
Open Design Orienteering Timing System

Specification and User Guide

Lawrence Jones

September 2019
revision 1 working

USER GUIDE AND SPECIFICATION CONTENTS

Contents

1 Introduction 4

1.1 Version History . 4

I Developer Guide 5
1.2 Development of the ODOTS . 6

1.3 Compatibility and Version Identification . 6

1.4 Version History . 7

1.4.1 Hardware . 7

1.4.2 Software . 7

1.4.3 Documentation . 7

2 Performance and Specification 8

3 Firmware Specification and Guide 10

3.1 The Software and You, an overview for newcomers 11

3.2 File by File guide . 11

3.2.1 ODOTS.cpp, ODOTS.h . 11

3.2.2 ODOTSRTC.cpp, ODOTSRTC.h . 15

3.2.3 ODOTSSerialUtils.cpp, ODOTSSerialUtils.h 17

3.2.4 BuzzerUtils.cpp, BuzzerUtils.h . 19

3.2.5 Config.cpp, Config.h . 20

3.2.6 DS1337.cpp, DS1337.h . 21

3.2.7 MFRC522.cpp, MFRC522.h,deprecated.h, require_cpp11.h 21

3.2.8 LowPower.cpp, LowPoer.h . 22

4 RFID Card memory management 23

4.1 Card Memory Organisation and Usage . 23

4.2 .ODOTSRAW Records . 24

5 Host Software Developers Guide 25

5.1 File by File Guide . 25

5.1.1 ODOTSInterface.py . 25

5.1.2 ODOTSFileParser.py . 26

5.1.3 SerialUtils.py . 27

5.1.4 TimeUtils.py . 31

revision 1 working 1

USER GUIDE AND SPECIFICATION CONTENTS

6 Interface Specification 32

6.1 Serial Communication Interface . 32

6.2 UI to Serial Manager Interprocess Interface 34

6.3 ”Send Punch.java” . 35

7 Hardware 36

7.1 Element by Element . 36

7.1.1 The Mounting Board . 36

7.1.2 The RFID module . 36

7.1.3 The Battery . 37

7.1.4 The Microcontroller . 37

7.1.5 The Clock . 37

7.1.6 The Buzzer . 37

7.1.7 Batter Voltage Reader . 38

7.1.8 Other Peripherals . 38

7.1.9 Power Regulators . 39

7.2 USB Connection . 39

8 Known Bugs 40

9 Outstanding Development Tasks 41

9.1 Software . 41

9.2 Hardware . 41

II Build Guide 42

10 Build Guide Introduction 43

11 Acquiring Components 44

11.1 Sourcing the PCB . 45

11.2 Sourcing the RFID Board . 46

12 Building Hardware 47

12.1 Soldering Components . 47

12.1.1 Using Stripboard . 49

12.2 Wiring it together . 51

12.2.1 The Battery . 51

12.3 Using an Enclosure . 51

13 Compiling and embedding firmware 52

14 Installing the UI 54

14.1 As A User . 54

14.2 As a Developer . 54

III User Guide 56

15 User guide introduction 57

revision 1 working 2

USER GUIDE AND SPECIFICATION CONTENTS

16 General Guidance 58

16.1 Installing Software . 58

16.2 Configuring ODOTS Units . 58

16.3 Downloading Card Data . 59

16.4 What to expect when running with an ODOTS card 60

16.5 Maintenance and Troubleshooting . 60

17 Guides for Using the ODOTS 61

17.1 Preparing for an Event . 61

17.2 Running an Event . 61

revision 1 working 3

USER GUIDE AND SPECIFICATION CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The Open Design Orienteering Timing System (ODOTS) seeks to provide an alternative low-

cost electronic timing solution for Orienteering courses. It does this by leveraging the recent

development and proliferation of RFID technology and bymaintaining an open and accessible

design that can be implemented or modified by the wider orienteering community.

In the interests of achieving the goals of the ODOTS it is requested that any further develop-

ments made on the design specified here are reported back to the central development team

(email: l.jones4243@gmail.com) and made freely available for others to use and further de-

velop.

This document has the following purposes:

• To describe the Open Design Orienteering Timing System (ODOTS) for anyone wishing

to use it or assess it.

• Provide a reference for the inner workings of the ODOTS to help developers and de-

buggers understand the hardware, software and importantly the interfaces between

them.

• To act as a user guide for anyone wishing to implement and use the ODOTS, whether

this includes building it or not.

For readerswishing to use this document for the first purpose, section 2 contains the quantita-

tive and descriptive specification and performance metrics of the ODOTS. For reader wishing

to use this document for the second purpose, Part I is a reference for the hardware design and

software structure of the ODOTS. For reader wishing to use the ODOTS for themselves Parts

II and III are intended to take you through the process of building and using an ODOTS.

1.1 Version History

9/2018 ... v0 ... Proof of Concept

The ODOTS proof of concept development has been generously supported by the Orienteer-

ing Foundation.

revision 1 working 4

USER GUIDE AND SPECIFICATION

Part I

Developer Guide

revision 1 working 5

USER GUIDE AND SPECIFICATION

1.2 Development of the ODOTS

The ODOTS is an open design, all effort has beenmade in this part of the document to provide

the explanation necessary to understand how the ODOTSworks and the interactions of its var-

ious components. A large portion of this section is inevitably code documentation due to the

large software component of the ODOTS. Other elements include performance and hardware

specifications an overview of the hardware design, interface specification and some commen-

tary on the various design elements. Every effort will be made to keep this section up to date

with the code and design released, however it is possible functions and design decisions will

bemade after themain documentationwrite up that will bemissed and thus not be explained

or included here. If you have any questions please contact the central development team.

1.3 Compatibility and Version Identification

One of the Aims of the ODOTS is to generate community interest in the development of a

tailored timing system and it is foreseen that there may end up being multiple development

teams producing ODOTS examples. Version identification will then be particularly important,

for this reason all ODOTS devices (embedded systems with RFID readers) will be required to

identify their Hardware and Firmware version numbers. Version Numbers are 1 byte values,

nibble 1 identifies the development team, nibble 2 identifies the design version for that team.

For example, the proof of concept software and firmware is version 0 from team 0, therefore

both numbers = 0x00. This is clearly a limited name space. New development teams are free

to select their own nibble values, if they desire to have their values remain uniquely identi-

fiable it is suggested that they announce them to the central development team, which will

attempt to ensure there are no clashes.

It is clear the the name ODOTS is a good descriptor of what this project is but does not have

the distinctive ring perhaps required for widespread recognition. Therefore the central de-

velopment team actively encourages design versions to be given names in addition to their

ODOTS version numbers, as long as it is clear that it has been built for ODOTS. For this purpose

the Proof of Concept fails somewhat, as it is named ’Proof of Concept’ (FW version 0x0, HW

version 0x0).

It is the nature of community driven projects that there will be several different versions of

the ODOTS design developed and presented. It is important, for the image of the project, that

the compatibility between designs is well recorded. This will prevent confusion for people dis-

covering the ODOTS and help avoid the nightmare scenario of users’ races being wasted due

to incompatible racer cards being used. The probability of losing races may be low in practice

if card cost is so low that they can be issued to all competitors for each course.

What should the central development team do?

• Provide clear, explicit documentation of the basic ODOTS including the specification of

major interfaces (This document).

revision 1 working 6

USER GUIDE AND SPECIFICATION

• Provide clear, explicit documentation of anymajor design changes and how this impacts

any previous specifications.

• Remain available for communication to help new developers.

What should potential developers do?

• Make compatibility information available for their design (or design addition/update)

and any other major deployments of the ODOTS or versions of the basic design.

• If possible, make interface and design documentation available for future developers.

• Communicate your work back to the central development team so that records can be

kept of ODOTS designs currently active.

This is not a binding list of actions to take, merely a suggestion.

1.4 Version History

1.4.1 Hardware

v0 ... 9/2019 ... Proof of concept

1.4.2 Software

v0 ... 9/2019 ... Proof of concept

1.4.3 Documentation

User Guide and Specification

(As per introduction)

v0 ... 9/2019 ... Proof of concept

revision 1 working 7

USER GUIDE AND SPECIFICATION CHAPTER 2. PERFORMANCE AND SPECIFICATION

Chapter 2

Performance and Specification

This chapter provides information of the performance of the ODOTS and some brief technical

specifications for use in assessing the ODOTS for an application. These values have been de-

rived from the proof of concept hardware, so improvements in most characteristics may be

expected in future design iterations particularly with regards to power consumption.

Technical Characteristics

Table 2.1: Specimin Technical Characteristics

Characteristic min typ max unit

Device Input Supply Voltage 4.9V 5.0 5.1 V

Device Current Draw (IDLE)1 41 mA

Device Current Draw (RFID

IN USE)2
50 65 mA

Firmware FlashMemoryUs-

age3
12.2 kBytes

Firmware RAMMemory Us-

age (Global Reserved)3
0.6 kBytes

Firmware Persistent Mem-

ory Usage (EEPROM)

4 Bytes

1 Measured from Strip board prototype with no outstanding serial or RFID actions.
2 Measured from Strip board prototypewith RFID card present, higher value indicates draw

after Capacitor reservoir drained.
3 Measured with Arduino Compiler.

Performance Evaluation Metrics

The basic hardware for any ODOTS unit will be roughly the same, therefore most ODOTS units

will be able to fulfil any function required of any ODOTS unit. All units can act as Checkpoint

units, ClearCard Reset units, or Card information download units. The only difference be-

tween these units will be a serial to USB bridge added to the download unit.

revision 1 working 8

USER GUIDE AND SPECIFICATION CHAPTER 2. PERFORMANCE AND SPECIFICATION

Table 2.2: Specimin Performance Characteristics

Characteristic min typ max unit

Time to Power Drain1 10 52 Hours

Visit Process Time2 6 20 45 ms

Clock Drift 1 100 sec/Week

Punches Per Card3 92 180 Visit

Records

PCD Cost 21.5 £

PICC Cost 0.5 £

1 Assumes fully charged 18650 cell with full dicharge achieved.
2 Time will vary depending on timing of visit record with relation to power preserving sleep

period.
3 Will vary with card type, full capacity not yet achieved on MIFARE 4k card.

At the moment the ODOTS does not employ many power saving measures, hence the rather

short endurance (Time to Power Drain). The current firmware will allow an ODOTS unit to

comfortably run for two days on a single fully charged 18650 cell, enough for the Proof of

Concept. It is possible that with greater care to paid to power consumption and the imple-

mentation of sleep modes this figure could be stretched out a great deal.

Competitor visit process time is hard limited to just more than 5ms by the RF standard in use.

Currently this value may be reached with lucky timing (a competitor arriving just at the end of

a sleep period). The hard maximum time has been calculated as Minimum time + sleep time

(40ms) + clock update time (<1ms). In testing the difference was not noticeable.

revision 1 working 9

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

Chapter 3

Firmware Specification and Guide

This section will look at the firmware running on the embedded processor, an AtMega328p

in the proof of concept. The firmware has three purposes, to maintain an accurate clock, to

write checkpoint visit records to passing MIFARE cards and to interact with a Serial host to

fulfil download and configuration functions.

As mentioned previously the processor used in the proof of concept is an AtMega328p cho-

sen due to its compatibility with the Arduino bootloader and option for Dual Inline Packaging

(DIP). Long term accurate time keeping is achieved with the DS1337 real time clock chip while

RFID functionality is achieved with the MRFC522 which also contains extra hardware used to

handle the authentication and encryption required by the MIFARE standard.

In general every effort has been made to try and ensure that source file interactions make

sense and can be best described with a multitier architecture where lower tiers get closer to

hardware functionwhile higher tiers get progressivelymore abstract and, hopefully, readable.

Sitting outside of this structure is a configuration file ’Config.h’ that contains many definitions

(and a fewglobal variable definitions and declarations) that determine firmware and hardware

functionality. Centralising these definitions will hopefully simplify any debugging or augmen-

tation. Table 3.1 has a brief outline of the firmware source files.

DS1337.cpp, DS1337.h, ODOTSRTC.cpp and ODOTSRTC.h are used to control the real time

clock function and provide time stamps to the RFID module when required. MFRC522.cpp,

MFRC522.h, ODOTS.cpp and ODOTS.h manage communications with the RFID module and

the handling of frames being passed to the RFID card. require_cpp11.h and deprecated.h are

required by MRFC522.h to maintain compatibility with the Arduino compiler. ODOTS.h and

Software Layer Source Files

Application ODOTSGeneric.ino

Library Management ODOTS.h

Function Management ODOTSSerialUtils.h, ODOTS.h, ODOTSRTC.h, Low-

Power.cpp, LowPower.h

Peripheral Device Drivers BuzzerUtils.h, MFRC522.h, DS1337.h

Basic Hardware Abstraction Arduino HAL

Table 3.1: Brief structure of firmware source files

revision 1 working 10

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

.cpp also acts as the top layer of the library with glue code to pass non-RFID functionality to

the application. ODOTSSerialUtils.cpp and ODOTSSerialUtils.hmanage serial communications

between theMicrocontroller and aUART host. BuzzerUtils.cpp and BuzzerUtils.h contain code

used to drive the notification peripherals, a buzzer and LEDs.

DS1337.cpp and .h is largely unchanged fromwhen itwas cloned fromhttps://github.com/richard-

clark/ds1337, with some minor changes to allow for better integration with the rest of the

code. MRFC522.cpp and .h (and require_cpp11.h, deprecated.h) are largely unchanged copies

of source code available at https://github.com/miguelbalboa/rfid, where is has been released

under the Unlicense.

3.1 The Software and You, an overview for newcomers

If the software running in the ODOTS device is a recipe the ’ODOTSGeneric.ino’ file holds the

page you would read with instruction like ’stir’ and ’turn oven on’. The actual nitty gritty of

how to turn the oven on is described in ever nittier and grittier detail as you move down the

levels outlined above. It is assumed that anyone looking at the software has google to hand to

help with syntax comprehension, but suffice to say while Arduino can describe the ’ino’ files,

the rest of them have been written for C++.

The top level architecture relies on polling to satisfy functionality requirements, it checks each

potential action required of it in turn and takes action where required. This is a very safe way

of handlingmultiple tasks, if inelegant and resource intensive. The flags that notify the central

thread of execution about required tasks are generally generated by the Arduino HAL or pe-

ripheral device drivers. The exception to this is the clock alarm, used to maintain an internal

time reference accurate to the RTC. This is driven by an interrupt service routine which you

may find in ODOTSRTC.cpp, which is used as the falling edge of the alarm interrupt occurs on

a second boundary, which is useful to know for keeping precise time. Future development

should look at moving the firmware into a more interrupt driven architecture as this will al-

low for power saving measures in the future, such as sleep modes, which polling has difficulty

implementing.

It was intended that the libraries of the ODOTS firmware should be easily swappable to allow

for hardware to be changed with a minimum of fuss when it comes to driver changes.

3.2 File by File guide

3.2.1 ODOTS.cpp, ODOTS.h

As the Library front source file there is a lot of glue code. There is also some EEPROM and

ODOTS specific RFID functionality defined.

revision 1 working 11

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

ODOTS.h

Imports: [Arduino Builtin] [library specific]

ODOTSRTC.h, ODOTSSerialUtils.h, BuzzerUtils.h, DS1337.h, Config.h

Declares:[Variables, Class Instances] [Functions]

struct time_t PunchTime,

bool CheckIsUnitConfiguredForDownload(),

bool CheckIsUnitConfiguredForClear(),

void InitRFID(),

bool CheckIfNEWRFIDCardPresent(),

bool SelectCard(),

uint16_t ParseCardIDandInfo(),

void HaltCard(),

bool ResetCard(),

bool WriteVisitStamp(struct time_t* VisitTime, uint16_t WriteBlock),

void UpdateStatusFromEEPROM(),

bool DumpCardToSerial(),

void SendRFIDModuleToSleep(),

void WakeRFIDModule(),

void SendUnitToSleep().

ODOTS.cpp

Imports: [Arduino Builtin] [library specific]

Arduino.h,EEPROM.h, MRFC522.h, LowPower.h, ODOTSRTC.h, Config.h

Declares:[Variables, Class Instances] [Functions]

uint8_t CheckIfTrailerClash(uint8_t Block),

MFRC522 mfrc522(SSPIN, RSTPIN),

MFRC522::MIFARE_Key key

Variables, Class Instances:

MFRC522 mfrc522(SSPIN, RSTPIN)

Instance of MRFC522 class used by functions to interact with MRFC522 library.

MFRC522::MIFARE_Key key

Declares key variables for use in MIFARE authentication.

revision 1 working 12

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

Functions

uint8_t CheckIfTrailerClash(uint8_t Block)) [local]

Checks whether block specified is a trailer block. Currently only supports the 4

block sectors of MIFARE Classik 1k and the first half of 4k

Parameter: Block, block number to be checked.

Returns: Block , returns next block (counting up) if the block passed was a trailer

block.

bool CheckIsUnitConfiguredForDownload()

Glue function.

Returns: Returns value of IsUnitConfiguredForDownload.

bool CheckIsUnitConfiguredForClear()

Glue function.

Returns: Returns value of IsUnitConfiguredForClear.

void InitRFID()

Initialises MFRC522 peripheral and SPI interface, also used to generate MIFARE

access key, currently set to the default 0xffffffffffff.

bool CheckIfNEWRFIDCardPresent()

Glue code, callsmfrc522method PICC_IsNewCardPresent() to determinewhether

there is a fresh card in the readers RF field. Note that an ’old’ card can become

new if it is left near the reader for too long.

Returns: True if there is a new card in the field, false if there is not.

bool SelectCard()

Glue code, callsmfrc522method PICC_ReadCardSerial() to select a card previously

detected with PICC_IsNewCardPresent. This operation includes anticollisionmea-

sures to prevent multiple cards trying to talk at once.

Returns: True if card selection successful, false if it is not.

uint16_t ParseCardIDandInfo()

ODOTS information block interpretation. Reads the information block (as speci-

fied in Config.h) and determines the next block to be used for time visit stamps as

well as whether block reuse has become necessary.

Returns: Bodged two byte value, the first byte is the next block value, the second

byte = 0 if block reuse is not occuring, =1 if it is, =0xff if the card is full.

revision 1 working 13

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

void HaltCard()

Calls MRFC522 methods to deselect and turn off selected Card (PICC). Must be

called every time a card is selected to deselect it again.

bool ResetCard()

Calls MRFC522methods to reset ODOTS PICC card state, that is resetting next-visit

block pointer and block reuse flag to 0.

Returns: True if interaction successful, false if error.

bool WriteVisitStamp(struct time_t* VisitTime, uint16_t WriteBlock)

Generates new time stamp from RTC reference time (kept accurate elsewhere)

and generates a visit stamp to be written to the card, then writes it to the ODOTS

card. Handles block reuse, though this requires an extra read operation.

Parameter: VisitTime, time struct (fromDS1337 source) containingtime thepunch

occured (allowing this time to be recorded earlier and therefore be slightly more

accurate).

Parameter: WriteBlock, output of ParseCardIDandInfo (see that function for full

description)

Returns: True if interaction successful, false if error.

void UpdateStatusFromEEPROM()

Routine to update card operation flags from EEPROMmemory, allowing persistent

memory of device information. This means replacing the battery does not then

require the device to be reprogrammed.

bool DumpCardToSerial()

Dumps Card memory to UART serial bus, data format specified in chapter 6.

Returns: True if interaction successful, false if error.

void SendRFIDModuleToSleep()

Turns RFID RF field off a good way to save power.

void WakeRFIDModule()

Turns RFID field on, useful if trying to detect cards.

void SendUnitToSleep()

revision 1 working 14

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

Turns off most Microcontroller peripheral devices for a short period of time, a

power saving tactic.

3.2.2 ODOTSRTC.cpp, ODOTSRTC.h

These files contain the ODTODS specific time functionality, interacting with the Microcon-

trollers internal oscillator and the DS1337 to maintain and produce accurate time stamps.

ODOTSRTC.h

Imports: [Arduino Builtin] [library specific]

DS1337.h

Declares:[Variables, Class Instances] [Functions]

void InitRTC()

void RTCEnableAlarm()

struct time_t CalculateTimeStamp()

bool CreateNewTimeStampString(struct time_t* PunchTime, uint8_t* OutputBuffer)

uint8_t UpdateRTCReference()

void RTC_SetTime(uint8_t Year, uint8_tMonth, uint8_tDay,uint8_tHour,uint8_tMinute, uint8_t

Second)

bool RTC_ReadTime(uint8_t* Buffer)

bool RTCAlarm()

ODOTSRTC.cpp

Imports: [Arduino Builtin] [library specific]

Arduino.h, Config.h,DS1337.h

Declares:[Variables, Class Instances] [Functions]

unsigned long RefMillis = 0,

volatile unsigned long InterruptMillis = 0,

unsigned long RTCMillisOffset = 0,

volatile bool RTCFlag = false,

struct time_t RTCReference,,

void RTC_InterruptServiceRoutine()

Variables, Class Instances:

unsigned long RTCOffsetMillis = 0

revision 1 working 15

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

Value of millisecond timer when last the last RTC reference was taken, time is cal-

culated milliseconds since this reference.

volatile unsigned long InterruptMillis = 0

Value of millisecond timer when interrupt was called, it is assumed that the inter-

rupt is serviced on the second edge, therefore this variable is used to determine

the millisecond value of the RTC reference time (which is generated after the in-

terrupt is serviced.

volatile bool RTCFlag = false

Used to enable RTC update following interrupt from RTC.

struct time_t RTCReference

RTC time struct, time at the last time the RTC was checked, time for a punch is

calculated from this value.

Functions:

void RTC_InterruptServiceRoutine() [Local]

RTC reference update interrupt service routine, enables RTC update (and sets mil-

lisecond calculation value) when interrupt is generated by external RTC.

void InitRTC()

Initialises RTC, starts I2C interface.

void RTCEnableAlarm()

Initialises and enables RTC driven interrupt. Sets RTc alarm every minute at 0 sec-

onds and sets internal config register to enable interrupt.

struct time_t CalculateTimeStamp()

Calculates a time stamp for the timeof the function call. Calculates time (inmsecs)

since the last time the RTC time was checked then uses this to estimate present

time.

Returns: Time_T struct of time.

bool CreateNewTimeStampString(struct time_t* PunchTime, uint8_t* OutputBuffer)

revision 1 working 16

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

Creates an ODOTS visit record string ready for passing to a card including the De-

vice ID number and a time string. DOES NOT write this string to the card.

Parameter: PunchTime, Pointer to atime_t struct containing thepunchtime recorded.

Parameter: OutputBuffer, Pointer to a char array that can be used to store the

string before it is passed to the card.

Returns: True.

uint8_t UpdateRTCReference())

Follow up function to the Interrupt service routine, pulls time from real time clock

and calculates time inmilliseconds by assuming the ihnterruptwas called at Xh:Xm:Xs:0ms

and then counting milliseconds since the interrupt was called.

Returns: 0.

bool RTC_ReadTime(uint8_t* Buffer)

Reads time from internal reference, and writes it to the buffer provided.

Parameter: Buffer, pointer to buffer where time can be stored (6 bytes long ide-

ally).

Returns: True.

void RTC_SetTime(uint8_t Year, uint8_tMonth, uint8_tDay,uint8_tHour,uint8_tMinute, uint8_t

Second)

Writes the provided time to the real time clock allowing growing inaccuracies to

be corrected (generally through a host with access to internet UTC time). The

function call assumes that it occurs on a second boundary. The RTC has no way

of tracking milliseconds. TIP: to prevent daylight savings confusion it is suggested

that the RTC time is set to GMT which does not change.

Parameter: Year, year (since 2000).

Parameter: Month, month (number).

Parameter: Day, of month.

Parameter: Hour, 24 hour time used.

Parameter: Minute.

Parameter: Second.

bool RTCAlarm()

Glue code.

Returns: Value of RTCFlag.

3.2.3 ODOTSSerialUtils.cpp, ODOTSSerialUtils.h

These Source files handle the UART communications with a host PC including ferrying con-

figuration information and commands. The interface expected over the UART connection is

described in detail in the dedicated software interface chapter, chapter ??.

revision 1 working 17

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

ODOTSSerialUtils.h

Imports: [Arduino Builtin] [library specific]

Arduino.h

Declares:[Variables, Class Instances] [Functions]

void SerialInit()

uint8_t CheckSerialForContents()

uint8_t SerialHandleRequest()

ODOTSSerialUtils.cpp

Imports: [Arduino Builtin] [library specific]

Arduino.h,EEPROM.h,Config.h,ODOTSRTC.h

Declares:[Variables, Class Instances] [Functions]

uint8_t WaitForSerialWithTimeOut(uint8_t Bytes)

,uint8_t ReadADC(),

uint8_t SendADCToSleep(),

uint8_t WakeADC()

Functions:

void SerialInit()

Initialises UART serial interface, with a baudrate specified in config.h

uint8_t CheckSerialForContents()

Glue code.

Returns: value returned by Serial.available(), the number of bytes sitting in the

serial buffer.

uint8_t SerialHandleRequest()

Interpretation function, decides which functionality is desired (based on byte pro-

vided by serial link) and executes required behaviour. There are no inputs as the

function takes the bytes directly from the serial buffer.

uint8_t WaitForSerialWithTimeOut(uint8_t Bytes)

revision 1 working 18

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

Provides timeout functionality to the serial input readers, provides ”»Timeout”

message to serial interface on timeout.

Parameter: Bytes, the number of bytes that are required to be read. Returns:

uint8_t value ’0’ if timeout occured, ’1’ if the required number of bytes was de-

tected before timeout, these can then be read elsewhere (THIS FUNCTION DOES

NOT RETURN THE BYTES IN THE SERIAL BUFFER)

uint8_t ReadADC()

Turns On ADC module and enables the battery voltage reader Mosfet, waits for a

bit (to let the ADC voltage settle) then reads the battery voltage. Finally turns the

battery voltage reader mosfet back off.

Returns: ADC reading, first 8MSBs as the ADCnormally gives a 10 bit values (which

does not fit in a byte).

uint8_t SendADCToSleep()

Disables ADC peripheral and updates control registers.

uint8_t WakeADC()

Enables ADC and updates control registers.

3.2.4 BuzzerUtils.cpp, BuzzerUtils.h

These source files manage the buzzer and LED user notifications. At the moment these are

blocking processes that prevent other microcontroller operations. It is possible in the future

that they may be rewritten to allow for other operations to be completed in the background.

This may require a hardware upgrade.

BuzzerUtils.h

Imports: [Arduino Builtin] [library specific]

None.

Declares:[Variables, Class Instances] [Functions]

void BuzzerInit()

void BuzzerBleep()

void ErrorBuzz()

void BuzzerBlip()

revision 1 working 19

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

BuzzerUtils.cpp

Imports: [Arduino Builtin] [library specific]

Arduino.h,Config.h.

Declares:[Variables, Class Instances] [Functions]

None.

Functions:

void BuzzerInit()

Puts buzzer pin into output mode.

void BuzzerBleep()

Procedure for standard operation complete notification.

void ErrorBuzz()

Procedure for standard error notification, for example due to incomplete PICC in-

teraction.

void BuzzerBlip()

Procedure for non-standard notification, good for debugging purposes!

3.2.5 Config.cpp, Config.h

These source files contain many of the definitions used for configuring how the device op-

erates including microcontroller pin numbers, UART characteristics, and EEPROM memory

locations. It also contains some global variables that are used through many source files.

Config.h

Imports: [Arduino Builtin] [library specific]

None.

Declares:[Variables, Class Instances] [Functions]

None. (Many preprocessor instructions though.)

revision 1 working 20

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

Config.cpp

Imports: [Arduino Builtin] [library specific]

Arduino.h

Declares:[Variables, Class Instances] [Functions]

uint8_t ODOTS_DeviceID[2],

bool IsUnitConfiguredForDownload,

bool IsUnitConfiguredForClear

Variables, Class Instances

uint8_t ODOTS_DeviceID[2]

The device ID, used to distinguish which checkpoint produced each visit stamp.

bool IsUnitConfiguredForDownload

Simple flag used to switch device behaviour in different functions.

bool IsUnitConfiguredForClear

Simple flag used to switch device behaviour in different functions.

3.2.6 DS1337.cpp, DS1337.h

For an understanding of the DS1337 source code please visit the github repository: https:
//github.com/richard-clark/ds1337, and the chip data sheet from Maxim: https://
datasheets.maximintegrated.com/en/ds/DS1337-DS1337C.pdf.

3.2.7 MFRC522.cpp, MFRC522.h,deprecated.h, require_cpp11.h

For an understanding of the MRFC522 source code please visit the github repository: https:
//github.com/miguelbalboa/rfid which includes some very useful examples and a more

in depth explanation of how the library works. Unfortunately communication with MIFARE

(Classic) cards relies on two layers of protocols the ISO14443A RF interface specification and

the proprietaryMIFARE interface and communication specification. Trying to crack these from

first principles and datasheets is a daunting task, and is one of the reasons the ODOTS design

has opted for RF hardware that already has drivers written for it.

Three functions have been appended in the final lines of this source file to allow customdump-

ing of card data to the serial port these all have ’Data’ added to the standardMRFC522 function

name (e.g. PICC_DumpDataToSerial()). These also have in built error detection changing the

return variable from void to a bool.

revision 1 working 21

https://github.com/richard-clark/ds1337
https://github.com/richard-clark/ds1337
https://datasheets.maximintegrated.com/en/ds/DS1337-DS1337C.pdf
https://datasheets.maximintegrated.com/en/ds/DS1337-DS1337C.pdf
https://github.com/miguelbalboa/rfid
https://github.com/miguelbalboa/rfid

USER GUIDE AND SPECIFICATION CHAPTER 3. FIRMWARE SPECIFICATION AND GUIDE

3.2.8 LowPower.cpp, LowPoer.h

This is a handy library that exposes functionality of the AVR hardware abstraction layer it is

used to handle the microcontrollers sleeping between poll cycles. This library has been ob-

tained from https://github.com/rocketscream/Low-Power.

revision 1 working 22

https://github.com/rocketscream/Low-Power

USER GUIDE AND SPECIFICATION CHAPTER 4. RFID CARD MEMORY MANAGEMENT

Chapter 4

RFID Card memory management

The RFID cards used by the ODOTS, in the current design must be MIFARE classic compati-

ble devices. Testing has showed that MIFARE Classic 1k rather that 4k gives slightly better

performance, primarily due to the time required to read and write the entire 4k card. Early

in the design process every effort was made to ensure that a wide variety of cards could be

used, however single standard compatibility simplifies the program required for the embed-

ded microcontroller and works to ensure that ODOTS systems should have roughly equal per-

formances between builds.

PracticallyMIFARE cards comepreprogrammedwith aUnique IdentificationCode, which should

be unique to that card (shady manufacturers aside). This is generally used to identify the card

and is the number declared as the ”SI Number” in the download software.

4.1 Card Memory Organisation and Usage

The organisation of MIFARE cards’ memory is well documented in NXP’s own documentation:

https://www.nxp.com/docs/en/data-sheet/MF1S70YYX_V1.pdf. MIFARE Classic cards

have their memory sorted into blocks, then sectors. Each block consists of 16 bytes and each

sectors consists of 4 block (though the final sectors in a 4k card have 16 blocks). In each sec-

tor one block (the ’trailer’) is used to store access keys and information and so is unusable for

ODOTS purposes.

The ODOTS does not use the lowest sector (sector 0) for visit record storage. Block 0 in this

sector is used for the Card’s UID and other information and is written to by the manufacturer,

it should not bemodified. Block 1 is used by the ODOTS to store race information, though this

consists of the ’next block to punch’ value in the third byte of this block and a ’second use of

block’ flag (0xff) in the fourth byte. The value of ’next block to punch’is iterated by each check-

point visit record write operation, the ’second use of block’ flag is discussed below. Block 2 is

not used. This leaves a lot of spare memory that is not currently used, however the intention

is to leave these blocks alone for the time being as they will allow additional functionality in

later designs.

The remaining non-’trailer’ blocks on the card are used to store visit records, information

dumped by checkpoints including a timestamp and the code of the checkpoint. Each visit

revision 1 working 23

https://www.nxp.com/docs/en/data-sheet/MF1S70YYX_V1.pdf

USER GUIDE AND SPECIFICATION CHAPTER 4. RFID CARD MEMORY MANAGEMENT

Byte 0 1 2 3 4 5 6 7

Contents: DeviceID[0] DeviceID[1] 0x55 Hour Minute Second Millisecond»8 Millisecond%255

Table 4.1: Bytewise structure of ODOTS visit record

record is 8 bytes long allowing for two per block. The structure of the ODOTS visit record

is described by table 4.1. The ODOTS has the ability to time to the accuracy of about 5ms,

though this functionality is not supported by the current competition management software.

Byte 6 and 7 of the visit record contain the milliseconds of the time stamp, unfortunatly the

1000 milliseconds a second do not fit into a byte, therefore the value has been stored over

two! The Device ID is similarly split.

As mentioned previously each MIFARE block can store two ODOTS visit records. Writing to

the second spot requires an extra read operation (as the whole block must be written to at

once, and ideally the first record should be maintained), therefore the ODOTS first fills up all

the ’first’ spots in the first 8 bytes of each available block. Once these are all filled the value of

’next block to write’ is reset to its lowest value and ’second use of block’ flag is set, indicating

to future checkpoints that they should be using the second slot available in each block.

4.2 .ODOTSRAW Records

ODOTSRAWfiles contain the downloaded contents of a card, ready for processing and passing

off to MEoS or other competition management software. They take the form shown below

(in plain text):

Card UID: 81 E6 39 2F

Card SAK: 08

PICC type: MIFARE 1KB

61 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

...

All values are in HEX, except for block numbers which are in decimal form (61 in the example

shown). All blocks apart from trailer blocks should be included in the record, though occasion-

ally the block record will be replaced with an error message (this should no longer happen).

The second and third lines are not currently used, however the provide useful information

about the card and can be used to detect chen a non standard card has been used.

revision 1 working 24

USER GUIDE AND SPECIFICATION CHAPTER 5. HOST SOFTWARE DEVELOPERS GUIDE

Chapter 5

Host Software Developers Guide

This chapter is developer documentation for the software required to run on a host computer,

currently targeted for Windows. This software manages communications with an attached

ODOTS device, whether this is for device configuration or card download operations. The

User Interface of this software is currently text based (to reduce computer operation over-

head). Usage instructions and tutorials for this interface may be found in part III. The host

software has been implemented in Python 3 due to its high level of readability and function-

ality provided by external libraries.

Competition management and results calculation is handled by MEos, developed by Melin

Software, which can be found at http://www.melin.nu/meos/. The interface to this soft-

ware is straight forward over a TCP link, provided by ’SendPunch’ a Java program modified

from an example provided by Melin. MEos has been used as the interface provided by ’Send

Punch’ can be operated with a single command.

Developed code for the host software is made of four custom objects, each a unique instance

of one of four classes. It has two processes, one to run the User Interface and another to

handle the serial interface andmanage asynchronous card downloads. The scripts for theHost

software can be found in four files, ODOTSInterface.py, ODOTSFileParser.py, SerialUtils.py and

TimeUtils.py, the final three will generally be stores in ”./Modules”.

5.1 File by File Guide

5.1.1 ODOTSInterface.py

This script contains the main execution code for the ODOTS interface. It creates two pro-

cesses, a user interface process that takes input from the command line, and a serial inter-

face thread used to communicate with the serial port and automatically forward downloads

from an ODOTS card to competition management software. Interprocess communication is

achieved using two FIFO queues, detailed in chapter 6. The serial interface consists mostly of

glue code to pass user commands from the user interface off to the serial port. About the only

non-trivial action is ’Read Unit Info’ which strings several ODOTS unit information requests to-

gether before providing the information to the user in a readable format. Full usage of the

ODOTS interface is detailed in Part III.

revision 1 working 25

http://www.melin.nu/meos/

USER GUIDE AND SPECIFICATION CHAPTER 5. HOST SOFTWARE DEVELOPERS GUIDE

5.1.2 ODOTSFileParser.py

This module contains a class used to take the ODOTSRAW files and send them off to the TCP

socket attached to MEoS.

Imports: [Python Official] [project specific]

subprocess,os.

Declares:[Variables, Classes] [Functions]

FileParserTCPWriter: __init__(), ProcessRecord(), ParseFile(), CalculateCardID(), ReadPunches(),

ReadTimeLine(), InterpretEntry(), SendToSocket().

Classes:

FileParserTCPWriter

Base class for the module, allows for persistence of settings without relying on

global variables.

Functions:

FileParserTCPWriter.__init__()

Initialises File Parser object, and takes configuration arguments, changing TCP

socket settings has no effect at the moment.

FileParserTCPWriter.ProcessRecord(filename, DeleteFileAfterUse = None)

Parses ODOTSRAW file into time stamps and checkpoint codes, and sends the in-

formation off to the TCP socket. The all in one function.

Parameter: Filename, name of file containing card data.

Parameter: DeleteFileAfterUse, boolean, no current functionality.

FileParserTCPWriter.ParseFile(self,filename,DeleteFileAfterUse = None)

Parses ODOTSRAW file into string that can be sent to TCP socket.

Parameter: Filename, name of file containing card data.

Parameter: DeleteFileAfterUse, boolean, no current functionality.

Returns: String to be sent to TCP socket.

FileParserTCPWriter.CalculateCardID(self, ReadString)

Calculates Card ID number from uid (which is in hex) this is taken directly from

SerialUtils.py script.

Parameter: ReadString, UID line of ODOTSRAW file.

Returns: Integer value of UID.

revision 1 working 26

USER GUIDE AND SPECIFICATION CHAPTER 5. HOST SOFTWARE DEVELOPERS GUIDE

FileParserTCPWriter.ReadPunches(self,file = None)

Reads ODOTS RAW file and extracts all punch records, dumps empty records and

orders all punches in order they were punched.

Parameter: file, file object of ODOTSRAW file to be read.

Returns: List of strings, each string being a visit recording.

FileParserTCPWriter.ReadTimeLine(self,LineFromFile)

Reads line from ODOTSRAW file and returns visit records contained within.

Parameter: lineFromFile, string representing line read from ODOTSRAW file

Returns: Two element array containing the two visit record ([NONE,NONE] for

record spots where there is no visit record detected.)

FileParserTCPWriter.InterpretEntry(self, VisitRecordEntry)

Reads record from ODOTSRAW file and converts into program friendly [ID, Time]

arrays.

Parameter: VisitRecordEntry, string representing Byte Literals of visit record.

Returns: Two element array containing the two visit record ([NONE,NONE] for

record spots where there is no visit record detected.)

FileParserTCPWriter.SendToSocket(self, String=None)

Calls Java SendPunch.java used to interact withMEoS TCP socket, and sends string

provided (ideally formatted by self.ParseFile) Parameter: String, string to be sent

to the TCP socket.

5.1.3 SerialUtils.py

ThisModule provides serial interface functionality,managing communicationswith theODOTS

device while providing an abstracted interface to the rest of the software.

Imports: [Python Official] [project specific]

Time, Serial (PySerial),serial.tools.list_ports,os,TimeUtils.

Declares:[Variables, Classes] [Functions]

ODOTS_Serial_Interface: __init__(), ListAvailablePorts(), SelectPort(), OpenPort(), ClosePort(),

ReadTime(), ReadSystemTime(), WriteTime(), ReadDeviceID(), WriteDeviceID(), ReadDevice-

Mode(), SetDeviceMode(), ReadFirmwareVersion), ReadHardwareVersion(), InterceptDown-

loadMessage(), InterpredDownloadandWritetoFile(), CheckifHex(), InitialiseCommand(), Neat-

enPortList(), PollInputPOrtforDownload.

Main

Classes

revision 1 working 27

USER GUIDE AND SPECIFICATION CHAPTER 5. HOST SOFTWARE DEVELOPERS GUIDE

ODOTS_Serial_Interface

Base class for the module, allows for persistence of serial ports without using

global scope variables.

Functions:

ODOTS_Serial_Interface.__init__(FileWritePath=””,CurrentWorkingDirectory=os.getcwd(),Con-

figObject=None,Verbose = False)

Initialisation function for ODOTS Serial Interface Class, takes a number of config-

uration inputs. ConfigObject is an unimplemented entry point for a configuration

object allowing for straightforward interface changes. Initialises Serial Object.

ODOTS_Serial_Interface.ListAvailablePorts()

Uses SerialFind tool to list comports, then returns a list of available serial ports

with additional details to allow for the ODOTS device induced serial port to be

identified.

Returns: List of available serial port details.

ODOTS_Serial_Interface.SelectPort(Port)

Selects port from port list to be used for serial communications, it does not open

it. Selected port is retained in class scope variable for use later.

Parameter: Port, index in port list of the port to be selected.

Returns: Name of ActivePort.

ODOTS_Serial_Interface.OpenPort(ConfigObject=None)

Opens port for serial communications.

Parameter: ConfigObject, provides port parameters, these revert to default val-

ues if not provided, baudrate = 9600, timeout = 1 second.

ODOTS_Serial_Interface.ClosePort()

Closes currently open serial port.

ODOTS_Serial_Interface.ReadTime()

Reads time from attached ODOTS device.

Returns: TimeString [Year,Month,Day,Hour,Minute,Second]

ODOTS_Serial_Interface.ReadSystemTime()

revision 1 working 28

USER GUIDE AND SPECIFICATION CHAPTER 5. HOST SOFTWARE DEVELOPERS GUIDE

Calls TimeUtils.GetCurrentTime and returns output.

Returns: TimeString [Year,Month,Day,Hour,Minute,Second]

ODOTS_Serial_Interface.WriteTime()

Writes current system time (on second boundary) to attached ODOTS device.

Returns: True if successful, False if timeout detected.

ODOTS_Serial_Interface.ReadDeviceID()

Reads the DeviceID of attached ODOTS device.

Returns: DeviceID of attached device (bytes object)

ODOTS_Serial_Interface.WriteDeviceID(NewID=None)

Writes new ID to attached ODOTS device (changing it)

Parameter: NewID, two byte object representing desired device ID (MSB fist),

None if no change desired.

Returns: Old Device ID of attached ODOTS device.

ODOTS_Serial_Interface.ReadDeviceMode()

Reads the Operation flags from the attached ODOTS device.

Returns: [Bool,Bool], [DownloadEnabled,ClearEnabled]

ODOTS_Serial_Interface.SetDeviceMode(DownloadEnabled,ClearEnabled)

Writes the operation flags on the attached ODOTS device.

Parameter: DownloadEnabled, boolean true if the Download functionality is to

be expressed.

Parameter: ClearEnabled, boolean true if the Clear functionality is to be expressed.

Returns: [Bool,Bool], [DownloadEnabled,ClearEnabled], [None,None] ifwrite failed.

ODOTS_Serial_Interface.ReadFirmwareVersion()

Reads the firmware version of the attached ODOTS device.

Returns: bytes representaiton of the firmware version, false if serial timeout oc-

cured.

ODOTS_Serial_Interface.ReadHardwareVersion()

revision 1 working 29

USER GUIDE AND SPECIFICATION CHAPTER 5. HOST SOFTWARE DEVELOPERS GUIDE

Reads the hardware version of the attached ODOTS device.

Returns: bytes representaiton of the hardware version, false if serial timeout oc-

cured.

ODOTS_Serial_Interface.InterceptDownloadMessage(intercept)

Identifies when the ODOTS device has attempted to start a card data download,

calls ODOTS_Serial_Interface.InterpretDownloadandWritetoFile() if download de-

tected, and returns result, generally the file name that the downloaded data has

been stored in.

Parameter: byte read from the serial port.

Returns: False if no download detected, otherwise result of ODOTS_Serial_Inter-

face.InterpretDownloadandWritetoFile().

ODOTS_Serial_Interface.InterpretDownloadandWritetoFile()

Interprets download from ODOTS and writes result to a file for later use, dumps

the data and deletes the file if a card error is detected.

Returns: False if error detected, otherwise file name of file used to store card data.

ODOTS_Serial_Interface.CheckIfHex(TestChar)

Checks to see if the byte of ’TestChar’ could be used to represent a hexadecimal

digit.

Parameter: TestChar, byte to be tested (generally the one just read from the serial

port)

Returns: True if the character passed could be a hex character, False otherwise.

ODOTS_Serial_Interface.InitialiseCommand(CommandChar)

Handles initial exchangeof command characters over serial interfacewith attached

ODOTS device, provides timeout handling.

Parameter: CommandChar, single character representing initial transmission in

serial interface interaction.

Returns: True if exchange successful, False otherwise.

ODOTS_Serial_Interface.NeatenPortList(PortList)

Replaces certain PID and VID serial port values with more intelegible ones where

they match known devices, at the moment Arduino Leonardo and Uno devices.

Parameter: PortList, list of available ports.

Returns: PortList with certain entries replaced.

revision 1 working 30

USER GUIDE AND SPECIFICATION CHAPTER 5. HOST SOFTWARE DEVELOPERS GUIDE

ODOTS_Serial_Interface.PollInputForDownload()

Reads a byte from the serial port to try and detect card data downloads, allows

for this to happen when there is not command ongoing.

Returns: File Name of successful download, or False if no download was detected.

Main

Simple script that runs if Serial Utils is used as the application entry point, selects

first available serial port, reads device time, then enters loop where it can inter-

cept card data downloads.

5.1.4 TimeUtils.py

This module provides access to the system time to the serial interface.

Imports: [Python Official] [project specific]

Time

Declares:[Variables, Classes] [Functions]

ReturnCurrentTimeOnSecondEnd(), GetCurrentTime()

Functions:

ReturnCurrentTimeOnSecondEnd()

Does what is says, returns the current time (in GMT) on a second end, the timing

relative to a second is useful for maintaing sub-second precision with the ODOTS.

Returns: TimeStruct representing current time (according to system, so as accu-

rate as the last internet time update) in GMT.

GetCurrentTime()

Glue code around previous function, picks out elements of Time struct returned

by GetCurrentTimeOnSecondEnd() and interprets them so that they may be used

by serial interface. Returns: List representing current time (according to system,

so as accurate as the last internet time update) in GMT.

revision 1 working 31

USER GUIDE AND SPECIFICATION CHAPTER 6. INTERFACE SPECIFICATION

Chapter 6

Interface Specification

This chapter is intended to provide a central reference for the various interface that exist be-

tween asynchronous entities in the ODOTS from the embedded microcontroller to the socket

handler which manages communication with the competition management software. There

are of course many more interfaces in the ODOTS design, these are generally between soft-

ware being used by the sameentity and have far better inherent clear and coherent expression

in the source code. The interfaces here are not necessarily implemented between programs

utilising the same programming language or running on the same hardware.

6.1 Serial Communication Interface

The Serial communication interface describes communication between the embedded soft-

ware running on the microcontroller in an ODOTS unit with the software running on a host

computer. It should be provided by a UART over USB connection with a baudrate of 9600

symbols a second, though this can be confirmed by checking Config.h. Serial communications

are handled by both ends of the current implementation on a byte by byte basis with most

significant byte first and ASCII encoding of characters though not of numeric values. Final

specifications of the exact characteristics of the USB manager PID,VID and name will be pro-

vided in the hardware description.

Communication is generally host initiated, with a single capitalised character sent over the se-

rial link. The ODOTS unit will then generally reply with a lower case version of this command

character after which communication may proceed as dictated by the command issued. The

exception to this is card download data transfers which may be initiated by the ODOTS unit

when there is no ongoing interaction and which must be intercepted by the host software.

To prevent the microcontroller from locking up if serial communications are interrupted all

reception of serial characters is completed with a timeout, currently set to 1.2 seconds. If the

timeout is triggered the microcontroller drops the interaction and continues as normal with

its other functions.

Table 6.1 specifies each command and the data to be transferred. Interpretation of version

numbers is explained in section 1.2. A full description of the card data dump format can be

found in chapter 4.

revision 1 working 32

USER GUIDE AND SPECIFICATION CHAPTER 6. INTERFACE SPECIFICATION

Command Device ID, Request and Update

Host Sends: ODOTS Unit Sends:

->’A’ -

- ’a’<-

- DeviceID (2 bytes)<-

DeviceID, new or old -

Command Operation Mode Configure

Host Sends: ODOTS Unit Sends:

->’B’ -

- ’b’<-

- Operation Flags<- Bitwise:RFU |RFU

|RFU |RFU |RFU |RFU |ClearIfSet

|DownloadIfSet<-

Operation Flags, new or old -

Command Firmware Version Read

Host Sends: ODOTS Unit Sends:

->’C’ -

- ’c’<-

- VersionNumber (Literal)<-

Command Hardware Version Read

Host Sends: ODOTS Unit Sends:

->’D’ -

- ’d’<-

- VersionNumber (Literal)<-

Command Clock Update, Set

Host Sends: ODOTS Unit Sends:

->’E’ -

- ’e’<-

->Year -

->Month -

->Day (of month) -

->Hour (24hr) -

->Minute -

->Second -

Command Clock Read

Host Sends: ODOTS Unit Sends:

->’G’ -

- ’g’<-

- Year<-

- Month<-

- Day (of month)<-

- Hour (24hr)<-

- Minute<-

- Second<-

Command Device Battery Voltage Read

Host Sends: ODOTS Unit Sends:

revision 1 working 33

USER GUIDE AND SPECIFICATION CHAPTER 6. INTERFACE SPECIFICATION

->’H’ -

- ’h’<-

- Battery Voltage (integer byte 0-

255)<-

Interaction Dump Card Memory

Host Sends: ODOTS Unit Sends:

- ’Y’<-

- Card UID line<-

- Card SAK line<-

- Card Type line<-

- Card Memory Block (multiple)<-

- ’Z’<-

Table 6.1: Serial Interface Command Interactions

6.2 UI to Serial Manager Interprocess Interface

This interface allows the asynchronous operation of the User Interface and implementation

of the ODOTS configuration and management. The interface exists through two queue ob-

jects, currently using the multiprocessing.Queue. The interactions over this interface consist

of passed messages, stored in list objects (often with only a single element) in plain text that

are interpreted at either end. All interactions are initiated by the user interface process which

loads a message into the UI to Manager queue, this should invoke some form of action in the

manager process which may result in it loading messages into the Manager to UI queue. The

invokation messages and the actions they invoke have been listed below.

• ”ChangeStateToStandard”, manager requests serial interface to update device opera-

tion flags to result in standard ODOTS device operation (used for checkpoint units).

• ”ChangeStateToClear”, manager requests serial interface to update device operation

flags to result in clear ODOTS device operation, where card interactions result in the

card being reset.

• ”ChangeStateToDownload”, manager requests serial interface to update device opera-

tion flags to result in download ODOTS device operation, where card interactions result

in the cards memory being copied and sent to a host device.

• ”ChangeDeviceID”, manager triggers ODOTS device ID rewrite, with the new ID value

being provided in the next message provided.

• ”SyncDeviceTime”, manager requests serial interface to update device time (writing to

the RTC too) to match system time, currently configured to write GMT.

• ”DumpDeviceInfo”, manager requests serial interface to read device information from

attached ODOTS device. The UI expects a list returned in the Manager to UI queue

containing the relevant information.

revision 1 working 34

USER GUIDE AND SPECIFICATION CHAPTER 6. INTERFACE SPECIFICATION

• ”ListRequest”, manager requests serial interface to list available serial ports. The UI

expects a list to be returned in theManager toUI queue containing details of all available

ports.

• ”ConnectToPort”, manager requests serial interface to connect to a serial port indicated

by a subsequent recieved message containing the desired ports position in an earlier

’listrequest’ response. Manager respondswith a simple success/failuremessage placed

in the Manager to UI queue.

• ”ClosePort”, manager requests serial interface to close current serial port.

6.3 ”Send Punch.java”

This interface has been included despite all interactions over it being completed in a simple

function call. As mentioned elsewhere SendPunch.java is a modified version of an example

provided by Melin Software for use with their MEoS competition management software. The

program has been modified to take its input as input arguments, rather than requiring inter-

action.

SendPunch.java USAGE: java SendPunch A B C D E.

• A- switch C for entire card download, P for single punch download

• B- number of punches included (integer) (best to set to ’1’ for single punch registers)(IN-

CLUDES FINISH)

• C- Card ID (integer)

• D- PunchID String (string of integers, split with ”,”) (codes of controls punched)

• E- Punch Time string (string of time stamps HH:MM:SS split by ”,”) NOTE: Finish time

stamp added on last, does not need to have an accompanying punch id. It is best if the

start does have a punch ID

revision 1 working 35

USER GUIDE AND SPECIFICATION CHAPTER 7. HARDWARE

Chapter 7

Hardware

The hardware for the ODOTS proof of concept is far less complex than its software. In this

case the hardware refers to the physical ODOTS device that would be placed at a checkpoint,

the start, the finish or at a competitor information download station. For the proof of con-

cept all components used are through hole to make soldering straight forward, even for users

with little soldering experience. This means that the design is quite large for the number of

functions it performs.

A critical design choice for the proof of concept has been to use a premadedevelopment board

to fulfil RFID functionality. Therewere two reasons for this, first the RFID package chosen does

not have a simple-to-solder package option and many of the antenna matching components

must also be very small surface mount components. Second the design effort required for a

standard-compliant 13.34MHz antenna and transceiver is non-trivial. Using a pre-made board

sidesteps these difficulties and also has the benefit of also being unlikely to breach the band

plan at the RFID frequencies, so we can play nicely with other spectrum users. Note, even

with this assumed conformity the ODOTS will need to be tested for EMI at some point in the

future if some version of it is to be brought to market.

The hardware design can be easily viewed and edited using the KiCad design files available in

the ODOTS-Release repository using KiCad, which is free to use.

7.1 Element by Element

7.1.1 The Mounting Board

The mounting board provides an attachment point for the electronic components. It is rec-

ommended to use the provided PCB design, but the ODOTS hardware can be implemented

on a stipboard.

7.1.2 The RFID module

The RFID module supplies the RFID functionality to the system. It has a pinout containing pins

to establish a serial interface with the central microcontroller and inputs for the power and

ground rails. The board uses an MFRC522 chip and has integrated oscillator, matching and

antenna components. The antenna stands out on the module PCB as it is the ’empty’ square

at the opposite end from the pinout.

revision 1 working 36

USER GUIDE AND SPECIFICATION CHAPTER 7. HARDWARE

Figure 7.1: Clock schematic with busses and rails labelled.

7.1.3 The Battery

In the proof of concept the battery has been implemented with a cheap phone power bank.

It consists of two components, an 18650 Lithium Ion power cell and a power interface board.

The power cell provides over two amphours of capacity, the interface board allows the battery

to be charged from any standard USB charging port. The board also provides a regulated 5V

output that is used to provide power to the rest of the ODOTS unit.

7.1.4 The Microcontroller

TheMicrocontroller performs coordination and calculation tasks in the ODOTS. In the proof of

concept it is an AtMega 328p chip in a PDIP package, mounted on the main mounting board

via a socket. The purpose of the socket is to allow chips to be quickly changed in case of chip

failure and to protect them from the potential damage while being soldered. The Microcon-

troller requires a single external device to operate, a 16MHz crystal used to generate the clock

signal for its digital systems. The two pins of the crystal are connected to ground through a

single 22pf ceramic capacitor each.

The microcontroller is powered from the 5V rail.

7.1.5 The Clock

The clock is an external real time clock chip designed to keep time with a greater accuracy

than the oscillator of the microcontroller. It is a DS1337 chip mounted via a socket for the

same reasons as the microcontroller. Figure 7.1 shows an extract from the design schematic

containing the clock. The clock requires a single crystal to provide a clock signal to the internal

circuitry and pull up resistors are required on the interrupt and data bus pins. Interrupt Pin A

is used to send alarm signals to the microcontroller. The data bus uses the I2C bus standard.

The clock is powered from the 5V rail, future designs will include a backup power supply for

the clock to allow it to keep time even when the main battery is unplugged.

7.1.6 The Buzzer

The buzzer is used to send audio prompts to the user notifying them of certain functionality

fulfilments. The buzzer is a piezoelectric device using quartz crystals to move a diaphragm

revision 1 working 37

USER GUIDE AND SPECIFICATION CHAPTER 7. HARDWARE

Figure 7.2: Buzzer schematic with busses and rails labelled.

and create noise. The distortion of the crystals, and therefore the displacement of the di-

aphragm, is directly proportional to the electric field through them. A mosfet is used to max-

imise the difference in field strengths that can be exerted across the buzzer (the power rail to

shorted to ground). A P-channel mosfet has been used as it gets used elsewhere in the design.

The 1k Ohm resistor is used to provide inductive current a safe discharge path during mosfet

switching. Figure 7.2 shows an extract from the design schematic containing the buzzer and

associated components.

7.1.7 Batter Voltage Reader

The battery voltage reader is designed to allow the Microcontroller to read the raw output

voltage from the battery cell. The cell is expected to be a lithium ion 18650, with a maximum

output voltage of just over 4.3V. Figure 7.3 shows an extract from the design schematic con-

taining the battery voltage reader. The mosfet is used to prevent current flowing when the

voltage is not being read to save power. The voltage is read from the centre of a voltage di-

vider that is used to turn themaximum expected voltage into something that the internal ADC

reference of the microcontroller can be compared with (1V).

7.1.8 Other Peripherals

The other peripheral (to the microcontroller) components used are a pair of LEDs and a Reset

button. Figure 7.4 shows an extract from the design schematic containing the peripheral de-

vices.

The LEDs are driven directly from the microcontroller digital outputs. In the design they are

red LEDs and have appropriately sized current limiting resistors.

The Reset button provides reset functionality for the microcontroller and RFID module. This

signal is active high so a pull up resistor is used to maintain 5v for this signal when the button

is not pressed.

revision 1 working 38

USER GUIDE AND SPECIFICATION CHAPTER 7. HARDWARE

Figure 7.3: Battery Voltage Reader schematic with busses and rails labelled.

Figure 7.4: Peripheral schematic with busses and rails labelled.

7.1.9 Power Regulators

With many components requiring stable power supplies, while also having bursts of high

power usage the power regulator in the design has been under loaded, and reservoir/sta-

bilisation capacitors have been provided for both power rails in the design (5V and 3.3V). The

3.3V rail has its power provided from a L78L33ABZ 3.3V linear voltage regulator. The 5V rail

does not require a voltage regulator (this is provided by the battery and battery controller).

Tests of system functionality with a with a 5V voltage regulator anyway, for power rail stability

and protection from over voltage, showed that it drew too much power and dropped the sys-

tem power efficiency significantly. The capacitors are intended to provide small reservoirs of

charge for transient spikes in power demand while keeping the power supply voltage stable

and providing a short to ground for RF leakage from the RFID module.

7.2 USB Connection

The microcontroller used cannot natively interface with a USB port and requires a bridge of

some sort to establish a serial communication link with a PC. While it is plugged into the UNO

development board the board provides this functionality. To link a Veroboard or PCB unit to

a computer there is a dedicated set of header pins on the ODOTS unit board which can be

wired to a USB bridge. In the case of an ODOTS a spare UNO board with its microcontroller

dismounted (likely the one used to flash the microcontrollers) can be used as a bridge with

the TX, RX 5V and ground pins marked on the board.

revision 1 working 39

USER GUIDE AND SPECIFICATION CHAPTER 8. KNOWN BUGS

Chapter 8

Known Bugs

This chapter lists the known bugs, useful to watch out for.

• There appears to be an issue with the way the device calculates the month from the

RTC, adding a random 10 or so to the correct value. Given this bug has no immediate

impact on the system behaviour it has been left for the time being.

• The breadboard prototype exhibits a number of issues after sustained operation, for

example the Alarm signal no longer triggering an interrupt. These issues have not man-

ifested in the soldered designs.

revision 1 working 40

USER GUIDE AND SPECIFICATION CHAPTER 9. OUTSTANDING DEVELOPMENT TASKS

Chapter 9

Outstanding Development Tasks

This chapter lists outstanding tasks, vital for the next step in the development of the ODOTS.

9.1 Software

• Rewrite firmware for interrupt driven behaviour, allowing better power efficiency.

• Find other competition management program interfaces, break dependence on MEoS.

9.2 Hardware

• Move PMOS circuits back to NMOS, while PMOS has worked for the proof of concept it

is far more expensive than NMOS and is actually based on a concept that was not used.

(It also improves the battery voltage reader performance.)

• Move to SMD components for reduced cost and footprint.

– Investigate component changes, ideally like for like swaps can be used.

– Design new PCB.

– Update documentation and firmware to power with new design.

• Change Microcontroller to something more power efficient.

revision 1 working 41

USER GUIDE AND SPECIFICATION

Part II

Build Guide

revision 1 working 42

USER GUIDE AND SPECIFICATION CHAPTER 10. BUILD GUIDE INTRODUCTION

Chapter 10

Build Guide Introduction

This part is intended to guide the manufacture of an ODOTS. All designs can be found in the

ODOTS-releaseGitHub repository (https://github.com/ljones278/ODOTS-Release) sub
folder Hardware contains the hardware designs, the sub folder Software contains both the

embedded firmware and ODOTS interface software the sub folder Admin contains other items

such as the bill of materials. The following chapters of this part will cover the methods of

construction and installation of an ODOTS.

• Chapter 11 outlines the various components required, and some possible sources of

components.

• Chapter 12 outlines some of the construction methods for building the hardware of an

ODOTS unit.

revision 1 working 43

https://github.com/ljones278/ODOTS-Release

USER GUIDE AND SPECIFICATION CHAPTER 11. ACQUIRING COMPONENTS

Chapter 11

Acquiring Components

During the development of the proof of concept hardwarewas obtained from reputable sources

who could deliver quickly, or from sources that could provide replacements quickly. Being

slightly more adventurous with component aquisition will significantly cut costs but may in-

cur increased lead times and potential reliability issues. These acquisition decisions are left

to the discretion of the developer. Table 11.1 lists the components required to build a single

ODOTS unit, along with the price and source of the component during development. The raw

total cost per unit (during development) was £21.18, though this does not include the wasted

costs associated with minimum purchase quantities.

Component Description Quantity

per unit

Devel-

opment

Source

Stock ID Cost

Microcon-

troller

AtMega328p 1 RS 131027 £1.54

Clock DS1337 1 RS 7860749 £2.12

MOSFET

(P-Channel)

FQD5P20 2 RS 8628782 £0.18

3.3v regulator L78L33ABZ 1 RS 6869552 £0.25

Microcon-

troller Socket

28 DIP socket 1 RS 7022726 £1.27

Clock Socket 8 DIP socket 1 RS 7020654 £0.39

Reset Button Basic Push Button 1 RS 1359467 £0.10

RTC Crystal Crystal 32.768KHz

3x8mm

1 RS 5476985 £0.28

AtMega Crys-

tal

16MHz Quartz Crystal 1 RS 1441039 £0.21

Microcon-

troller Oscilla-

tor Capacitor

22pf Cap 2 RS 6994872 £0.13

PowerRail Ca-

pacitors

10uF Electrolytic

Capacitor

4 RS 7111425 £0.03

LED Red 5mm LED 2 RS 1278393 £0.05

Buzzer Buzzer

Piezo,3V,60dB,Ra-

dial

1 RS 1347307 £0.29

revision 1 working 44

USER GUIDE AND SPECIFICATION CHAPTER 11. ACQUIRING COMPONENTS

Component Description Quantity

per unit

Devel-

opment

Source

Stock ID Cost

(single)

LED Resistor 200 Ohm Resistor 2 RS 1650814 £0.03

2k1 Resistor 2k1 Ohm Resistor 6 RS 6833473 £0.01

10K resistor 10k Ohm Resistor 2 RS 1372750 £0.01

Buzzer Resis-

tor

1k Ohm Resistor 1 RS 1650224 £0.05

Battery Phone power bank 1 Pound-

land

n/a £2

Enclosure TBA 1 ? ? £4.00

PCB Gerbers Provided on-

line

1 JLCPCB (or equiva-

lent)

<£1

RFID Board MRFC522 dev board 1 Amazon https:
//www.
amazon.
co.
uk/dp/
B074S9FZC5/
ref=pe_
3187911_
189395841_
TE_dp_1

£3.70

Solder various uses ? ? ? £1

Wire various uses ? ? ? £1

Additionally you may find it helpful to get an Arduino Uno Development board (with PDIP

chip, the big one) as this can be used to burn in bootloaders, quickly upload programs, act as

a serial bridge as well as providing an AtMega chip with a pre-burned bootloader.

11.1 Sourcing the PCB

One of the most noticeable elements of any electronics project is the mounting. Generally

for more reliable projects this will consist of a board (or boards) and generally this will be a

Printed Circuit Board or PCB. The ODOTS proof of concept design has two options, either a

PCB or a design made for Strip (or Vero) Board. Of the two the PCB will offer easier construc-

tion less prone to errors, will be smaller and look better. Strip board required more soldering

(andmore chance to create an accidental short and is prone tomistakes (wires going in wrong

holes, misplacing components e.c.t.). Having said this PCBs, if sourced from China for maxi-

mum cost saving, can have large lead times which may not be ideal.

PCBs can be readily sourced from many Chinese manufacturing plants, during the proof of

concept production JLCPCB was used. There are manufacturers in Europe too, however you

often end up paying for an increased quality of workmanship that is not necessary for the

ODOTS. The PCB CAM files (called Gerbers) will be available on the ODOTS-Release GitHub

repository these are required when you put in a PCB order. The PCBs are 2 layer and ideally

revision 1 working 45

https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1
https://www.amazon.co.uk/dp/B074S9FZC5/ref=pe_3187911_189395841_TE_dp_1

USER GUIDE AND SPECIFICATION CHAPTER 11. ACQUIRING COMPONENTS

you should select the RoHS compliant options for solder and solder masks.

11.2 Sourcing the RFID Board

TheMFRC522 has been blessed with the attention of several mass producers so development

boards with integrated antennas and matching components. This is brilliant as these can be

tricky tomake properly, and then entire board can be found for less that £5 frommany sellers.

The seller used in the Proof of Concept production was simply the first found on Amazon for

a reasonable price and with a distribution centre in Europe. Unfortunatly there have been

reports of fraudulent sellers who sell either sub-standard chips or dummy packages (with the

box but no silicon inside), so some discretion when bargain hunting is advised.

revision 1 working 46

USER GUIDE AND SPECIFICATION CHAPTER 12. BUILDING HARDWARE

Chapter 12

Building Hardware

Figure 12.1: Finished board with RFID unit wired in (indicating that the microcontroller has

been programmed.)

12.1 Soldering Components

All components in the proof of concept design are through hole, their pins generally consist of

long wires that will pass the whole way through the mounting board. Generally you will need

to solder the component to the board on the opposite side to the component. Some points

on soldering to those who may be inexperienced, you will be able to find far better tutorials

on the web if needed:

Step by step overview of soldering to a PCB:

1. Turn the soldering iron on, and wait for it to get to temperature, you can test this by

trying to melt solder against the tip. Once the solder start melting give the iron another

revision 1 working 47

USER GUIDE AND SPECIFICATION CHAPTER 12. BUILDING HARDWARE

bit then begin soldering.

2. Place component on PCB, ideally bending protruding legs on reverse side to hold the

component on the board.

3. Place the PCB in a spot where it won’t move, reverse side up.

4. Press the soldering iron tip onto join between component leg and the PCB pad.

5. Feed in solder directly on to join. It may take a while for the joint to get up to tempera-

ture. If it is taking too long wetting the iron with solder can help heat conduction.

6. Once the solder melts onto the joint remove the iron and the solder wire and let the

joint cool.

7. You may find it necessary to remove solder from the iron, a wet sponge works well as

a wiping implement, but generally held static on a work surface for the iron to wipe

against, to avoid accidental burning.

8. You may find it necessary to remove solder from the join. A solder sucker can be used

for this, or you can use the iron itself to draw solder away, this works well if it has just

been cleaned as the surface tension of the liquid solder will draw it up onto the iron.

9. Trip excess leg protruding from the join using a pair of snippers.

Some other tips on soldering:

• Soldering is about connecting two components by melting solder so that it joins them

then letting the solder refreeze.

• Getting both surfaces to be joined hot is key to this, solder has a hard time flowing

onto cold surfaces and will tend to ball up instead. Flux can help flow, but should be

unnecessary for the large, stable, joints in this project.

• Having said that, getting things too hot can damage them, the PCB contacts will come

off if you melt the Adhesive holding them to the board, this will make soldering the

connection supposed to be made to them impossible.

• Hot things are hot after heating, especially the soldering iron. Burns are a hazard, be

aware that the soldering iron tip stays how for quite a while after it has been turned off.

• Wall plug irons can be problematic with little regulation and poor power draw they can

take a while to heat up, andwill change temperature quickly during use. Basic soldering

stations with inbuilt transformers and iron holders can be found for less than £20, use

this project as an excuse to get one if you do not already.

Component positions will be marked on the PCB, including values for resistors and chip num-

bers for the integrated circuits. If you are using strip board these will instead be indicated by

the design, you may find it helpful to mark up the positions of components on the strip board

yourself. The suggested soldering order of components is:

1. RFID board connecting wires (and intra board wires, if using stripboard).

2. The two DIP sockets (ensuring that their notches are facing the right way!).

revision 1 working 48

USER GUIDE AND SPECIFICATION CHAPTER 12. BUILDING HARDWARE

3. Resistors. Pliers can be used to pull their legs all the way through the board to ensure

the resistor is held tightly.

4. The Serial Header Pins.

5. Ceramic capacitors and oscillator crystals. The RTC crystal should be left with a bit of

leg above the board so that it can be bent over and lain against the board surface.

6. P-Mosfets, ensure that the low threshold FET is used for the battery indicator. If using

the first PCB design you will now need to solder in an extra wire connecting the source

pin of the buzzer MOSFET to a 5V trace. The most accessible one is the 5v pin of the

serial header nearby, soldering to the reverse end of this pin prevents this fix from in-

terfering with normal operation.

7. The buzzer and switch. Check to ensure that you solder the shorted sides long ways -

the pins closes to the microcontroller should not have a connection to the pins further

away unless the button is pressed. (You can check with a continuity meter)

8. The 3.3V Voltage regulator, this is actually marked incorrectly on the board, the flat side

should face away from the microcontroller.

9. The polarised capacitors, these should be soldered with their negative pin (marked on

the capacitor package) in the white side of their footprint.

10. The LEDs, soldered so that they are on the reverse side of the board. These are also

polarised components, when both placed through the holes their longer legs should be

in the middle. Think AFL goal posts rather than Black Gate of Mordor.

After completing soldering you can inset the two DIP chips, ensuring that their top (marked)

ends point towards the notch in the DIP sockets.

12.1.1 Using Stripboard

If you are using strip board component positions will be indicated by the design, you may find

it helpful to mark up the positions of components on the strip board yourself. The design can

be found on the ODOTS-Release github repository Using strip board also requires you to break

the traces on the reverse side at certain points, this can be done by hand with a 4mm drill bit.

In general you will need to break the trace at the end of each connection. Figure 12.2 shows

a completed strip board with the extra connection wires all clearly visible, the underside of

the board is even more chaotic. Figure 12.3 shows the two implementations side by side, and

demonstrates the larger size of the strip board unit, the PCB has already been attached to its

RFID module and is only slightly larger.

Due to the marginal cost benefit and large manufacturing complexity penalty it is not recom-

mended to use strip board, it is definitely worth the delay of shipping from China!.

revision 1 working 49

USER GUIDE AND SPECIFICATION CHAPTER 12. BUILDING HARDWARE

Figure 12.2: Completed Stipboard ODOTS unit board.

Figure 12.3: Size comparison of the two implementations, The PCB implementation fits all

functionality on the green board (the blue board is the RFID module).

revision 1 working 50

USER GUIDE AND SPECIFICATION CHAPTER 12. BUILDING HARDWARE

12.2 Wiring it together

With the main board complete connections to the rest of the ODOTS hardware is now re-

quired. It is recommended that you embed the firmware before completing this step.

The rfid module wires can be soldered into their marching mounting holes (the wire from

’gnd’ should be soldered to ’gnd’). IN this case ’VCC’ is equivalent to ’3.3V’ and on some RFID

boards the slave select pin (’SS’) is marked ’SDA’.

12.2.1 The Battery

If you are using a cheap power bank battery then theUSB cable proided can be used to provide

a simple interface to connect the battery to the board.

1. Cut the USB cable about halfway along and discard the microUSB end.

2. Expose lengths of each of the internal wires (you may need to strip the wires back a

little), there should be two wires. Determine which of the wires is the ground wire, a

good trick is to open up one of the ower banks, plug the USB in and check for continuity

between the metal socket sheath and the output wires.

3. Solder the exposed wire lengths to the board, trying to ensure tht there is little to no

exposed wire showing above the board.

The USB can now be used to quickly plug and unplug the battery.

12.3 Using an Enclosure

An enclosure can be used to protect the electronics during use, and improve the look of the

ODOTS. The 1591XXSSFLBK enclosure from Hammond Engineering was used for the proof of

concept, but has not been specified in the component list as the choice of enclosure is likely

to be updated in the near future. For the 1591XXSSFLBK all electronics should fit (all in one

plane) on the PCB mountings in the lid. You will need to drill holed to poke the LEDs through

the enclosure and make them visible to competitors.

Attach components to the inside of the enclosure with hotglue and mark the outside to in-

dicate where the RFID antenna is (for competitors) and the box function and ID number (for

yourself and competitors). Youmay want to use some kind of sealant to close the box, though

in the proof of concept we simply ensured the box was shut securely and added some hot

glue to the LEDs protruding from the box to add some kind of water resistance.

revision 1 working 51

USER GUIDE AND SPECIFICATION CHAPTER 13. COMPILING AND EMBEDDING FIRMWARE

Chapter 13

Compiling and embedding firmware

The proof of concept design has been built with this particular build step in mind. The em-

bedded firmware cn be compiled from the available source code using the Arduino compiler,

accessible through the Arduino IDE (available at www.Arduino.com). After downloading

the .zip file from the ODOTS-release Github repository (https://github.com/ljones278/
ODOTS-Release) the ODOTS library may be imported into the Arduino IDE by using the ’ add

.ZIP library’ tool (accessible from the top menu ’edit’ then manage libraries).

The current ODOTS firmware program (or ’Sketch’ in Arduino terms) is stored as an example

’ODOTS-Generic’. THis can be quickly accessed through the IDE by using the ’file’ drop down

menu, ’examples’ scrolling to the bottomof themenu that appears, ’ODOTS’, ’ODOTS-Generic’.

You may need to reboot arduino after importing the library for the IDE to show the example

sketch. To verify that the code is still valid, use the verify tool, (ctrl-v or the ’tick’ button at the

top of the program). If this throws errors you can either enter the rabbit hole of debugging (it

goes a looong way) or take the error message and start an error report on the Github reposi-

tory.

You nowhave aworking set of code sitting on your computer, but Ideally wewant it running on

theMicrocontroller. If you are using the proof of concept design and have used the suggested

purchase instructions above you should have an Arduino UNO board hanging about.

1. Connect the spare Arduino UNO development board (with chip still mounted)to a com-

puter and upload the Arduino ISP example sketch to it.

2. Connect the spare Arduino UNO development board’s SPI port to the SPI port of the

ODOTS unit microcontroller (accessible as the wires used to talk to the RFID board.).

The reset pin on theMicrocontroller should be connected to pin 10 of the development

board. The slave select pin does not need to be used.

3. Use the Burn bootloader tool (in the tools drop menu of the Arduino IDE), ensuring

that the correct board is selected (arduino Uno/Genuino) and the correct ISP (Arduino

as ISP). This will now burn in the bootloader to the Unit Microcontroller.

4. Dismount the Arduino from the development board socket (it may be easiest to burn all

units with their bootloaders before doing this, repeated socket removals can damage

the chip.).

revision 1 working 52

www.Arduino.com
https://github.com/ljones278/ODOTS-Release
https://github.com/ljones278/ODOTS-Release

USER GUIDE AND SPECIFICATION CHAPTER 13. COMPILING AND EMBEDDING FIRMWARE

5. Disconnect the SPI wires from the ODOTS unit and instead attach the UART serial wires.

The reset pin is still required, but can now be connected to the standard Reset port of

the development board.

6. Use the upload tool to upload the code onto the microcontroller (ctrl-U or with the

’upload’ button at the top of the IDE).

The microcontroller should now be programmed, final configuration can be managed with

the serial interface, including its ID (the number written to competitor cards to identify the

unit), function and time. You can check that the program has been successfully embedded by

try to talk to the unit over the serial port, sending a ’B’ character should return ”b[UNPRINT-

ABLE]»timeout”, though the timeout takes about two seconds to trigger.

revision 1 working 53

USER GUIDE AND SPECIFICATION CHAPTER 14. INSTALLING THE UI

Chapter 14

Installing the UI

The user interface to the ODOTS software is handled with a single program: ODOTSInterface.

14.1 As A User

A frozen version of the ODOTS Interface application exists in the ODOTS-Release repository

(https://github.com/ljones278/ODOTS-Release/tree/master/Software/ODOTSInterface/
ODOTSInterface). Download theODOTSInterface Folder into your favourite application folder
(or your desktop, the program is not picky). The primary application is ODOTSInterface.exe,

SendPunch.jar is used to interact with MEoS while the ’Download Records Folder’ is used to

store Card download information. Ideally it should be emptied every now and then once the

downloads are no longer relevant.

On start up the Program performs a rather crude check to see if a JRE is installed on the host

system, and will prompt the user if this is not passed. The JRE is only required to run the

interface with MEoS, ODOTS unit configuration can be done without it.The program will lock

up as soon as a card download is attempted if the JRE is not installed, this will be fixed in a

future update.

14.2 As a Developer

The source scripts for the ODOTS UI and serial manager are stored (in their current release

form) on theODOTS-InterfaceGithub repository (https://github.com/ljones278/ODOTS-Interface
).

Most of the UI has been written for Python 3.7, which can be obtained from the Python foun-

dation (). This site has installers that should manage the entire installation and setup for you.

The serial interface uses the PySerial module, this can be quickly installed using the pip utility.

Simply launch an instance of the Command line (or a bash shell) and type: pip install pyserial.

If you are running a Mac (or have already dabbled in the dark arts) you may have a Python 2

version lurking somewhere in your system. In this case using python3 -m pip install pyserial

ensures that the PySerial module gets installed for the correct Python version.

revision 1 working 54

https://github.com/ljones278/ODOTS-Release/tree/master/Software/ODOTSInterface/ODOTSInterface
https://github.com/ljones278/ODOTS-Release/tree/master/Software/ODOTSInterface/ODOTSInterface
https://github.com/ljones278/ODOTS-Interface

USER GUIDE AND SPECIFICATION CHAPTER 14. INSTALLING THE UI

The final installation required is a Java environment for the program that sends information

from the ODOTS interface to MEoS. This requires a trip to Oracle (ideally this will be removed

as a required step in the future, their site if infuriating - apologies.) either the JRE or JDKwill do.

All dependencies should now be installed. Running the UI should be as simple as double click-

ing ’ODOTSInterface.py’ (if you do not have a Python 2 installation) or navigating to it through

your command line/shell and invoking it with ’python3 ODOTSInterface.py’. Instructions for

using the UI can be found in the User guide.

Other Tips

Suggested Phrases to sound experienced while building:

• The Bus Interface has breached thermal limits! (RFID chip has caught fire because I

touched it with the soldering iron)

• Compilation of Embedded Routines performing nominally (The code for the arduino

compiled)

• Time Synchronised Reference enabled (The RTC chip turned on)

• Environmental Contamination has led to a catastrophic increase in undesired conduc-

tivity! (Someone spilt tea over the electronics and shorted out some of the components)

• An Unexpected Reversal of Power Supply polarity has triggered an exothermic event! (I

plugged in the battery the wrong way and my chips are now emitting blue smoke)

• Accidental power omission has resulted in null operation! (I forgot to plug in the battery

so it did not work.)

• A restricted supply of conductive material is preventing correct electron flow across

component interfaces! (I ran out of wire (or solder))

• Unsecured electron conduits have resulted in extreme packet loss events! (I forgot to

plug in the serial wires properly so serial communications are not working...)

revision 1 working 55

USER GUIDE AND SPECIFICATION

Part III

User Guide

revision 1 working 56

USER GUIDE AND SPECIFICATION CHAPTER 15. USER GUIDE INTRODUCTION

Chapter 15

User guide introduction

This document was written for the Proof of concept version of the ODOTS hardware and soft-

ware. Therefore the user experience may be slightly less straightforward than expected. If

you run into difficulties part II may prove useful. Having said that once the ODOTS is up and

running it has been designed to be as painless to use as possible, bar a few quirks that are,

again, a product of the fact that the current iteration of the design is just a proof of concept.

This section shall assume that the user is in possession of a fully constructed and programmed

(firmware flashed) ODOTS set of Units and Competitor cards.

revision 1 working 57

USER GUIDE AND SPECIFICATION CHAPTER 16. GENERAL GUIDANCE

Chapter 16

General Guidance

16.1 Installing Software

The ODOTS software currently requires MeOS, developed by Melin Software, as a competi-

tion management tool, registering runners and working out results. This piece of software is

available for download from here: http://www.melin.nu/meos/sv/download.php
A frozen version of the ODOTS Interface application exists in the ODOTS-Release repository

(https://github.com/ljones278/ODOTS-Release/tree/master/Software/ODOTSInterface/
ODOTSInterface). Download theODOTSInterface Folder into your favourite application folder
(or your desktop, the program is not picky). The primary application is ODOTSInterface.exe,

SendPunch.jar is used to interact with MEoS while the ’Download Records Folder’ is used to

store Card download information. Ideally it should be emptied every now and then once the

downloads are no longer relevant.

On start up the Program performs a rather crude check to see if a JRE is installed on the host

system, and will prompt the user if this is not passed. The JRE is only required to run the

interface with MEoS, ODOTS unit configuration can be done without it.

16.2 Configuring ODOTS Units

ODOTS unit configuration is managed by the ODOTSInterface utility. This program allows a

user to manually set certain ODOTS unit parameters while also acting as a download bridge

between the ODOTS unit and the competition management software. Unit parameters that

can be set from the ODOTSInterface utility include:

• Device Time (sync to system time, the time according to the computer, in GMT).

• Device Number (control code in common orienteering terminology).

• Device mode, clear (to reset cards on punch), download (to dump card information to

serial on punch), or standard (your normal checkpoint unit).

All of these parameters can also be read from the device as well as the device firmware ver-

sion and hardware version numbers (useful if you are gettingweird errors). Things that cannot

currently be read from the device include the battery voltage. The utility includes a built in

help page that will have a list of implemented commands, their function and invocation.

revision 1 working 58

http://www.melin.nu/meos/sv/download.php
https://github.com/ljones278/ODOTS-Release/tree/master/Software/ODOTSInterface/ODOTSInterface
https://github.com/ljones278/ODOTS-Release/tree/master/Software/ODOTSInterface/ODOTSInterface

USER GUIDE AND SPECIFICATION CHAPTER 16. GENERAL GUIDANCE

Figure 16.1: Serial Pinout header from hardware version 0.

To configure an ODOTS Unit:

1. Launch the ODOTS Configuration utility.

2. Connect the ODOTS unit to your chosen serial to USB converter.

• This requires plugging in the RX and TX wires as well as the GND and 5V wires

(to ensure that the voltage levels line up) from the ODOTS serial header into the

converter. If you are using an empty Arduino UNO board as the bridge these pins

will be labelled on the board. The pinout of the ODOTS serial header has been

included as figure 16.1.

• DO NOT unplug the battery, in this case it is buffered from the serial line by an

intervening converter, unplugging the batterywill reset the clockwhen you unplug

the serial line and the device loses power!

• Later version of the ODOTS will have built in USB converters, watch for updates!

3. Plug the USB end of the converted into your chosen host computer.

4. In the configuration Utility list available ports, (”l” or ”LISTPORTS”)

5. Find the ODOTS device, which should come up as ”Arduino UNO”.

6. Connect to the device by commanding connect and then inputting the list index of the

ODOTS device when asked.

7. The device should now be connected to the software, if it is being used as a download

unit its card download dumps will be forwarded on to MEoS automatically.

8. The device can now be configured by using the command listed by the utility help page.

It is suggested to read the card info after making the required changes to ensure that

they worked.

9. Before disconnecting the device it is good form to close the serial port, achieved by

using the close port command. This is not essential but will allow you to attach a new

device and connect to it without rebooting the program. Not disconnecting the serial

port will not damage the ODOTS device.

16.3 Downloading Card Data

The ODOTS interface software has been made so that the ODOTS downloaded data looks like

the data from other timing systems to the competition management software. This makes

downloading card data particularly straightforward.

revision 1 working 59

USER GUIDE AND SPECIFICATION CHAPTER 16. GENERAL GUIDANCE

1. Start the ODOTS configuration software and connect to a device as detailed above. The

ODOTS side is now set up!

2. Start MEoS and select your competition if you have not done so already (MEoS instruc-

tions can be found at http://www.melin.nu/meos/en/show.php)

3. In MEoS, in the ’Sport Ident’ tab change the connection from ”COM Port k” to ”TCP”

(there is a drop down menu).

4. Press the ’Activate button’, this will bring up extra boxes that will allow you tyo change

the TCP port. Don’t, the ODOTS software looks for port 10000.

5. Press ’Start’ (one of the new boxes). This will start MEoS listening for incoming connec-

tions on that port, which is how the ODOTS software talks to MEoS.

6. Card downloads will now be automatically passed to MEoS for it to handle. It is worth

double checking that the download was successful before letting competitors run away,

this can take a while, especially if they are moving their card around during the down-

load!

16.4 What to expect when running with an ODOTS card

Running with an ODOTS card will be very similar to running with any other orienteering elec-

tronic timing system. Competitors should clear their card before starting. Starts can be done

either as a ’punching start’ with a dedicated start unit, or as a ’timed start’ with competitors

expected to start at a set time. At each checkpoint, competitors can register their presence by

placing their card in the RF field of the ODOTS unit. Successful punches elicit a two tone beep

and flashing lights, unsuccessful punches result in a single tone double beep and no flashing

lights.

After completing their course competitors should download their card data at a download

unit. The download proceduremay take awhile, particularly forMIFARE 4k cards. Be prepared

for a couple of error buzzes before the download is successful. Always double check with the

competition software that the download was indeed successful.

16.5 Maintenance and Troubleshooting

This section will be updated as the system gets used to include common issues and mainte-

nance tasks.

revision 1 working 60

http://www.melin.nu/meos/en/show.php

USER GUIDE AND SPECIFICATION CHAPTER 17. GUIDES FOR USING THE ODOTS

Chapter 17

Guides for Using the ODOTS

17.1 Preparing for an Event

1. Charge all unit batteries to full capacity (this may take a while if you have a lot of units).

2. Plug the batteries in to the Units, the units should last for about two days after the

battery has been added before running out of power.

3. Configure all units with desired functionality and ID numbers, the device time should

also by synced with the computer, the Configuration software uses GMT to send to the

Unit.

4. Seal all units in their enclosures (apart from download units).

5. Store download units with their accompanying serial bridgeswhichwill be used to allow

them to talk to a computer running the competition management software.

What units go where?

Generally any course will require (in order of use): A reset Unit, a start Unit (a standard con-

trol), any number of standard controls (one per checkpoint), a finish unit (a standard control)

and a data download unit.

17.2 Running an Event

During an event (after all controls have beenplaced), the only bit toworry about (as theODOTS

manager) is the data download units. These will need to be plugged into a computer running

the ODOTS Interface UI and competition management software using a serial bridge. The se-

rial bridge can be the spare Arduino Uno board. Connect to the unit in the UI (you can attempt

to read unit data with the unit to ensure that the connection is working). If the connection

appears to be broken you will need to reboot the UI and attempt to connect again.

revision 1 working 61

	Introduction
	Version History

	I Developer Guide
	Development of the ODOTS
	Compatibility and Version Identification
	Version History
	Hardware
	Software
	Documentation

	Performance and Specification
	Firmware Specification and Guide
	The Software and You, an overview for newcomers
	File by File guide
	ODOTS.cpp, ODOTS.h
	ODOTSRTC.cpp, ODOTSRTC.h
	ODOTSSerialUtils.cpp, ODOTSSerialUtils.h
	BuzzerUtils.cpp, BuzzerUtils.h
	Config.cpp, Config.h
	DS1337.cpp, DS1337.h
	MFRC522.cpp, MFRC522.h,deprecated.h, require_cpp11.h
	LowPower.cpp, LowPoer.h

	RFID Card memory management
	Card Memory Organisation and Usage
	.ODOTSRAW Records

	Host Software Developers Guide
	File by File Guide
	ODOTSInterface.py
	ODOTSFileParser.py
	SerialUtils.py
	TimeUtils.py

	Interface Specification
	Serial Communication Interface
	UI to Serial Manager Interprocess Interface
	"Send Punch.java"

	Hardware
	Element by Element
	The Mounting Board
	The RFID module
	The Battery
	The Microcontroller
	The Clock
	The Buzzer
	Batter Voltage Reader
	Other Peripherals
	Power Regulators

	USB Connection

	Known Bugs
	Outstanding Development Tasks
	Software
	Hardware

	II Build Guide
	Build Guide Introduction
	Acquiring Components
	Sourcing the PCB
	Sourcing the RFID Board

	Building Hardware
	Soldering Components
	Using Stripboard

	Wiring it together
	The Battery

	Using an Enclosure

	Compiling and embedding firmware
	Installing the UI
	As A User
	As a Developer

	III User Guide
	User guide introduction
	General Guidance
	Installing Software
	Configuring ODOTS Units
	Downloading Card Data
	What to expect when running with an ODOTS card
	Maintenance and Troubleshooting

	Guides for Using the ODOTS
	Preparing for an Event
	Running an Event

