) new-value))

(defun generic-function-lambda-list (gf)
(slot-value gf 'lambda-list))

(defun (setf genmeric-function-lambda-list) (new-value gf) ,
(setf (slot-value gf 'lambda-list) new-value))

(defun generic-function-methods (gf)
(slot~value gf 'methods))

(defun (setf gemeric-function-methods) (new-value gf)
(setf (slot-value gf 'methods) new-value))

(defun generic-function-discriminating-function (gf)
(slot-value gf 'discriminating-function))

(defun (setf generic-function-discriminating~function) (new-value gf)
(setf (slot-value gf 'discriminating-function) new-value))

(defun generic-function-method-class (gf)
(slot-value gf 'method-class))

(defun (setf generic-function-method-class) (new-value gf)
(setf (slot-value gf 'method-class) new-value))

;;; Internal accessor for effective method function table

(defun classes-to-emf-table (gf)
(slot-value gf 'classes-to-emf-table))
(defun (setf classes-to-emf-table) (mew-value gf)
(setf (slot-value gf 'classes-to-emf-table) new-value))

;3 Method metaobjects and standard-method

19

(defparameter the-defclass-standard-method
' (defclass standard-method ()

((lambda-list :initarg :lambda-list) ; :accessor method-lambda-list
(qualifiers :initarg :qualifiers) ; :accessor method-qualifiers
(specializers :initarg :specializers) ; raccessor method-specializers
(body :initarg :body) ; :accessor method-body
(environment :initarg :environment) ; saccessor method-environment
(generic-function :initform nil) ; :accessor method-generic-function

A Working Closette Implementation

(function)))) ; :accessor method-function

(defvar the-class-standard-method) :standard-method's class metaobject

(defun method-lambda-list (method) (slot-value method 'lambda-list))
(defun (setf method-lambda-list) (new-value method)
(setf (slot-value method 'lambda-list) new-value))

(defun method-qualifiers (method) (slot-value method 'qualifiers))
(defun (setf method-qualifiers) (new-value method)
(setf (slot-value method ‘qualifiers) new-value))

(defun method-specializers (method) (slot-value method 'specializers))
(defun (setf method-specializers) (new-value method)
(setf (slot-value method 'specializers) new-value))

(defun method-body (method) (slot-value method 'body))
(defun (setf method-body) (new-value method)
(setf (slot-value method 'body) new-value))

(defun method-environment (method) (slot-value method 'environment))
(defun (setf method-environment) (new-value method)
(setf (slot-value method ‘environment) new-value))

(defun method-generic-function (method)
(slot-value method 'generic-function))

(defun (setf method-generic-function) (new-value method)
(setf (slot-value method 'generic-function) new-value))

(defun method-function (method) (slot-value method 'function))
(defun (setf method-function) (new-value method)
(setf (slot-value method 'function) new-value))

;;; defgeneric

(defmacro defgeneric (function-name lambda-list &rest optioms)
¢ (ensure-generic-function
', function-name
.lambda-list ',lambda-list
,@(canonicalize-defgeneric-options options)))

(defun canonicalize-defgeneric-options (options)
(mapappend #' canonicalize-defgeneric-option options))

(defun canonicalize-defgeneric-option (option)
(case (car option)
(:generic-function-class

295

296 Appendix D

(list ':generic-function-class
‘(find-class ', (cadr option))))
(:method-class
(list ':method-class
‘(find-class ', (cadr option))))
(t (list ‘', (car optiom) ‘', (cadr option)))))

;33 find-generic-function looks up a gemeric function by name. It's an
artifact of the fact that our generic function metaobjects can't legally

be stored a symbol's function value.

(let ((generic-function-table (make-hash-table :test #'equal)))

(defun find-generic-function (symbol &optional (errorp t))
(let ((gf (gethash symbol generic-function-table nil)))
(if (and (null gf) errorp)
(error "No generic function named “S." symbol)

g£)))

(defun (setf find-generic-function) (new-value symbol)
(setf (gethash symbol generic-function-table) new-value))

(defun forget-all-generic-functions ()
(clrhash generic-function-table)
(values))

) ;end let generic-function-table

;33 ensure-generic-function

(defun ensure-generic-function
(function-name
krest all-keys
&key (generic-function-class the-class-standard-gf)
(method-class the-class-standard-method)
&allow-other-keys)
(if (find-generic-function function-name nil)
(find-generic-function function-name)
(let ((gf (apply (if (eq generic-function-class the-class-standard-gf)
#'make-instance-standard-generic-function
#'make-instance)
generic-function-class
:name function-name
:method-class method-class
all-keys)))
(setf (find-generic-function function-name) gf)

gf)))

A Working Closette Implementation 297

;i3 finalize-generic-function

;i35 N.B. Same basic idea as finalize-inheritance. Takes care of recomputing
;5; and storing the discriminating function, and clearing the effective method
;33 function table.

(defun finalize-generic-function (gf)
(setf (generic-function-discriminating-function gf)
(funcall (if (eq (class-of gf) the-class-standard-gf)
#'std-compute-discriminating-function
#'compute-discriminating-function)
gf))
(setf (fdefinition (generic-function-name gf))
(generic-function-discriminating-function gf))
(clrhash (classes-to-emf-table gf))
(values))

;;; make-instance-standard-generic-function creates and initializes an
;35 instance of standard-generic-function without falling into method lookup.
;;; However, it cannot be called until standard-generic—function exists.

(defun make-instance-standard-generic-function
(generic-function-class &key name lambda-list method-class)
(declare (ignore generic-function-class))
(let ((gf (std-allocate-instance the-class-standard-gf)))
(setf (generic-function-name gf) name)
(setf (generic-function-lambda-list gf) lambda-list)
(setf (generic-function-methods gf) ()
(setf (generic-function-method-class gf) method-class)
(setf (classes-to-emf-table gf) (make-hash-table :test #'equal))
(finalize-generic-function gf)
gf))

;;; defmethod

(defmacro defmethod (&rest args)
(multiple-value-bind (function-name qualifiers
lambda-list specializers body)
(parse-defmethod args)
¢ (ensure-method (find-generic-function ',function-name)

:lambda-list ',lambda-list
:qualifiers ',qualifiers
:specializers ,(canonicalize-specializers specializers)
:body ',body
:environment (top-level-environment))))

298

(defun canonicalize-specializers (specializers)
‘(list ,@(mapcar #'canonicalize-specializer specializers)))

(defun canonicalize-specializer (specializer)
‘(find-class ',specializer))

(defun parse-defmethod (args)
(let ((fn-spec (car args))
(qualifiers ())
(specialized-lambda-list nil)
(body)
(parse-state :qualifiers))
(dolist (arg (cdr args))
(ecase parse-state
(:qualifiers
(if (and (atom arg) (mot (null arg)))
(push-on-end arg qualifiers)
(progn (setq specialized-lambda-list arg)
(setq parse-state :body))))
(:body (push-on-end arg body))))
(values fn-spec
qualifiers
(extract-lambda-list specialized-lambda-list)
(extract-specializers specialized-lambda-list)
(list* 'block
(if (consp fn-spec)
(cadr fn-spec)
fn-spec)
body))))

;35 Several tedious functions for analyzing lambda lists

(defun required-portion (gf args)
(let ((number-required (length (gf-required-arglist gf))))
(when (< (length args) number-required)
(error "Too few arguments to generic function ~S." gf))
(subseq args 0 number-required)))

(defun gf-required-arglist (gf)
(let ((plist
(analyze-lambda-list
(generic-function-lambda-list gf))))
(getf plist ':required-args)))

(defun extract-lambda-list (specialized-lambda-list)
(let* ((plist (analyze-lambda-list specialized-lambda-list))

Appendix D

A Working Closette Implementation

(requireds (getf plist ':required-names))
(rv (getf plist ':rest-var))
(ks (getf plist ':key-args))
(aok (getf plist ':allow-other-keys))
(opts (getf plist ':optional-args))
(auxs (getf plist ':auxiliary-args)))
‘(,Qrequireds

,@(if rv ‘(&rest ,rv) ())

,Q@(if (or ks aok) ‘(&key ,Q@ks) ())

,8(if aock '(&allow-other-keys) ())

,@(if opts ‘(&optional ,Qopts) ())

,Q(f auxs ‘(&aux ,Qauxs) ()))))

(defun extract-specializers (specialized-lambda-1list)
(let ((plist (analyze-lambda-list specialized-lambda-1list)))
(getf plist ':specializers)))

(defun analyze-lambda-list (lambda-list)
(labels ((make-keyword (symbol)
(intern (symbol-name symbol)
(find-package 'keyword)))
(get-keyword-from-arg (arg)
(if (listp arg)
(if (listp (car arg))
(caar arg)
(make-keyword (car arg)))
(make-keyword arg))))

(let ((keys ()) ; Just the keywords
(key-args ()) ; Keywords argument specs
(required-names ()) ; Just the variable names
AHmm=MHQQ|NHMm ()) ; Variable names & specializers
(specializers ()) ; Just the specializers

(rest-var nil)
(optionals ())
(auxs ())
(allow-other-keys nil)
(state :parsing-required))
(dolist (arg lambda-list)
(if (member arg lambda-list-keywords)
(ecase arg
(&optional
(setq state :parsing-optional))
(&rest

(setq state :parsing-rest))
(Zkey

299

300 Appendix D

(setq state :parsing-key))
(&allow-other-keys

(setq allow-other-keys 't))
(&aux

(setq state :parsing-aux)))

(case state

(:parsing-required

(push-on-end arg required-args)

(if (listp arg)

(progn (push-on-end (car arg) required-names)
(push-on-end (cadr arg) specializers))
(progn (push-on-end arg required-names)
(push-on-end 't specializers))))
(:parsing-optional (push-on-end arg optionals))
(:parsing-rest (setq rest-var arg))
(:parsing-key
(push-on-end (get-keyword-from-arg arg) keys)
(push-on-end arg key-args))
(:parsing-aux (push-on-end arg auxs)))))
(list :required-names required-names

:required-args required-args

:specializers specializers

:rest-var rest-var

:keywords keys

:key-args key-args

rauxiliary-args auxs

:optional-args optionals

:allow-other-keys allow-other-keys))))

;33 ensure method

(defun ensure-method (gf &rest all-keys)
(let ((new-method
(apply
(if (eq (generic-function-method-class gf)
the-class-standard-method)
#'make-instance-standard-method
#'make-instance)
(generic-function-method-class gf)
all-keys)))
(add-method gf new-method)
new-method))

;;; make-instance-standard-method creates and initializes an instance of
;i standard-method without falling into method lookup. However, it cannot

A Working Closette Implementation 301

;;; be called until standard-method exists.

(defun make-instance-standard-method (method-class
&key lambda-list qualifiers
specializers body environment)
(declare (ignore method-class))
(let ((method (std-allocate-instance the-class-standard-method)))
(setf (method-lambda-list method) lambda-list)
(setf (method-qualifiers method) qualifiers)
(setf (method-specializers method) specializers)
(setf (method-body method) body)
(setf (method-environment method) environment)
(setf (method-generic-function method) nil)
(setf (method-function method)
(std-compute-method-function method))
method))

;3 ; add-method

;3; N.B. This version first removes any existing method on the generic functiom
;;; with the same qualifiers and specializers. It's a pain to develop
;3; programs without this feature of full CLOS.

(defun add-method (gf method)
(let ((old-method
(find-method gf (method-qualifiers method)
(method-specializers method) nil)))

(when old-method (remove-method gf old-method)))

(setf (method-generic-function method) gf)

(push method (generic-function-methods gf))

(dolist (specializer (method-specializers method))
(pushnew method (class-direct-methods specializer)))

(finalize-generic-function gf)

method)

(defun remove-method (gf method)
(setf (generic-function-methods gf)
(remove method (generic-function-methods gf)))
(setf (method-generic-function method) nil)
(dolist (class (method-specializers method))
(setf (class-direct-methods class)
(remove method (class-direct-methods class))))
(finalize-generic-function gf)
method)

(defun find-method (gf qualifiers specializers

302 Appendix D

Zoptional (errorp t))
(let ((method
(find-if #'(lambda (method)
(and (equal qualifiers
(method-qualifiers method))
(equal specializers
(method-specializers method))))
(generic-function-methods gf))))
(if (and (null method) errorp)
(error "No such method for “S." (generic-function-name gf))
method)))

;;; Reader and write methods

(defun add-reader-method (class fn-name slot-name)
(ensure-method
(ensure-generic-function fn-name :lambda-list '(object))
:lambda-list '(object)
:qualifiers O
:specializers (list class)
:body ‘(slot-value object ',slot-name)
:environment (top-level-environment))
(values))

(defun add-writer-method (class fn-name slot-name)

(ensure-method

(ensure-generic-function

fn-name :lambda-list '(new-value object))

:lambda-list '(new-value object)

:qualifiers ()

:specializers (list (find-class 't) class)

:body ‘(setf (slot-value object ',slot-name)

new-value)

environment (top-level-environment))

(values))

;;; Generic function invocation

; apply-generic-function

(defun apply-generic-function (gf args)
(apply (generic-function-discriminating-function gf) args))

;;; compute-discriminating-function

A Working Closette Implementation

(defun std-compute-discriminating-function (gf)
#' (lambda (&rest args)
(let* ((classes (mapcar #'class-of
(required-portion gf args)))
(emfun (gethash classes (classes-to-emf-table gf) nil)))
(if emfun
(funcall emfun args)
(slov-method-lookup gf args classes)))))

(defun slow-method-lookup (gf args classes)
(let* ((applicable-methods
(compute-applicable-methods-using-classes gf classes))
(emfun
(funcall
(if (eq (class-of gf) the-class-standard-gf)
#.mda|nosvcam|mmmmnd»<mlamauoa|m=bnnwob
#.nosvﬁamlmmmmndw<m|5md30a|w¢bnnwouv
gf applicable-methods)))
(setf (gethash classes (classes-to-emf-table gf)) emfun)
(funcall emfun args)))

HHN nosvcam|mwvwwnwcwmusmdwoam|¢mwum|nwmmmmm

(defun nosvzdmumuvwwnwdwm|amdwonm|=mwumunwmmmmm
(gf required-classes)
(sort
(copy-list
(remove-if-not #'(lambda (method)
(every #'subclassp
required-classes
(method-specializers method)))
(generic-function-methods gf)))
#'(lambda (m1 m2)
(funcall
(if (eq (class-of gf) the-class-standard-gf)
#'std-method-more-specific-p
#'method-more-specific—p)
gf m1 m2 required-classes))))

;:; method-more-specific-p

(defun std-method-more-specific-p (gf methodl method2 required-classes)
(declare (ignore gf))
(mapc #'(lambda (specl spec2 arg-class)
(unless (eq specl spec2)
(return-from std-method-more-specific-p

303

304 Appendix D

(sub-specializer-p specl spec2 arg-class))))
(method-specializers methodl)
(method-specializers method2)
required-classes)
nil)

;33 apply-methods and compute-effective-method-function

(defun apply-methods (gf args methods)
(funcall (compute-effective-method-function gf methods)
args))

(defun primary-method-p (method)

(null (method-qualifiers method)))
(defun before-method-p (method)

(equal '(:before) (method-qualifiers method)))
(defun after-method-p (method)

(equal '(:after) (method-qualifiers method)))
(defun around-method-p (method)

(equal '(:around) (method-qualifiers method)))

(defun std-compute-effective-method-function (gf methods)
(let ((primaries (remove-if-not #'primary-method-p methods))
(around (find-if #'around-method-p methods)))
(when (null primaries)
(error "No primary methods for the~@
generic function “S." gf))
(if around
(let ((next-emfun
(funcall
(if (eq (class-of gf) the-class-standard-gf)
#'std-compute-effective-method-function
#'compute-effective-method-function)
gf (remove around methods))))
#' (lambda (args)
(funcall (method-function around) args next-emfun)))
(let ((next-emfun (compute-primary-emfun (cdr primaries)))
(befores (remove-if-not #'before-method-p methods))
(reverse-afters
(reverse (remove-if-not #'after-method-p methods))))
#' (lambda (args)
(dolist (before befores)
(funcall (method-function before) args nil))
(multiple-value-progl
(funcall (method-function (car primaries)) args next-emfun)

A Working Closette Implementation

(dolist (after reverse-afters)
(funcall (method-function after) args nil))))))))

;33 compute an effective method function from a list of primary methods:

(defun compute-primary-emfun (methods)
(if (null methods)
nil
(let ((next-emfun (compute-primary-emfun (cdr methods))))
#' (lambda (args)
(funcall (method-function (car methods)) args next-emfun)))))

;35 apply-method and compute-method-function

(defun apply-method (method args next-methods)
(funcall (method-function method)
args
(if (null next-methods)
nil
(compute-effective-method-function
(method-generic-function method) next-methods))))

(defun std-compute-method-function (method)
(let ((form (method-body method))
(lambda-list (method-lambda-list method)))
(compile-in-lexical-environment (method-environment method)
‘(lambda (args next-emfun)
(flet ((call-next-method (&rest cnm-args)
(if (null next-emfun)
(error "No next method for the”@
generic function “S."
(method-generic-function ',method))
(funcall next-emfun (or cnm-args args))))
(next-method-p ()
(not (null next-emfun))))
(apply #'(lambda ,(kludge-arglist lambda-list)
,form)

args))))))

;3; N.B. The function kludge-arglist is used to pave over the differences

;+; between argument keyword compatibility for regular functions versus
;33 generic functioms.

(defun kludge-arglist (lambda-list)
(if (and (member '&key lambda-list)
(not (member 'kallow-other-keys lambda-list)))

305

306 Appendix D

(append lambda-list '(&allow-other-keys))
(if (and (not (member '&rest lambda-list))
(not (member '&key lambda-list)))
(append lambda-list '(&key &allow-other-keys))
lambda-list)))

;33 Run-time environment hacking (Common Lisp ain't got 'em).

(defun top-level-environment ()
nil) ; Bogus top level lexical environment

(defun compile-in-lexical-environment (env lambda-expr)
(declare (ignore env))
(compile nil lambda-expr))

333
;33 Bootstrap

IR

(progn ; Extends to end-of-file (to avoid printing intermediate results).
(format t "Beginning to bootstrap Closette...")
(forget-all-classes)
(forget-all-generic-functions)
;3 How to create the class hierarchy in 10 easy steps:
;3 1. Figure out standard-class's slots.
(setq the-slots-of-standard-class
(mapcar #'(lambda (slotd)
(make-effective-slot-definition
:name (car slotd)
:initargs
(let ((a (getf (cdr slotd) ':initarg)))
(if a (1list a))
:initform (getf (cdr slotd) ':initform)
:initfunction
(let ((a (getf (cdr slotd) ':initform)))
(if a #'(lambda () (eval a)) nil))
:allocation ':instance))
(nth 3 the-defclass-standard-class)))
i3 2. Create the standard-class metaobject by hand.
(setq the-class-standard-class
(allocate-std-instance
'tba
(make~array (length the-slots-of-standard-class)
:initial-element secret-unbound-value)))
;3 3. Install standard-class's (circular) class-of link.
(setf (std-instance-class the-class-standard-class)

A Working Closette Implementation

the-class-standard-class)
;3 (It's now okay to use class-... accessor) .
;3 4. Fill in standard-class's class-slots.
(setf (class-slots the-class-standard-class) the-slots-of-standard-class)
;; (Skeleton built; it's now okay to call make-instance-standard-class.)
;3 5. Hand build the class t so that it has no direct superclasses.
(setf (find-class 't)
(let ((class (std-allocate-instance the-class-standard-class)))

(setf (class-name class) 't)

(setf (class-direct-subclasses class) ())

(setf (class-direct-superclasses class) ())

(setf (class-direct-methods class) ())

(setf (class-direct-slots class) ())

(setf (class-precedence-list class) (list class))

(setf (class-slots class) ())

class))
;; (It's now okay to define subclasses of t.)

;; 6. Create the other superclass of standard-class (i.e., standard-object) .

(defclass standard-object (t) ())

;; 7. Define the full-blown version of standard-class.

(setq the-class-standard-class (eval the-defclass-standard-class))

;; 8. Replace all (3) existing pointers to the skeleton with real one.

(setf (std-instance-class (find-class 't))
the-class-standard-class)

(setf (std-instance-class (find-class 'standard-object))
the-class-standard-class)

(setf (std-instance-class the-class-standard-class)
the-class-standard-class)

;; (Clear sailing from here on in).

;3 9. Define the other built-in classes.

(defclass symbol (t) ())

(defclass sequence (t) ())

(defclass array (t) ()

(defclass number (t) ())

(defclass character (t) ())

(defclass function (t) ())

(defclass hash-table (t) ())

(defclass package (t) ())

(defclass pathname (t) ())

(defclass readtable (t) ())

(defclass stream (t) ())

(defclass list (sequence) ())

(defclass null (symbol list) ())

(defclass cons (list) ())

(defclass vector (array sequence) ())

307

308 . Appendix D

(defclass bit-vector (vector) ())

(defclass string (vector) ())

(defclass complex (number) ())

(defclass integer (number) ())

(defclass float (number) ())

;3 10. Define the other standard metaobject classes.

(setq the-class-standard-gf (eval the-defclass-standard-generic-function))
(setq the-class-standard-method (eval the-defclass-standard-method))
;3 Voila! The class hierarchy is in place.

(format t "Class hierarchy created.")

;; (It's now okay to define generic functions and methods.)

(defgeneric print-object (instance stream))
(defmethod print-object ((instance standard-object) stream)
(print-unreadable-object (instance stream :identity t)
(format stream "":("57)"
(class-name (class-of instance))))
instance)

;35 Slot access

(defgeneric slot-value-using-class (class instance slot-name))
(defmethod slot-value-using-class
((class standard-class) instance slot-name)
(std-slot-value instance slot-name))

(defgeneric (setf slot-value-using-class) (new-value class instance slot-name))
(defmethod (setf slot-value-using-class)
(new-value (class standard-class) instance slot-name)
(setf (std-slot-value instance slot-name) new-value))
;33 N.B. To avoid making a forward reference to a (setf xxx) generic function:
(defun setf-slot-value-using-class (new-value class object slot-name)
(setf (slot-value-using-class class object slot-name) new-value))

(defgeneric slot-exists-p-using-class (class instance slot-name))
(defmethod slot-exists-p-using-class
((class standard-class) instance slot-name)
(std-slot-exists-p instance slot-name))

(defgeneric slot-boundp-using-class (class instance slot-name))
(defmethod slot-boundp-using-class
((class standard-class) instance slot-name)
(std-slot-boundp instance slot-name))

(defgeneric slot-makunbound-using-class (class instance slot-name))
(defmethod slot-makunbound-using-class

A Working Closette Implementation

((class standard-class) instance slot-name)
(std-slot-makunbound instance slot-name))

;;; Instance creation and initialization

(defgeneric allocate-instance (class))
(defmethod allocate-instance ((class standard-class))
(std-allocate-instance class))

(defgeneric make-instance (class &key))
(defmethod make-instance ((class standard-class) &rest initargs)
(let ((instance (allocate-instance class)))
(apply #'initialize-instance instance initargs)
instance))
(defmethod make-instance ((class symbol) &rest initargs)
(apply #'make-instance (find-class class) initargs))

(defgeneric initialize-instance (instance &key))
(defmethod initialize-instance ((instance standard-object) &rest initargs)
(apply #'shared-initialize instance t initargs))

(defgeneric reinitialize-instance (instance &key))
(defmethod reinitialize-instance
((instance standard-object) &rest initargs)
(apply #'shared-initialize instance () initargs))

(defgeneric shared-initialize (instance slot-names &key))
(defmethod shared-initialize ((instance standard-object)
slot-names &rest all-keys)
(dolist (slot (class-slots (class-of instance)))
(let ((slot-name (slot-definition-name slot)))
(multiple-value-bind (init-key init-value foundp)
(get-properties
all-keys (slot-definition-initargs slot))
(declare (ignore init-key))
(if foundp
(setf (slot-value instance slot-name) init-value)
(when (and (not (slot-boundp instance slot-name))
(not (null (slot-definition-initfunction slot)))
(or (eq slot-names t)
(member slot-name slot-names)))
(setf (slot-value instance slot-name)
(funcall (slot-definition-initfunction slot))))))))
instance)

;33 change-class

309

310 Appendix D

(defgeneric change-class (instance new-class &key))
(defmethod change-class
((old-instance standard-object)
(new-class standard-class)
&rest initargs)
(let ((new-instance (allocate-instance new-class)))
(dolist (slot-name (mapcar #'slot-definition-name
(class-slots new-class)))
(vhen (and (slot-exists-p old-instance slot-name)
(slot-boundp old-instance slot-name))
(setf (slot-value new-instance slot-name)
(slot-value old-instance slot-name))))
(rotatef (std-instance-slots new-instance)
(std-instance-slots old-instance))
(rotatef (std-instance-class new-instance)
(std-instance-class old-instance))
(apply #'update-instance-for-different-class
new-instance old-instance initargs)
old-instance))

(defmethod change-class
((instance standard-object) (new-class symbol) &rest initargs)
(apply #'change-class instance (find-class new-class) initargs))

(defgeneric update-instance-for-different-class (old new &key))
(defmethod update-instance-for-different-class

((old standard-object) (new standard-object) &rest initargs)

(let ((added-slots
(remove-if #'(lambda (slot-name)
(slot-exists-p old slot-name))
(mapcar #'slot-definition-name
(class-slots (class-of new))))))
(apply #'shared-initialize new added-slots initargs)))

;33 Methods having to do with class metaobjects.

(defmethod print-object ((class standard-class) stream)
(print-unreadable-object (class stream :identity t)
(format stream "~:(~S~) ~g*
(class-name (class-of class))
(class-name class)))
class)

(defmethod initialize-instance :after ((class standard-class) &key &rest args)

A Working Closette Implementation

(apply #'std-after-initialization-for-classes class args))
;33 Finalize inheritance

(defgeneric finalize-inheritance (class))

(defmethod finalize-inheritance ((class standard-class))
(std-finalize-inheritance class)
(values))

;53 Class precedence lists

(defgeneric compute-class-precedence-list (class))
(defmethod compute-class-precedence-list ((class standard-class))
(std-compute-class-precedence-list class))

;33 Slot inheritance

(defgeneric compute-slots (class))
(defmethod compute-slots ((class standard-class))
(std-compute-slots class))

(defgeneric compute-effective-slot-definition (class direct-slots))
(defmethod compute-effective-slot-definition
((class standard-class) direct-slots)
(std-compute-effective-slot-definition class direct-slots))

3
i+; Methods having to do with generic function metaobjects.

(defmethod print-object ((gf standard-generic-function) stream)
(print-unreadable-object (gf stream :identity t)
(format stream "":("S”) ~S"
(class-name (class-of gf))
(generic-function-name gf)))
gf)

(defmethod initialize-instance :after ((gf standard-generic-function) &key)
(finalize-generic-function gf))

; Methods having to do with method metaobjects.

(defmethod print-object ((method standard-method) stream)
(print-unreadable-object (method stream :identity t)
(format stream "~:("S7) ~S~{ ~§"} ~s"

311

312 Appendix D

(class-name (class-of method))
(generic-function-name
(method-generic-function method))
(method-qualifiers method)
(mapcar #'class-name
(method-specializers method))))
method)

(defmethod initialize-instance :after ((method standard-method) &key)
(setf (method-function method) (compute-method-function method)}))

;;; Methods having to do with generic function invocation.

(defgeneric compute-discriminating-function (gf))

(defmethod compute-discriminating-function ((gf standard-generic-function))
(std-compute-discriminating-function gf))

(defgeneric method-more-specific-p (gf methodl method2 required-classes))
(defmethod method-more-specific-p
({gf standard-generic-function) methodl method2 required-classes)
(std-method-more-specific-p gf methodl method2 required-classes))

(defgeneric compute-effective-method-function (gf methods))
(defmethod compute-effective-method-function
((gf standard-generic-function) methods)
(std-compute-effective-method-function gf methods))

(defgeneric compute-method-function (method))
(defmethod compute-method-function ((method standard-method))
(std-compute-method-function method))

;;; describe-object is a handy tool for enquiring minds: i

(defgeneric describe-object (object stream))
(defmethod describe-object ((object standard-object) stream)
(format t "A Closette object”
“%Printed representation: “S”

“%Class: ~S~
“%Structure "
object

(class-of object)) A
(dolist (sn (mapcar #'slot-definition-name
(class-slots (class-of object))))
(format t "~% =S <- ~:[not bound~;~S~]"

A Working Closette Implementation

sn
(slot-boundp object sn)
(and (slot-boundp object sn)
(slot-value object sn))))
(values))
(defmethod describe-object ((object t) stream)
(lisp:describe object)
(values))

(format t "“JClosette is a Knights of the Lambda Calculus production.")
(values)) ;end progn

;3i—*-Mode:LISP; Package:NEWCL; Base:10; mwuﬁwx“ooBBOU|H»mv -

;33 This is the file newcl.lisp

(in-package 'newcl :use '(lisp))
(shadow '(defun fmakunbound fboundp))
(export '(fdefinition defun fmakunbound fboundp print-unreadable-object))

;3 New macros to support function names like (setf foo).

(lisp:defun setf-function-symbol (function-specifier)
(if (consp function-specifier)
(let ((print-name (format nil "~A" function-specifier)))
(intern print-name
(symbol-package (cadr function-specifier))))
function-specifier))

(l1isp:defun fboundp (function-specifier)
(if (comsp function-specifier)
(1isp:fboundp (setf-function-symbol function-specifier))
(lisp:fboundp function-specifier)))

(lisp:defun fdefinition (function-specifier)
(if (consp function-specifier)
(lisp:symbol-function (setf-function-symbol function-specifier))
(lisp:symbol-function function-specifier)))

(lisp:defun fmakunbound (function-specifier)
(if (consp function-specifier)
(1isp:fmakunbound (setf-function-symbol function-specifier))
(lisp:fmakunbound function-specifier)))

(defsetf fdefinition (function-specifier) (new-value)
‘(set-fdefinition ,new-value ,function-specifier))

313

314 Appendix D

(lisp:defun set-fdefinition (new-value function-specifier)
(if (consp function-specifier)
(progn
(setf (symbol-function (setf-function-symbol function-specifier))
new-value)
(eval ‘(defsetf ,(cadr function-specifier)
(krest all-args)
(new-value)
(,',(setf~function-symbol function-specifier)
,new-value .
,@all-args))))
(setf (symbol-function function-specifier) new-value)))

<

(defmacro defun (name formals &body body)
(cond ((symbolp name)

‘(lisp:defun ,name ,formals ,@body))

((and (consp name) (eq (car name) 'setf))

¢ (progn
(lisp:defun ,(setf-function-symbol name) ,formals ,Q@body)
(defsetf ,(cadr name) ,(cdr formals) (,(car formals))

(list ', (setf-function-symbol name) ,@formals))))))

#| Minimal tests:
(macroexpand '(defun (setf foo) (av x y) (+ x y)))
(defun (setf baz) (new-value arg)

(format t "setting value of "A to “A" arg new-value))
(macroexpand '(setf (baz (+ 2 2)) (* 3 3)))
I#

;33 print-unreadable-object

;33 print-unreadable-object is the standard way in the new Common Lisp

; to generate #< > around objects that can't be read back in. The option
;33 (:identity t) causes the inclusion of a representation of the object's
;33 identity, typically some sort of machine-dependent storage address.

.. -

(defmacro print-unreadable-object
((object stream &key type identity) &body body)
‘(let ((.stream. ,stream)

(.object. ,object))
(format .stream. "#<")
, (when type

'(format .stream. "~S" (type-of .object.)))
,(when (and type (or body identity))

A Working Closette Implementation 315

‘(format .stream. " "))

,Gbody

, (when (and identity body) |
'(format .stream. " ")) ,

» (when identity |
#+Genera '(format .stream. "-qQ" (si:%pointer .object.)) |

. #+Lucid '(format .stream. "-g" (sys:¥pointer .object.)) |
#+Excl '(format .stream. "~Q" (excl::pointer-to-fixnum .object.)) ,
#+:coral '(format .stream. "~gr (ccl::Yptr-to-int .object.)) ,
) ,

(format .stream. ">")

nil))

m Full MOP Cross Reference

This appendix provides an alphabetical cross-reference from the simplified metaobject
protocol developed in Part I to the full CLOS Metaobject Protocol presented in Part II.
Each entry describes the counterpart in the full MOP of a class, generic function, function
or macro introduced in Part 1. Note that some of these things are actually in basic CLOS
rather than the MOP (e.g., class~of). This appendix clearly identifies these cases.

(add-method (generic-function) (method))
This generic function is actually specified in full CLOS. Its use in Part I and in the
full MOP are in accordance with full CLOS.

(add-reader-method (fn-name) (slot-name) {(class))
No generic function with this name or functionality exists. But, the same effect can
be achieved in two steps: (i) use reader-method-class to control the class of the
reader method metaobject and (ii} use either add-method or initialize-instance for
specialized behavior when adding or initializing the method.

(add-writer-method (fn-name) (slot-name) {class))
No generic function with this name or functionality exists. But, the same effect can
be achieved in two steps: (i) use writer-method-class to control the class of the
writer method metaobject and (ii) use either add-method or initialize-instance for
specialialized behavior when adding or initializing the method.

(allocate-instance {class))
This generic function exists with the same name and essentially unchanged function-
ality. The only significant difference is that the initialization arguments passed to
make-instance are passed along to allocate-instance.

(apply-generic-function {gf) (args))
In later parts of Chapter 4, the protocol surrounding this generic function is redesigned,
and a new generic function called compute-discriminating~function is introduced.
See its entry in this appendix for more information.

(apply-method (method) (args) (next-methods))
In later parts of Chapter 4, the protocol surrounding this generic function is redesigned,
and a new generic function called compute-method-function is introduced. See its
entry in this appendix for more information.

(apply-methods (gf) (args) (methods))
In later parts of Chapter 4, the protocol surrounding this generic function is re-
designed, and a new generic function called compute-effective-method-function
is introduced. See its entry in this appendix for more information.

(change-class {object) {class) &key)
This generic function is actually specified in full CLOS. Its use in Part I and in the full
MOP are in accordance with full CLOS. The keyword arguments do not appear in the

318 Appendix E

original CLOS Specification, but are expected to appear in the final ANSI Common
Lisp standard.
(class-direct-methods (class))
The generic function specializer-direct-methods is the direct analog of this func-
tion. The difference in the name reflects the fact that the full Metaobject Protocol
supports specializers which are not classes (i.e., eql specializers).
(class-direct-slots {class))
This class accessor is actually a generic function with the same name and essentially un-
changed behavior. The critical difference is that the direct slot definition metaobjects
returned are not property lists, but rather are instances of a subclass of direct-slot-
definition.
(class-direct-subclasses {class))
This class accessor is actually a generic function with the same name and behavior.
(class-direct-superclasses ({class))
This class accessor is actually a generic function with the same name and behavior.
(class-name (class))
This class accessor is actually specified as a generic function in full CLOS. Its use in
Part T and in the full MOP are in accordance with full CLOS.
(class-of (object))
This function is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS.
(class-precedence-list {class))
This class accessor is actually a generic function with the same name and behavior. It
can’t be called until after the class has been finalized.
(class-slots (class))
This class accessor is actually a generic function with the same name and essen-
tially unchanged behavior. The critical difference is that the effective slot definition
metaobjects returned are not property lists, but rather are instances of a subclass of
effective-slot-definition. In addition, it can’t be called until after the class has
been finalized.
(compute-applicable-methods-using-classes (gf) (regquired-classes))
This generic function exists with the same name, but in order to support eql and
other non-class specializers, it is required to return a second value. The second value
indicates whether any of the returned methods in fact contain a non-class specializer.
(compute-class-precedence-list (class))
This generic function exists with the same name and functionality.
(compute-discriminating-function (gf))
This generic function exists with the same name and functionality.

Cross Reference to Full MOP 319

(compute-effective-method-function (gf) (methods))
The closest counterpart to this generic function is compute-effective-method. The
difference is that compute-effective-method returns a form which is then converted
to a function by the implementation.

(compute-effective-slot-definition (class) (slots))
This generic function exists with the same name and essentially unchanged functional-
ity. The critical difference is that the effective slot definition metaobject returned is not
a property list, but rather is an instance of a subclass of effective-slot-definition.
In addition, the slot name is interposed between the two other arguments.

(compute-method-function (method))
The closest counterpart to this generic function in the full MOP is make-method-
lambda. This allows the same capability of processing the bodies of methods, but in
order to make it possible to compile method functions during file compilation, it is
called during the expansion of the defmethod form.

(compute-slots (class))
This generic function exists with the same name and essentially unchanged function-
ality. The critical difference is that the effective slot definition metaobjects returned
are not property lists, but rather are instances of a subclass of effective-slot-
definition.

(defclass {name) (supers) (slots) &rest (options))
This macro is is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS, except that it also accepts several additional options
not described in Part I. In addition, class definitions can be modified by editing and
re-executing defclass forms.

(defgeneric (name) (lambda-list) &rest (options))
This macro is actually specified in full CLOS. Its use in Part I and in the full MOP are
in accordance with full CLOS, except that it also accepts several additional options
not described in Part I. In addition, generic function definitions can be modified by
suitably editing and re-executing defgeneric forms.

(defmethod (name) (lambda-list) &body (body))
This macro is actually specified in full CLOS. Its use in Part I and in the full MOP are
in accordance with full CLOS, except that it also accepts several additional options
not described in Part I. In addition, method definitions can be modified by editing and
re-executing defmethod forms.

(ensure-class (name) &key)
A function exists with this name and essentially unchanged functionality. The critical
difference is that, as with defclass, a class can be redefined by calling ensure-class

320 Appendix E

again with the same class name. In addition, the exact format of the arguments is
different.

(ensure-generic-function (name) &key)
This function is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS. The critical difference is that, as with defgeneric,
a generic function can be redefined by calling ensure-generic-function again with
the same function name. In addition, the exact format of the arguments is different.

(ensure-method (name) &key)
No function with this name or functionality exists.

(extra-method-bindings (method) (args) (nert-methods))
The method body processing protocol is not specified at this level. Instead, a higher
level generic function make-method-lambda is called to process the entire body of the
method. Specialized methods defined on make-method-lambda can add bindings by
wrapping appropriate forms around the body of the method.

(finalize-inheritance {class))
This generic function exists with the same name and essentially unchanged function-
ality. To support class redefinition, finalize-inheritance is called again each time
a class is redefined.

(find-class (symbol) &optional (errorp))
This function is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS.

(generic-function-lambda-list (gf))
This generic function accessor is actually a generic function with the same name and
behavior.

(generic-function-methods (gf))
This generic function accessor is actually a generic function with the same name and
behavior.

(generic-function-name (gf))
This generic function accessor is actually a generic function with the same name and
behavior.

(initialize-instance (object) &key (initargs))
This generic function is actually specified in full CLOS. Its use in Part I and in the
full MOP are in accordance with full CLOS.

(make-instance (class) &key (initargs))
This generic function is actually specified in full CLOS. Its use in Part I and in the
full MOP are in accordance with full CLOS.

(method-body (method))
No function with this name exists. The source text of a method function is not

Cross Reference to Full MOP 321

normally preserved. Instead, the generic function method-function can be called
to get a function which, when called, executes the method body in its appropriate
lexical environment.
(method-environment (method))
No function with this name exists. See the entry for compute-method-function.
(method-generic-function (method))
This method accessor is actually a generic function with the same name and behavior.
(method-lambda-list (method))
This method accessor is actually a generic function with the same name and behavior.
(method-more-specific-p (gf) (methodl) (method2) (classes))
The method lookup protocol is not specified at this level of detail.
(method-qualifiers (method))
This method accessor is actually a generic function with the same name and behavior.
(method-specializers (method))
This method accessor is actually a generic function with the same name and behavior.
(print-object (object) (stream))
This generic function is actually specified in full CLOS. Its use in Part I and in the
full MOP are in accordance with full CLOS.
(reinitialize-instance (object) &key)
This generic function is actually specified in full CLOS. Its use in Part I and in the
full MOP are in accordance with full CLOS.
(shared-initialize (object) (slot-names) &key)
This generic function is actually specified in full CLOS. Its use in Part I and in the
full MOP are in accordance with full CLOS, except that in the full MOP and CLOS,
class-allocated slots are handled specially.
(slot-definition-allocation (slot))
This slot definition accessor is actually a generic function with the same name and
behavior.
(slot-definition-initargs (slot))
This slot definition accessor is actually a generic function with the same name and
behavior.
(slot-definition-initform (slot))
This slot definition accessor is actually a generic function with the same name and
behavior.
(slot-definition-initfunction (slot))
This slot definition accessor is actually a generic function with the same name and
behavior.

322 Appendix E

(slot-definition-name (slot))
This slot definition accessor is actually a generic function with the same name and
behavior.

(slot-definition-readers (slot))
This slot definition accessor is actually a generic function with the same name and
behavior.

(slot-definition-writers (slot))
This slot definition accessor is actually a generic function with the same name and
behavior.

(slot-boundp (object) (slot-name))
This function is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS.

(slot-boundp-using-class (class) (instance) (slot-name))
This generic function exists with the same name and essentially unchanged function-
ality. The critical difference is that the third argument is not a slot name, but rather
the effective slot definition metaobject for that slot.

(slot-exists-p (object) (slot-name))
This function is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS.

(slot-makunbound (object) (slot-name))
This function is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS.

(slot-makunbound-using-class (class) (instance) (slot-name))
This generic function exists with the same name and essentially unchanged function-
ality. The critical difference is that the third argument is not a slot name, but rather
the effective slot definition metaobject for that slot.

(slot-value (object) (slot-name))
This function is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS.

(slot-value-using-class {class) (instance) (slot-name))
This generic function exists with the same name and essentially unchanged function-
ality. The critical difference is that the third argument is not a slot name, but rather
the effective slot definition metaobject for that slot.

((setf slot-value) (value) (object) (slot-name))
This function is actually specified in full CLOS. Its use in Part I and in the full MOP
are in accordance with full CLOS.

Cross Reference to Full MOP 323

((setf slot-value-using-class) (value) (class) (object) (slot-name))
This generic function exists with the same name and essentially unchanged function-
ality. The critical difference is that the fourth argument is not a slot name, but rather
the effective slot definition metaobject for that slot.

standard-class

This class exists with the same name and essentially unchanged functionality.
standard-generic-function

This class exists with the same name and essentially unchanged functionality.
standard-method

This class exists with the same name and essentially unchanged functionality.
(subclassp (cl) {(c2))

The Common Lisp function subtypep can be used to achieve the same behavior.
(update-instance-for-different-class (old) (new) &key)

This generic function is actually specified in full CLOS. Its use in Part I and in the

full MOP are in accordance with full CLOS.

References

[Barstow et al. 84] Barstow, David, Howard Shrobe, and Eric Sandewall (eds.) Interactive Programming En-
vironments, McGraw-Hill, New York, 1984.

[Bobrow et al. 87] Bobrow, Daniel G., David S. Fogelsong, and Mark S. Miller “Definition Groups: Making
Sources Into First-Class Objects,” in Bruce Shriver and Peter Wegner (eds.) Research Directions
in Object-Oriented Programming, MIT Press, 1987, 129-46.

[Bobrow&Stefik 83] Bobrow, Daniel G. and Mark Stefik The Loops Manual, Intelligent Systems Laboratory,
Xerox PARC, 1983.

[Cannon 82] Cannon, Howard I. “Flavors: A Non-Hierarchical Approach to Object-Oriented Programming,”
1982.

[CLtL] Steele, Guy Common Lisp: The Language, Digital Press, 1984.

[CLtLII] Steele, Guy Common Lisp: The Language, Second Edition, Digital Press, 1990.

[des Riviéres&Smith 84] des Riviéres, Jim and Brian C. Smith “The Implementation of Procedurally Reflective
Languages,” Proceedings 1984 ACM Symposium on LISP and Functional Programming, Austin,
Texas, August 1984, 331-347.
[Dussud 89] Dussud, Patrick “TICLOS: An Implementation of CLOS for the Explorer Family,” 1989 ACM
OOPSLA Conference Proceedings, New Orleans, Louisiana, September 1989, 215-220.
[Ellis&Stroustrup 90] Ellis, Margaret A. and Bjarne Stroustrup The Annotated C++ Reference Manual,
Addison-Wesley, 1990.

[Goldberg&Robson 83] Goldberg, Adele and David Robson Smalitalk-80: The Language and its Implementa-
tion, Addison-Wesley, 1983.

[Keene 89] Keene, Sonya E. Object-Oriented Programming in Common Lisp: A Programmer’s Guide to
CLOS, Addison-Wesley, 1989.

[Ingalls 86] Daniel H. H. Ingalls “A Simple Technique for Handling Multiple Polymorphism,” OOPSLA 86
Conference Proceedings, Portland, Oregon, September 1986; appeared as a special issue of SIG-
PLAN Notices 21, 11, November 1986, 347-9.

[Kiczales&Rodriguez 90] Kiczales, Gregor and Luis Rodriguez “Efficient Method Dispatch in PCL,” Proceed-
ings 1990 ACM Conference on LISP and Punctional Programming, Nice, France, June 1990,
99-105.

[Kristensen et al. 87 Kristensen, Bent B. Ole L. Madsen, Birger Mgller-Pedersen, and Kristen Nygaard “The
BETA Programming Language,” in Bruce Shriver and Peter Wegner (eds.) Research Directions
in Object Oriented Programming, MIT Press, 1987, 7-48.

[Maes&Nardi 88] Maes, Pattie and Daniele Nardi (eds.) Meta-Level Architectures and Reflection, North-
Holland, 1988.

[Moon 86] Moon, David A. “Object-Oriented Programming with Flavors,” OOPSLA ’86 Conference Pro-
ceedings, Portland, Oregon, September 1986; appeared as a special issue of SIGPLAN Notices 21,
11, November 1986, 1-8.

[Paepcke 90] Paepcke, Andreas “PCLOS: Stress Testing CLOS,” OOPSLA/ECOOP ’90 Proceedings, Ottawa,
Canada, October 1990, 194-211.

[Smith 84] Smith, Brian C. “Reflection and Semantics in LISP,” Proceedings 110 Annual ACM Symposium
on Principles of Programming Languages, Salt Lake City, Utah, January 1984, 23-35.
[Smith,Barth& Young 87] Smith, Reid G. and Paul S. Barth and Robert L. Young “A Substrate for Object-
Oriented Interface Design,” in Bruce Shriver and Peter Wegner (eds.) Research Directions in
Object-Oriented Programming, MIT Press, 1987, 253-315.

[Snyder 86] Snyder, Alan “Encapsulation and Inheritance in Object-Oriented Programming,” OOPSLA '86
Conference Proceedings, Portland, Oregon, September 1986; appeared as a special issue of SIG-
PLAN Notices 21, 11, November 1986, 38-45.

[X3J13] Bobrow, Daniel G. Linda G. Demichiel, Richard P. Gabriel, Sonya E. Keene, Gregor Kiczales, and
David A. Moon Common Lisp Object System Specification, X3J13 Document 88-002R, June 1988;
appears in Lisp and Symbolic Computation 1, 3/4, January 1989, 245-394, and as Chapter 28
of [CLtLII], 770-864.

Index

A
:accessor

slot option, 20
accessor-method-slot-definition

full-specification, 220
add-dependent

full-specification, 164
add-direct-method

full-specification, 163
add-direct-subclass

full-specification, 166
add-function-bindings, 44
add-method, 38, 301
add-method

full-specification, 167
add-reader-method, 39
add-variable-bindings, 43
add-writer-method, 39
after-method. See method combination
after-method-p, 43, 304
all-generic-functions, 62
allocate-instance, 28, 309

method for dynamic-slot-class, 102

method for standard-class, 101

mini-specification, 100
allocate-instance

full-specification, 168
allocate-slot-storage, 27
allocate-std-instance, 27
allocate-table-entry, 103
allocation. See instance, allocation
applicable method. See method, applicable
apply-generic-function, 40, 302

before-method for counting-gf, 109

method for standard-generic-

function, 121

method for trusting-gf, 113

mini-specification, 108
apply-method, 44, 305

before-method for counting-method, 109

method for encapsulated-method, 116

method for standard-method, 118

mini-specification, 108
apply-methods, 43, 304

method for gf-with-append, 123

method for gf-with-arounds, 123
method for
standard-generic-function, 122
mini-specification, 120
around-method, 122
around-method-p, 123, 304
attributes-class, 87

B
backstage, 13, 15

summary in Closette, 45
before-method. See method combination
before-method-p, 43, 304
browsers, 48

for classes, 52

for generic functions and methods, 58, 60
built-in-class-of, 28, 283

C
C++, 243
call-next-method, 44
canonicalization
class options, 76, 94
direct slots, 20
direct superclasses, 19
canonicalize-defclass-option, 287
canonicalize-defclass-options, 287
canonicalize-direct-slots, 286
canonicalize-direct-superclasses, 286
canonicalize-specializers, 298
change-class, 310
method for (standard-object
standard-class), 33
method for (standard-object
symbol), 33
circularity, 269
due to bootstrapping, 270
due to metastability, 270
class-default-initargs, 94
class-default-initargs
full-specification, 212
class-direct-default-initargs, 91-92,
94

328

class-direct-default-initargs
full-specification, 212
class-direct-generic-functions, 63
class-direct-methods, 18, 285
mini-specification, 50
class-direct-slots, 18, 285
mini-specification, 50
class-direct-slots
full-specification, 213
class-direct-subclasses, 18, 285
mini-specification, 50
class-direct-subclasses
full-specification, 213
class-direct-superclasses, 18, 285
mini-specification, 50
class-direct-superclasses
full-specification, 213
class-finalized-p
full-specification, 213
class-name, 18, 285
mini-specification, 50
class-name
full-specification, 213
class-of, 28, 283
mini-specification, 49
class-precedence-list, 18, 285
mini-specification, 50
class-precedence-list
full-specification, 214
class-prototype
full-specification, 214
class-slots, 18, 285
mini-specification, 50
class-slots
full-specification, 214
classes
in object-oriented programming, 243
class metaobject, 18
accessor functions, 19
identity conditions, 50
initialization, 22
public access to, 49
representation, 18
specialization, 72
standard vs. specialized, 74

Index

class precedence list, 24
Flavors-style, 81
Loops-style, 81
protocol for computing, 78-82
CLOS. See Common Lisp Object System
Closette, 13
CLOS subset implemented by, 14
removing circularities, 269-275
source code, 277-315
collect-superclasses#*, 25
color-mixin
class definition, 15
color-rectangle
class definition, 15
class precedence list, 24
Common Lisp Object System, 2, 243
compute-applicable-methods
full-specification, 170
compute-applicable-methods-using-
classes, 41, 121, 303
mini-specification, 120
compute-applicable-methods-using-
classes
full-specification, 171
compute-class-default-initargs, 92
compute-class-precedence-list, 24, 311
method for flavors-class, 81
method for loops-class, 82
method for standard-class, 80
mini-specification, 80
compute-class-precedence-list
full-specification, 173
compute-default-initargs
full-specification, 174
compute-discriminating-function, 312
method for counting-gf, 129
method for standard-generic-
function, 129-130
compute-discriminating~function
full-specification, 175
compute-effective-method
full-specification, 176
compute-effective-method-function, 312
method for standard-generic-
function, 126-127

Index

compute-effective-slot-definition, 311
method for attributes-class, 88
method for dynamic-slot-class, 102
method for standard-class, 87
mini-specification, 86

compute-effective-slot-definition
full-specification, 177

compute-method-function, 312
method for counting-method, 128

compute-slots, 25, 311
method for attributes-class, 83
method for standard-class, 86
mini-specification, 85

compute-slots
full-specification, 178

counting-gf, 109

counting-method, 109

currying, 125

D
default-initargs-class, 91, 94
defclass, 17-26, 285
:metaclass option, 76
macro definition, 19
regenerating form, 53
defgeneric, 34-35, 295
:generic-function-class option, 107
:method-class option, 107
macro definition, 35
regenerating form, 60
defmethod, 36-39, 297
macro definition, 38
regenerating form, 60
demon method combination. See method
combination, standard
depth-first-preorder-superclasses*, 82
describe-object, 312
design of metaobject protocols, 107-132
direct-slot-definition-class
full-specification, 180
direct slot definition metaobject, 21
direct slots
canonicalization, 20
direct superclasses

329

canonicalization, 19
discriminating functions, 128

memoization, 129
display-defclass, 53
display-defclass*, 55
display-defgeneric, 61
display-generic-function, 61
dynamic-slot-boundp, 104
dynamic-slot-class, 102
dynamic-slot-makunbound, 104
dynamic-slot-p, 102

E
effective-slot-definition-class
full-specification, 181
effective method functions, 125
memoization, 130
effective slot definition metaobject, 25
encapsulation, 89, 114
in object-oriented programming, 250
ensure-class, 21, 77, 287
ensure-class
full-specification, 182
ensure-class-using-class
full-specification, 183
ensure-generic-function, 35, 296
ensure-generic-function
full-specification, 185
ensure-generic-function-using-class
full-specification, 186
ensure-method, 38, 300
environment
of defmethod, 38
used by eval, 43
eql-specializer-object
full-specification, 188
examples
adding around-methods, 122
alternative class precedence lists, 80
append method combination, 123
counting class instances, 72
counting invocations, 108
default initialization arguments, 90
displaying inherited information, 55

330

dynamic slots, 99
encapsulated methods, 114
finding all generic functions, 62
finding all slot accessors, 64
finding relevant generic functions, 63
finding subclasses, 52
listing all class names, 48, 52
monitoring slot access, 97
multiple inheritance class order, 56
precomputed default initialization argu-
ments, 92
programmatic class creation, 66
regenerating defclass form, 53
regenerating defgeneric form, 60
regenerating defmethod form, 60
slot attributes, 83-85, 87-89
trusting generic functions, 112
exercises
accessor method predicates, 66
adding vanilla-flavor, 83
alternative implementation of
class-direct-subclasses, 51
argument precedence order, 124
Beta’s inner, 124
class-allocated slots, 105
criteria for meta-ness, 70
defclass protocol, 94
dynamic slots, 104
encapsulated classes, 89
form-based protocols, 132
generic function tracing, 110
memoizing applicable methods, 45
metaobject protocols and smaller lan-
guages, 124
multiple inheritance diamonds, 58
residential environments, 70
tools in other languages, 70
visualizing an effective method, 64
extra-function-bindings
method for encapsulated-method, 119
method for standard-method, 118
mini-specification, 117
extract-lambda-list
full-specification, 188
extract-specializer-names

Index

full-specification, 189

F
fair use rules, 50
finalization
of classes, 23
finalize-inheritance, 24, 93, 311
after-method for
default-initargs-class, 94
mini-specification, 93
finalize-inheritance
full-specification, 190
find-class, 22, 287
mini-specification, 49
setf function, 22
find-generic-function, 296
find-method, 301
find-method-combination
full-specification, 191
find-programmatic-class, 68
flavors-class, 81
funcallable-standard-instance-access
full-specification, 191
functional protocols, 110

G
generate-defclass, 53
generate-defclass*, 55
generate-defgeneric, 60
generate-defmethod, 60
generate-inherited-slot-
specification, 55
generate-slot-specification, 54
generate-specialized-arglist, 61
generic-function-argument-
precedence-order
full-specification, 216
:generic-function-class
defgeneric option, 107
generic-function-declarations
full-specification, 216
generic-function-discriminating-
function, 294

Index

generic-function-lambda-list, 34, 294
mini-specification, 60
generic-function-lambda-list
full-specification, 216
generic-function-method-class, 108, 294
generic-function-method-class
full-specification, 217
generic-function-method-combination
full-specification, 217
generic-function-methods, 34, 294
mini-specification, 60
generic-function-methods
full-specification, 217
generic-function-name, 34, 294
mini-specification, 59
generic-function-name
full-specification, 217
generic function
adding accessor methods to, 39
adding methods to, 38
invocation, 40-45
high-performance, 129
protocols for, 108-131
representation, 34
generic function metaobject, 34
accessor functions, 34
specialization, 107
standard vs. specialized, 74
gf-with-append, 123
gf-with-arounds, 123
glue layer, 17

I
in-order-p, 57
inheritance, 23
in object-oriented programming, 244
multiple, 42, 56
detecting diamonds, 58
in Loops and Flavors, 78
protocol for class finalization, 93
protocol for slots, 85-87
:initarg
slot option, 20
use in initialization, 32

331

rinitargs

slot property, 20
:initform

slot option, 20

slot property, 20

use in initialization, 32
:initfunction

slot property, 20
initialize-instance, 309

after-method for standard-class, 23

method for standard-object, 31
instance

accessing slot bindings, 28

protocols for, 96
allocation, 27
protocol for, 99

changing class of, 32

class of, 28

creation, 30

identity, 27

initialization, 31

reinitialization, 31

representation, 26

representation for a color-rectangle, 27

storage for slots, 28
instance-slot-p, 102, 281
instances

in object-oriented programming, 243
intercessory metaobject protocols, 71
intern-eql-specializer

full-specification, 206
introspective metaobject protocols, 48

K
Knights of the Lambda Calculus, 313

L

layering. See metaobject protocol, See also
layering

local-precedence-ordering, 292

loops-class, 81

332

M
make-direct-slot-definition, 21, 25, 289
make-effective-slot-definition, 289
make-instance, 30, 309
after-method for counted-class, 73
method for default-initargs-
class, 92, 94
method for standard-class, 30, 73
method for symbol, 30
mini-specification re: metaobject
classes, 68
make-instance
full-specification, 206
make-method-lambda
full-specification, 207
make-programmatic-class, 69
make-programmatic-instance, 67
map-dependents
full-specification, 210
mapappend, 280
mapplist, 281
memoization, 45
and functional protocols, 111
and procedural protocols, 111
applicable methods, 45
during generic function invocation, 125
of discriminating functions, 129
of effective method functions, 130
of method functions, 130
of slot locations, 80
metacircular interpreters, 269
:metaclass
defclass option, 76
metalevel, 17
metaobject
accessor functions
fair use rules, 50
accessor functions for
class, 19
generic function, 34
method, 37
slot, 21
class, 18
definition, 17
direct slot definition, 21

effective slot definition, 25
for color-rectangle class, 18
for paint generic function, 35
for paint method, 36
generic function, 34
method, 36
metaobject protocol
based on generic functions, 111
class finalization, 93
design, 107-132
summary, 131
fair use rules, 50
functional, 110
intercessory, 71
introspective, 48
layering, 119
non-specializable, 120
procedural, 111
slot binding access, 96
slot inheritance, 85
metaobjects
standard vs. specialized, 75
metastability, 270
method
accessor, 39
applicable, 41
next methods, 44
ordering, 41
sequencing, 42
combination, 43
invocation, 43
representation, 36
specificity, 41
method-body, 37, 295
mini-specification, 60
:method-class
defgeneric option, 107
method-environment, 37, 295
mini-specification, 60
method-function, 295
method-function
full-specification, 219
method-generic-function, 37, 295
mini-specification, 60
method-generic-function

Index

Index

full-specification, 219
method-lambda-list, 37, 295
mini-specification, 60
method-lambda-list
full-specification, 219
method-more-specific-p, 42, 312
method for standard-generic-
function, 122
mini-specification, 120
method-qualifiers, 37, 295
mini-specification, 60
method-qualifiers
full-specification, 219
method-specializers, 37, 295
mini-specification, 60
method-specializers
full-specification, 219
method combination, 122, 251
standard, 43
method dispatch. See generic function,
invocation
method functions, 127
memoization, 130
method lookup. See generic function,
invocation
method metaobject, 36
accessor functions, 37
specialization, 107
standard vs. specialized, 74
methods
in object-oriented programming, 246
monitored-class, 97
multi-methods, 124, 249
multiple argument dispatch. See multi-
methods

N
‘name

slot property, 20
next-method-p, 44
note-operation, 98

333

O
on-backstage, 70
on-stage, 13
summary, 47
optimization. See performance
overriding of methods, 112

P
paint
generic function definition, 15
method definition, 15
parse-defmethod, 298
performance, 45
and memoization, 45, 125
of generic function invocation, 125-131
primary-method-p, 43, 304
primary method. See method combination
print-object, 26, 308
method for standard-class, 50, 77
method for standard-generic-
function, 59
method for standard-method, 59
method for standard-object, 26
print-unreadable-object, 314
printing of objects. See print-object
procedural protocols, 111
procedural reflection, 270
producers, 13
program analysis tools, 48
protocol. See metaobject protocol

R
read-dynamic-slot-value, 103
:reader

slot option, 20
reader-method-class

full-specification, 224
reader-method-p, 65
:readers

slot property, 20
rectangle

class definition, 15
reflection, 7, 270

334

reinitialize-instance, 309
method for standard-object, 31
relevant-generic-functions, 63, 65
remove-dependent
full-specification, 225
remove-direct-method
full-specification, 227
remove-direct-subclass
full-specification, 228
remove-method, 301
remove-method
full-specification, 229
required-portion, 298
reset-slot-access-history, 98

S
set-funcallable-instance-function
full-specification, 230
(setf class-name)
full-specification, 230
(setf find-class), 22
(setf generic-function-name)
full-specification, 231
(setf slot-attribute), 89
(setf slot-value), 29, 97
(setf slot-value-using-class)
before-method for monitored-class, 97
full-specification, 231
method for standard-class, 97
shared-initialize, 309
method for standard-object, 31
slot-access-history, 98
slot-attribute, 88
setf function, 89
slot-attribute-bucket, 89
slot-boundp, 29, 97, 283
slot-boundp-using-class, 308
before-method for monitored-class, 97
method for standard-class, 97
slot-boundp-using-class
full-specification, 233
slot-contents, 27
slot-definition-allocation, 290
mini-specification, 101

Index

slot-definition-allocation
full-specification, 221
slot-definition-initargs, 21, 290
mini-specification, 53
slot-definition-initargs
full-specification, 221
slot-definition-initform, 21, 290
mini-specification, 53
slot-definition-initform
full-specification, 221
slot-definition-initfunction, 21, 289
mini-specification, 53
slot-definition-initfunction
full-specification, 222
slot-definition-location
full-specification, 224
slot-definition-name, 21, 289
mini-specification, 53
slot-definition-name
full-specification, 222
slot-definition-readers, 21, 290
mini-specification, 54
slot-definition-readers
full-specification, 223
slot-definition-type
full-specification, 222
slot-definition-writers, 21, 290
mini-specification, 54
slot-definition-writers
full-specification, 223
slot-exists-p, 30, 283
slot-exists-p-using-class, 308
slot-location, 29, 101, 282
slot-makunbound, 30, 97, 283
slot-makunbound-using-class, 308
before-method for monitored-class, 97
method for standard-class, 97
slot-makunbound-using-class
full-specification, 234
slot-value, 29, 96, 282
setf function, 29
slot-value-using-class, 308
before-method for monitored-class, 97
method for dynamic-slot-class, 103
method for standard-class, 97

Index

mini-specification, 96

setf function, 97
slot-value-using-class

full-specification, 235
slot bindings

protocol for accessing, 96
slot definition metaobject

accessor functions, 21
slot inheritance rules, 25
slot options, 20
slot properties, 20
slots

in object-oriented programming, 243
Smalltalk, 243
specialized metaobject classes, 74
specialized metaobjects, 74
specialized methods, 74
specializer-direct-generic-functions

full-specification, 237
specializer-direct-methods

full-specification, 238
specificity, class. See class precedence list
specificity, method. See

method-more-specific-p

standard-class, 284

accessor functions, 19

class definition, 18

specialization, 72
standard-generic-function, 293

accessor functions, 34

class definition, 34
standard-instance—access

full-specification, 239
standard-method, 294

accessor functions, 37

class definition, 37
standard-object

initialization, 30
standard metaobject classes, 74
standard metaobjects, 74
standard methods, 74

allowing overriding, 113

prohibiting overriding, 113
std-instance, 281
std-instance-class, 27

std-instance-p, 27

std-instance-slots, 27

std-tie-breaker-rule, 292

sub-specializer. See sub-specializer-p

sub-specializer-p, 42

subclasses, 52

subclasses*, 52

subclassp, 41

subprotocols. See metaobject protocol,
layering

T

theatre metaphor, 13
topological-sort, 291
trusting-counting-gf, 113
trusting-gf, 112

U
update-dependent
full-specification, 239
update-instance-for-different-
class, 34, 310

A%
validate-superclass

full-specification, 240
veneer layer, 17

W
write-dynamic-slot-value, 103
rwriter
slot option, 20
writer-method-class
full-specification, 242
writer-method-p, 65
rwriters
slot property, 20

335

