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how well-defined is the generation problem?

[source]

http://www.abigailsee.com/2019/08/13/what-makes-a-good-conversation.html
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using human evaluators

I different protocols, mostly based
on some variation of:
I fluency
I adequacy

(Callison-Burch et al., 2006)I examples:

Reference: Yesterday, stock and commodity prices fell on the world’s markets.

Output 1: Global stock markets and commodity markets fell yesterday.

Output 2: The stock market fell in Zurich.

Output 3: Around globe stock, and and also, commodities fall yesterday.

Output 4: Market and win ball rolling yesterday around electronic highly.
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automatic evaluation methods

I human judgments take too much time
I for efficient evaluation and for

incremental system development, we
need automatic evaluation protocols

I in most cases, they are based on
various overlap measures between
the proposed output and (one or more)
references
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word error rate

the word error rate is defined as

WER =
S + D + I

Nref
=

3+ 1+ 0
7

most commonly used in applications where there isn’t much
“freedom” in how to generate the output
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precision and recall at the word level

P =
4
5

R =
4
7

as usual, the F -score is the harmonic mean of P and R

we can also compute P and R for bigrams, trigrams, . . .
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common metrics based on n-gram precision and recall

I P and R scores for n-grams are also called ROUGE scores
(Lin, 2004), typically used to evaluate summarization systems
I for instance, ROUGE-2 F -score is the bigram F -score

I BLEU (Papineni et al., 2002), commonly used to evaluate
machine translators, uses the precision for different n
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the BLEU score

I the BLEU score uses the precision of n-grams of length 1–4

BLEU = BP ·

(
4∏

i=1

pi

) 1
4

where BP is a brevity penalty that punishes short outputs

BP = min(1, e1− |R|
|S| )
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multiple references

I for some tasks including MT, many
possible outputs are possible

I multiple reference outputs are
often used in evaluations



-20pt

does BLEU make sense?

I BLEU scores are reported in almost
every MT paper

I but do they measure the actual
quality well enough?

I generally, there tends to be a rough correlation between BLEU
and human scores

I Callison-Burch et al. (2006) claim that BLEU might be
misleading when comparing systems of different types

I METEOR (Banerjee and Lavie, 2005) addresses some of the
word matching issues with BLEU
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some implementations

I SacreBLEU (Post, 2018) is a standardized BLEU
implementation in Python
https://github.com/mjpost/sacreBLEU/

I ROUGE 2.0: http://rxnlp.com/rouge-2-0
I METEOR: https://www.cs.cmu.edu/~alavie/METEOR/

https://github.com/mjpost/sacreBLEU/
http://rxnlp.com/rouge-2-0
https://www.cs.cmu.edu/~alavie/METEOR/
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