{ "metadata": { "name": "", "signature": "sha256:4c27018bf562d369ed9721bd084d4cd037d5c446676765fca4c8b625e0219f9a" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "print \\\n", "\"\"\"\n", "Author: log0 \n", "Date: 2014/11/30\n", "Website: http://www.chioka.in\n", "\n", "Script to validate visually the stability property of L1-norm and L2-norm loss function.\n", "\n", "Experiment Design:\n", "- Generate N basic points at with varying y = b * x + c + random_number.\n", "- Generate M datasets with an outlier point clearly outside this range.\n", "- Plot M graphs to see how different outlier points will cause the different model to behave.\n", "\"\"\"" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Author: log0 \n", "Date: 2014/11/30\n", "Website: http://www.chioka.in\n", "\n", "Script to validate visually the stability property of L1-norm and L2-norm loss function.\n", "\n", "Experiment Design:\n", "- Generate N basic points at with varying y = b * x + c + random_number.\n", "- Generate M datasets with an outlier point clearly outside this range.\n", "- Plot M graphs to see how different outlier points will cause the different model to behave.\n", "\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import random\n", "from sklearn.linear_model import *\n", "from sklearn.ensemble import *" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "# Set inline plots in IPython Notebooks\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = (18, 12) # Set default figure size of plots" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "def linear_point(x, b, c, random_scale = 1):\n", " return b * x + c + random.random() * random_scale * random.choice([-1, 1])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "# Fixed y, because we want to see how an outlier point affects the model.\n", "def outlier_point(x, b, c, random_scale = 1):\n", " return 10" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "# Specifies to generate 3 x 3 subplots.\n", "n_plots_x = 3\n", "n_plots_y = 3\n", "\n", "# Generates data points from [0,n) with x_step_size = 3.\n", "n = 10\n", "x_step_size = 3\n", "# b and c are parameters of the linear function that generates the data points.\n", "b = 2\n", "c = 5\n", "# Adds noise to the generated data points.\n", "random_scale = 1 * b\n", "base_x = np.arange(0, n, x_step_size)\n", "base_y = [linear_point(x, b, c, random_scale) for x in base_x]\n", "\n", "# Generates the set of outlier points.\n", "outlier_x = np.linspace(-x_step_size, n + x_step_size, n_plots_x * n_plots_y)\n", "outlier_y = [outlier_point(x, b, c) for x in outlier_x]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "# Generates the subplots, and reshape it so we can iterate over with an index.\n", "figure, axes_list = plt.subplots(n_plots_x, n_plots_y)\n", "axes_list = axes_list.reshape((n_plots_x * n_plots_y))\n", "\n", "# This is just for plotting purposes, so is not important.\n", "min_x = base_x[0] - x_step_size * 2\n", "max_x = base_x[-1] + x_step_size * 2\n", "\n", "# This for loop generates a single plot for each outlier point we have. Each outlier point\n", "# is concatenated with the non-outlier points (base_x, base_y), so effectively we will have\n", "# different datasets which includes one single outlier point.\n", "#\n", "# Then, we train the L1-norm and L2-norm models on both the set of points with outliers and\n", "# without outliers, just to see how the different models behave to outliers and without outliers.\n", "for index in xrange(outlier_x.shape[0]):\n", " # Get the right subplot.\n", " axes = axes_list[index]\n", " \n", " # mixed_x and mixed_y is a training dataset that includes also the outlier point.\n", " mixed_x = np.hstack(([outlier_x[index]], base_x))\n", " # Sort and get indices so we plot correctly.\n", " mixed_x_indices = np.argsort(mixed_x)\n", " mixed_x = mixed_x[mixed_x_indices]\n", " mixed_x = mixed_x.reshape((mixed_x.shape[0], 1)) # Reshape to have N+1 examples\n", " mixed_y = np.hstack(([outlier_y[index]], base_y))\n", " # Sort by the x indices so y values align with the x values.\n", " mixed_y = mixed_y[mixed_x_indices]\n", " \n", " base_x_points = base_x.reshape((base_x.shape[0], 1))\n", " \n", " # Trains a L1-norm model without the outlier point. Act as control to see how the\n", " # L1-norm model shifts.\n", " base_l1_clf = GradientBoostingRegressor(n_estimators = 5, loss = 'lad')\n", " base_l1_clf.fit(base_x_points, base_y)\n", " base_l1_fitted_x = np.array([min_x, max_x])\n", " base_l1_fitted_y = [base_l1_clf.predict(x) for x in base_l1_fitted_x]\n", " \n", " # Trains a L2-norm model without the outlier point. Act as control to see how the\n", " # L2-norm model shifts.\n", " base_l2_clf = GradientBoostingRegressor(n_estimators = 5, loss = 'ls')\n", " base_l2_clf.fit(base_x_points, base_y)\n", " base_l2_fitted_x = np.array([min_x, max_x])\n", " base_l2_fitted_y = [base_l2_clf.predict(x) for x in base_l2_fitted_x]\n", " \n", " # Trains a L1-norm model with the outlier point. We will compare this with base_l1_clf\n", " # to see how much change it deviates.\n", " l1_clf = GradientBoostingRegressor(n_estimators = 5, loss = 'lad')\n", " l1_clf.fit(mixed_x, mixed_y)\n", " l1_fitted_x = np.array([min_x, max_x])\n", " l1_fitted_y = [l1_clf.predict(x) for x in l1_fitted_x]\n", " \n", " # Trains a L2-norm model with the outlier point. We will compare this with base_l2_clf\n", " # to see how much change it deviates.\n", " l2_clf = GradientBoostingRegressor(n_estimators = 5, loss = 'ls')\n", " l2_clf.fit(mixed_x, mixed_y)\n", " l2_fitted_x = np.array([min_x, max_x])\n", " l2_fitted_y = [l2_clf.predict(x) for x in l2_fitted_x]\n", " \n", " # Plots the base points which has noise but no outliers.\n", " axes.plot(mixed_x, mixed_y, marker = 'o', markersize = 10, linestyle = '', color = 'black')\n", " # Plots the outlier point, and annotate it.\n", " axes.plot(outlier_x[index], outlier_y[index], 'o', markersize = 10, markerfacecolor = 'orange', linestyle = '')\n", " axes.annotate('Outlier point', xy = (outlier_x[index], outlier_y[index]), xytext = (outlier_x[index] + 3, outlier_y[index]), arrowprops = dict(facecolor='orange', shrink=0.05))\n", " # Plots the fitted lines.\n", " base_l1_line = axes.plot(base_l1_fitted_x, base_l1_fitted_y, marker = '', markersize = 10, linestyle = '-', color = 'green', label = 'L1 error norm (no outlier)')\n", " l1_line = axes.plot(l1_fitted_x, l1_fitted_y, marker = '', markersize = 10, linestyle = '--', color = 'green', label = 'L1 error norm')\n", " base_l2_line = axes.plot(base_l2_fitted_x, base_l2_fitted_y, marker = '', markersize = 10, linestyle = '-', color = 'red', label = 'L2 error norm (no outlier)')\n", " l2_line = axes.plot(l2_fitted_x, l2_fitted_y, marker = '', markersize = 10, linestyle = '--', color = 'red', label = 'L2 error norm')\n", " figure.legend((base_l1_line[0], l1_line[0], base_l2_line[0], l2_line[0]), ('L1 error norm (no outlier)', 'L1 error norm', 'L2 error norm (no outlier)', 'L2 error norm'), 'upper right')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABIUAAAMKCAYAAAAbDfQuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlUVFe+L/BvITMUUsxQUJSKDGpQ4wwOmMQhJOmQ59Da\nSZZ67ZfWjtp5dnpdO+uqpHO77Utfbzp5eX0zdKJJTDrttSeJnVFFEomJiYpGERGZB0VUpmIoqvb7\n41hFFVUFFIIFnO9nrVrCqX1O7QP42+f8zh4AIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIaHhSurgARERERERHRYHB3dxednZ2urgbRkODu7o7Ozk6r\nPBCTQkRERERERDRSCSGEq+tANCQoFAqgWx7IzTVVISIiIiIiIiIiV2JSiIiIiIiIiIhIhpgUIiIi\nIiIiIiKSISaFiIiIiIiIiGhEuXDhAmbMmOHqavQqMzMTTz75JACgvLwcSqUS/Z0HKzs7G6tWrXJq\nHyaFiIiIiIiIiFxAq9Xi8OHDNtv1ej2WL1+OMWPGwM3NDceOHXNB7Ya37du34xe/+IWrq2ElJycH\nMTExVttuT/4MANBoNGhqarLa5oxHHnkE58+fx7lz5/q8D5NCRERERERERC6gUCgcJgDmz5+Pffv2\nISIiot9JAnsMBoPNNqPR6NQxnC3vjM7Ozjs+Rk1NDXJycpCRkTEANRpcA7U6nun3unr1arz++ut9\n3o9JISIiIiIiIqIhxMPDA1u2bEFqaipGjRrVa/mGhgasX78eUVFRiI6Oxvbt282Jm7179yI1NRVb\nt25FSEgIMjMzsW7dOmzcuBHp6enw9/dHTk4OCgoKkJaWBpVKhUmTJiE7O9t8/LVr19qU7y4tLQ07\nduzA3LlzERAQgCVLlqC+vt78/sGDBzFx4kSoVCosXLgQFy9eNL+n1WqRlZWF5ORkKJVKFBcXw83N\nDXv37oVGo0FwcDBeffVVnDx5EsnJyVCpVNi8ebPDn8dnn32GadOmwdPT0+ozdu/ejcmTJyMwMBCr\nVq1Ce3u7+f033ngD48ePR3BwMB599FHU1NQ4PH5P5+Lm5oYrV65Y/ey2b98OnU6HBx98ENXV1VAq\nlQgICLD5jNLSUri5uZl/d878Xp9//nkAwIIFC3Do0CGHdSciIiIiIiKSCzGUabVacfjw4R7LREdH\ni2PHjvVYJiMjQ2zYsEHodDpx7do1MXPmTPHaa68JIYTYs2ePcHd3F6+88oowGAyitbVVrFmzRowe\nPVrk5eUJIYRobGwU48aNE7t27RJ6vV4cOXJEKJVKUVhYKIQQNuXb2tps6rBgwQIRFxcnioqKRGtr\nq0hLSxPbtm0TQghRWFgo/Pz8xOeffy46OztFVlaWiIuLE3q9XgghRGxsrJg6daqorKwUbW1toqSk\nRCgUCrFx40bR3t4uPv30U+Hp6SkyMjJEXV2dqKqqEmFhYQ5/Ls8++6zYtGmTzc961qxZoqamRty4\ncUMkJSWJV199VQghxOHDh0VISIg4ffq0aG9vF5s3bxbz58+3e+zezkWhUIji4mJz+bVr14rt27cL\nIYTIyckR0dHRVsfbuXOneOKJJ4QQwnzeBoOhX79XIYSor68XCoVCNDU12dQdgE23JHcX/KckIiIi\nIiIiGhIUzw/M0Cyxc2CGATnr6tWr+Oijj3Dr1i14e3vDx8cHzzzzDN544w089dRTAICoqCg8/fTT\nAABvb28oFApkZGRgzpw5AIAzZ86gpaUF27ZtAwAsXLgQDz/8MP70pz9h586dAGBV3svLy6YeCoUC\n69atQ1xcHABg5cqVOHjwIADgz3/+Mx5++GHcf//9AIBnn30WL730EvLy8jB//nwoFAps2bIFarXa\n6pjbt2+Hp6cnFi1aBKVSiR/96EcICQkBAMybNw+nT5/G/PnzberS0NCA4OBgm+1btmxBREQEAGn+\nnTNnzgAA3nvvPaxfvx5TpkwBAOzatQsqlQrl5eXQaDRWx+jtXOwRt4eICSeGivXn9woASqUSAHDr\n1i34+/v3+jlMChEREREREZFsuSqZM1DKysqg1+sRGRlp3mY0Gq2SGd0nNwaA6Oho89fV1dU2ZWJj\nY1FdXQ1ASvhYlnfElHABAB8fHzQ3N5uPb1kfhUKBmJgYVFVV9VjH8PBwq+N1/950/O5UKhWampp6\nrZ9p+FZNTQ2mT59ufs/Pzw/BwcGoqqqySQrV1NT0ei4Dob+/V9N5BwYG9ulzmBQiIiIiIiIiGqZi\nYmLg5eWF+vp6uLnZnzbY3kTVltuioqJQUVEBIYR5e1lZGRITEwekjmq12mpFLCEEKioqrHoG9Wcy\nbUf7JCcn4+233+7zcaKiolBaWmr+vqWlBfX19TY9l0xlezoXX19f6HQ68/s1NTXm5E1vvwdL/f29\nFhQUQKvV9qmXEMCJpomIiIiIiIhcpqOjA21tbeaXaRWp9vZ2tLW12XzdXWRkJBYvXoytW7eiqakJ\nRqMRxcXFyM3NdfiZ3YcxzZ49G76+vsjKyoJer0dOTg4+/PBDrFq1ym75vh7XZMWKFTh06BCOHDkC\nvV6P3bt3w9vbGykpKX06rrOf98ADD+DUqVPo6Ojo0/6rV6/Gnj17kJ+fj/b2djz33HOYPXu2TS8h\nQBoW19O5TJkyBe+99x4MBgM+/vhjq99DeHg46uvr0djY2Os59Of3CgDHjh1Denp6j2UsMSlERERE\nRERE5CLp6enw9fU1v0yrSCUkJMDX1xfV1dVYsmQJ/Pz8UF5ebvcY77zzDjo6OjBhwgQEBQVhxYoV\nqK2tBWB/2fvu2zw8PJCdnY2PPvoIoaGh2LRpE959913Ex8c7PIY9lmUs90lISMC+ffuwefNmhIaG\n4tChQ8jOzoa7u+PBS85+nqXw8HDcd999+Pvf/97jvqb977//frzwwgtYtmwZoqKiUFJSgg8++MDu\nfvHx8T2ey0svvYTs7GyoVCq8//77eOyxx8z7JiYmYvXq1Rg7diyCgoJQU1Nj87O1/NrZ3ysAfPDB\nB/jJT37i8Lxtfg59LklEREREREQ0vAhnJvelkaOgoABr1qzBN9984+qq3DXZ2dl47733HCa0bieR\nrPJATAoRERERERHRSMWkENFt9pJCHD5GRERERERERCRDTAoREREREREREckQk0JERERERERERDLE\npBARERERERERkQwxKUREREREREREJENMChERERERERERyRCTQkREREREREREMsSkEBERERERERGR\nDDEpREREREREROQCWq0Whw8fttmu1+uxfPlyjBkzBm5ubjh27JgLakdywKQQERERERERkQsoFAoo\nFAq7782fPx/79u1DRESEwzL9YTAYbLYZjUanjuFseWd0dnYO2rHJFpNCREREREREREOIh4cHtmzZ\ngtTUVIwaNarX8g0NDVi/fj2ioqIQHR2N7du3mxM3e/fuRWpqKrZu3YqQkBBkZmZi3bp12LhxI9LT\n0+Hv74+cnBwUFBQgLS0NKpUKkyZNQnZ2tvn4a9eutSnfXVpaGnbs2IG5c+ciICAAS5YsQX19vfn9\ngwcPYuLEiVCpVFi4cCEuXrxofk+r1SIrKwvJyclQKpUoLi6Gm5sb9u7dC41Gg+DgYLz66qs4efIk\nkpOToVKpsHnz5jv4CRMRERERERHRSCeGMq1WKw4fPtxjmejoaHHs2LEey2RkZIgNGzYInU4nrl27\nJmbOnClee+01IYQQe/bsEe7u7uKVV14RBoNBtLa2ijVr1ojRo0eLvLw8IYQQjY2NYty4cWLXrl1C\nr9eLI0eOCKVSKQoLC4UQwqZ8W1ubTR0WLFgg4uLiRFFRkWhtbRVpaWli27ZtQgghCgsLhZ+fn/j8\n889FZ2enyMrKEnFxcUKv1wshhIiNjRVTp04VlZWVoq2tTZSUlAiFQiE2btwo2tvbxaeffio8PT1F\nRkaGqKurE1VVVSIsLKzXnwtZAyBc/R+SiIiIiIiI6G7p9UZ559GdApmwee08urPP5R2V7c1AJIVq\na2uFl5eXaG1tNW97//33xcKFC4UQUlJIo9FY7bN27VqxZs0a8/e5ubkiIiLCqszq1atFZmamEEJK\nClmWtyctLU38+te/Nn//hz/8QSxdulQIIcSvfvUr8cMf/tD8ntFoFGq12nxeWq1W7Nmzx/y+KSlU\nXV1t3hYcHCz2799v/n7ZsmXi97//fY91ImuwkxRyd8F/SiIiIiIiIqIhITMtE5lpmYNWfrCVlZVB\nr9cjMjLSvM1oNEKj0Zi/j4mJsdkvOjra/HV1dbVNmdjYWFRXVwOQ5j6yLO9IRESE+WsfHx80Nzeb\nj29ZH4VCgZiYGFRVVfVYx/DwcKvjdf/edHzqPyaFiIiIiIiIiIapmJgYeHl5ob6+Hm5u9qcNtjdR\nteW2qKgoVFRUQAhh3l5WVobExMQBqaNarca5c+fM3wshUFFRAbVa3WMdezOQE3DLFSeaJiIiIiIi\nInKRjo4OtLW1mV+m1cHa29vR1tZm83V3kZGRWLx4MbZu3YqmpiYYjUYUFxcjNzfX4WdKI4m6zJ49\nG76+vsjKyoJer0dOTg4+/PBDrFq1ym75vh7XZMWKFTh06BCOHDkCvV6P3bt3w9vbGykpKX06rrOf\nR33HpBARERERERGRi6Snp8PX19f8ev755wEACQkJ8PX1RXV1NZYsWQI/Pz+Ul5fbPcY777yDjo4O\nTJgwAUFBQVixYgVqa2sB2F/2vvs2Dw8PZGdn46OPPkJoaCg2bdqEd999F/Hx8Q6PYY9lGct9EhIS\nsG/fPmzevBmhoaE4dOgQsrOz4e7uePCSs59H/cOfIBEREREREY1Ugr1JiCS3k2hWeSD2FCIiIiIi\nIiIikiEmhYiIiIiIiIiIZIhJISIiIiIiIiIiGWJSiIiIiIiIiIhIhpgUIiIiIiIiIiKSISaFiIiI\niIiIiIhkiEkhIiIiIiIiIiIZYlKIiIiIiIiIiEiGmBQiIiIiIiIiohHlwoULmDFjhqur0avMzEw8\n+eSTAIDy8nIolUoIIfp1rOzsbKxatcqpfZgUIiIiIiIiInIBrVaLw4cP22w/ceIEFi1ahODgYISF\nhWHlypWora11QQ2Hr+3bt+MXv/iFq6thJScnBzExMVbbFAqF+WuNRoOmpiarbc545JFHcP78eZw7\nd67P+zApREREREREROQCCoXCbgLg1q1b2LBhA8rKylBWVgalUol169YNyGcaDAabbUaj0aljOFve\nGZ2dnXd8jJqaGuTk5CAjI2MAajS4+tsrqDvT73X16tV4/fXX+7wfk0JEREREREREQ8jSpUuxbNky\n+Pv7w8fHB08//TSOHz/usHxDQwPWr1+PqKgoREdHY/v27ebEzd69e5GamoqtW7ciJCQEmZmZWLdu\nHTZu3Ij09HT4+/sjJycHBQUFSEtLg0qlwqRJk5CdnW0+/tq1a23Kd5eWloYdO3Zg7ty5CAgIwJIl\nS1BfX29+/+DBg5g4cSJUKhUWLlyIixcvmt/TarXIyspCcnIylEoliouL4ebmhr1790Kj0SA4OBiv\nvvoqTp48ieTkZKhUKmzevNnhz+Ozzz7DtGnT4OnpafUZu3fvxuTJkxEYGIhVq1ahvb3d/P4bb7yB\n8ePHIzg4GI8++ihqamocHr+nc3Fzc8OVK1esfnbbt2+HTqfDgw8+iOrqaiiVSgQEBNh8RmlpKdzc\n3My/O2d+r88//zwAYMGCBTh06JDDuhMRERERERHJhRjKtFqtOHz4cK/lXnzxRTFnzhyH72dkZIgN\nGzYInU4nrl27JmbOnClee+01IYQQe/bsEe7u7uKVV14RBoNBtLa2ijVr1ojRo0eLvLw8IYQQjY2N\nYty4cWLXrl1Cr9eLI0eOCKVSKQoLC4UQwqZ8W1ubTR0WLFgg4uLiRFFRkWhtbRVpaWli27ZtQggh\nCgsLhZ+fn/j8889FZ2enyMrKEnFxcUKv1wshhIiNjRVTp04VlZWVoq2tTZSUlAiFQiE2btwo2tvb\nxaeffio8PT1FRkaGqKurE1VVVSIsLEwcO3bM7s/j2WefFZs2bbL5Wc+aNUvU1NSIGzduiKSkJPHq\nq68KIYQ4fPiwCAkJEadPnxbt7e1i8+bNYv78+XaP3du5KBQKUVxcbC6/du1asX37diGEEDk5OSI6\nOtrqeDt37hRPPPGEEEKYz9tgMPTr9yqEEPX19UKhUIimpiabugOw6ZbEnkJEREREREQkXwrFwLwG\nydmzZ/HCCy/gd7/7nd33r169io8++ggvvvgifHx8EBoaimeeeQYffPCBuUxUVBSefvppuLm5wdvb\nGwqFAhkZGZgzZw4A4MyZM2hpacG2bdvg7u6OhQsX4uGHH8af/vQn8zEsy3t5ednUQ6FQYN26dYiL\ni4O3tzdWrlyJM2fOAAD+/Oc/4+GHH8b999+PUaNG4dlnn0Vrayvy8vLM+27ZsgVqtdrq2Nu3b4en\npycWLVoEpVKJH/3oRwgJCUFUVBTmzZuH06dP2/2ZNDQ0wN/f32b7li1bEBERAZVKhUceecRcv/fe\new/r16/HlClT4OnpiV27duGrr75CeXm5zTF6Oxd7xO0hYsKJoWL9+b0CgFKpBCANQewL9z7XiIiI\niIiIiGikGaA5XQbD5cuXkZ6ejpdffhmpqal2y5SVlUGv1yMyMtK8zWg0QqPRmL/vPrkxAERHR5u/\nrq6utikTGxuL6upqAFLSxrK8IxEREeavfXx80NzcbD6+ZX0UCgViYmJQVVXVYx3Dw8Otjtf9e9Px\nu1OpVGhqauq1fqbhWzU1NZg+fbr5PT8/PwQHB6Oqqsqq3qayvZ3LQOjv79V03oGBgX36HCaFiIiI\niIiIiIaYsrIyLFq0CDt27MDjjz/usFxMTAy8vLxQX18PNzf7g4HsTWZtuS0qKgoVFRUQQpi3l5WV\nITEx8Q7PQqJWq61WxBJCoKKiAmq1usc69sbRPsnJyXj77bf7fJyoqCiUlpaav29paUF9fb1V/SzL\n9nQuvr6+0Ol05vdramrMyZvefg+W+vt7LSgogFartdtTyh4OHyMiIiIiIiJykY6ODrS1tZlfBoMB\nVVVVuO+++7Bp0yY89dRTPe4fGRmJxYsXY+vWrWhqaoLRaERxcTFyc3Md7tN9GNPs2bPh6+uLrKws\n6PV65OTk4MMPP8SqVavslu/rcU1WrFiBQ4cO4ciRI9Dr9di9eze8vb2RkpLSp+M6+3kPPPAATp06\nhY6Ojj7tv3r1auzZswf5+flob2/Hc889h9mzZ9v0EgKAlStX9nguU6ZMwXvvvQeDwYCPP/7Y6vcQ\nHh6O+vp6NDY29noO/fm9AsCxY8eQnp7eYxlLTAoRERERERERuUh6ejp8fX3Nr8zMTLz55psoKSlB\nZmYmlEqlebUqR9555x10dHRgwoQJCAoKwooVK1BbWwvA/rL33bd5eHggOzsbH330EUJDQ7Fp0ya8\n++67iI+Pd3gMeyzLWO6TkJCAffv2YfPmzQgNDcWhQ4eQnZ0Nd3fHg5ec/TxL4eHhuO+++/D3v/+9\nx31N+99///144YUXsGzZMkRFRaGkpMRq7h5L8fHxPZ7LSy+9hOzsbKhUKrz//vt47LHHzPsmJiZi\n9erVGDt2LIKCglBTU2Pzs7X82tnfKwB88MEH+MlPfuLwvG1+Dn0uSURERERERDS8CGcm96WRo6Cg\nAGvWrME333zj6qrcNdnZ2XjvvfccJrRuJ5Gs8kBMChEREREREdFIxaQQ0W32kkIcPkZERERERERE\nJENMChERERERERERyRCTQkREREREREREMsSkEBERERERERGRDDEpREREREREREQkQ0wKERERERER\nERHJEJNCREREREREREQyxKQQEREREREREZEMMSlERERERERE5AJarRaHDx+22X7ixAksWrQIwcHB\nCAsLw8qVK1FbW+uCGtJIx6QQERERERERkQsoFAooFAqb7bdu3cKGDRtQVlaGsrIyKJVKrFu3bkA+\n02Aw2GwzGo1OHcPZ8s7o7OwctGOTLSaFiIiIiIiIiIaQpUuXYtmyZfD394ePjw+efvppHD9+3GH5\nhoYGrF+/HlFRUYiOjsb27dvNiZu9e/ciNTUVW7duRUhICDIzM7Fu3Tps3LgR6enp8Pf3R05ODgoK\nCpCWlgaVSoVJkyYhOzvbfPy1a9falO8uLS0NO3bswNy5cxEQEIAlS5agvr7e/P7BgwcxceJEqFQq\nLFy4EBcvXjS/p9VqkZWVheTkZCiVShQXF8PNzQ179+6FRqNBcHAwXn31VZw8eRLJyclQqVTYvHnz\nAPykiYiIiIiIiGikEkOZVqsVhw8f7rXciy++KObMmePw/YyMDLFhwwah0+nEtWvXxMyZM8Vrr70m\nhBBiz549wt3dXbzyyivCYDCI1tZWsWbNGjF69GiRl5cnhBCisbFRjBs3TuzatUvo9Xpx5MgRoVQq\nRWFhoRBC2JRva2uzqcOCBQtEXFycKCoqEq2trSItLU1s27ZNCCFEYWGh8PPzE59//rno7OwUWVlZ\nIi4uTuj1eiGEELGxsWLq1KmisrJStLW1iZKSEqFQKMTGjRtFe3u7+PTTT4Wnp6fIyMgQdXV1oqqq\nSoSFhYljx4458dMmAMLV/yGJiIiIiIiI7pbe75R37hQCsH3t3Nn38o7K9qIvSaH8/HwRFBQkvvzy\nS7vv19bWCi8vL9Ha2mre9v7774uFCxcKIaSkkEajsdpn7dq1Ys2aNebvc3NzRUREhFWZ1atXi8zM\nTCGElBSyLG9PWlqa+PWvf23+/g9/+INYunSpEEKIX/3qV+KHP/yh+T2j0SjUarU5qaPVasWePXvM\n75uSQtXV1eZtwcHBYv/+/ebvly1bJn7/+9/3WCeyBjtJIXcX/KckIiIiIiIiGhoyM6XXYJW/A5cv\nX0Z6ejpefvllpKam2i1TVlYGvV6PyMhI8zaj0QiNRmP+PiYmxma/6Oho89fV1dU2ZWJjY1FdXQ1A\nmvvIsrwjERER5q99fHzQ3NxsPr5lfRQKBWJiYlBVVdVjHcPDw62O1/170/Gp/5gUIiIiIiIiIhpi\nysrKsGjRIuzYsQOPP/64w3IxMTHw8vJCfX093NzsTxtsbzJry21RUVGoqKiAEMK8vaysDImJiXd4\nFhK1Wo1z586ZvxdCoKKiAmq1usc69qY/+5A1TjRNRERERERE5CIdHR1oa2szvwwGA6qqqnDfffdh\n06ZNeOqpp3rcPzIyEosXL8bWrVvR1NQEo9GI4uJi5ObmOtxHGknUZfbs2fD19UVWVhb0ej1ycnLw\n4YcfYtWqVXbL9/W4JitWrMChQ4dw5MgR6PV67N69G97e3khJSenTcZ39POo7JoWIiIiIiIiIXCQ9\nPR2+vr7mV2ZmJt58802UlJQgMzMTSqUSSqUSAQEBDo/xzjvvoKOjAxMmTEBQUBBWrFiB2tpaAPaX\nve++zcPDA9nZ2fjoo48QGhqKTZs24d1330V8fLzDY9hjWcZyn4SEBOzbtw+bN29GaGgoDh06hOzs\nbLi7Ox685OznUf/wJ0hEREREREQjlWBvEiLJ7SSaVR6IPYWIiIiIiIiIiGSISSEiIiIiIiIiIhli\nUoiIiIiIiIiISIaYFCIiIiIiIiIikqHekkIxAI4COA/gewBbbm/PBFAJ4PTt19JBqh8RETEWExG5\nGuMwERGNSL2tPhZx+3UGgD+A7wBkAFgJoAnAfw1q7YiICGAsJiJyNcZhouGLq48R3WZv9TH3Xvap\nvf0CgGYABQDUpuMNZOWIiMghxmIiItdiHCYaptzd3U03wkSy5+7ujs7Ozn7vrwVQBunpyE4ApQDy\nAbwJIPDOq0dERH2gBWMxEZEracE4TEREMuMP4FtI3WQBIAzSUxEFgH+H1AhaGTdunADAF1988TUU\nX5cxPDEW88UXXyPlxTjMF1988eX613CNxXSXeQD4BMAzDt7XAjhnZ7uQk507d7q6CncNz3VkktO5\nQmoEhxvG4l7I6W+Y5zoyyelcwTg8Ysnp75jnOjLJ6VwxPGMxDbDeVh9TQHricQHA7y22R1p8/Rjs\nN4BERDQwGIuJiFyLcZiIiEak3iaaTgXwBICzkJbZBIDnAKwGMAVSZrEEwE8Gq4JERMRYTETkYozD\nREQ0IvWWFPoS9nsTfTQIdRnW0tLSXF2Fu4bnOjLJ6VyHIcbiPpDT3zDPdWSS07kOQ4zDfSSnv2Oe\n68gkp3MlAgZ3Cc3bwxSJiIaW28uSymVtUsZiIhpyGIeJiFxPZrGYHOhtTiEiIiIiIiIiIhqBmBQi\nIiIiIiIiIpIhJoWIiIiIiIiIiGSISSEiIiIiIiIiIhliUoiIiIiIiIiISIaYFCIiIiIiIiIikiEm\nhYiIiIiIiIiIZIhJISIiIiIiIiIiGWJSiIiIiIiIiIhIhpgUIiIiIiIiIiKSISaFiIiIiIiIiIhk\niEkhIiIiIiIiIiIZYlKIiIiIiIiIiEiGmBQiIiIiIiIiIpIhJoWIiIiIiIiIiGSISSEiIiIiIiIi\nIhlyd3UFiGjg6HQ65Obm4sCBAygvL4dGo8Hy5csxf/58+Pr6urp6REQjHuMwEZHrMRYT9Z1iEI8t\nhBCDeHgisrRy5UqcPHkSVVVV0Ov15u0eHh5Qq9WYMWMG9u/f78IaDh0KhQIY3Pg3lDAWE90ljMN9\nxzhMRIOFsbjvZBaLyQH2FCIaAXQ6HU6ePInS0lKb9/R6vXm7Tqfj0xEiokHAOExE5HqMxUTO45xC\nRCNAbm4uqqqqeixTVVWF3Nzcu1QjIiJ5YRwmInI9xmIi5zEpRDQCHDhwwKp7rD16vR4HDhy4SzUi\nIpIXxmEiItdjLCZyHpNCRCNAeXn5gJYjIiLnMA4TEbkeYzGR85gUIhoBNBrNgJYjIiLnMA4TEbke\nYzGR85gUIhoBli9fDg8Pjx7LeHh4YPny5XepRkRE8sI4TETkeozFRM7jkvREI4BOp8PEiRPtrrRg\notVqcf78ea60ANktv8lYTHQXMA47h3GYiAYDY7FzZBaLyQEuSU80Avj6+mLGjBkApBUVLCfY8/Dw\ngFqtxoxQkfTFAAAgAElEQVQZM9j4ERENEsZhIiLXYywmch57ChGNIDqdDrm5uThw4ADKy8uh0Wiw\nfPlyzJ8/n42fBZk9FWEsJrqLGIf7hnGYiAYTY3HfyCwWkwNMChGR7MisAWQsJqIhh3GYiMj1ZBaL\nyQFONE1EREREREREJEO9JYViABwFcB7A9wC23N4eBOAzAJcAfAogcLAqSEREjMVERC7GOExERCNS\nb13FIm6/zgDwB/AdgAwA6wBcB5AF4F8BqABs67Yvu8oS0ZA0DLvKMhYT0YjCOExE5HrDMBbTIOit\np1AtpMYPAJoBFABQA/gBgLdvb38bUqNIRESDg7GYiMi1GIeJiGhEcmZOIS2AqQC+BhAO4Ort7Vdv\nf09ERINPC8ZiIiJX0oJxmIiIRoi+JoX8AfwFwM8ANHV7T9x+ERHR4GIsJiJyLcZhIiIaUdz7UMYD\nUuP3LoC/3952FdK46loAkQCu2dsxMzPT/HVaWhrS0tL6X1Mion7KyclBTk6Oq6txpxiLiWjYYhzO\nNH/NOExErjJCYjENsN4mlVJAGh9dD+D/WGzPur3tPyBNphcITqpHRMPEMJxUj7GYiEYUxmEiItcb\nhrGYBkFvfwBzAeQCOIuu7rC/BPANgP0ANABKAawEcKvbvmwAiWhIGoYNIGMxEY0ojMNERK43DGMx\nDYLB/ANgA0hEQ5LMGkDGYiIachiHiYhcT2axmBxwZvUxIiIiIiIiIiIaIZgUIiIiIiIiIiKSISaF\niIiIiIiIiIhkiEkhIiIiIiIiIiIZYlKIiIiIiIiIiEiGmBQiIiIiIiIiIpIhJoWIiIiIiIiIiGSI\nSSEiIiIiIiIiIhliUoiIiIiIiIiISIaYFCIiIiIiIiIikiEmhYiIiIiIiIiIZIhJISIiIiIiIiIi\nGWJSiIiIiIiIiIhIhpgUIiIiIiIiIiKSISaFiIiIiIiIiIhkiEkhIiIiIiIiIiIZYlKIiIiIiIiI\niEiGmBQiIiIiIiIiIpIhJoWIiIiIiIiIiGSISSEiIiIiIiIiIhlyd3UFiIY7nU6H3NxcHDhwAOXl\n5dBoNFi+fDnmz58PX19fV1ePiGjEYxwmInI9xmKi4UkxiMcWQohBPDyR661cuRInT55EVVUV9Hq9\nebuHhwfUajVmzJiB/fv3u7CGZI9CoQAGN/4NJYzFNKIxDg9PjMNEIwtj8fAks1hMDrCnEFE/6XQ6\nnDx5EqWlpTbv6fV683adTsenI0REg4BxmIjI9RiLiYY3zilE1E+5ubmoqqrqsUxVVRVyc3PvUo2o\nV0IA5eWurgURDRDG4WGqrc3VNSCiAcRYPAwJAZSVuboWNEQwKUTUTwcOHLDqHmuPXq/HgQMH7lKN\nyIZeD3z7LfDSS8APfwjExAAzZ7q6VkQ0QBiHh4mrV4G//hV49llgzhwgONjVNSKiAcRYPAzo9cDJ\nk8Dvfw+sXAlERwOzZrm6VjREcPgYUT+V97HHSV/L0QC4eRP46ivg+HEgL09KCI0ZA6SkAA8/DPzm\nN8DYsYAb8+FEIwHj8BBkNALnz3fF4ePHpdg8Zw6Qmgrs2gXMmAH4+7u6pkQ0QBiLh6AbN6RrYlMc\n/vZb6Ro4JQV45BEpFvOamG5jUoionzQazYCWIycJAVy+bH3jUV4u9QRKTQW2bZOegAQGurqmRDRI\nGIeHgOZm4Ouvu+LwiRNAWJgUh+fPl2JxYiJvPIhGMMZiFxMCKCqyviauqOi6Jv7lL62viWtrpTKH\nDrm23jRkcPUxon76+OOP8YMf/KDH7rIeHh44ePAgli5dehdrNkK1tQHffdfV2OXlAd7eUmOXmgpM\nnAi4uwNXrgCFhcClS0BJCfDNN8CoUVaHktlKC4zFNGIxDrtAeXlXHD5+XIq3U6dKcXjmTECtBq5f\n74rDhYXSUIWf/tTqMIzDRCMHY/Fd1tYm9fyxvCb28em6Jk5JAZKTpetie7Zska6RFy6E4uc/B+QT\ni8kBJoWI+kmn02HixIl2V1ow0Wq1OH/+PFda6I9r16xvPPLzgYQEYO7crgYvJkYqKwSg1QLh4UB8\nvFQuPl56TZ5s84SaNyNEIwPj8CDr7JRir+XT5/Z2YPZsqRdQaipw772Al5dU/qWXgJdfth+HQ0Ot\nDs04TDRyMBYPsqtXrRNA+flAUlLX9bDlNXFTU1fvzeRkICOjx0PLLBaTAxw+RtRPvr6+mDFjBgBp\nRQXLpyMeHh5Qq9WYMWMGG7++MBqBCxesG7zaWqmBCwiQbkxCQqQyf/2rlACypFBwBQUiGWIcHmA3\nb0rDv0xx+OuvgaAgaTiYhwcwerQUa6OipEmju/vZz6QXEckKY/EAMl0Tmx6K5uUB9fXSvGwpKcCv\nfy31yvTz69rn3Dngt7+VyhYVdfXeVKtddx40rPQlK/gWgIcAXANwz+1tmQB+DKDu9ve/BPBxt/34\nVIRkQafTITc3FwcOHEB5eTk0Gg2WL1+O+fPns/FzpKUF+Owz4J//lLqvfvutlPRJSenq+vrf/w0Y\nDNZPm7Vax11hnTAMn4r0Nw4DjMUkA4zD/SAEcPEicPCgNMy2sFBK+MyY0fX02c0NeOutrhhseqlU\nd/zxwzAOA7wmJuoRY3E/NDdLMdiUADpxwvaaOClJisdCSA9Cu8vPBz7/XCo7dWpX780+GKaxmAZY\nX/4A5gFoBvAOuhrAnQCaAPxXD/uxASQiSWUl8B//ARw+LM1H0dIizfMTGio9bX7iCWno110yDBvA\n/sZhgLGYiABp2NfHHwP/9V9SAuj6dSnx7ucHTJ8O7N4tDfMagMR7XwzDOAzwmpiI7lRFhfWQ3IsX\ngSlTupJAc+Z0XRN3X0FMr5f+HUDDNBbTAOtLy/8FAK2d7fzjISLppqKiQppQ9NIlaXWDUaOsG7y2\nNiA2FpgwAdi0CXjoIUCjsf+0YwC1dbbhUv0lFNQVoOC69Lp4/eKgfuYgYRwmop41NkrDBi5dkoaB\nLV8u3UyYhiCcOQOMGwcolcDjjwPp6dIcbU48Ue4PIQRqmmu64nBdAS7WD8s4DDAWE5EzTPOyWc6R\n2d7elQB6+WVg2jRp4RRLDQ1ScqiyUhoqlpIirSA2e3a/q2LvmrigruAOT5BGir42YloA2bB+KrIO\nQAOAbwH8HMCtbvvwqQjRSPbaa8Arr0jLwvv5STcaer10M6LVdg0/SE0F4uIGNQHU0NaAi9cvmhu4\ngusFuFB3AZWNlRijGoOkkCTpFSr9O109HRh+F/FaOB+HAcZiopGrqQl45BGp509DAxAcLCXlm5ul\nmxHTHBSmlcH8/QetKgajAaW3Sq3isOlrj1EeNnF46filwPCLwwCviYnIkVu3rHv2nDwpPQS1d01s\nWlV31iz7PTTz87tW1nVCQ1uD3Thc1VSFMYFjzDHYFI+nRU0DhmcspgHU36RQGLrGTr8AIBLA+m77\nsAEkGm5aW6Ukj2kZ4UuXgAULgHXrpPeFkJZ8z8sDDh2SGrOaGmkOCsturwMw30R3Qghcbblq9bTZ\n1Ng1tDUgISTB5qYjLigOHqM8bI41TLvKauF8HAYYi4mGFyGkuGoZhy9flibZHzVKKtPSIt1sfPml\nNCfQpUtSQsg0/0RqqtQzs9vKiwOhvbNdetrcLQ4X1Rch1C/UJg4nhSYhxDfE5jjDNA4DvCYmIkCK\n1cXF1ouklJZKw3FNSSDLa2JHK4gdPChN3u/URwvUNtfaTf40tjciMSTRJvkzTjVuJF0T0wDr78Dx\naxZf/xFS42gjMzPT/HVaWhrS0tL6+XFENOjeegv46U+BsWO7lhOePRvw8ZHmmjA1YqNGdd10PPus\nNAeFh20j018GowFlDWV2kz+jFKOsGrmH4h9CUkgSYkbHwE3h+OYnJycHOTk5A1bHIaJPcRhgLCYa\nVmJjpeEFlsu6T5gA/PnPXcsMX7ggLTWcmioNKZgzB4iIGNBq2OuBWXC9ABUNFVY9MB+Ofxi/SPkF\nEkIS4O/puCfSCI3DAK+JieShvR04darrejgvT+rFY0oA/e//3fM18dNPAzqdVN7eCmJ2ONMD85H4\nR5AUmoTogGg5XhPTHepvT6FIADW3v/4/AGYA+FG3ffhUhMiVWlqAs2e7njSb/p02Ddi717Z8W5s0\n9Ovkya4G7/Rp6YbE1AsoJWXA5gJq72xH0Y0im0buUv0lhPiG2DzhSApJQqhf6B1/LjBsn4po4Xwc\nBhiLiVyruFhK4ljG4UuXgJwcKb52d+uWtCqj5bxsOp11HJ4+3XYOin4YyB6YzhqmcRjgNTGRPNTV\nWffsOX1aStRbrgoWEyNdE1uuILZgATB/vlMfNVA9MPtjGMdiGkB9+QP4E4AFAEIAXIU0djoNwBQA\nAkAJgJ/cfs8SG0CiwdbaKjVaGo3te198Afz859ZLuickSGOZ/f0Bo1G6QbG88aitlXoHmW48Zs2S\n5gq6A43tjdLT5m7Jn/KGcmgDtTbJn8SQxB6fNg+EYdgA9jcOA4zFRIPLNNwrIMD+nD2rVkmTQFv2\n/ImPB9RqaXhXQ4O0BLEpDn/zDRAdbT0Hxfjxd5SMd6YHpunr3npg3qlhGIcBXhMTjUxGo7QKmOU1\n8dWrPV8Tf/st8M47tiuIPfGE1GPIjr72wDTF4d56YA6EYRqLaYAN5h8AG0CigXTzJrBvn3XPn6tX\ngSVLgH/8o/f9dTqpF5CpsfvqK2D0aOsbj4kTu+ascIIQAtdartnt3nqz7SYSghNsbjriguLgOcqz\nHz+IOyezBpCxmGggHT4M5OZ2xeGiIsDXF9i/X3pC3BMhpF5AlivRXLki9fyxnJctKKhfVXNlD0xn\nMQ4TkcvodFIC3vKaWKWy7pHZ2zXxsWPSMVJSrFYQc2UPzP6QWSwmB5gUIhoq6uulG4yaGmDZMtv3\n6+qAnTutnzbHxjpelaC62vqJx/nzwD33dDV2KSlAZKRTVTQKI8puldlN/igUCrvdWzWjNYP6tLk/\nZNYAMhYT9ZVeLyVpLl3qirXdvf46UFHRFYfHj3c8uX5HhzTkwJQAysuTegdZJuOnTHF6Xrah2APT\nWYzDRHTXVFVZJ+MvXHB8TXzrltR70xSzg4KA//kfm0MOxR6Y/SGzWEwOMClE5Crt7cBPftLV88dg\nkG4yJk0C3nzTuWMZDMC5c9Zjn5uauhq61FTpSbSPT58O12HoQFF9kU0jd6n+EoJ8guwmf0J9Q00N\ny5AnswaQsZioJ3/5C7BnjxSHy8uloVvx8cAzzwCLFzt3rOvXpSfOpjh86pSUNLJ8+hwb26ehYMOt\nB6azGIeJaFCYroktk/HNzb1fE5eVAQ8/bLOCWPuMe1Ekrg+LHpj9IbNYTA4wKUQ00AwG6Smy5YSi\nu3cDnt0u1IUA3n4bGDdOSgaFhvZ9zojGRmkVGlNj9/XX0nKWljceCQm9Hq+pvcnu2OayW2WIDYy1\naeQSQxKh9LqzOYaGApk1gIzFJE+NjV0x+NIl6amwvV6Y334LVFZKMXPsWMDLq2/HF8J2XraaGmne\nCcs5KAICejzMSOmB6SzGYSIaEA0NttfEarV1j8z4eOmauL1dShhNn25zmMam66j44hC+C+3EhYai\nYdkDsz9kFovJASaFiAbSwoVSl9OQEOthXk89Jc050R9CSE8vLG88Ll8G7r23q8GbM0f6TLu7C9Tp\n6ux2b73RegPxwfF2xzZ7uffxxmgYklkDyFhM8vLXv0pL/zY2Sr10THF48WJg3rz+H7e11Xp1xrw8\nKeFjWoUmJUXq6elgDoqR3gPTWYzDROQ0IaSePJbXxMXFXdfEpnnZgoOl8qYVxG6XFWfOoDNuLL76\nUxbON5eMuB6Y/SGzWEwOMClE1JPWVikB031Z97feApKSbMsXFUk9dvz8+v+ZHR3AmTPWDZ4Q1jce\nU6fa9DwyCiPKG8rtJn+EEHa7t8YGxg77p839IbMGkLGYhjfT6l7d4/D48cCLL9qWv3EDaGnpWt2r\nv2pqrOPw999LSR/LOSiiomx2k2sPTGcxDhNRr0zzslnOBwT06Zq47FYZAu9Pxy1PgfyxfjgS1Ya/\nBVRD5+02Yntg9ofMYjE5wKQQkcEgLUVpb6LPpUulOSa6L+t+77397/nT3Y0bVk8x8N130pAyy26v\nWq15KFiHoQOXb1y2GWZQWF8IlbfKbvInzC9sxD5t7g+ZNYCMxTQ8tLfbH7p19Ki0rLspDpv+nTRJ\nipUDwWCQkj6W87I1NNjOQXE77rMH5p1jHCYiG/X11tfEp045vibW6aD/6jhuHP4Q+TM1+Fqlk30P\nzP6QWSwmB5gUInk5f17q/m/5xLm4GPjTn4CMDNvyQvR9np++EEL6XMsbj8pKad4JU2M3ezYQEIDm\njma7q8uU3iqFZrTG7tjmAK+e564gicwaQMZiGlp0OmlZ9+49f9RqaX6f7gY6DgPSRPymOSiOH5e+\njoy0mZfNqAB7YA4SxmEimTPNy2Z5TVxVZT0v2+1rYlMPzOuf/QMBBz9BWP5lqCsbcC4MOD8+EN89\nNBUBk2fKvgemsz4r/gyL4xYD8onF5ACTQjSytLZKQ7gCAwGNxvb9//xPID/fuufP+PF3Ntyrt/p8\n9531Cgj+/lY3HnVjI1Bwq8gm+XNdd1162tztpmN80Hg+bb5DvBkhGkRCANXVUi/LOXNs36+rA9as\nse2BGRV1Z8O9eqpPebl1HC4qkoYc3I7DHbOm47LbLfbAvIsYh4lkprVVSvxbzsvm72+OwyIlBXVj\nw1Fw03butXpdPRJCEvBksT8mN/hg1Nx5CJufjnHqSbwmtqNV34rvr32P/Kv5yK/Nh2a0Br9I/YXd\ncr6evoB8YjE5wKQQDW+5ucD+/V1Pmq9elVaP+bd/A370o7tfn9pa6yceZ88CEydCzJmD61MT8H1c\nAM6MqrO66TAIg93urbGjYzHKzf6EpdSzxvZGVDZWml9Lxi2BOkBtfp83I0QDqLMTeOEF6xUX/fyk\n4V2ffz7wvXx6o9fbzstmMACpqWifNR1XkiJwKhI4b7G6DHtgDrxOYydqm2vNcdjDzQOPJj5qfp9x\nmGiEq621jsPnzpmvieumxuP7cQE44y4Nwy0vPwf/Mxcws7QD91V7o2GsGvnP/Qt7YDrpu+rv8MTf\nnkDprVIkBCdgcsRkTA6fjLmauZipnml3H5nFYnKASSEauq5f7xpaoFZLK8d0d+yYdPFvetKs0QDu\n7nenfgYDcOGCVYMnbt5Ey7R7UDYxGqfGeCMntAVnmotQeL0Qo71H203+hPuF82lzHwkhcLPtJrxG\necHP07Z3148P/hj7z++HURgRHRBtfv1r6r8iKbRrYnCZNYCMxdR/HR1ASUlXwmfzZvvz/vz7v0vz\nPCQkSL0vAwPvXh1v3AC++qrrxuPbb9Gp1eDalPG4GB+E4zHAl+5VKLh+kT0wB0iHoQM3W28i3D/c\n5r382nw89P5DuNZyDSG+IeY4PCd6jtWTasZhohHEYJCmaLC8Jr51C83T7kHZRDVOjfXB0dBm5DcW\nobC+EIHegUgKScIDjaH48UtfILC6HsYpk+ExLw2KuXOtVxAjAFLcLagrwJnaM7jZdhPPzH7Gpkxj\neyNKb5UiMSSxzyumySwWkwNMCtHQcvQo8Nxz0s2HwSDdYCQkAI8+Cixb5tq6NTdL807k5aHzi1zg\n6xPQBfqjKCkMX2vc8M+wBhz2rEK0SmN3dZnR3qNdW/9h6N38d/HplU9R1Vhlftrs5e6FfY/tw0Px\nD9mUr26qhq+HL0Z7je4x0SazBpCxmJy3dq10cV9RAURHdw31yswERrswlgkhDf06fhzi+HHovzwG\nt8oqVCdF4+w4fxxVd+BvAdW46S3YA3OAXGu5hudznkdlU6U5Ft9ovYFUTSqOrjlqU76tsw11LXWI\n8I+Axyg7CzjcxjhMNIyZ5mW7fU2s+PoEWlRK6Zo4dhQOhdzEEa9qRKs0uCcwAant4QiePs/2mrix\nESgosLuCGEmrWT79z6eRfzUfRfVFGKMag+TwZMxWz8bPZv9sQD5DZrGYHGBSiAafwSDN52A5oWhY\nGLBjh23Z6mrgyhXp5iM09O4PO7BUXo7GIx+jOecTeJ44CWVpDS7H+uMLtQFHotpxbXIcIsbcY3XT\nMT54PLzdvV1X5yGuqL4IZ6+e7Rra1ST9u2XmFqyYuMKm/MeXP8bV5qvmJ83qADX8Pf3vuB4yawAZ\ni0nS0CAlVCyHef3qV1LPnu6++AIICZFWfXHlhXpbGzq/PoH6wx/C8GUuRp86j1YP4NsxXvgsvAXn\nxgdA3DMJCeETrWJxhH8Ee2A60GHowLHSY1ZDbCubKtFp7MQnT3xiU76xvRFvn3nbqvdlmF/YHSfX\nGIeJhonb87I1Hv0EzUc/hueJb6Esk66Jc6MNOBppfU082SMaU67oEP19Ody/+lpaQWzSJKlHJ+Oy\nlU5jJy7VX8LZq2fxw4k/tGm3jMKIt8+8jeTwZEwInQAfD58Br4PMYjE5wKQQDa5vvwXmzZNuLiyX\nE542DZg719W1AyANSaqov4KqL/6J9i+Owv9kPjTnKwG9Ht9oRqFkYhQap90Dn5mpiFdLDZ42UMun\nzbd1GDpQ01RjdYMxUz0T82Ln2ZR95ZtXcLjkMKKV0VY3GBPDJiLEN+Su1VlmDSBjMUk9LT/+2Hpi\n5/h44MEHh0wX/ZaOFhRfzMPNw4fg9tUJhJ4pgqbsJgpCgHNxAbg6ZRw6Z81EVFLXCjPsgSkxDa2t\nbOzqzXNddx2/nPdLm7LNHc3I+CAD6gC1VSyOGR2DKRFT7lqdGYeJhh6ra+LcI/A/eRaaC9I18dex\no1A6oZdrYiGAMWOkhw2pqdJr1iwggHOzmbz+3ev4uvJr5F/NR8H1AkQpozA5fDL2PLrHJSumySwW\nkwNMCpFzOjuleXQse/0UFkrvnThhW16vl+akGKzVvZygN+hRfLMYBXUFKCk5BcNXxxH0XQHiCusw\nrcqIa6G+qJ4Ui7ZZ0+C3YBG00+5HhDJS1k+bW/WtqGqqgtcoL8SMjrF5P+t4Fv7tyL8hwj/CKsnz\nWOJjdpNCQ4XMGkDG4pHo2jVp/obuy7r/5jfACtted2hoAJTKwVndy0n1unppguer53Hz1HF4f/0d\n1OfKMOWKDqGtChQnhuHGvUlwS5mLkLR0jNdMkXUPTKMw4rruOiobKzE1YqpNm9Rp7ITqP1QYpRhl\nFYejA6Kxc8HOIduGMQ4TuU73a2Jj3nEEnSpA3MVruLdaWF8Tpy2G9t77pGvitrauFcQefxyIsb02\nhBCy7hFkFEYU3yhGpDLSbu/23375WwR6B2Jy+GTcE37PgPSAvxMyi8XkAJNCZMtgkIZx2Qv0N25I\nPX8snzSb/g0Nvft1tUOn1+Hi9YtdS1nWXUBLwVlEnyvDAzU+mFMhEF7fjhsTx8GYMhuB96XDf8Gi\nuzsx6hD1yeVP8H+/+b/mHj/NHc1QB6ixeeZmuxPatepb4TnKc9j1mpJZA8hYPFw1NkqJ+KAg2/e2\nb5cm2u++rPvYsUNiXgYhBCobK62WFS6t/B6+p7/HvVfacH+tN5JLWtGhUqJ5+mR4zV+I4Ad+gFET\nJw2JxJWrrfvHOhTfKEZlYyWqm6qh9FIiOiAax//lOHw9fG3KN3c0u/zGwlmMw0SDr6WjBYX1hVbX\nxLoLZxH9fRnur/FBSrlA+I121E+Kg3HOLATe/xD85z9gfU189Cjw4YdWK4ghJQV45hlpgQGZy6/N\nR15FnrT8+9V8fH/tewT7BON/VvwPZqhnuLp6vZJZLCYHmBSSOyGAvXutnzQXFwMREcDly8CooXuz\nf6P1hkUjV4AL1y+goK4ANxtq8UiTGkuu+mN6STvGFNTAzdsHbqnz4D53ntSVdfLku7dKmQuV3irF\nZ8Wf2czh88CYB/DSgy/ZlL9UfwmF1wvNT5lDfEOG7FPmOyGzBpCxeDj4/ntpeJflfD9NTcBvfwts\n2uTq2jnUaexE8Y1iq+RPwfUCXLx+EfE6H2RcD8W8qlGYcOkWgsvrYEieBI+5C7pWlwm3Xb1qJPrH\nxX/g8o3LVnG4srESX//4a0Qpo2zK/63gbwjyCUJ0QDSilFGDMo+EqzEOEw0ccw9MizhcUFeAW7dq\n8YNmNRbfvibWFtTAzccXo1LnYtTc+VJyp7dr4j/+UeqdmpoKzJgB+Nompkc6IQT0Rr3dFb1eOPYC\nSm+Vmpd/Tw5PhspH5YJa9o/MYjE5wKTQSKfTScmdwkLgkUcAbztd8H/6UyAqquuJc1zckBjuBUhB\nuKqpyir5Y2rsWvWtSApNwkx3LRZWeyH5SjPU58rg/f1FKBITpcYrJUX6116vp2FICGEeRmD5ig6I\nxsYZG23KHy8/jrdOv2UzpEAzWiPruThk1gAyFruaEFLvy8JCKbbOmmVb5p//BD77zLr3pVo9ZLrg\n6/Q6FF4vtInDV25eQZQyChNVCbivMRizyo0YX3AVQacK4Naht47D995rvw0ahto626xWRTS9ts3d\nBnWA2qb81k+2QghhE4ujA6KHXU/LgcI4TOQcez0wTV+3G9qRFJKEWR5apFV54p7iZqjPlcL7fKHj\na2KLFcRw/DiwcCGwbZtrT3IIaNW34nzdeeTX5uNM7RnkX83H2atn8Xza8wO24tdQIrNYTA4wKTQS\n7dghzfBfWAjU1UnDCeLjgVdfHbJPZTuNnbhy84pNI3fx+kX4evh2LSkclIDpDX5IvHQDgacuQHH8\nuHSOc+Z0NXYzZwL+w6sbPQAYjAZcbbmKysZKGIwGzImZY1Pmk8uf4PG/Pm5zUzEtchoeHP+gC2o9\nPMmsAWQsdoXvvgN+9zspDhcVSTEpPh5YvRrYaJvAHSq698A0xePa5lrEBcWZl3lP9tJgamk7Yr4v\nh8eJb4CTJwGNpmti0ZQU6QHDEElqOaO5o9mc5JkaMRXBvrYTcc/bMw9VjVU2sXj1pNUI9RsaQ6mH\nOsZhIvt66oHp7+lvjsNJwQmYftMXiUU3MPq781Dk5XVdE5visL1r4i++AH72M6lH6tSpXdfPKSnS\nwn4yoTMAACAASURBVDAy99KJl/DWmbcwOVzq+WPqATRSY7vMYjE5wKTQcCEEcP1617CCwkLgxz+W\nLrq7+8tfpKfR8fFAbOyQGgLWqm+1Htt8u8ErvlmMSP/IruSPaWlhHw1U31+WnmAcPy4lu4KDrRuw\niROH/BwURmGEm8K2jgV1BVh/cD0qGytR21xrHi6Qpk3Dfy7+T5vyQogROZzrbpNZA8hYPJA6OoAr\nV7risI+P/eFdJSXS01fTfD+jh07PvL70wLSKw8GJGHPDCPcT30hxOC8PKC0Fpk/visNz5gCqod1d\nXggBAWE3Fv/rZ/+KQ0WHUNlYiQ5DhznJ8+KSFzE5YrLdYzEW3xnGYZK73npgWsXhkCQk+sRAda6o\nKw6broktewFNmCBdE+v1QEWF9GC4u9paKYZPnQp4ed3183aFDkMHCuoKpHl/aqW5f+4JuwcvLn3R\n1VVzOZnFYnKASaHh4Gc/A959V0oMWU7u/OST0pPZIehm60273VtrmmswTjXO5qYjPjhemjyzsrKr\nG2tenrTSWXJyV4OXkiLNdzRE3Wi9gT+e+qPNkIIwvzCc2XDGpnxjeyPOXj2L6IBoRPpHwstdHo2z\nq8msAWQsHggFBcAPfiBdZMfEdMXh2bOBlStdXTu7+twD0+KmI0oZBUVHB3DqVFcczsuT5puwvPGY\nPBnw8HD1KTr0z6J/Iq8izyYWv/PYO/hfSf/Lpnx+bT4UCgWiA6Kh8lYx4XMXMA6TXPS1B6YpDscH\nx0vziFVWdj0UzcuT2qHJk60fjJpGANy8KSWJTGW//VZ6/5NPXHvyQ0BuWS6W7FuCMYFjzL1+JodP\nxtTIqYjwH7r3FHeLzGIxOcCkkCsYDEBZWVevH9MT502bgEcftS1fUiJ1/QwJGVJd8YUQqG6qtpv8\n0el1SAxJtLnpGKsaC3e325PZdXZKqxiYGrDjx6U5kEzJn9RU6Um0C+egMBgNXZODWrw6DB1489E3\nbcrfaL2BXV/sshlSEO4f3nXe5HIyawAZix1paLCOwZcuAa2twD/+YVu2tVWK20NkdS9LTvfADEmy\nngSzrs46GX/6tJTwMsVh0xwULmx/6nX1uHLzinUsbqrEmslrsHjcYpvy+87uQ8nNEqs4rA5QI8Ar\nwAW1J3sYh2kkcboHZkgSxqjGWF8Tnz1rfU3c2modh6dNs39NrNNJc9Dde29X+dmzR/yqup3GThTV\nF5l7/+j0OruLqLR3tsMojCNywv6BILNYTA4wKTRYhJACvL0nqc8+C+zfb7us+/TpQ3Isb6exEyU3\nS+yObfZ297Zp5JJCk6BWqm2ftDY0ACdOdDV433wDREdbP30eP/6u3HgIIdDY3mi+ubjWcg1PTn7S\nplxDWwOmvzG968ZCKf0bGxiLh+MfHvR60uCQWQMo71is19uPww0N0kX0+PHWy7onJkqxeAjqdw9M\nS0YjcPGi9Y3HtWvSDYTlvGxK5V05p05jJ2qaasyxOCEkAcnhyTbldh7diQ+LPrSKw9EB0ZgXOw/a\nQO1dqSsNLMZhGo763QPT3jXxV191xeGTJ6Xku2UvINM1cVubNE9dXh6wYYP9+GwwDKnpIgbTzdab\nWPTuIhRcL0CUMsrc82d61HTOr9kPMovF5ACTQgOhqkoK1JZPmwsLgS1bgOefty0vxJDq8WPSqm/F\npfpLNjcdl29cRoR/hN3kT5BPkP2DCSH1cLK88bhyRbrZsnyKEWw7geedEkKgvrUeIb62CTaD0YB7\n/vseVDRWAABiAmIQHRCNmIAY/PEHf+SQAZmQWQMon1h89KgUey2Xda+qkrrV25s3YQjG4p56YLbo\nW6xjsL0emN3pdFIC3hSHv/pKmvun+7xsg3Az0d7Zjg5DB5Retjcw/++b/4fffPkb1LXUIcwvzJzk\n+Zep/4L08ekDXhcaehiHaSjrqQem6Zp4QugEcxxODEns+Zr4ypWuOHz8uHSN3H1etiCL/T/9VFqR\n8vhxID8fSEqSyj733JBdNGYgGIURV25eQX5tPs5dO4cdC3bYzAMnhMBXlV/hnrD/z96dh8VVHf4f\n/xAgC3sICUlICNn3XbKR0Fhb961Ko1bbtGrtol2sti6tTazWurf9aV0ea63Vr61KtbVqrdoa0ZiF\naCT7DiGQQCABBjLsc39/XAZmmBnCNgwz9/16nnmA4c5whoHPOfecc8+Z7bV+QddYLIvhA51CndHc\nLBUWmiPOU6Z4fv+116QXX3Sf+TNlSr+73Mupsq7S6/TWo9VHNWHoBI/On6lJUz1Hm9tzrkHheglC\nWJj7TjTz5vnlsotffvBLt8sKiquLNSRiiI7cfETRA6M9jt9TvkejY0dzGYGFWawCDJ0sdl7uNWeO\n906er3zFzF3XHO6Hl3tJZgf1oYpDPZ+B2Z5zkMJ54rFrlzR7tvu6bKNG9frr+bjwY720/SW3y7sq\n6yp1V+ZduusLd3kcX1pTqkZHo0bGjOTSWosih9Ef+JqBebT6qCYmTuxem7i+3rwM13U9oPBw95nx\n8+Z1vC7b/febVxxkZEjp6UG5q25X/PTdn2r9kfXafny7Eockts7+uWPFHaf/faNHLJbF8IFOIW/2\n75eefbZtxs+hQ9Lw4dI3vyn96leBLl2nGIahYzXHvHb+1DTUmOv9tKvoJgydoMjwTi4cWl7etqDd\n+vVm5Tdpknsn0Lhx3eoU23J0iwoqCzzW8Xntitc0InqEx/GPbXpM8YPj29aNiE3x2hkEOFmsAgze\nLP7jH6VNm9pm/tTUmB09r79u5ksQ6OoMzGlJ07xuge5Vc3PbumzOE4+aGvdZQGecYe6Q1kVlp8q0\ntWSrRw4vT12uO1fc6XH8lqNbtLFoo9saPiOiR3jd6QuQyGH0ndPNwPTWJp6YOLHzHdZlZe6LPG/d\nal765doJlJpqtolPnTJnbzqPveIKafVq//4CAswwDBVWFSqvNE/Lxi7zOpP/5R0va2TMSM1JnuO+\n5h38zmJZDB/oFPJm3z7p1VfbRponT5ai+mcvdbOjWfmV+V6vbR4YPtDrtc1j4sZ07TIpwzBPylxP\nPI4dkxYvbqvwFi+W4nzPvKlvqtfR6qNuJxffnPdNDY8e7nHsFdlXqMnR5LZuxJi4MUpPSdfgiMAt\nOo3QYbEKMHiz+MknzUa0cxbm6NH9cval5HsGZrGt2JyB6ZLFM4bP6Nxoc3tVVWYnmTOHN20y10Vy\nPfGYMsXn78gwDJ2sPemWw0lRSbp8xuUex/57/7/16MZHPdbwcV6uBvQUOYze1tEMzEHhg3qnTexw\ntLWJnbMyS0ra2sTOddnat4nfektas6ZtBzFnbq9Y0S/XE+2pN/e9qfcOvmcuAl2apyERQzQneY4e\nPedRzRg+I9DFgwuLZTF8oFMoSNQ11Zmjze06fw6cPKAR0SO8VnSdHm1uz243t7J03Y44Ls79xGPW\nrNY1KOyNdhXbijUqdpRiBnpObz37hbO1rmCdRsWOcluw+SdLf6KUuJSe/FqAbrFYBUgW95KOZmBW\n11d73XFx4tCJnZ+B6f7DpIIC9xOPgwfN3WecObx0aeu6bA7DobJTZbI32jV+6HiPp3v/0Pu66K8X\naXDEYLcczhyX6XWRfcDfyGF0l7NNvKtsl8cMzOTo5N5vE+fmuq/LFh/vPiPT2SZuajIX7h892vN5\nDh40O4987SAWZAzDUElNiSIGRHgd4P3T1j+porZCc0fO1ZzkOV5n+qN/sFgWwwc6hfqZqroqr9Nb\ni2xFHqPN04dP19RhU3t+qdSxY+4nHjt2mBWca4XnUsE9/MnD+qDgg9aR5lMNpzQmboxeuvwlLUpZ\n5PH0lXWVih0Yq/AB1tgVAf2fxSpAsriLOpqBGRke6XW9nzFxY3p2qVRDQ9saFM4sltpGnp1rULSs\nj3Tg5AHd9cFdrTl8tPqo4gfF6/zJ5+vPl/7Z4+nrm+rV6Gj02nEPBAI5jNMJSJv46FH3HN6502wT\nu67L5mwTe9tB7LzzpJdf7vmL72cOVx5WzuGc1pk/eSV5chgO/e7c3+maOdcEunjoAYtlMXygUygA\nnL3r3io6W72td0eb22tuNjt9XCq8poqTKp49TvumJenT8YO1fkS9DtYf00NffkgXTLnA4yneO/ie\niouL9ef7/qwjB48ozAjThRdeqIceekiRHS2aJ+m+++7TnXe2rUcRExOjmpoaHT16VD/60Y/06quv\n9vw1dtKaNWuUmZmps846y+cxH374oQYOHKilS5f2WbngfxarAMliH3zNwNx/cr85A9NL54+3tRC6\n5cSJtpmY69fL+OwzVaYM0+GZKdo+KU4bUsP02aCTShgyVO9c847Hw8vt5Xr34Luts35Gx47u9ctr\ni4qKdOONN2r37t1yOBzkPHoVOQypH7SJt2933yTFZnMfFE1P974uW2GhNGNG2w5izl11E33sQNZP\ntc/58y84X488/IhHzr+47UW9ue9NcwHokXOV80KOfnP3b1ovvSPng5fFshg+0CnkR82OZhVUFnit\n6Hoy2lxSUqLvf+87eu31f3r9vsNwqNxeriJbkY4d3afmDesVlfu5zsivV0LeXnPnGZcK73cV/9aO\n8l1u6/eMiRujCUMneF3zwjAMLV68WDfeeKNWr14th8OhG264QYmJiXrwwQc7LHtsbKyqq6t9ft1Z\nTU1Niojw/441a9euVWxsrG655Ra//yz0HYtVgJbP4o5Gm8cPHe91d5nemFFT21ir4upiFVUdkW1b\nriI2btaovEOan19r7hLmsi5bycw0/fCTX7Tm7/DI4Xr6tif03P/9RZNHTu6F30LXkPPwN3LYWvzV\nJu4Sm61tXbb1683PR4/2XJdtwIC2HcQ2bpR++EPzPleGYV4udppO8o44HA59/eqv6de/uV9paWk9\ne21d1Oxo1t7yvbr4rIs17bxpcsx16PNjnyvmPzG6dP6l5LyFWCyLEQCGVdQ11hnbSrYZL+942Vj7\nwVrjilevMOY8OccYcu8QY+yjY42zXzjb+NG/f2Q8lfuU8WHBh8bxmuOnfc6ysjLjgfvuMc7JmGKc\nm55onJMxxXjgvnuMktIS4/Ks84yhCVHGoZOH3B/kcBhGfr7x/M/OMZ5dOtjYPXaIYR8UbuyfMdJY\n/7UVRv7zvzeMsrIev97333/fyMzMdLvPZrMZw4YNM+x2u/Hcc88ZN910U+v3LrjgAmPdunXGbbfd\nZoSHhxvz5s0zrrnmGsMwDCMmJsYwDMPIz883Zs2aZRiGYTQ1NRm33nqrkZ6ebsyZM8d4+umnDcMw\njA8++MBYvny5cfHFFxtTpkzxKFd0dLRx8803GzNnzjTOOusso6zltW7dutVYvHixMWfOHOMrX/mK\nUVFRYRiGYaxevdrIzs42DMMwxo0bZ6xZs8ZYsGCBMXv2bGPPnj1Gfn6+MXLkSCMlJcWYN2+e8dFH\nH/X4d4f+QZKVWueB/nX3CYfDYRy1HTX+e+i/xuObHjdufOtG44vPf9EY9fAoI/rX0caCpxcYV//9\nauPeD+81/r7r78au47uMhqaGbv88W53N2HV8l7Euf53nN+12o/Ldfxk//3K48f7MKKMiJsI4Pjza\n+OzM6cZHP7vSMLZuNYzGRp85X1ZWZvzizp8Zkozq6uoe/Fa6j5yHv4kcDkkdtYlTf5tqnPPCOcaP\n//1j4+ktTxs5BTlG2amet0u9amkTGy++aBjf+55hzJ1rGNHRhrFihWHcdpthvPGGZ5v47bcN42c/\nM4zly81j580zjBtvNIwe5HBHOf/sM88Ykozt27f37LV2w3sH3zNGfX+UMWz6MGPtB2uNf+z+h5Ff\nkW9UVVWR8xYja2UxfOhM1+yfJF0g6bik2S33JUp6WdI4SQWSVkmq9EP5+hVbvc3rAqNHqo4oLSGt\ndXTjgskX6NZlt2pa0rQujTYbhqGwsDB9afFYTYo9pksXNuum66TX6qXHKk7qobq7dPtP71LkP6Xo\nhAhtyv9Y4w+Uu+8K1tysr2csU9jl95ojHgsWaNLAgZrUi7+HnTt3auHChW73xcbGKjU1VQcOHPDY\nxSEsLExhYWG6//779Yc//EFbt27t8PmfffZZJSQkaPPmzaqvr9fy5ct19tlnS5K2bt2qnTt3apyX\n7ajtdrvS09P16KOP6p577tHdd9+txx57TN/4xjf0hz/8QStWrNCaNWt0991367e//W1ruZxlHD58\nuD799FM9+eSTevjhh/XMM8/ou9/9rmJjY/WTn/ykJ78yoKfI4RbNjmYdrjrcmsG7yna17i4THhbu\ndpnBhVMu1PSk6RobP7bTo83OHG6vsblRF/71wtY1fJocTRoTN0ZpCWnKHDhZYa7bEW/frriZM3XP\n0hsV9u3l5gh0Sopcl+Jsn/NRgyR7/Unl7LlLP7h4jf71mUMDBoQpOrqH62N0EzkPeEUWt+ioTew6\nA/PCKRfqp8t+2mszMH1qaJA+/9x9PSCHo+3SrtWrpfnzW9dl8+r9982NVdasMWdyxsb2qEgd5fyt\nl6/Ra7mGIiMGKK6D3Xu7wmE4lF+Rr7zSPH1e8rnySvPU7GjWm19707NsE76k26feroJBBVqzco3b\n98h5wHo60yn0nKTHJP3F5b7bJb0n6UFJt7V8fXuvly5ASmtKW080XCu6yrpKTR02tfWkY/Xc1Zo+\nfLomJU7SwPAOKpl2tpVu09v73249uSiuLlaRrUir567WrfNu1aTYY3rq2ubW4xeHSRNGSKNOSRc+\nKV16vvR2TriuzPyeNGGCWdldfLH0wAPS+PFd21qzGzp6/t742e+++662b9+u7OxsSZLNZtOBAwcU\nERGhRYsWea1AJGnAgAG64oorJEnXXHONLrvsMtlsNlVVVWnFihWSpNWrV+urX/2q18dfdtllkqQF\nCxbotddea73fsPiUb/QLlsvhhuYGr+v97DuxT0lRSa05vDhlsb4575uanjTd6w4oHXl6y9M6XHXY\nbYv24upilf+0XEMi3deQiAyP1C1Lb9HoqGSlFlUrNndbW0fQD2eZO4FlZJg5nJ6usCjf282Xl5d7\n5LxknjCcM0f67b8d+sE50lMfDPJ7nvtCzgNeWS6LfbWJq+qqNDVpamvnjzOHJyZO7FKbuNtOnnRb\nl02fftrWJr7kktY2scLC2nYQe+QR89ibbpLOPdfzOR95pNeK11HOnztX+scWh65aKv1tU6Ti4+N7\n/vPs5Zrw+wlKGJyguSPnam7yXF0z+xrNGznP52PIeQBOnekU+khSWrv7Lpb0hZbPn5e0TiFUAV73\nxnWqrKtsvab5/Mnna/rw6UqNT/U62lzbWKs9FXvcTiyKbEWaP3K+vnPGdzyOP2E/oZO1JzVl2BR9\ncfwXW9eQSI5O1iMP/EaXLmw2J/KVSNonTW65PVQupU6ULpwvPfp2gxZPH6u4hEGKP3pQce+dVHzu\nBsUlJCk+IUFxcXGKj49XXFyc2+fx8fGKjo7WgPbXRnfBjBkzWgPeyWazqbCwUJMmTdLnn38uh8PR\n+r26urou/4zHH39cX/7yl93uW7duXadHzX2N9ndUIQwaNEiSFB4erqampi6UFvA7y+VwzuEc3fT2\nTa2dP+dPOl+3LL2lwxmYx6qP6YjtiEcWP3HBE0oYnOBx/IGTBxQ/ON4th1NiU9w7hKqrzXUnPvlE\nZ69fb64vkZxsnnh84QvSHXdI06Z5rjfRgT8985SZ815kb5aOVkh//Lb00Jt1Sp83RXGxsYpPGKq4\n+ATFJwxryfmhHtnu+jE2Npac94KcRw9ZLou/+c9vqqahprXz54IpF3R5BmaPGYa0b19bB9D69ea6\nbIsWmVl8553mIs/tO1defll69FFzg5XZs81jv/Ut83F+1lHObz4o/fMzafeD0p9zGnXm8gVKiI9X\nXHy84uMTFZeQ2JrzsbGxahrYpLKmMh1rPKai+iI9ftnjSkxIVFxcnMLDzZ19hw0ZpoIfFyhxSOcX\nuibnATh1d2WvZEmlLZ+XtnwdMpzTLA3DUGVdpYqri7WnfI8KqwqVOS7T4/i39r+ln//v560nFGPi\nxmhO8hzNHzXf6/OfOf5MnTn+TPc76+qkTzYo8enf60tDJT0paaCkKeatKF164Elp4/XSxGRp632G\nKk8dUFWtZKuVquyS7aRkK5aO1EXKVh+pqtpw2eoGmN+rdchmb1ZVTaNq65sUGz1IcTFRio+LUVxc\njOLj4hUXP1TxCYmKSximuPhEj86lRYsWKTY2VmeddZZuv/12vfDCC/r617+u5uZm3XLLLfrWt76l\nwYMHa/z48XryySdlGIaKioq0efPm1pcZGRl52kXlzjnnHD3xxBM688wzFRERoX379mnMmDGnfd8c\nDodeffVVXXHFFXrppZe0YsUKxcXFaejQofr444+1fPlyvfDCC1q5cuVpn8spNjZWNput08cDfSik\nc/hLE76kPTftkWReunW0+qiKbEV6e//bOmfiOYof7DmymvVqlhqaGzyyOHKA94VAHzr7Ifc7DMPc\nUWb9v9pOPvbtMy85yMiQvv996cUXpeFdm5HU3v/eekE3Xed5f3Wt9JMXpZdulMYOk/Y9IpVX72/J\n8Jacr5KqjknH6iO0t35gu5w3VHWqSTZ7k07VNip6yMCWnI9WXFys4uPiWjqWzJyPT0hqOQlpG0CY\nP3++kpKSyHmg80I6i/999b/7/ofW1pozf1yXR4iOblsQ+sYbzU6eiAhzB7HKSs8OIcnssH/4YXOH\nMG87iPmRr5xvdkjf+5P04JVSQrR08FFDxyoPyebanq+RqsqkY7Vh2nbKUGVtmKrrwlVTF65TdQN0\n5kNzZDvVpGp7o4YMilR8XJTiYqI6lfPx8fGaMWOGxowZQ84DaNUby737XKBq7dq1rZ+vXLmyS/+8\ngfRx4ce67o3rVGQrUsSAiNYR5HMmnuO1UyhrRpayZmR17YeUlrpf97xtmzR9upJqqxVxsaRrJQ1r\nO/zFN6Tz5kqTRppfTxvd0ZM3tty8a2qWquvqZLPXqar2pHtFVCtVHZVsh8K0v26gbPURstWFa8uB\nBv3srgf1gx/8QJL0+uuv6/vf/77uueceORwOXXDBBbrvvvskSRkZGRo/frxmzJih6dOnu61LccMN\nN2jOnDlauHChXnjhBbfef+fn119/vQoKCrRgwQIZhqERI0bo9ddfd7tm2Jvo6Ght3rxZ9957r5KT\nk/Xyyy9Lkp5//nl997vfld1u18SJE/Xcc8919Mtz+zkXXXSRsrKy9M9//lOPP/64MjIyOnws+qd1\n69Zp3bp1gS6GP3W4UGCwZvHX/v41fVDwgU7YTyg5Jrk1ixenLPbaKbT+2vVd+wGNjeYaFK7bETc2\ntp14XH21tGCB1DLq2FvCGsoV5eUp3/pcShsurZhmfj1hhHnzrqnl5p3DIVXX1ctWW68qe4Vbxttq\nparjku2wlF83sHUQYUdhgy7Muk6P/u5xSeQ8epcFclgKwTZxnygpcc/hbdvM7d6XLZOuuUZ64gnJ\n2Zng3EHs3nvbdhC7+mrpySc9n3fu3L59HS585fyWQ1JplXTNcvPrMcPMm3eGy0fPzHc4pFP1DbLV\nNqjKXmlmu2ub/oRkK5KO1A3UzvoIVdVG6EBJkybMzNBrb7wriZy3IotkMbqosxeMpkn6l9oW1dsj\naaXMC5xGSfpA0rR2jzGC9drNqroqHa0+qpS4FMUN6oXF3xwOaedO9wrvxIm2NSiWLTOnskZH69zl\nU/Xadfs8KpJ9x6Tlv5LyfytFD+55kbrqW89GacXVj+naa6/t+x/ejt1uV05OjrKzs1VYWKjU1FRl\nZWXpq1/9are2w4T1BOn2m2nqeg5LQZzFe8v3KmZgjJJjkhUxoBfGMCoqJNcFobdskdLS2rYizsgw\n16Tw8zo+vnK+4pQ08Wbp8/uk1CS/FsGrX70mNU67U/fc++tOHe8rizMzMxXVwZpKPdHdbY/R/wRp\nDksWaxP3uuZmadcu94HRigqzTezM4vR0c2ZQe59+al62u2BBW/t56VIpKQCBeRrecv6JSunvVdLm\nh6V3fygtndz35frLR9J7FZfohb/9o+9/eCeR830riLMYvai7rew3JK2W9EDLx/6bLN0QPzje6yh0\np9XUSJs3t1V4GzeaFVZGhrR8uXTbbdL06V7XoPjiBV9Xzp67dG67wY0po6QVU6U/fSgNi5F++fpA\nJSUMUfwQKW6IQ/GDmxU3uFHxgxoVF6WW+6X4KPOj6+fRg7p+zmOrC++13RF6YtWqVcrNzVVxcbEa\nG9tmQ/3lL39RU1OTVq1apVdeeSWAJQT6TEjnsCRNTZra/QcbhnTggPvlB4WFZgf8smVmDi9ZIiV4\nrjXkb75yfmi09K1M6XfvSJcslK77Y6QS46NastuZ802KH9TglumtH12yPnpQl5Y5kiTZ6iOUHN+5\n30dHWZySkqL09HS/ZHGgFt4GOhDyWdwjNTWt67LJuS7biBFmDq9Y4d4mbmiQtm6V/vY36Tov117N\nm2cuMN3RDmIBdMJ+QnmleUqNT/Wa8xMipZ8kSVvPlx56U7r/SunCRyMVHxvVkuGG4gY3K35wo+La\n53y7tnx8lBQzWArvas7XSnEJnV93KBDIeaDvdea/7q8yF9BLknmt9C8l/VPSK5JS5Xv7TeuMihw5\n4n7isWePWXE5RzyWLjUXJu2E8vJy/eLKkR67FUjSpgPSFY+ZJwt1427QN7/5TVVVVbWuyG+z2VRV\nWSFb5QlVVZ6QreqkqiorZbNVy1Zdo6rqGtlqalXf0KTYqIGKj45QXFS44qPCFDfEUPwQh+IGNylu\nUKN58uFS+dzzr2j95g+vtW4lGQh2u10zZ85UQUGBz2PS0tK0c+dOv41SIzQE4ahId3NYskoW19W1\nrUHh3JFm0KC2GUDLlpmXEnSw/kFf6Sjni05Ic+6Qbr1A2mw/R7f/fK1sNlu7nK+UreqEqirKZauq\nMHPfZlOVrVq2GruqbHbV1jcqZkik4mMiXXJeZs4PajJPOgY3tZ5oxEVJz+YM0iXf+X+64YYbULrY\nagAAIABJREFUOiw/WYzeEIQ5LNEmPr3CQvdZQHv3mm1iZxYvXWp2Cklm5/1bb7Ud/+mn0sSJ5nGP\nPSa1LKLcX+UW5+r1Pa8rrzRPeSV5qm6o1pzkObpj+R1aNHSRz5y310tpP5buvFj6664ZeuzJ59wz\nvqpKtqoq3zlffUpV1XbV2Os1MNzc0Sx6kBQ72MzzhGhzkCEpVkqKce9IenOrNHLJrfrNAw95eUWw\noiDNYvSyzrSOr/Jx/5d6syBBo6lJystzr/Dq69s6gK68Ulq4UBrcvWu8kpKSdKB6lL7zp2O6dGGz\nvjDNDHt7vXTylDQgTPrbBmntJfO0dOnSbv2MxsZGVVdXe3YouX6srNCxynJVVZ6UraBCiSn1mjq1\nB6P2vSAnJ0fFxcUdHlNcXKycnByd622rUSB4kcPtlZa6b0ecl2cuKurM4ccek8aODXQpveoo57cX\nSaOHSv/vP9I3rp+uJUuWdOtnNDc3t3Ym+cz5qgrtryiXrfKkqopOqi66RvPne98gwRVZDAsji101\nNprZ67o8Qn19WwfQVVeZbWJf67KFhZk7hE2YIP3859Lixd4XjA6gqroqVTdUa0yc5wLJ5fZyDQof\npG8v+LbmJs9VWkKa2ywXXzn/4R4pbXiYfvOGoS98cawWdWM3tHfeeUcXXXSR6puaVN9kXn7cnrm1\n+yoNj483O5iOVajKqNRlyz3XRwVgbYEfMu3vKivNNSicFV5urpSaalZ2550n3XOPNGlSr65B8f6m\nIyovL9efnnlKv3/2BYU1lMsYmKQvXvB1/fr3E/W1r32tR5dyRUZGKjExUYmJ/Xv6aHvZ2dlulyl4\n09jYqOzsbE5EgFDicJhrULieeJSVta3Ldu+95mVhMd63qu+POsr5p/92ppYvX674BJ+rj55WeHi4\nhg4dqqFDh/ZiqU1kMWBRFRXm5V/OHM7NlcaNM3P4/POlX//anOkTFta2g9jvfmceu2aNuRZQey+8\n0Pevw4eTtSf1YcGH5syf0jx9XvK5yk6V6YeLf6j7zrrP4/jzJp+n8yaf5/P5Osr5F976qubPm624\n+O5ldHZ29mm3W3c4HIqKitbvH3+qWz8DgHXQKeRNdrb03ntmJVZQYG5lmZEh3XqreRLih0Z2e0lJ\nSfrZHb/Qz+74hdv9hmHogd/cq+E93BI5GBUWFvbqcQD6scOHzZMF5xoUw4a1XQb205+aO9N0ddGc\nfsZXzkvSJReereEjfG49FlBkMWAhr77a1iY+fNhcBNqZw0uWeLaJn31WeuYZaft2aebMth3EJkwI\nTPm9aHI0ed28YG/5Xj279VnNTZ6rq2ZdpfvPul+TEicpfED3L2PrKOdvuP5aDYnq3mAGOQygN9Ep\n5M2BA+YJx7e/ba5BERkZ6BK1CgsL0ycbczW4m5enBbPU1NRePQ5AP1Zdbc7UvOEG6bnnpJEjA12i\nPvW3V/+piH6w/pE3ZDFgIfv3S7NmmVnsbBM3N0unTkneZq1PnSrdf7/vHcT6kGEYKrIVta7545wB\nFDMwRp/e8KnH8UvHLtWbX3uzz8r30KOPyeFwdOux5DCA3uTPRaWss6ge+sQ777yjiy++uMPLFiIj\nI/XGG29wyQI6ZLFF9chi9CqyGL2BHA4i3nYQu+km89Ldfqy0plRzn5qruSPnam5yy23kXE0dNlWR\n4f1nwLc7yGH0FotlMXygUwhBgx1v0FssVgGSxehVZDF6AzkcJP7zH+nyyz131Q3g5a0lNSVuM392\nle3Spus3aWB4/9yq3h/IYfQWi2UxfOifc9MBL6KiopSeni7J3NnGdXQkMjJSKSkpSk9Pp/IDAD8i\niwELWblSOnHC9w5ifWzmEzN1rPpY6+yfL0/4sm5deqvCw/r39vW9jRwG0JuYKYSgY7fblZOTo+zs\nbBUWFio1NVVZWVnKzMyk8kOnWGxUhCyGX5DF6AlyGK5O2E+4rf1zV+Zdmpg40eO4cnu5hg0Z5rb1\nu5WRw+gpi2UxfKBTCIDlWKwCJIsB9DvkMCTpjvfv0IvbX1RVXZXmJM9pXffnsumXKSkqKdDFA0Ke\nxbIYPtApBMByLFYBksUA+h1yOPTZ6m3aVrpNeSV5WjJmiRaOXuhxzLbSbYoZGKO0hDQNCBsQgFIC\n1maxLIYPrCkEAAAAoMfe2veW/rj1j8orydPxU8c1c8RMzU2eqzNGn+H1+DnJc/q4hACA9pgpBMBy\nLDYqQhYD6HfI4eBkb7Rrx/EdihgQoQWjFnh8f1PRJh2uOqy5yXM1KXGSwgdYawFoINhYLIvhA51C\nACzHYhUgWQyg3yGHg0N+Rb5e2v6S8krztK10mwqrCjUtaZqunX+tblp0U6CLB6CHLJbF8IHLxwAA\nAAB4qG6oVmVdpS6Zeol++YVfauqwqYoMjwx0sQAAvYiZQgAsx2KjImQxgH6HHAaAwLNYFsMHlvkH\nAAAAAACwIDqFAAAAAAAALIhOIQAAAAAAAAuiUwgAAAAAAMCC6BQCAAAAAACwIDqFAAAAAAAALIhO\nIQAAAAAAAAuiUwgAAAAAAMCC6BQCAAAAAACwIDqFAAAAAAAALIhOIQAAAAAAAAuiUwgAAAAAAMCC\n6BQCAAAAAACwIDqFAAAAAAAALIhOIQAAAAAAAAuiUwgAAAAAAMCCInr4+AJJNknNkholLeppgQAA\nXVIgchgAAq1AZDEAIAj1tFPIkLRS0smeFwUA0A3kMAAEHlkMAAhKvXH5WFgvPAcAoPvIYQAIPLIY\nABB0etopZEh6X9IWSd/ueXEAAF1EDgNA4JHFAICg1NPLxzIkHZM0XNJ7kvZI+qinhQIAdBo5DACB\nRxYDAIJSTzuFjrV8LJP0usxF9VorwLVr17YeuHLlSq1cubKHPw4Aum7dunVat25doIvhLx3msEQW\nAwi8EM9hiTYxgCBggSxGN/Tk2ucoSeGSqiVFS3pX0t0tHyXJMAyjZ6UDAD8ICwuTQmPth9PlsEQW\nA+iHQiiHJdrEAIJUiGUxuqknM4WSZY6EOJ/n/+R+IgIA8C9yGAACjywGAAQtf/YKMioSQux2u3Jy\ncpSdna3CwkKlpqYqKytLmZmZioqKCnTxgC6x2KgIWRwiyGGEEnIYwYosRiixWBbDBzqFcFqrVq1S\nbm6uiouL1djY2Hp/ZGSkUlJSlJ6erldeeSWAJQS6xmIVIFkcAshhhBpyGMGILEaosVgWw4eeLjSN\nEGe325Wbm6uCggKP7zU2Nrbeb7fbGR0BAD8ghwEg8MhiAKFqQKALgP4tJydHxcXFHR5TXFysnJyc\nPioRAFgLOQwAgUcWAwhVdAqhQ9nZ2W7TY71pbGxUdnZ2H5UIAKyFHAaAwCOLAYQqOoXQocLCwl49\nDgDQNeQwAAQeWQwgVNEphA6lpqb26nEAgK4hhwEg8MhiAKGKTiF0KCsrS5GRkR0eExkZqaysrD4q\nEQBYCzkMAIFHFgMIVWxJjw7Z7XbNnDnT604LTmlpadq5cyc7LSBoWGz7TbI4yJHDCEXkMIINWYxQ\nZLEshg9sSY8ORUVFKT09XZK5o4LrAnuRkZFKSUlReno6lR8A+Ak5DACBRxYDCFXMFEKn2O125eTk\nKDs7W4WFhUpNTVVWVpYyMzOp/BB0LDYqQhaHCHIYoYQcRrAiixFKLJbF8IFOIQCWY7EKkCwG0O+Q\nwwAQeBbLYvjAQtMAAAAAAAAWRKcQAAAAAACABdEpBAAAAAAAYEF0CgEAAAAAAFgQnUIAAAAAAAAW\nRKcQAAAAAACABdEpBAAAAAAAYEF0CgEAAAAAAFgQnUIAAAAAAAAWRKcQAAAAAACABdEpBAAAAAAA\nYEF0CgEAAAAAAFgQnUIAAAAAAAAWRKcQAAAAAACABdEpBAAAAAAAYEF0CgEAAAAAAFgQnUIAAAAA\nAAAWRKcQAAAAAACABdEpBAAAAAAAYEF0CgEAAAAAAFhQTzqFzpW0R9J+Sbf1TnGC17p16wJdhD7D\naw1NVnqtIYYsbmGlv2Fea2iy0msNMeSwCyv9HfNaQ5OVXisgdb9TKFzS4zIrwRmSrpI0vbcKFYys\nFB681tBkpdcaQshiF1b6G+a1hiYrvdYQQg63Y6W/Y15raLLSawWk7ncKLZJ0QFKBpEZJf5N0SS+V\nCQDQOWQxAAQWOQwACGrd7RRKkXTE5euilvsAAH2HLAaAwCKHAQBBLaybj7tc5jTZb7d8fY2kxZJ+\n4HLMAUkTu180APCbg5ImBboQvYAsBhCsyGEACLxQyWL0QEQ3H1csaazL12Nljoy44o8LAPyLLAaA\nwCKHAQCWFCGzVzFN0kBJn8vii+oBQACQxQAQWOQwAMCyzpO0V+aU2DsCXBYAsCqyGAACixwGAAAA\nAAAAAADW9lVJOyU1S1rQ7nt3SNovaY+ks/u4XP62VuY15FtbbucGtDT+ca7M926/pNsCXBZ/K5C0\nTeZ7uTmwRel1f5JUKmm7y32Jkt6TtE/Su5ISAlAuf/D2Wtcq9P9XrZrDkjXeX7I4NJDFof+/atUs\nXqvQf2/J4dBADof+/yoCZJqkKZI+kHsFOEPmddaRMq+7PiBpQF8Xzo/WSPpJoAvhR+Ey37M0me9h\nqF8zny+zUghFKyTNl3ul8KCkn7V8fpuk+/u6UH7i7bWG+v+qZN0clkL//SWLQwdZHNr/q5J1szjU\n31tyOHSQw6H9v4pO8kcFtEdmz2p7l0j6q6RGmT3OByQt8sPPD6SwQBfAjxbJfM8KZL6Hf5P5noay\nUH0/P5JU0e6+iyU93/L585Iu7dMS+Y+31yqF7nvrZOUclkL7/SWLQwdZHLrvrZOVsziU31tyOHSQ\nw6H73qIL+nJUYrTct+gskpTShz+/L/xAUp6kZxU6Uw2dUiQdcfk6FN8/V4ak9yVtkfTtAJelLyTL\nnFKqlo/JASxLXwjl/9WOWCGHpdB+f8ni0EYWW4MVsjiU31tyOLSRw7Cc7nYKvSdz6ln720VdfB6j\nmz8/UHy97oslPSlpvKR5ko5JeiRAZfSXYHuveipD5hTL8yTdKHPKpVUYCu33O1T+V62awxJZbCVk\ncegKlf9Vq2YxOWwd5HDoCvX/VXRSRDcf9+VuPKZY0liXr8e03BdMOvu6/yjpX/4sSAC0f//Gyn2U\nK9Qca/lYJul1mVOFPwpccfyuVNJISSWSRkk6Htji+JXrawvm/1Wr5rBEFpPFoYssDj5WzWJyuA05\nHFrIYViOvy8fc71G8Q1JV0oaKLNHcrJCawX7US6ff0Xui3iFgi0y37M0me/hFTLf01AUJSm25fNo\nmbuChNr72d4bkla3fL5a0j8CWBZ/C/X/1faslMNS6L+/ZHFoI4tDl5WyONTfW3I4tJHDQC/4iszr\nbGtl9rD+2+V7d8pcmG2PpHP6vmh+9ReZ2zXmyQyPULz+9DxJe2W+h3cEuCz+NF7mThKfS9qh0Hut\nf5V0VFKDzP/Vb8ncVeJ9hd72m+1f67Wyxv+qVXNYssb7SxaHBrI49P9XrZrFVnhvyeHQQA6H/v8q\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsbK+kDSTsl7ZD0w5b710oqkrS15XZu\nIAoHABZBFgNAYJHDAABLGilpXsvnMZL2SpouaY2knwSqUABgMWQxAAQWOQwACEkRp/l+SctNkmok\n7ZaU0vJ1mL8KBQBwQxYDQGCRwwAAy0uTdFjm6MgaSQWS8iQ9KykhYKUCAGtJE1kMAIGUJnIYAGAx\nMZK2SLq05esRMkdFwiTdK7MSBAD4F1kMAIFFDgMALCdS0n8k/djH99MkbW9/58SJEw1J3Lhx49Yf\nbwcUfMhibty4hdKNHObGjRu3wN+CMYvRywac5vthMkc8dkn6ncv9o1w+/4q8VIAHDx6UYRiWua1Z\nsybgZeC18lp5rZ27SZrYw+zsa2Qxf8O8VgvcrPRaRQ6H7M1Kf8e81tC8Wem1KviyGH5wuoWmMyRd\nI2mbzG02JelOSVfJ3IHBkJQv6Tv+KiAAgCwGgAAjhwEAIel0nUIfy/tson/7oSwAAO/IYgAILHIY\nABCSTnf5GDpp5cqVgS5Cn+G1hiYrvVaEJiv9DfNaQ5OVXitCl5X+jnmtoclKrxWQzOuj/cVouU4R\nAPqVsLAwyb/515+QxQD6HXIYAALPYlkMH5gpBAAAAAAAYEF0CgEAAAAAAFgQnUIAAAAAAAAWRKcQ\nAAAAAACABdEpBAAAAAAAYEF0CgEAAAAAAFgQnUIAAAAAAAAWRKcQAAAAAACABdEpBAAAAAAAYEF0\nCgEAAAAAAFgQnUIAAAAAAAAWRKcQAAAAAACABdEpBAAAAAAAYEF0CgEAAAAAAFgQnUIAAAAAAAAW\nRKcQAAAAAACABUUEugAAeo/dbldOTo6ys7NVWFio1NRUZWVlKTMzU1FRUYEuHgCEPHIYAAKPLAY6\nL8yPz20YhuHHpwfgatWqVcrNzVVxcbEaGxtb74+MjFRKSorS09P1yiuvBLCE/UdYWJjk3/zrT8hi\noI+Qw51HDgPwF7K48yyWxfCBmUJACLDb7crNzVVBQYHH9xobG1vvt9vtjI4AgB+QwwAQeGQx0HWs\nKQSEgJycHBUXF3d4THFxsXJycvqoRABgLeQwAAQeWQx0HZ1CQAjIzs52mx7rTWNjo7Kzs/uoRABg\nLeQwAAQeWQx0HZ1CQAgoLCzs1eMAAF1DDgNA4JHFQNfRKQSEgNTU1F49DgDQNeQwAAQeWQx0HZ1C\nQAjIyspSZGRkh8dERkYqKyurj0oEANZCDgNA4JHFQNexJT0QAux2u2bOnOl1pwWntLQ07dy5k50W\nZLntN8lioA+Qw11DDgPwB7K4ayyWxfCBLemBEBAVFaX09HRJ5o4KrgvsRUZGKiUlRenp6VR+AOAn\n5DAABB5ZDHQdM4WAEGK325WTk6Ps7GwVFhYqNTVVWVlZyszMpPJzYbFREbIY6EPkcOeQwwD8iSzu\nHItlMXygUwiA5VisAiSLAfQ75DAABJ7Fshg+nG6h6bGSPpC0U9IOST9suT9R0nuS9kl6V1KCvwoI\nACCLASDAyGEAQEg6Xa/gyJbb55JiJH0q6VJJ35JULulBSbdJGirp9naPZVQEQL8UhKMiZDGAkEIO\nA0DgBWEWww9ON1OoRGblJ0k1knZLSpF0saTnW+5/XmalCADwD7IYAAKLHAYAhKTTdQq5SpM0X9Im\nScmSSlvuL235GgDgf2kiiwEgkNJEDgMAQkRnO4ViJP1d0o8kVbf7ntFyAwD4F1kMAIFFDgMAQkpE\nJ46JlFn5vSDpHy33lcq8rrpE0ihJx709cO3ata2fr1y5UitXrux+SQGgm9atW6d169YFuhg9RRYD\nCFrk8NrWz8lhAIESIlmMXna6RaXCZF4ffULSzS73P9hy3wMyF9NLEIvqAQgSQbioHlkMIKSQwwAQ\neEGYxfCD0/0BLJeUI2mb2qbD3iFps6RXJKVKKpC0SlJlu8dSAQLol4KwAiSLAYQUchgAAi8Isxh+\n4M8/ACpAAP2SxSpAshhAv0MOA0DgWSyL4UNXdh8DAAAAAABAiKBTCAAAAAAAwILoFAIAAAAAALAg\nOoUAAAAAAAAsiE4hAAAAAAAAC6JTCAAAAAAAwILoFAIAAAAAALAgOoUAAAAAAAAsiE4hAAAAAAAA\nC6JTCAAAAAAAwILoFAIAAAAAALAgOoUAAAAAAAAsiE4hAAAAAAAAC6JTCAAAAAAAwILoFAIAAAAA\nALAgOoUAAAAAAAAsiE4hAAAAAAAAC6JTCAAAAAAAwILoFAIAAAAAALAgOoUAAAAAAAAsKCLQBQCC\nnd1uV05OjrKzs1VYWKjU1FRlZWUpMzNTUVFRgS4eAIQ8chgAAo8sBoJTmB+f2zAMw49PDwTeqlWr\nlJubq+LiYjU2NrbeHxkZqZSUFKWnp+uVV14JYAnhTVhYmOTf/OtPyGKENHI4OJHDQGghi4OTxbIY\nPjBTCOgmu92u3NxcFRQUeHyvsbGx9X673c7oCAD4ATkMAIFHFgPBjTWFgG7KyclRcXFxh8cUFxcr\nJyenj0oEANZCDgNA4JHFQHCjUwjopuzsbLfpsd40NjYqOzu7j0oEn4qLpVdflX78Y2nRokCXBkAv\nIYeDSH29tHGj9Mgj0uWXB7o0AHoRWRxEioqkV16RfvQjKT090KVBP8HlY0A3FRYW9upx6CVNTdL2\n7dInn0jr15sfa2qkZcvM2yOPSJmZgS4lgF5ADvdjZWXShg1tObx1qzR5spnDl18uvfZaoEsIoJeQ\nxf1UU5O0bZt7m9hub2sT//a30ooVgS4l+gE6hYBuSk1N7dXj0E1VVdKmTW2V3aZNUkqKlJEhfelL\n0po10pQpUliYOVKdnx/oEgPoJeRwP+FwSHv3tuXw+vVSSYm0eLGZxWvWmLM04+LM44uKAlteAL2K\nLO4nqqrMGZnOLN68WRozxuwAOvts6e67zc55Z5vYyxpQsCY6hYBuysrK0l/+8pcOp8tGRkYqKyur\nD0sV4gzDrMBcTzwOHpQWLjQrvB/9SFq6VBo2zPOxt90mPf64+X0AIYEcDhC7XcrNbcvhDRuk+Hgz\nhzMyzCyeNUsKD3d/XH6+9IUvSLW1gSk3AL8giwPAMMxMdW0THzoknXGGmcU33ywtWeK9TXzrrdKT\nT0rLl/d9udEvsSU90E12u10zZ870utOCU1pamnbu3MlOC93V0GBecuBa4UnmSUdGhlnpzZ8vDRxo\njlTv2SNFRJgzg9o7fFhKTJRiY622/SZZjJBFDveRo0fdc3jnTrPTx5nDy5ZJo0ebx1ZVSZ99Jp15\npufzNDaaJzGTJytswACJHAZCAlncBxoazGx1vRQsLMy9TTxvnnubODLSnBnU3uHDZmdRTIzV2sTw\ngZlCQDdFRUUpvWWBtuLiYrfRkcjISKWkpCg9PZ3KrytOnDArOWeF99ln0sSJZmV36aXSQw9JaWlm\nJVhba06Lffhh8/gNG6SEBOnnP/feKTRuXJ+/HAD+RQ77QXOz57psNlvbLKCHHzYXJx0yxDz+0CHp\nv/9tOzY/3xypXrKk7RinyEjv+QwgqJHFflBe7tkmnjzZzOHLLzfXyBw3zmwT2+1tbWLn7M3EROkX\nv/DeKUSbGO0wUwjoIbvdrpycHGVnZ6uwsFCpqanKyspSZmYmlV9HDMNcg8JZ2a1fb45GO9egWLbM\nPKlwrkHR3htvSPfd1zZCsnSpNGpUp360xUZFyGKEPHK4B2y2tnXZ1q83Px89ui2HMzLMjpwBPjas\n/fKXpaFD3UeqIyNP+2PJYSD0kMXdZBjmzB7XNrHrumzLlpmf+2oTv/669OCD7rM3R47s1I+2WBbD\nh878AfxJ0gWSjkua3XLfWknXSypr+foOSe+0exwVIIA2tbXSli1tld2GDVJMjPuJx+zZ5hoUzpHq\n9eulkyelu+7q1aIEYQXY3RyWyGIAToZhXjbgzOFPPpEOHJAWLGjL4aVLpaQk83jXHcSuvNK8XLeX\nBGEOS7SJAfQGu72tTeycDRQX594mdq7L5txVd/168/Lcn/+8V4sSpFmMXtaZy8eek/SYpL+43GdI\nerTlBgCejh1zv/xg+3Zp5kyzsvvGN6SnnjJ3CXOy26V77mkbqXbuIOZtXYouqm+q1/6T+7W7bLf2\nlO/p8fMFADkMoOsaGqTPP3dfD8jhaJthuXp127psTu+/L730UttI9ZIlZm7Hx/eoKIZhqPRUaTDn\nsEQWA+iOY8fcO+N37DA7fZYtM3P46afb1mWTpFOnpF/9yjzedQexs87qcVFCoE0MP+hMp9BHktK8\n3E+PIgBTc7O58KjriUdlpTninJEhPfCAuQZFVJQ5Ui2Z10C7GjTIfJ6OdhA7jer6au0u363dZbvN\njy2fF1YVKi0hTdOHT9f0pOm98IL7HDkM4PROnnRfg+LTT6UJE8wcvuQSM4vHjzfz1zA8c1gyO5LS\n06Uf/9jsyG+/g9hpOAyHCioL2nK45eOe8j0KCwvT9KSgzWGJLAZwOs3NZqePa5u4qqptBtBDD5nr\nrjnbxN5yeNAgswP/5pvNNnFiYpeLEcJtYvhBZyuxNEn/UttU2TWSviWpStIWSbdIqmz3GKbKAqGq\nutqczeOs7DZtkpKT2yq8ZcukadPMNSi87SC2YYO5YHQ3GIahMnuZ2wnHrvJd2l22WxV1FZo6bGpr\nRTc9abqmD5+uSYmTNDC8bSQ8SKfKpqnrOSyRxUBoMgxp3z73NSiKi6VFi9zXZXPO8Gm/g9j8+ebo\ndDc1NDdo/4n9Hicde8v3aljUMLcMdn4cHjXcmb/BmsMSbWIArqqrpY0b3dvEo0a5t4mnTm1rE7ff\nQWzzZmns2G79aAu3idHLutspNEJt107fI2mUpOvaPcZYs2ZN6xcrV67UypUru1tOAIFiGFJhofvJ\nxL595gmF64J2w4d7PvaGG8zLEJw7iDmPd+4g1gGH4VBhVaHHaPPu8t0yDMOjkpueNF3jEsZpQJjn\nYqjr1q3TunXrWr++++67peCrANPU9RyWyGIgNNTWmjN/XC9BiI72XJctot0k8M8+M3eqcd1BbNky\n9x3EOlBdX6095Xs8cvhw5WGlxqd6ZPG0pGmKG+S5GGqI5LBEmxiwLue6bK6d8fv3m+uyubaJneuy\nubr+eulvf5MmTXLPbecOYh2gTQx/626nUGe+x6gIEIwaG801KFxHMRob3SuwBQvMqa3OkeroaPN6\n5/b27jVHS3ztliBztPnAyQMe01v3ntiroYOHeq3oRkSPaB1t7o4gHRVJU9dzWCKLgeBUUuKew9u2\nSTNmuHfsOHO3ulravducJdReTY1UVNThDmLeRpudeXzCfkJThk3xyOLJiZM1KGJQt1/Fgcq1AAAg\nAElEQVRekOawRJsYsI7GRnO2u2sWNzd7tokHDmzbVTc21n3NTKc9e8x1g/pRm9gwDA0w64VgzGL0\nou52Co2SdKzl85slpUv6WrvHUAECwaCiom13mU8+MXdDSEtzr/AmTDBHMVx3EHOuWxETIz38sJSV\n1eGPqWmoMUeb21V0BZUFXRpt7g1BejKSpq7nsEQWA/1fc7O0a5f7LKCKCnMtCWcOp6ebHfCuO4g5\nT1QOHDCP+89/Ohxx7mi02WE4vF7yNS5+nMIHdG1doc4I0hyWaBMDoevkSc82sXNdNmcWO9dlq62V\ncnPbjt2wwewQeuQR6bLLOvwx/aFN/Oa+N/XLD36prd/dKgVnFqMXdeYP4K+SviApSVKpzGunV0qa\nJ3PHhXxJ32n5nisqQKC/MQzz5MH1xKOw0BxddlZ2S5ZICQneH//009Kzz7qPVLcbDSk7VeZ1Ybty\ne7lfRpu7IwhPRrqbwxJZDPQ/NTXmuhPOHN64URoxwj1bp0/3PrPH4ZDmzDHXbXMe324HsY5GmxMG\nJ3jt/EmOTu7RDMyuCsIclmgTA6HDMMxLv1w72IuK3NvEixf7bhM/8YT0/PPuue26g5gC1yY2DEP5\nlfnacnSLahpqdO38az2Oqa6vVpOjSYlRiVLwZTF6mT//AKgAgUCrq2tbg8I5s2fw4LYKLCPDPLmI\niHDfQcwwpO9/3+fTOgyHjlQd8VrRNRvNfTra3B1BejLSXWQxEGjt12Xbu1eaN68th5cuNTuFJPeR\n6u98x1xvwoeORpvHxo/1yOJpSdMUP7hnW8v3FnIYQJ+qq/Oc7R4V5d4mdq7L5txB7JNPzMd+73s+\nn7a/tIkraiv00CcPacvRLdpydIuiB0brjNFn6KzxZ+mmRTf5fJzFshg+0CkEhJLSUvftiPPyzNFk\n10WeXXc4OHlSevxxzx3EzjtPWrVKjc2N5mizl91l4gfH94vR5u6wWAVIFgN9qbHRzF7XNSjq691z\neOFCc102p7ffll57zTzWOVKdkSF9+9vSmDEdjjZPHjbZI4snD5uswRGDA/c76ARyGIBflZa6d8Zv\n22bOwHTNYtf1MMvLpT/8oW325siR5nHnny9lZfWbNnFJTYlGxoz0uL+2sVYPrH9A6aPTtXD0Qq/H\neGOxLIYPdAoBwcrhMNegcD3xKCszR5ydld2iReaaP75UVUn33ae6RQu1d0qithslbhVdfkV+vx9t\n7g6LVYBkMeBPznXZnFm8ZYs5u8d1DYqJEzveXeb//k+OigqVzBmv7SOkXRX73Dp/mhxNXhcYTUtI\n6zczMLuKHAbQaxwOc7a7a5v4xAnPNnF0tO/nqKiQHnhAdekLtGfqMO1wHAt4m7i0prR15s+WY+bH\nZkez8n+Ur+iBHbyWLrBYFsMHOoWAYHHqlDmbx1nhbdwoDRvmfuIxY4a5BoVzpNq5dtDmzdKOHSof\nUOd1gdGyU2VBO9rcHRarAMlioLc412VzPfE4fNhcBNp1XbahQ83j2+8gdu65avzFnT5Hm+MGxXnt\n/BkZM7Lfz8DsKnIYQLfV1JhtW2c7d+NGafhw9zaxc1025666zhzevFnatUvlsvf7NvHiPy5W/KB4\nLRy1UGeMPkNnjD5DqfGpvVofWCyL4QOdQkB/deSI+8nE7t3S3LnuC9olJ3s8zLjyShlvvalTo4cr\nf8YofZo2SP8ZWaP/huWrMQRHm7vDYhUgWQx0V32957pskZFtlx8412WLjHR/3P/+J8f118tRcUKl\ns8dr5+QEfZTSrLcSjmuX/bDGxI3xurtMwmAfC5qGIHIYQKcdOeK+ScqePea6bM428dKl3tvEq1bJ\n+PfbOpUyXPkzRmtL2kD9J7lG/wtwm7iitkKfHfusdQbQ7Rm3a+HohX79mb5YLIvhA51CQH/Q1GRe\n6+x67XNtrfuIx8KF5iLRLSPVjfGxOjig0mONiYHbd+lkcpxSUmdaYrS5OyxWAZLFQGcdP+7eGf/5\n5+67fC1bJqWmmsfW1EgFBSqfMNJjtLmkYIfCysrkmDJF05JnuGXxlGFTQnIGZleRwwC8ampqm+3u\nzGPnumzOLF6wwL1NnBCng2EVHm3iQdt3qTw5TmP6SZv4kU8e0VOfPqWSmhLNHzlfZ4w+QwtHLdQ5\nk85RUlRSn5bFyWJZDB/oFAICobLSnOrqrOxyc80FoF1PPCZPlsLCdMp2QkUf/FOnPnxPgzd9ppQd\nh2UPb9Z1l4Rp3/xUy482d9XO4zs1K3mWZJ0KkCwGvHE4zBmYriceZWXm5V/OHF68WIqJkWEYOrpz\no8rff0PG+o81dOseDS86qf9NjtDVVw92X1y05fPxCeMtNQOzqyx2IkIOA75UVrqvy5aba3a+uy4I\nPWmSW5vYvu49Dd78qUZvP6xTEQ5de2mYDswLfJv4VMMpbS3ZqoTBCZo1YpbH97eVblPEgAhNHTa1\n39QPFsti+ECnEOBvhiEdOuR+4pGfL51xRltlt3SpTgw2vO4uc8M/i3TpwUgdnjVGNWfM1aDMM5U2\newWjzT5U1lVqW+k2hSlMK8at8Pj+wZMHNWnYJMk6FSBZDEjmumybN7fl8IYNUmKi2+hz49TJOmgr\n8MjhI8f26PNHa3VwUqKOz5ssx9IlSsz4sqaNmatRMaOYgdkNFjsRIYcByWwTHzzYlsPr10sFBea6\nbK5t4kEOr23i7/6jSBflD9ThmWN06ow5GpT5RaXNXh6wNnFBZYHe3Pdm62LQhyoOadaIWbp5yc26\navZVfV6e7rBYFsMHOoWA3lZfL332mfslCOHhUkaGjGXLdHzuJG0bNUC7Kvdrz/Fdqt32qYZt3auK\ngc3addYcz9Hm+DSFh0cE+lX1W0eqjuiZz55RXmme8kryVG4v1+zk2bpi5hX68ZIfe32MxSpAshjW\nVFTknsO7dpnr/2RkqH7RQu2dOkzbw8yt3gsL8jRkS57G7zqqv54/VmPHzPTYXWbo4ISOdxBDK8Mw\nVHqqVAWVBcqvyFdBZYGumn2V0hLSWo8hhwELcK7L5prFLeuyGUuXqnTeJG0f6d4mTtq6VycGNWv3\nF/tPm9gwDK+d//899F+9svMVLRxtLgQ9a8QsDQwf2Ofl6wmLZTF8oFMI6KmyMnPE2VnZbd0qY/Ik\nVS6YqYPTk7VpXIQ2hR/T7hN7tKd8jybWDtEPd8Zo8eFmTdxXJkdiorRsqYasulphl14a6FfTL9U0\n1KiwqlAzhs/w+F5+Rb6e3fqs5o2cp7nJczUxcaIGhA3o8PksVgGSxQh9znXZXE887HY1LD5DxbPT\ntH1SrNYPr9O26v3aXbZbpadKdUPhCF10MFyzD9Yo8Xi16ubP1uDMLyrylp+aOzvCJ8Mw5DAcXi9/\nuP6N6/XS9pcUPTBaaQlpGp8wXuMTxus7Z3xHE4ZOaD2OHAZCUFmZew5v3Spj6hRVzp+hAzNGavO4\nCG0acLS1TTypdoh+sCNGiwtd2sQZyzTkimsUdvHFAXkJjc2N2lm2s20r+KNblDgkUe9+/d2AlMff\nLJbF8IFOIaArHA5zx4OWCs+xfr2MkmM6Pnu8dk8eqo/GOPRmYpl21B7W6NjRHovaTUuapqGlVdLj\nj3e4g5iVNTQ36J0D7yivJM+c/VOap2JbsTLHZeqda97plZ9hsQqQLEboqaoy12Vbv17GJ5/I2LxJ\n9hGJKpgxWp9OGKT3kk/p3fAC1TXXe91dZvzQ8Yp4/AnzuTIyzJ0dI5iR6c3Goo3acGSD8ivNGT/O\nj89c9IyunHWlx/FHq48qdmCsYgfFdvi85DAQ5Jxt4pYOIMfHH8txvETHZ03Q7skJ+nisoTeHHu+4\nTXysQnryybY28YgRAX1JhyoOafaTszUuflzrFvDpo9M1d+RcRUVGBbRs/mKxLIYPdAoBHbHbpdxc\n2de9p7qcDxT1aZ5ODYlQ3oRo/W90nf4zskYN0yZr6ogZmjl0qpacjNKs/VVK3nZIEfv2m5eRcbmB\nV3VNdV6v/65vqtdXXv6KZo+Yrbkj52reyHmaMmyKIgb03gmbxSpAshjBzTCk/Hw1f5Sj6nX/Udgn\nGzTkyDEdGp+gDeMG6O3hldoxIVYj08xLvhYMGKP0w42asLtEMVu2KWz1aumGGwL9Kvqdmoaa1ku7\n8ivztShlkZaMWeJx3B8/+6O2l243Z/0MHa+0hDSlJaT1ePFWchgIMna7tHmz7B++r7oP/6eoT/NU\nEx2pbROi9d/RdXo3uV2b+MQQzTpgU3LeQUUcOGheRhbANrHDcGjfiX3acnSLdhzfod+c9RuPS8Ic\nhkOnGk6dtlM7lPx/9u48Pqrq4P/4N2QBsoctQCAEQSAgBIGgEECsC1h3pVitiq3L41Nr3Vq1dgGX\nx1qttta1rUuVtv6qqbbWfakYBZV9DasSAiEJCZCFDEkmyf39cTOZTGYmJGQmk7n383695pUwuTNz\nhkm+59xzzj3HZlkMP+gUApoZhqHiHWtU9sG/1bTiM6WsyVfqnoPKH9xLXwyP0N6T0nV0+skaOmaq\nxg8c7x5tjoiUzj1X+vxzvzuI2V1xdXHLmj/rS9drQ8kG7a7Yrf2371dK35RuL4/NKkCyGGHFUVOh\nvc07Lvb+ao2GbiqQ02jQZ8OalH9isg5NGaeYKdM1ZshJLSPOKX1TpNdfl+6+29xWfsYMM4Nb7SBm\nN/7WwPjDV3/QfZ/eJ4fT4e7oScrQ5RMv16z0Wd1WPnIY6LkMw1Dx9tUq/+DfalzxudkmLjTbxCvS\nI7Rv4gjVTjPbxB4zMCMipXPOMWfUp6d7tombdxDrbvd8fI9W7F2htcVrNTBuoDkDaMg03XrqrYqO\njO728vQ0Nsti+EGnEGynoalB3xz+RltLNuvgymWK/PIrpa7fpcwdh5VQL207MUWlWSeqccZ0pcw+\nW2OHT1Za/FBF7N4tDR4sxcV5P+ny5VJmprmTDbzMfnG2YiJjlJWaZd4GZylzQKZ6R/UOSXlsVgGS\nxeiRDh09pK1lW/XNzpVyfvap4tds0sj8Io3fW6e9g/qoYEKajkybqJjZpys9a7bGDBir2HpDKi42\nTy7aKiyUqqqk8eOlXu2vK2Yluw7t0n93/9ec9VPpXth5UdYi/eas33gdf6DmgAzD0KC4QSHdNY0c\nBkLP1SbeVtyqTbzBbBPH1UvbxjTvuHjqKUqZfZbGDpusofFDFPHNN9KQIb7bxJ9/Lk2YIKV0z6Cf\nYRgqqChQanyqz0u8nlv7nEYkjdDUoVPVry/t9LZslsXwg04hWNZR51FtP7i9ZTvLgsKN6rN6vdK3\n7NPcomhNKXTqyIBEHZ46Xr1mztbAsy9UctYp5iiGvx3E/vUvc9tMqNxR7rHuz4aSDXry209260jz\n8bJZBUgWI2QMw9D+6v3urYXL8lWzaY36rduuKd84NHtflAZVN6p0wgjVTZ+q+NPnafAZFyoqubnh\n7msHscsuk154IbRvrBs4G53aV7Wv5fKu1LhUnTvmXK/j3t/1vl7Lf61lUWfX7J/B8YOPueh+KJHD\nQPdp2ybeU7hRvVev14jmNvHJhQ2qHpioiinjFTlrtgacdaGSJ033bBO7tpB37SD25pvSlCnd/l6K\nqoq0smiluQh0sbkQdN+ovnrz8jc1ZUj3lyfc2SyL4QedQgh7h48edp9wlDffDuQrZu9+XXBwoL61\nv7eyvqnRgP0Vqps0Xr3nfEvRs08zLy8YMMD3k15/vbR6tXvKa06OOQ2WS8EkmbvLvJb/msfMn6zU\nLE1MnehznaCexmYVIFmMoGtoatDuw7u9snjP/q06pSRS5x5I0amFTTpxe5mUmCBjxgz1Pe1MRcya\nJZ10ktnp3taePdLUqZ45PG2a1KfnZ0xH+Lu866NvPtJ1b16n4iPFGhw/uGUNn3mj5umKiVeEoKTB\nQQ4Dgddem/ii5jbxpK+PqH9xpeqyJqj37NMVPWeu2Sb2t+vitddK69a5czgnx1wuIURt4lvevUW7\nDu/StCHTlJ2WralDpmpIwpCQlMUKbJbF8INOIYQFwzBUfKTYXcmVbVV+eb62lm1VjbNGJyWP0bzq\nVM3aG6HMnYeVun6XIiMiFdH6ZOLkk6WYGHO3hO3bzZGOYcOkefN8vaAtO4Aqayu1sXRjy8yfc048\nR5dkXuJ1XHVdteJj4kN66UFX2KwCJIsRMEedR7Xj4A6vk45dh3ZpcPxgzYwcqbNL4jRld60y8osU\nv2OPIk46yXNdiaFDzSdz7SD21VfSL37hfcmX6/c2THPG5aDjoN7b9V7Lrl2umT9j+4/VO997x+v4\nytpKHTx6UMMShykmMiYEJe4e5DBwfLxmYJa728Y1zhpNTB6redWDNKvQbBMPWr9Lkb2a28Su2+TJ\n7jaxa1fd9HTp7LN9vWC35PCBmgNas39NywygC8deqB+c/IOgv67d2SyL4Qf7r6JHaWxq1O6K3V6V\n3Nbyreod2btlMbuTo9N1bX2qRu8fr4Q1mxWxZo00qsE84bjycumZHCkjw12JFRRIjz5qTnv94gsp\nKcmsFK+80ndBwvwkpLP+vunvuufje1TuKNdJg05SVmqWTh5ysiYOmujzeDvtygDYUUVthUcnvCuP\ni6qKNKrfKGUOyNT4lLG6JuJkTawYpSFbdivqi6+kyvXNHUDfkm6YaV5uG9tqjYdXX5U++cTM4m++\nMWf+zJwpHT3qvTZFD89hwzBU5igzO3kO71Z9Y72uyrrK67hyR7ne2vmWMpIylD00WwsnLFRGcobS\nk9J9Pm9SnyQl9UkKdvEB9HCNTY3mGphtcnhb+TavNvH1dYM1av94JazepIi1a6XRzW3iq6+Qnp3p\n2SbevVv67W/dbeKUFPPYq7zzS1LQszg3P1d3fHCHquqqNHXIVE0bOk1XTbpKOcNzgvq6ANyYKYSQ\nqG2oNUeb23T+7Dy0U6lxqS0VnXkbpwmHo5WyNt+9tkRRkTR9unvE45RTzI4ef9aulf76V/dI9RD7\nTDOtqa/RpgObtKFkg5L7JOuyky7zOqaoqkg1zhqNShmlyF4+LuOwGJuNipDF8MnXDExXHh+pP6Jx\nA8a5c3hgpsb3Ga4Tth1Q1FcrzRz+6itz8f3WMzLHjm1/kefFi90nIK6R6jCzr2qf5v11ngoqCtQn\nqk/LOj5ThkzRPbPvCXXxwgY5DJhqG2q1vXy73xmYHlk8YJwmHIpWyrp89xo/+/eb7WBXFp96qpSY\n6P8FV6+WXnnFvUNjkNvElbWVWlu8VvWN9Zo32nt2fnF1cUsbNFxnoIczm2Ux/KBTCEFVWVvpc3rr\nvqp9OiHlBM/On4GZGtt/rOIae5kVVuvFRePjPS8/mDhRioqSGhulzZvdFePhw9I73tPx7Sa/LF+L\nly3WhpIN2le1T5kDM5WVmqVvn/htLRi/INTFCzmbVYBksc21NwMzJjKmJYPHDxzfksnDEtIUUVjo\nzuHly6WdO81FRV05PHOme122gwc9M/unP5XOPz+0b7yDnI1Ovb3z7ZYZP64dvI7UH9E3t3zjdXx9\nY722l2/XiOQRSuzdzokX2kUOw27am4HZtk08fuB4jR0wVrENEdKqVe58/eILs03cujN+4kRzXbbG\nRmnTJncOV1ZKb73V7e+zrKZMSzcu1er9q7WmeI2Kqoo0efBkXZJ5iW6fcXu3lwfts1kWww86hdBl\nhmGo5EiJz86fqroqc4SjTefPqJRRio6MNp+gpMTzxGPTJnNL4dYnHsOGeb7o0aPShReaI9VDh3ou\nfjd2bPf/J3Sz2oZabTmwRaU1pfr2id/2+nnJkRL9d/d/lZWapbEDxiqqF1eKtmazCpAston2ZmAO\nihvkkcGurwNimzt1nE5zIdHWHTuNjZ4nHiefLPXu7fmiL70k/frX5jbxrpHqnBxzpDo+vvv/E9qo\nqa9pWcOnsLJQ/zvtf71Gop2NTl366qUtCzq7Zv5kJGcopW/3bKlsR+QwrKi9GZjVddXHbhMXF3vm\n8KZN5vburdvEaWmeL+pwmG3ilSvNNrErh2fODGqbuL6x3ue6Z/ur9+vBzx7UtKHTNG3oNI0bMI52\naA9msyyGH3QKocMamxpVUFHgs/MnOjLa5wnHsMRhnlviNjZKW7Z4VniHD5u7HrhOPLKzzbUlDMPc\nfWbYMHNWUFvvv2/uTONvBzELqamv0VOrnmpZAPrrw19rdL/ROm3EaXry20+Gunhhx2YVIFlsMe3N\nwByZMtIri8cOGKv4mDYdNIcOmSPOrhxevVo64QTPGZknnGCuJeFwmMe37ZyXzAVK6+r87yAWIqf9\n5TRtLduq6vrqlg6ejKQM/X7+79U7qvexnwBBRw4jnPmbgbmtfFvn28SuHF6+XKqocHf+uNrEsbFm\nm7igwNz1y1+beNo0/zuIdVFtQ602lm40F4FuvpUcKVHJT0o83xPCjs2yGH7QKQQvdQ11PneX2Xlw\npwbGDWx/tLmt6mpz5MJV4X35pTRokOfo87hx5hoU9fXS+vWelWNTk/l11Kju/U8IAWejU9sPbteE\ngRN8jmTf/dHdmpQ6SVmDs5Q5IJMTmy6wWQVIFoehY83AHDtgrFcWj+432j3a7Plk5qVfrbN1717v\nddmSk83ji4s9j928WbrxRnOx/hDJ25OnHQd3aPfh3S27eO2u2K1V16/SsETvzqp1xes0JGGIBsUN\n4oSlhyKHEQ66NAOzrepqc4Z76zbx4MHes91dbeLWszeXLzefY8UKaeTI7vsPkFkfDX50sIYmDNW0\nIebsn6lDp2rioIm0RS3AZlkMP+gUsrGquiqf01v3Vu7t+Ghza4Zhnmi0PpnYvt1cTNRV2c2YYXYK\n+XLhheYoSOsOo9a7JVhM3p48rdm/xpz9U7pB28u3Kz0pXSuvX8k6FUFmswqQLO7B2puBGdUryusy\ng8wBmRqeNLz9jo7aWnPmjyuLV6wwR5pbzwKaNMn3aPPKldI553iOVE+b5rmDWAA1NDVoX9W+lvV8\nzh97vs8TquvevE5NRlPL5V0jU8xLvIYmDKXTJ0yRw+hJKmsrta18m0cW55fld24GZmuGIRUWeraJ\nd+wwL8Nt3SYeOND34887T9q3zzO3g9AmdjY6lV+WrzXF5lbw98y+x2dHu7PR6XvQAWHPZlkMP+gU\nsjjDMFRaU+qz86eyttLnaPOofqN8XiPsxemUNmzwrPDq6z2vZZ461VyDwjDMynD5cnO9oFNP9X6+\nxsYedflBIDQ2NcqQ4fNa6kX/WqSEmARlpWYpa3CWThp0kmKjg3PiBU82qwDJ4h6gvRmYA2IH+Oz8\nGRjn52ShrdJSzxzeuFHKzPTsYHdd+lVdbY5O5+dLt9zi/VxNTebX9nYQC4Cb3r5J7+x6R/ur9ys1\nLrXlEq8lc5fohJQTgvra6BnIYXS342kT+52B2ZbTac52b708gtPp2SaeMsXdJt6+3Txu4kRz1mZb\nQW4TP/bFY3ot/zVtLN2o9KR0c/2fIdN0xcQrOl73wBJslsXwg04hi2gymszRZh8VXWRE5PGNNrd1\n+LC5BoWrwlu9WhoxwrPCGzXKPYqxc6f0+uveO4j9z/9Ip50WnP+IEKqsrdTG0o0t6/5sKN2gLWVb\n9N733tPsEbNDXTy0YrMKkCzuRu3NwMxIzvDK4nEDxrU/2txWU5P3umwHD3quyzZ9urkum2SefLzy\niu8dxB58MGCdP1sObNHG0o0el3btPrxbT5zzhM458Ryv4zcf2Ky+UX01PGl4xwYhYDnkMIKlsalR\neyr3BLdNfOiQ2cHuytbVq83Lulp3xrvWZZPMgVFXm7j1DmI33ijNDnwbsclo0s6DOxUfE6+0xDSv\nn3/0zUeK7hWtk4eczOx0m7NZFsMPOoXCTF1DnXYe2ul1mcGOgzu6PtrcmmFIu3Z5nnjs2WMueOeq\n8E49VUppZ2eWDz6Q3n7bfbyvRUot5Af//oG2lG1RVmqWJg+erKzULE1MnUhl2wPZrAIkiwOsvdHm\nitoKje0/1iuLR/cbfXydH0eOuNdlW77cPAkZONDzxCMzs/3OnR/+0Oyw97eD2DHea7mjvKWjZ1Lq\nJI0bMM7ruPs/vV+byzYrIymj5dIu1y5erDkBX8hhdFW3t4ldObxihXlp2PTp7hw+9VT3umy+vPee\neXNld9sdxLqouLpYnxV+plVFq7S6eLXWFq9Vv7799PCZD+s7E74T0NeCtdgsi+EHnUI9VFVdlXlt\nc5uKrrCy0Odo89j+Y5XQO+H4X7C2Vlq71rPC693b88QjK8tcg6Kx0bz0wHVcVJT0wguBe/M9SE19\njTYf2KwNpRu0vmS9NpRu0DVZ1+j6qdeHumjoAptVgGTxcWpvBmaviF4+FxhNT0rv2ho3hYWenfHb\ntpnrsrlyeMYMKTXVPNa1g5jr+EceMTvuA+CplU/pmdXPqKCiQDGRMS0dPTdPv1lzM+YG5DVgb+Qw\nOqqzbeJOz8Bsq7ZWWrPGc122Pn0828Suddna7qrbu7f03HOBe/Md9NL6l/Sv7f/yWAja74LXQCs2\ny2L4QadQCBmGoQM1B3wuMHq49nBgR5vbOnDA88Rj/XpzF7DWC9qlp3s+prRUWrTIewex2bPNx1rM\nkyuf1J0f3qlxA8Ypa3CWufZPapZOHnKykvv4Hw3at2+fbrrpJm3dulVNTU0677zz9Mgjjyg6uv1r\n0h988EHdc889Lf+Oj4/XkSNHtH//ft1yyy167bXXAvbejmXx4sWaM2eOzjjjDL/HfPrpp4qJidGM\nGTO6rVyBYrMKkCw+hvZGm/vH9vfZ+TMwdqDXLoGd1tDgvS5bXZ1nDk+dap6MtPbkk9LTT5uLkLYe\nqZ41y33ZWBtFVUVaU7ymZUHngsoCFVQU6KpJV+n2Gbd7Hb/z4E45nA5lJGcoqU9S196nBZHzXUcO\no7WQtolLS92dP8uXm7k8bpzn8gjDh3s+prhYuuYaczex1FR3Ds+ebe4gFgCGYWh/9X73NvDFq3VC\n8gl66tynAvL8aJ9dcr45i2dK+qK7yoWeh06hbtBkNGlPxR6fFV1ERERwRps9CtcygWAAACAASURB\nVNAkbd3qeeJRVua9BkV886jKvn2+L/VyOqV33jEf42+3hBCrqanR22+9pYWXXeb3mNqGWuWX5bes\n+5ORnKFbT73V67gj9UfUO7J3p3ZbMAxDp5xyim666SYtWrRITU1NuuGGG9SvXz89/PDD7T42ISFB\n1dXVfv/dUQ0NDYrytatQgC1ZskQJCQm64447gv5agcbJiD1V11X7zOHCykKNSB7hlcXjBozr2gzM\ntioqPGf2rFpldr63PvEYPdpcg6K21rx0bICPkd7Vq83LxZpHqmvqa7Snco8KKgrUv29/nTLsFK+H\n/HXjX/XK5ldaLulyfR3db3TYdfo0Njbqr0uXatE114Tk9cn5wCCH7alHtInz8z23ei8vN9vErhx2\ntYkNQyoq8t0mrq+X3n03aG3i9SXrdc7fzlFDU4Oyh2abC0EPnabsodkakjAk4K/XEy19+WVdfsUV\n3ZJ1bdkp55uz+CeSHg36i8GWDLupa6gzNpduNl7b8ppx37L7jMtzLzcmPzvZiP2/WGPYY8OMs14+\ny/jxOz82nln1jLFs9zKj9Eip0dTUFPiCHDliGP/9r2E88IBhnHOOYSQnG8YJJxjGVVcZxrPPGsbG\njYbR2Gge63QaxurVhvH444axcKFhDBtmGIMGGcbhw4EvVzf46e0/NjLHZPj82cp9K40JT00w+jzQ\nxzjp6ZOM7/3ze8bDnz9sfLn3y4C9/kcffWTMmTPH476qqiqjf//+hsPhMF588UXjRz/6UcvPzj33\nXGPZsmXGXXfdZURGRhqTJ082rrzySsMwDCM+Pt4wDMPYvXu3cdJJJxmGYRgNDQ3GT37yEyM7O9uY\nNGmS8cc//tEwDMP45JNPjFmzZhkXXHCBMWbMGK9yxcXFGbfddpsxYcIE44wzzjDKysoMwzCMdevW\nGaeccooxadIk4+KLLzYON3/uixYtMnJzcw3DMIwRI0YYixcvNqZMmWJMnDjR2LZtm7F7925j8ODB\nRlpamjF58mTjs88+C9j/YXeQZKfWeaj/u7tVU1OTUVJdYnyy+xPj6ZVPGze/c7Nx5stnGmmPphl9\nH+hrTH52snF57uXGfcvuM17b8pqxuXSzUeusDUZBDGPnTsP4y18M44YbDGPCBMOIizOMuXMN4+c/\nN4y33zaMQ4fcx5eUGMbrrxvGHXcYxqmnGkZsrGHcf7/fp/9g1wfG9D9PNwY9Msjo80AfY+wTY415\nS+cZz699PvDvpYd5+sknjD59YkL2+uR8YIgctrQe1Sb++GMzT+fPN9vEo0YZxtVXm23iTZvcbeL6\nesNYtcowfv97w/jOdwwjLc0wUlMNo7Iy4MUqqykz3t35rvHsqmd9/txR7zD2VOwJzv9JGHjnnXcM\nSUZJSUlIXt9OOS8zi/dJWidpVkiTEiHTke7HFySdK+mApInN9/WT9A9JIyQVSFooqSII5euRquuq\nzWub24xy7KnYo/Sk9JbRjXmj5unWU2/VuAHjgrvY8L59nrOAtm41R5BzcqTrrjPX+xk82PdjZ882\nR6NnzpTOPVf6v//z3EGsByovL9cLf35W/317qSLqy2XEDNBp375CaZNG6nePP6FRYwf5fNyJ/U/U\n0ouXavzA8UFb+HTLli2aOnWqx30JCQlKT0/Xrl27vC43iYiIUEREhB566CE99dRTWrduXbvP//zz\nzys5OVkrV65UXV2dZs2apbPPPluStG7dOm3ZskUjRozwepzD4VB2drYee+wx3X///br33nv1xBNP\n6Oqrr9ZTTz2l2bNna/Hixbr33nv1u9/9rqVcrjIOHDhQa9as0TPPPKPf/va3+vOf/6wbb7xRCQkJ\nuv1270tPEHDkcBvtjTZL8rjMYP7o+cockKkRySMCN9rcVl2duQZF68tyo6PdI8/XX2+uy+Zr2vlb\nb8m46kodzBqrgglDtXHBaC2/eYS2176nk97ap2fPe9brIRMGTdDv5v1OI5NHKjU+NXjvK0R85fy3\nzr1K5190qe65504lxfc59pMECTlva2RxG+21iVvPwJw/er5uO/W2wM/AbGvvXs8c3rrVzN6cHOmG\nG6S//MW9LltbOTnS0aPm1/POk379a88dxLqgoalBj654VKv2r9Lq/at1uPawpg6ZqlOHnSrDMLxy\no290X6Unpft5Nmvwl/NXXHWNbv7fH0iSkpJCM5PVTjnf7LHmG2yqI51CL0p6QtLLre67W9KHkh6W\ndFfzv+8OeOlCyDAMlTnKfC4wetBxUGP6j2k56fjexO8pc2CmTux3YvB3WWlokDZu9KzwHA7zpGPm\nTOn3v5emTTPXoHDtlvD+++ZU2MxM7+f79FMpJny2Az7zlOEanVCsi6Y26qrvSz+rlNbVHtKSuiXq\n8yNp3iRpb6TvzyC5T7JOHnJyUMvX3hojXV5/RNIHH3ygTZs2KTc3V5JUVVWlXbt2KSoqStOnT/dZ\ngUhSr169dFnzJXVXXnmlLrnkElVVVamyslKzm7dCXbRokb7zHd87VFxyySWSpClTpuj1119vud9g\nOnx3sWUOS1J9Y712HdqlrWVblV+W35LDOw7uUEqflJYcnjpkqq6cdKUyB2RqUNyggPy9tauszDOH\n160z15GYOVNauFB6/HFzDYqICDVWVap82Ts6/Ok/te/iM3TmCWd6Ptf8+Vq54V3d9d+faWRKsjKS\nMjQnOUOLUkZqdL/RPl9+aMJQDU0YGtz3GCKtc/5H10qxvSVH3SHlbfulvnP2LzVjpPR1VTu7/AQZ\nOW9rtszi9trEh44eMtvEzZ0/rhwe3W9097WJW2+S4urUmTnTzGHXumyuNvG775qXivla9+fzz7vc\nJq6qq1JcdJwie0V63B8ZEanq+mpdknmJHjzjQY3uN9pynfmd0V7OXzr3VxqZYKgwKlK9O7FbZiDZ\nLedln0t54UdHOoU+k5TR5r4LJJ3W/P1LkpbJQhXgNf+6Rv/Z8R81GU0e1zafPepsZQ7M1IikEV5h\nHzSVlebCzq7KbuVK89rmnBzp7LOle++VTjzRPYqxdav0xBPuBfNiYsxjx4/3/fw9uEOosalRuw7t\n0qYDm3Rp5qU6ePCgRicU69kfNJo/N6SZ9dL/JkubV0lPRUjfmykteT9Cjz76qJKSkpSYmNjytfX3\n8fHx6tXeFs7Hafz48S0B71JVVaXCwkKNHj1a69evV1NTU8vPamtrO/0aTz75pM466yyP+5YtW6Y4\nPwvMtuVrRMp1vz+uSjkyMlINDQ2dKC0CxHY5vGLvCv3g3z9QQUVBaGZgttbUZO4C1vrE48ABcwvi\nmTPNHJ4+XUpoHv12OnXgpWf0+auPaMzWAxpZWq/CtBhtmpiqXZMjvDuFoqJ0SvoMLbtmWfe8nx6s\nvLzcI+ddYntLcb2lSof0k6ulK/7k0COPPOKV863zPiEhQZGRga+ryXlbs10WX/3G1Xp759syDMNj\nBua80fOCPwOzrYoK7zZxerqZw/PnS/fd59kmzs8328Su4107iE2c6Pv5O9kmrqmv0bqSde6FoPev\n1r6qfVp/43qvDv2IiAg98K0HjuddW057OX/iYOnrUkMf3C3NvC9CjzzyiFcbvvXXhISEoKy7Q87D\nbo73ryhVUmnz96XN/7aMn878qR468yGlxqUGf7S5NcOQdu/2PPH45htz5s/MmdJtt5knIf37+3+O\ndevMqbOXXSb94Q/euyX0cM+tfU4ri1ZqQ+kGbTmwRYPiBilrcJbOGX2OXvjzs7poqrsCiYyQbkiS\nKmqki/+f9MZt0rB+0hXFe1T0yc+0tTZalbWRqjraS1VHpUpHk6ocjaqsccpR26D42N5KSohVYkKc\nEhPizUomKVlJyf2VmNxPSckDlOjnhMP1tW/fvh6/I2eccYbuvvtuLV26VFdddZUaGxt1xx136Pvf\n/7769OmjkSNH6plnnpFhGNq3b59WrlzZ8tjo6OhjLio3b948Pf300zr99NMVFRWlHTt2aJivBRDb\naGpq0muvvabLLrtMf//73zV79mwlJiYqJSVFn3/+uWbNmqWlS5dq7ty5Hf6sEhISVFVV1eHjEXCW\nzuHxA8crd2Fu98zAbKumxlwE2pXDX3whIyVFByeP0e4JQ7Vx7jlalezQ7iOFajI+04dn/Mrz8b16\nKeWDPJ00Zb763namombPV3Z8kgKzWby1tc15F2eD9MMXpceulKaNlG4+vVKln96jnfXRqjwapara\nXqp0SFVHDTPnjzh15KhTsX1ilJTQV4kJcUpKTDBPLpKSlZTcT4nJ/Vty3tfggetrXFwcOY/2WDqL\n78q5S4+c9Uj3zMBszTDMNnDr5RF27zbbxDk50h13mG3ifv38P8fateYSC5dfbnYOBbhN/J3XvqOD\nRw9q2pBpOmPkGbor5y5lDsxUVK/uXxg5nPjLecOQbn5JuvM8KWuEdP+lDSr7/B59UxejyqORqqqN\nbMn5yppGVTkaVFVTrz69o8z2fHyckpLilZiQqKTkFCUmJSsxqb+SUgaYud+JwWI75XyzIF7TiXAQ\niNSy3GKBEwZN6J4Xqq83K6zWFV6vXu6daH7wA2nyZHPkwrWD2Ouvm8cNHSo9+KD3c15xhXnroQzD\n0O6K3UqNS1VcjHdPeHF1sbJSs3R11tWaOGiix644/317qX50rfdzPvqOND9LOqV5UGbxpZLkbL75\n1tgkVR+tVdXRWlUdPdRcyUiVR5u/lkhVu2VWRLXRZkV0NML8WU2TWRE5nHI2NCkpIVb/fOMtnXaa\nOVD4xhtv6Ic//KHuv/9+NTU16dxzz9WDzZ9VTk6ORo4cqfHjxyszM9PjeuUbbrhBkyZN0tSpU7V0\n6VKPxpfr++uuu04FBQWaMmWKDMPQoEGD9MYbb3hcM+xLXFycVq5cqQceeECpqan6xz/+IUl66aWX\ndOONN8rhcGjUqFF68cUX/T6Hqxyu1zn//PO1YMEC/fvf/9aTTz6pnJycdh+LoLJcDif3SVZyn+65\nRMjYt09HPnlfjk8/UsxXq5XyzX5zJNmVw889p8qUvjpn6VkaHx2j2furdN1nR5SRX6qKp31s1hEZ\nqehXczWmW0pvLf5y/uXPpYGJ0oLp5iSAn18kSQ3NN9+amqQjtXWqOlqnyqMVqnLluyvvy6SqQmlP\nXYyq2ua8axDhSL3qnE1KiOutJ576k6688kpJ5Dz8slwWd1ubuK7ObBO3viw3MtLdJr72WrNNHB3t\nbhPn5prHDR8u3X+/93NeeaV562xRGuq06cCmltk/l024TGeNOsvruLeveLt7O8oswl/Of5Iv7SqV\n/nW7FNlL+ul5ktQo6ajf5zIMqabOqaqjlap0VHpkfNVRqbJCqtovFdVFd2iw+O6779bPfr5Ykn1y\nvtnFki6U9CNJy9t9MCypo0mWIek/ci+qt03SXEklkoZI+kTSuDaPMRYvXtzyj7lz5x5Pr6W1lJe7\nL+tavtyc1TN6tOd2xCNGeC5ot2uX9OMfm9sY9+vnPva006Rxbf/Le55NpZv05b4vtaHU3P59Y+lG\nJcQk6N/f/bemDp167Cdo5Zzp/fXurYe87n/uE+n1VdI7dwaq1B1X3yBd8IcE3bT4bzr//PO7vwAd\ndLzbYVrFsmXLtGzZspZ/33vvvVL4XT+doc7nsEQWe2pokDZtUtPy5fr8lYc0etsB9a5t0MoRkdox\nbqDKsk7UfT99R71i23RaP/SQ9Le/SQUF7pFqVxbHxobkrYSaw+FQXl6ecnNzVVhYqPT0dC1YsEBz\n5sxR7HH+n/jL+Y83myPIm39jjp10p4ZG6aaXYzTh/Ef04x//uHtfvBN6es5bJIcl2sSBUVZmtm1d\ns+PXrZPGjHG3h3NyzEvDWreJd+yQbr3VfFz//u5j5871vUZQJ72y6RU9+sWjyi/L14n9T9S0IeY2\n8N8+8dsakex7jZdQC0YOB5u/nN9RLOXcKxX8Xorr5r0EGpukh/8jlQ3+oR57/KnuffFOCETOWyiL\nEUDH2yn0sKSDkn4j87rpZHlfP23YenHCpiZp+3Z3B9Dy5VJJiXTKKe5K7JRTpMTmNTHKy6UBA7yf\np7JS+vhj83h/O4iFmGEYamhqUHSk9646v/rkV9pbtVdZqVnKSs3SpNRJ6h/bzuVv7Zg/a6xev3aH\nYttcSVJbL51wm/TeXebowMdbpKRYKbGvlNTX/JrYt9V9sebaFIEa3JnzUJLuf+LfLTOFeqLExEQu\nAWileXQk3CrADHU+hyUbZfGWA1v0zeFvVFBRoN0Vu1VQUaDy4q/13uglil213szhlSultDQpJ0cb\nTohT9Oy5GjptrpL7ppgj1XV17lxubdkyKT7e/w5iNrNw4UKtWrVKRUVFcjrdszKjo6OVlpam7Oxs\nvfrqq51+Xn85bxjStF9ISy6VRg6UXvvKd7a33NdXiu8TuA6kRc/F6fSrn9Q111wTmCcMgnDL+TDN\nYYk2cee51mVrPQuopMS9LltOjtkmdq3L5q9NfPiwmcUzZhxXm7ihqUFby7aq0WjU5MGTvX6eX5av\nytpKZQ3OUmx0z+xQaS1YORxs/nJeki79vXTaOOnibHPQN76Pd7a3zvuEvuasokBYnCtFTPyVlpid\nJD1SMHI+jLMYAdSRy8dekbmA3gBJeyX9StJDkl6VdK3c22/am8NhrkHhqvC++MI8sXB1AN1yi3TS\nSeZUWNduCS+/7K4cGxulPXvMn7eWlCQ1rxTfE9Q11Cm/LN+c+VOyoWUG0L1z79WPpv/I6/j7Tr8v\nYK896+zLlLf1fs1vU4/3iZFumS898pakCGl12Ymad9YZqqo8qMqSw6qqrFBVdZUqK4+o6kiNKqsd\nqqtvUEJsjBJjo5QYG6mk2Agl9jWU1NdQYp8GJfVxKrF3g88TjtaVU59oqdJhKNHXSWQPEk4nCvDJ\n9jl81HlUBRUFKqgo0JwRc3xefnrLuz9W+qFGzSmK0tVf1ygjv1gJ+w4oYurvzCy+9VbzZKJ5Xbas\nAwfMrF78azOH16+XHn5Y+uEPvQtg91H9VhwOh1atWqWCggKvnzmdzpb7HQ5Hp0eqv3XuVcrb9kvN\nz/K8PyJCuut86Tf/kc6eKC1dl66LLjxfWysOqrLwkKoqK1RZWaWq6mpVVteoqvqoHLX1iu8brcS4\nKCXFRSmxb0TzSUWTR857nHDEep949I2RKo9Ghmxr5I4i57uF7bO4Q1xt4lbrsikpyd0BdNtt0oQJ\nnm3iv/zF3YaWzFmZbXt1U1Kkiy/ucDHKHeV6d+e75mVgxau1oWSD0hLTdP2U6312Co0f6GdTlh4o\nmDkcbP5yXjLXE1r4B7Mz6IUvB+iy716uHYcPqqrIlfOVqqo+osqqI6o6clRHHHWK7ROlxLhoJcVG\nKjG2V3N+NympT6MS+ziV2NvZocHiytpopZPzsKlg9gpae1Rk/37PEY/Nm81OH1eFN3Omue6PL6NG\nSb17e06Rbb1bQg/22xW/1YvrX9TkwZNbZv9kDc7S4Pjgz2L6xz/+oQ+f+a6eu8H7ZxU10qjbpeH9\npNMvuVW/+93v2n2uhoYGVVVVtdwqKyu9v1YcNjuWKsrNiqiiwjzhqKpWVbVDVUdq1dTUpMYmQ3v2\nFHZogTj0DDYbFQnbLL7zwzv1WeFn2n14typqK5SelK6RKSP1p/P+ZE7lr683LzlovTi/5L60KyfH\nvS5bWy+8IN1+u/dIdXx8977JMPTee+/pggsu8BiZbis6Olpvvvmm5s+f36nnLi8v1y++O9hrVxrJ\nvIxr7E+kQYnS/CuXqPXlOL40NjaqurraZ8a3fF9ZocrD5aqqOKjKykOqqqw0c76yWlVHHKqsdsjZ\n0CjDkPLyPmNNnQAihy1k/37P9TG3bDHXZWvdJh4yxPtxhiGNHCnFxbmPzckxl1YIQJt4fcl6PfT5\nQ5o6ZKqmDZ2mKUOmeKxVGc6CmcPB1l7OS9LcB8zlGTJnXq7n//L3dp+rqalJR44c8d+Wr6py53zl\nQVVWmIPFlVVVqqryHCyOiIjQiy++1LJ2nF3YLIvhB51CHdHYaHb6tK7wKis9K7Bp08x1JVrvIPat\nb5mXKbTlcPSoNSicjU5tP7jdY+ZPVmqWHj7r4VAXzcN1112nz955XrPGmIuNnpZpbl/pqJM+3Srd\n86q0fo+5ov97773XLWWqq6tTbW1tjx9BhiebVYBhm8Uff/Oxekf11sjkkRqSMES9Dh327Ixfu9Y8\neWh94pGRYZ5MOBzmpWIVFdJFF3k/eW2teRlYELYst7rrrrtOzz///DGPu/baa/Xcc891+vnPPGW4\nRiUU66KpjTptXKuc3yY9+O8Ifb7d0B//+EfdcIOPEYIgqK+vl8PhUHJy9yx8bhfkcJhqbJQ2bfJc\nHqG62jOHs7Olvn3dO4itWCGdcYbvwdJOtokNw1BBRYF7G/ji1Tp89LDW/s/aAL7Jni/YORxs7eX8\nH97vpfc2NOnuO3+iX//mkW4pT0NDg6qrq5WcnGy7xcNtlsXwgz0Tfamulr780n3i8dVX5gjHzJnS\n6adLP/+5uaCda1rr5s3Ss8+6j4+IMCvGKVN8dwr1oA6hZQXL9O2/fVvDEocpa3CWJqdO1s3Tb9aU\nIVNCXTQvhYWF2lFsLkS39HMprZ80MEEqq5aKDknORjPRDh8+3G1l6t27t3r37ubtsgE7MAydUZ8m\nfbJcWvGima/797vXZfvFL8xZPq5LNx0O6e23pccfN4/NzzdHqn11CElSn25exdJCCgsLA3pcWx99\ntVfl5eV64c/P6vHnlyqivlxGzAB969yr9LcPrtbUkyd16yW7MTExivE12wywg6oqs03s6gT66iuz\ncycnxxz8/OUvzTax60R60ybp6afdx7t2EJs2zXenUCfaxEedRzX8d8PVJ6qPpg01F4H+6cyfauqQ\nzm1cYgXBzuFgay/nX/7wf/StOacoKeX41iA9HlFRUUpJSem21wN6GjqFfLnwQsnpNCuxH/1I+vvf\nfS945/Lxx9LXX0uXXio9+qj3DmIh0NjUqK8Pf631Jeu1oWSDahtq9eg8762TTx12qsp+WuZzfY6e\nJj09veV7Z6NUUGbeWjMkZWZmdm/BAATe++9LN97oHnm++Wazk8ffzJ76emnpUvP4xx4zT0D69u3e\nMttE6ywOxHG+DBgwQHf+7Be682e/8PrZP994U+PHh8/aH0BYO/98c8ZPTo65G+6MGe23iT/6yJwx\nv2CBmcVtdxBrR3F1ccsMoLtm3eW12HPf6L7Kvylfg+IGdeUdWUJ35HCwtZfzL//9n8zOBLoRl4/5\nYhhmBWYYnrslZGWZC0b3YAcdB3Xu38/V5gObNTBuYMu6P9lp2TpvzHmhLl6XhPP10+hZbDZVNjyz\n2JXDknm57ldfuRfxf+MNcw0KhARZjEAgh8OEK4tdu+q6LhmbMsXsrO+iJ1c+qQ+/+VCr969WXUNd\nywygO2bcoZS+zNzwhxxGoNgsi+EHnUK+rF9vToddscJzB7Ezz5TGjAlZsVzXUW8o3aAtB7bontn3\neF332mQ0aXnhck1KnWSZxfRcHA6HJkyY4HOnBZeMjAxt2bKlx+20gJ7FZhVg+GbxL38pvfmmORNz\n6lT3mhVnnWUu1o+QIIsRCORwmFi7VvrVr7x3EDvzTHOTlA446Dio6MhoJfb2vuzzpfUvKS4mTtOG\nTtOIpBG2W8/leJHDCBSbZTH84PIxXwYMkBYtkv74R/87iHWjOz+8U1/s+0IbSzcqISZBWYPN2T+1\nDbXqG+15eUSviF6aPWJ2iEoaXLGxscrOzpYkFRUVeYyOREdHKy0tTdnZ2VR+gFVkZ0vnnSedfLLv\nHcQQEmQxYCMDB0rXXCP96U8dahNX1lZqTfEa90LQ+1er3FGuv13yN50/9nyv4xdNXhSEQlsfOQwg\nkJgpFGKGYWh/9X5tKN2gGcNm+Jwq+7eNf9OQhCGalDpJA2LbuY7bJhwOh/Ly8pSbm6vCwkKlp6dr\nwYIFmjNnDpUfOsRmoyJkMYKCLEZXkMPWdO+ye/XhNx+2XAY2beg0jek/Rr0ieoW6aJZEDqOrbJbF\n8INOoRB4a8db+vibj7XxwEZtKNmgXhG9lDU4S3+Y/wdlDmSRZCDYbFYBksUAehxyOLw4nA6tL1nf\nMvtnUuok/WTmT0JdLABdZLMshh9cPhYkB2oOKDIiUv1jvbdTLKoq0uD4wZo3ep6yUrM0OH4w11AD\nAACgR1mxd4VufOtG7Tq0SxMGTdC0IdN02ojTLLtUAQDYETOFAqCwslCfF36uDSUbtKHUvNU21OrJ\nc57U9yZ9L9TFA9CGzUZFbJPFAMIHORweyh3l2lOxRycNOkm9o1jgH7Aam2Ux/KBTqBMamhoU1ct7\nctVf1v9Fb+98u2X796zBWRqeOJzZP0APZbMK0HJZDCD8kcMAEHo2y2L4QaeQD01Gk74+9LU566dk\ng9aXrteGkg06e9TZeu6C50JdPABdZLMKMGyzGIB1kcMAEHo2y2L4QaeQD+/ufFc/fOeHHjN/JqVO\n0gkpJ7B7AmABNqsAwzaLAVgXOQwAoWezLIYfdAoBsB2bVYBkMYAehxwGgNCzWRbDD6a9AAAAAAAA\n2BCdQgAAAAAAADZEpxAAAAAAAIAN0SkEAAAAAABgQ3QKAQAAAAAA2BCdQgAAAAAAADZEpxAAAAAA\nAIAN0SkEAAAAAABgQ3QKAQAAAAAA2BCdQgAAAAAAADZEpxAAAAAAAIAN0SkEAAAAAABgQ3QKAQAA\nAAAA2BCdQgAAAAAAADZEpxAAAAAAAIAN0SkEAAAAAABgQ1FdfHyBpCpJjZKckqZ3tUAAgE4pEDkM\nAKFWILIYABCGutopZEiaK+lQ14sCADgO5DAAhB5ZDAAIS4G4fCwiAM8BADh+5DAAhB5ZDAAIO13t\nFDIkfSRptaTru14cAEAnkcMAEHpkMQAgLHX18rEcScWSBkr6UNI2SZ91tVAAgA4jhwEg9MhiAEBY\n6mqnUHHz1zJJb8hcVK+lAlyyZEnLgXPnztXcuXO7+HIA0HnLli3TsmXLWzARpgAAIABJREFUQl2M\nYGk3hyWyGEDoWTyHJdrEAMKADbIYx6Er1z7HSoqUVC0pTtIHku5t/ipJhmEYXSsdAARBRESEZI21\nH46VwxJZDKAHslAOS7SJAYQpi2UxjlNXZgqlyhwJcT3P3+R5IgIACC5yGABCjywGAIStYPYKMipi\nIQ6HQ3l5ecrNzVVhYaHS09O1YMECzZkzR7GxsaEuHtApNhsVIYstghyGlZDDCFdkMazEZlkMP+gU\nwjEtXLhQq1atUlFRkZxOZ8v90dHRSktLU3Z2tl599dUQlhDoHJtVgGSxBZDDsBpyGOGILIbV2CyL\n4UdXF5qGxTkcDq1atUoFBQVeP3M6nS33OxwORkcAIAjIYQAIPbIYgFX1CnUB0LPl5eWpqKio3WOK\nioqUl5fXTSUCAHshhwEg9MhiAFZFpxDalZub6zE91hen06nc3NxuKhEA2As5DAChRxYDsCo6hdCu\nwsLCgB4HAOgcchgAQo8sBmBVdAqhXenp6QE9DgDQOeQwAIQeWQzAqugUQrsWLFig6Ojodo+Jjo7W\nggULuqlEAGAv5DAAhB5ZDMCq2JIe7XI4HJowYYLPnRZcMjIytGXLFnZaQNiw2fabZHGYI4dhReQw\nwg1ZDCuyWRbDD7akR7tiY2OVnZ0tydxRofUCe9HR0UpLS1N2djaVHwAECTkMAKFHFgOwKmYKoUMc\nDofy8vKUm5urwsJCpaena8GCBZozZw6VH8KOzUZFyGKLIIdhJeQwwhVZDCuxWRbDDzqFANiOzSpA\nshhAj0MOA0Do2SyL4QcLTQMAAAAAANgQnUIAAAAAAAA2RKcQAAAAAACADdEpBAAAAAAAYEN0CgEA\nAAAAANgQnUIAAAAAAAA2RKcQAAAAAACADdEpBAAAAAAAYEN0CgEAAAAAANgQnUIAAAAAAAA2RKcQ\nAAAAAACADdEpBAAAAAAAYEN0CgEAAAAAANgQnUIAAAAAAAA2RKcQAAAAAACADdEpBAAAAAAAYEN0\nCgEAAAAAANgQnUIAAAAAAAA2RKcQAAAAAACADdEpBAAAAAAAYENd6RSaL2mbpJ2S7gpMccLXsmXL\nQl2EbsN7tSY7vVeLIYub2el3mPdqTXZ6rxZDDrdip99j3qs12em9AtLxdwpFSnpSZiU4XtLlkjID\nVahwZKfw4L1ak53eq4WQxa3Y6XeY92pNdnqvFkIOt2Gn32PeqzXZ6b0C0vF3Ck2XtEtSgSSnpP8n\n6cIAlQkA0DFkMQCEFjkMAAhrx9splCZpb6t/72u+DwDQfchiAAgtchgAENYijvNxl8qcJnt987+v\nlHSKpJtbHbNL0qjjLxoABM3XkkaHuhABQBYDCFfkMACEnlWyGF0QdZyPK5I0vNW/h8scGWmNXy4A\nCC6yGABCixwGANhSlMxexQxJMZLWy+aL6gFACJDFABBa5DAAwLbOkbRd5pTYn4W4LABgV2QxAIQW\nOQwAAAAAAAAAAOztO5K2SGqUNKXNz34maaekbZLO7uZyBdsSmdeQr2u+zQ9paYJjvszPbqeku0Jc\nlmArkLRR5me5MrRFCbgXJJVK2tTqvn6SPpS0Q9IHkpJDUK5g8PVel8j6f6t2zWHJHp8vWWwNZLH1\n/1btmsVLZP3Plhy2BnLY+n+rCJFxksZI+kSeFeB4mddZR8u87nqXpF7dXbggWizp9lAXIogiZX5m\nGTI/Q6tfM79bZqVgRbMlnSzPSuFhSXc2f3+XpIe6u1BB4uu9Wv1vVbJvDkvW/3zJYusgi639tyrZ\nN4ut/tmSw9ZBDlv7bxUdFIwKaJvMntW2LpT0iiSnzB7nXZKmB+H1Qyki1AUIoukyP7MCmZ/h/5P5\nmVqZVT/PzyQdbnPfBZJeav7+JUkXdWuJgsfXe5Ws+9m62DmHJWt/vmSxdZDF1v1sXeycxVb+bMlh\n6yCHrfvZohO6c1RiqDy36NwnKa0bX7873Cxpg6TnZZ2phi5pkva2+rcVP7/WDEkfSVot6foQl6U7\npMqcUqrmr6khLEt3sPLfanvskMOStT9fstjayGJ7sEMWW/mzJYetjRyG7Rxvp9CHMqeetb2d38nn\nMY7z9UPF3/u+QNIzkkZKmiypWNKjISpjsITbZ9VVOTKnWJ4j6SaZUy7twpC1P2+r/K3aNYclsthO\nyGLrssrfql2zmBy2D3LYuqz+t4oOijrOx511HI8pkjS81b+HNd8XTjr6vp+T9J9gFiQE2n5+w+U5\nymU1xc1fyyS9IXOq8GehK07QlUoaLKlE0hBJB0JbnKBq/d7C+W/VrjkskcVksXWRxeHHrllMDruR\nw9ZCDsN2gn35WOtrFN+U9F1JMTJ7JE+UtVawH9Lq+4vluYiXFayW+ZllyPwML5P5mVpRrKSE5u/j\nZO4KYrXPs603JS1q/n6RpH+FsCzBZvW/1bbslMOS9T9fstjayGLrslMWW/2zJYetjRwGAuBimdfZ\nHpXZw/puq5/dI3Nhtm2S5nV/0YLqZZnbNW6QGR5WvP70HEnbZX6GPwtxWYJppMydJNZL2izrvddX\nJO2XVC/zb/X7MneV+EjW236z7Xv9gezxt2rXHJbs8fmSxdZAFlv/b9WuWWyHz5YctgZy2Pp/qwAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsbbikTyRtkbRZ0o+b718iaZ+kdc23+aEo\nHADYBFkMAKFFDgMAbGmwpMnN38dL2i4pU9JiSbeHqlAAYDNkMQCEFjkMALCkqGP8vKT5JklHJG2V\nlNb874hgFQoA4IEsBoDQIocBALaXIWmPzNGRxZIKJG2Q9Lyk5JCVCgDsJUNkMQCEUobIYQCAzcRL\nWi3pouZ/D5I5KhIh6QGZlSAAILjIYgAILXIYAGA70ZLel3Srn59nSNrU9s5Ro0YZkrhx48atJ952\nKfyQxdy4cbPSjRzmxo0bt9DfwjGLEWC9jvHzCJkjHvmSft/q/iGtvr9YPirAr7/+WoZh2Oa2ePHi\nkJeB98p75b127CZpVBezs7uRxfwO815tcLPTexU5bNmbnX6Pea/WvNnpvSr8shhBcKyFpnMkXSlp\no8xtNiXpHkmXy9yBwZC0W9L/BKuAAACyGABCjBwGAFjSsTqFPpfv2UTvBqEsAADfyGIACC1yGABg\nSce6fAwdNHfu3FAXodvwXq3JTu8V1mSn32HeqzXZ6b3Cuuz0e8x7tSY7vVdAMq+PDhaj+TpFAOhR\nIiIipODmX09CFgPocchhAAg9m2Ux/GCmEAAAAAAAgA3RKQQAAAAAAGBDdAoBAAAAAADYEJ1CAAAA\nAAAANkSnEAAAAAAAgA3RKQQAAAAAAGBDdAoBAAAAAADYEJ1CAAAAAAAANkSnEAAAAAAAgA3RKQQA\nAAAAAGBDdAoBAAAAAADYEJ1CAAAAAAAANkSnEAAAAAAAgA3RKQQAAAAAAGBDdAoBAAAAAADYEJ1C\nAAAAAAAANhQV6gIACByHw6G8vDzl5uaqsLBQ6enpWrBggebMmaPY2NhQFw8ALI8cBoDQI4uBjosI\n4nMbhmEE8ekBtLZw4UKtWrVKRUVFcjqdLfdHR0crLS1N2dnZevXVV0NYwp4jIiJCCm7+9SRkMdBN\nyOGOI4cBBAtZ3HE2y2L4wUwhwAIcDodWrVqlgoICr585nc6W+x0OB6MjABAE5DAAhB5ZDHQeawoB\nFpCXl6eioqJ2jykqKlJeXl43lQgA7IUcBoDQI4uBzqNTCLCA3Nxcj+mxvjidTuXm5nZTiQDAXshh\nAAg9shjoPDqFAAsoLCwM6HEAgM4hhwEg9MhioPPoFAIsID09PaDHAQA6hxwGgNAji4HOo1MIsIAF\nCxYoOjq63WOio6O1YMGCbioRANgLOQwAoUcWA53HlvSABTgcDk2YMMHnTgsuGRkZ2rJlCzstyHbb\nb5LFQDcghzuHHAYQDGRx59gsi+EHW9IDFhAbG6vs7GxJ5o4KrRfYi46OVlpamrKzs6n8ACBIyGEA\nCD2yGOg8ZgoBFuJwOJSXl6fc3FwVFhYqPT1dCxYs0Jw5c6j8WrHZqAhZDHQjcrhjyGEAwUQWd4zN\nshh+0CkEwHZsVgGSxQB6HHIYAELPZlkMP1hoGgAAAAAAwIaO1Sk0XNInkrZI2izpx83395P0oaQd\nkj6QlBysAgIAyGIACDFyGABgSceaKja4+bZeUrykNZIukvR9SeWSHpZ0l6QUSXe3eSxTZQH0SGE4\nVZYsBmAp5DAAhF4YZjGC4FgzhUpkVn6SdETSVklpki6Q9FLz/S/JrBQBAMFBFgNAaJHDAABL6sya\nQhmSTpb0laRUSaXN95c2/xsAEHwZIosBIJQyRA4DACwiqoPHxUv6p6RbJFW3+ZnRfPOyZMmSlu/n\nzp2ruXPndrqAANBVy5Yt07Jly0JdjEAgiwGEJXJ4Scv35DCAULFQFiOAOnL9YLSktyS9K+n3zfdt\nkzRX5lTaITIX3hvX5nFcPw2gRwrT66fJYgCWQQ4DQOiFaRYjwI51+ViEpOcl5ctd+UnSm5IWNX+/\nSNK/Al80AEAzshgAQoscBgBY0rF6BWdJypO0Ue7psD+TtFLSq5LSJRVIWiipos1jGRUB0COF4agI\nWQzAUshhAAi9MMxiBEEwfwGoAAH0SDarAMliAD0OOQwAoWezLIYfndl9DAAAAAAAABZBpxAAAAAA\nAIAN0SkEAAAAAABgQ3QKAQAAAAAA2BCdQgAAAAAAADZEpxAAAAAAAIAN0SkEAAAAAABgQ3QKAQAA\nAAAA2BCdQgAAAAAAADZEpxAAAAAAAIAN0SkEAAAAAABgQ3QKAQAAAAAA2BCdQgAAAAAAADZEpxAA\nAAAAAIAN0SkEAAAAAABgQ3QKAQAAAAAA2BCdQgAAAAAAADZEpxAAAAAAAIAN0SkEAAAAAABgQ1Gh\nLgAQ7hwOh/Ly8pSbm6vCwkKlp6drwYIFmjNnjmJjY0NdPACwPHIYAEKPLAbCU0QQn9swDCOITw+E\n3sKFC7Vq1SoVFRXJ6XS23B8dHa20tDRlZ2fr1VdfDWEJ4UtERIQU3PzrSchiWBo5HJ7IYcBayOLw\nZLMshh/MFAKOk8Ph0KpVq1RQUOD1M6fT2XK/w+FgdAQAgoAcBoDQI4uB8MaaQsBxysvLU1FRUbvH\nFBUVKS8vr5tKBAD2Qg4DQOiRxUB4o1MIOE65ubke02N9cTqdys3N7aYSoV21tdLnn0sPPxzqkgAI\nEHI4zBiGtGeP9MoroS4JgAAii8MMbWK0weVjwHEqLCwM6HEIsNJSaflyacUK8+vGjVJmppSTE+qS\nAQgQcriHczql9evdObxihXkfOQxYClncw/lqE48fTxajBZ1CwHFKT08P6HHogqYmacsWzxOPgwel\nGTPMCu/BB6Xp06W4OPP4P/whtOUFEBDkcA9z+LD0xRdmDi9fLq1eLY0caebweedJv/61dMIJUkSE\neQNgCWRxD9K2Tbx8uZnNrjbxr38tZWe728SPPx7a8qJHYPcx4Di99957uuCCC9qdLhsdHa0333xT\n8+fP78aS2cCRI9LKle7K7ssvpYEDzcpu5kzza2am1Mv3FbI222mBLIZlkcMhZBjSrl3uHF6xQios\nNDvgXTl86qlScrLPh5PDgHWQxSHkq008aJBnm3jcONrEaBedQsBxcjgcmjBhgs+dFlwyMjK0ZcsW\ndlroqr17PU88tm2TJk92V3YzZ5oVYAfZrAIki2FZ5HA3qq2V1qxx5/CKFVKfPp4nHpMmSVEdm4RO\nDgPWQRZ3o8JCz5nx27d7t4kHDuzw09ksi+EHl48Bxyk2NlbZ2dmSzB0VWo+OREdHKy0tTdnZ2VR+\nndXQIG3Y4Hntc12du6K7/HJpyhTzZASArZHDQVRa6u78Wb7czOVx48wsvvxy6YknpOHDQ11KAD0A\nWRwkvtrE9fXuDqArrjDbxL17h7qkCHPMFAK6yOFwKC8vT7m5uSosLFR6eroWLFigOXPmUPl1REWF\nuQaFq7JbtUoaMcJzxGP06ICuP2GzURGyGJZHDndRU5OUn+85+lxW5l6DYuZM87Kw+PiAvSQ5DFgP\nWdxFvtrEGRmebeJRo2gTI+A68gvwgqRzJR2QNLH5viWSrpNU1vzvn0l6r83jqAABeDIM6euvPRe/\n27NHmjbNrOxca1CkpAS1GGFYAR5vDktkMYC2amqkr75yZ/GXX0r9+3teCjZ+vN81KAIhDHNYok0M\nIFBcbeLWs4D27DEXgXZl8YwZftdlC5QwzWIEWEd+AWZLOiLpZbkrwMWSqiU91s7jqAABu6urM9eg\naD36HB3t7gCaOVPKyjLv6wb1jfX6+tDXGj9ovBReFeDx5rBEFgPYu9czh7duNbPXlcMzZ0qpqd1W\nnHJHuQbGDZTCK4cl2sQAjpevNnFMjHebuIPrsnVVGLeJEQQd+a37TFKGj/v55QHgqazMs7Jbt04a\nO9as7BYuNLe9HD486FsR19TXaFv5Nm0t36qtZVu1tXyr8svyVVBRoOFJYbkGBjkMoGMaGqSNGz1H\nn48edZ90PP64NHVq0NdlMwxDe6v2emSwK5MbmhqC+tpBRBYD6Ji2beL1691t4v/f3n3Ht1nd+wP/\neE/JM3ESJ46dxCt74AwnpGGFvS5h/gi0DdALYVygtJRbSoDeMnKhAwpcNoXeAk0JhVtCU2hDyCR7\nOLETJ3Y8Mrwt2bJlWXp+fxxL1qPnkeMhWdLzfN6vl19ej61HUfw953zP95xz443A7343LPuytXW1\niT5xTyx2xuHKlkpkJWX5/fEpNPS3EcsG8DnksyI/ANAKYCeAhwG0ePwMZ0WItMzhEKeAuQ886urE\n8i/n8oN583y6B4Wn+vZ6HG44rGjs6tvrkZuWi8L0QvE2QrzPTctFbGRsqJbKZmPgcRhgLCbStpYW\nsfzLfQ+KcePke1Dk5votGW+z21DeVO4aaJQ2inhc1lgGY4xREYcLRxQiIyED4WJpWqjFYYB9YiLy\n5N4ndvaL6+rE8i9nLPbxvmyenH1iz+RPg6UBeWl5vTG4Jw7npuYiJjImVPvE5GODTQqNRO/a6acB\njAawwuNn2AASaYnFAnz3Xe/AY+tWsfePs7Fz7kEREeHThz3bbLNnI1eYXojs5GxEhHu/jxBtALMx\n8DgMMBYTaYckAcePy5PxlZViXzZnLJ4/H0hN9flDt3e1o6yxTMRgt0FHRXMFxiWNU8ThgvQCJMUm\nef19IRqHAfaJicjZJ3bG4q1bRdz17BP7eF+2vvrEdsmumoQfnzRei31i8rHBLlqsc/v4TYjGUWHV\nqlWuj5csWYIlS5YM8uGIaNjV1soHHocOAdOmiYZuxQrgzTeB0aN99nA2uw3Hmo8pZjhKG0phiDG4\nGroZGTNw09SbUJheiFGJo5yNWZ82bNiADRs2+Oxeg0S/4jDAWEwUsqxWYPdu+RKEiIjeQceKFcDM\nmT7dl63R0qg623ym/QxyU3Ndg40bp9yIySMmuyowz0ajcRhgn5hI+9T6xNOnizh8xx3AW28Bo0b5\n7OH66hMbY4yuOMw+MfnKYCuFRgM41fPxgwCKANzi8TOcFSEKFd3dwIED8oFHW5t8+cE55wBxcUN+\nKOdss2dDd7z5ODKNmaqzHMmxvj15IURnRbIx8DgMMBYThY76ejHj7L4vW26u/FSwrKwhLwWTJAk1\nphrV5I/VbpXH4J6Pc5Jz+pxtHqgQjcMA+8RE2ubZJ968WVQGefaJfbAvm7c+cUVLBTINmarV8H1V\nYA5GCMdi8qH+/Af4E4DvAUgHcAZi7fQSADMBSAAqAPyo53vu2AASBavWVnEcsXPgsX07kJkpH3jk\n5Q1p4NHXbPOk1EmKRi4vLQ9xUUNPOvVHCDaAg43DAGMxUXByOICyMvkeFKdPK/dlMxgG/RDdjm4c\nazqmiMWlDaVIjE5UTcKPThzdr9nmoQrBOAywT0ykPe594s2bxbKwsWPlfeIh7svW3wpMZxzOS8vr\nVwWmL4RoLCYf8+d/ADaARMFAksSeE+4Dj2PHxOkzzsZuwQIgLW0Qv9r7bHNnd6fqDEdOSg4iw4fn\nuE1vdNYAMhYTBQOLRWwC7b4HRVKSfA+KKVMGtS+bxWZBWUOZIhYfbz6OMYYxw1KBOVCMw0Q07NT6\nxMePK/vEg9iXLRgqMAdDZ7GYvGBSiEhrurrEkgP3tc9hYfIZj5kzgejofv/KvmabE6ISVJM/Ywxj\nhmW2eTB01gAyFhMFwsmT8jhcUiL2ZXNfgjDAfdmaOpp6Y7BbLD7ddjrgFZgDxThMRH6n1icOD1f2\niQewL1swV2AOhs5iMXnBpBBRqGtsFA2ds7HbvRuYNEk++zx+fL/KXr3NNh9rOiZmm1WSPylxKcPw\nJH1LZw0gYzGRv9ntyn3ZTCZ5AqioqF/7skmShFpzrWryp8PWEbQVmAPFOExEPufsEzvj8O7dYumX\neyweYp84mCswB0NnsZi8YFKIKJRIktiDwn3zu5Mnxb4TzgTQvHmA0djnr+lrtnliykTFoCM/LT9o\nZ5sHQ2cNIGMxka+ZTPI9KLZvB8aMkc8+5+f3OfDodnTjePNx1dNl4qPiQ64Cc6AYh4loSJx9Yvcq\noFOnevvExcVD7hOHWgXmYOgsFpMXTAoRBbOODmDnzt6Bx9atQGJibwKouFgsR1DZg+Jss80F6QWK\nQceElAkhN9s8GDprABmLiYZCkoATJ+R7UJSXA7Nn98bhBQuA9HTVH++wdaieLnOs+RhGJ47WTAXm\nQDEOE9GAdHSIfdmcCaCtW8VG/O594qlTB9Un1koF5mDoLBaTF0wKEQWT06flA48DB8TGo87GrrhY\nnBLmpq/Z5rioONXy1kxDpmZmmwdDZw0gYzHRQHR1AXv3ymefJUleBTRrlmJftuaOZtUNRk+1nVKt\nwMxLy0N8VHyAnmTgMQ4TUZ9OnZJXxh88KJI+7n3iMWNkP6L3CszB0FksJi+YFCIKFLtdbDzqPvBo\naelt6BYuFHtQxItBQ1+zzaMSR6kmf1LjBn56gh7orAFkLCbqS1OTfF+2XbuAiRPl+7JlZwNhYZAk\nCSfNJ1WTPxabRdcVmAPFOExELu59Yme/uLVV2Sfu2ZeNFZi+o7NYTF4wKUQ0XMxmse+Ec+CxfTuQ\nkSEfeOTno9naqjrgOGk+iYmpExWNXH56vq5nmxUaGsQa87IyoK0NuP9+xSU6awAZi4mcJAk4ckQ+\n+1xbC8ydK9uXrduQgIrmCtXTZWIjY1mB6QOMw0Q65uwTOxNA27cDo0bJN4Tuo0/MCkzf0VksJi+Y\nFCLyB0kCqqrkA4+jR8WSg+JiSMXFOD0tByWoUzR07bZ2MdvsMeiYkDIBURH9PzJTV5qagCuvFImg\n7m6xwWtBgdjz44EHFJfrrAFkLCb96ugQlT/us8+Jia6BR2fRbJSNicbhlqOyWFzeVM4KTD9jHCbS\nCWef2L0y/uhR0Udz7xNLZ1iBGQA6i8XkBZNCRL5gswH79skHHjYbpOJiNMzKR2leKraPtOGg6ahr\ntjkmIka1vHWscSxnm53cq35KS4GKCuDjj5Un+tjtwKZNIhmUkXHWo0Z11gAyFpN+nD4tP454/35g\n8mRY552DE5MzsXtCLHaFn3ENOk6aT2JCygRWYAYA4zCRRtlsYl8294lRux2O4mI09vSJt43sQknr\nUVZgBgGdxWLygkkhosFobhanHvQMPKSdO9E5dhRqp43HvokGbBhjxYaIKpQ3H0NGQoZq8ictPi3Q\nzyJ4SZLYw6O1tbfqx/n+qquAyKHNDumsAWQsJm2y24FDh3rj8ObNkJqa0DQzD0cLRmJ7VgTWpzVj\nj/kI2rraWIEZZBiHiTSiqQnYts2VAJJ27ULnuNGomTYe+yck4l+ZVnwTLvrErMAMPjqLxeQFk0JE\nZyNJ4vjhzZth/XYD7N9uRFTtSVTmZWBnTjTWZ7Thi9QmpI1Rrm3OT8tHQnRCoJ9BcGhsFNU+7pU/\nZWXA3/8OjB+vfn1q6lmrfgZDZw0gYzFpQ1sbsH07HJs3oeObrxG9YzfMSXEoyUvGpkw71qbV4cSo\nOBRkTGYFZghgHCYKQZIkln5t2QLrxn/BvulbRJ48hRO5I7EjJwbrM8xYl96M9NHcAzNU6CwWkxdM\nChF5kDo60LhpPZq//hsitm7DiH3lsEQ4sCUrDJvHOnBqxkREzpyF/IwprsZuYspEzjYDomQYAKJU\n/i0uvFBsLOhe+eN8U7vej3TWADIWU0jqPH4EdevXwrrxX0jcuQ8pVfU4NDYGG0Z34XBeCsxzpmLM\nxJmswAxRjMNEwc/VJ/7qb4jY1tMnjnRgy7gwbBrnwOkZkxA1o6dPzArMkKSzWExeMClEumV32FHR\nUoFjh7fA8s1XiN2xG5kHTmBiVRuOjoxEecFINM8uRNjChRg3pRiFI8Rsc3hYeKBvPTjs3w/s3Cmv\n/qmsBP72N+CCCwJ9d33SWQPIWExBrbWzFaWnDuDMlvWQNm9G6p7DmFRahwibHfsnJqJ2ejY6586B\nccES5GdOZwWmRjAOEwUPb33iCdWiT3ysYCSaZ09G+MJFGDdlASswNURnsZi8YFKINK+zuxNHGo/g\ncP1hlNYdgnnvdhh2HcTEQ6ewsCYc6RagZnIm2s6ZgZjF52PMBVcjfWR2oG878Gw24PhxIClJHBPq\n6emnxbI6Z7VPQQEwcSIQGzv89zpAOmsAGYsp4CRJwum2064TZSor9iDyu53I2HcMsyosOKcWaB5p\nQP3MPNiL5yPl/MuRNfs8REVGB/rWyU8Yh4mGn1qf2LjzACYcPoNFNWFIswA1U8ai7ZwZiF18PsZc\ncA3SRmQF+rbJj3QWi8kLJoVIM1o7W1HaUOoadBxuOIyKmoMYc7hQaVNbAAAgAElEQVQGl9UnYVFN\nBCaXt8KWmgTb3HOQcN5SxC4+H5g8GQhn9Q++/Rb4/HN51U9mJvDcc8CyZYG+O5/SWQPIWEzDxu6w\no7KlUhaHD9cfQmdpCRZWA0tPJ2JOpRUjGiwwTy9A5KLFMJx3McIXFAMpKYG+fRpGjMNE/tPa2SqP\nww2HUVlTgszDNbi0Phnn1oSj0Nknnl+ExCUXI2bxeUBhIfvEOqOzWExeMClEIUWSJJxpP+M22Oht\n7Fo7W3FuRA4uq0vC/Eo7JpXVI6niJDB9BsIXLQKKi8VbRkagn8bwc1b9lJWJ5z9vnvKaL74QR4g6\n9/uZNAmIiRn+ex0GOmsAGYvJ56zdVjHb7BGHjzYeRWZMOq4wjcZ5J6Mx7VgbMg+eQERMHCIWnSti\n8MKFwIwZQz5FkEIb4zDR0HhWYDrj8OH6wzBZTfhe+ARcWp+EeSfsmFRah6SKU8AMjz7xyJGBfhoU\nYDqLxeQFk0IUlOwOO060nlBN/kSERaBwRCGmpOTj3JYkzDpuwfiSWsTv2Iuwjg4x4HAOPObMCYnl\nTH7x7bfACy+IPX+cVT8FBcDy5cBNNwX67vyms7sTVa1VqGiuQEVLBRKjE3Hr9Ftl1+isAWQspkEz\nWU2qcbi6tRo5KTkoTC/EORFZKK4BCo40YcTeI4jYd0DEGmccXrgQGDcu0E+FggzjMFH/qFZgNhxG\naUMpIsMjUZgu+sSLWo2YfawDWSU1ok/c2SnvE8+erd8+MXmls1hMXjApRAFl7bbiaNNRxQzHkcYj\nSI9Plx3xPjVmHKYcMyN5dwmweTOwY4cYaLg3eJMm+eUI86DiXvVTWiqObb/jDuV1R4+KzaCdVT8a\n6QhIkqS6seHuU7tx5Z+uRIOlAWONY5GTnIOc5BwszFqI78/8vuxanTWAjMXUp7NVYOan5/ceLZyW\njxlN0Rh/qBaRW7eLWFxfDyxY0BuH584FEhMD/bQoyDEOE8n1VYGp6BNHj8WU421I3nUQ2LJF9Imz\nsuTJ+IkTtd8npiHTWSwmL5gUomFhsprEfj8eyZ+q1ipkJ2fLGrrCEYUoSMtHYk2daOg2bxZvlZXA\nOef0Nnjz54uEiF7s3g3ccou86ic/H1i8GLjmmkDfnc+ZrWb8teyvqGypdFX9VLRUICU2Bbt/tFtx\nfYetA/WWemQaMhERHtHn79ZZA8hYTAAAh+QQs819VGC6x+HC9EKMi0xF+M5dvXF42zYRd51xuLgY\nmDKFe1DQgDEOk171VYHZZ5948+befrGzT+xMAM2fz33ZaFB0FovJCyaFyGckSUJde53q2ubmzmbk\np+UrGrpJqZMQHRENWK3Anj29A48tW4CIiN7GzrkHRVRUoJ+mb3lW/ZSVAZIEvP228lqzGThxIuSr\nfiRJQmNHoyvR09zRjB+d8yPFdfXt9bj/y/uRnZSNnBRR9ZOTkoOspCzxf2YIdNYAMhbrTF8VmGnx\naShML8TkEZNlyZ8RCSPED9fU9A46tmwBDh0Cpk/vTQAVF6ufRkg0QIzDpGV9VWC2dLacvU+8e7c8\nFkdG9vaHi4u12SemgNBZLCYvmBSiAXNIDpxoOaGa/AkLC1PMNBeOKERWUhbCw9xmkuvrga1bexu7\nPXuA3Fx5g5eVpe2y15MngQkT5FU/BQXA1Kni+WuMxWbBvDfnobKlEpHhka4kT15qHp658JlhvRed\nNYCMxRrVVwXm+OTxilhckF4AQ4yh9xd0dwMHDshnny2W3uTPwoViJjqEk9AUvBiHSQu8VWCWNpQO\nrE+8ZUtvHN67F8jLk2+PkMVj4ck/dBaLyQsmhcirLnsXjjYeVSR/jjQeQWpcqmpDNyJ+hHK/F4dD\nVMC4DzxOnxalrs4Gb948wGBQv5FQIUnAkSPyqp/SUqC6WpT5ei6vkCQxGxTCA64vy7/E8ebjrqqf\nypZKVLVWoeahGkU1jyRJ2HdmH7KTs5EcmxygOxZ01gAyFoews1Vg5qXlKWJxblquejVda6tY/uWM\nw999B4wdKx945OZqOxlPQYNxmEKJtz5xWUOZqwKz333i0lJ5FdCZM6JP7IzD8+ZxXzYaNjqLxeQF\nk0IEs9UsZps9GroTLSf6N9vsyWIRG945G7ytW4GkJPnAY8oUsTwsFDU0iD011JI8M2aIza+dVT/O\n9yNHhtRAy2a3ocZUI/bxaa7AzdNuRnxUvOK6G/58A1JiU1zLu7KTxVIv1Y5QENFZA8hYHAL6qsAE\noLrfz/jk8fLZZneSBFRUyJPxx4/L92VbsEBf+7JRUGEcpmBktppdlT4+7RM7Y/HWrUBysrxPPHly\n6PaJKeTpLBaTF0wK6YQkSai31KuubW60NMpPl+lp6CalTkJMZMzZf/nJk/KBR0kJMG2afCPS0aP9\n/yT94e9/B/btk1f/2Gxin43MzEDfnc/d8pdbsKV6C061ncKoxFGuJV6rL1qN9Pj0QN+ez+isAWQs\nDiJ9VWCmxKaoJn9GJow8e5K1q0u5B0VYmHxftpkzuQcFBQ3GYQoUtT7xoYZDg6vA9OTsEzvjcEmJ\n2JfNPRkfqn1i0iSdxWLygkkhjXFIDlS1VqkmfxySw9XITR4xuX+zzZ7sdrEHhfvAw2xW7kERF+ff\nJ+orjY0i0VNYqH5qw0MPiffulT8ZGSFT9bP/zH4crj8sTvDqOb2rorkCHy37CLNGz1Jcv+vkLqTE\npWCccRyiIrQ7eNRZA8hYHAB9VWBmJWUpT5dJL4Axxtj/B2hokO/Ltnu32ITefV+28eNDJlaRxlgs\nYklMfb34v+p8Ky4Wy2TAOEz+11efWJKkgVdgenL2id0nRtva5MfCz5kTOn1i0hZJAurqlHHYYukd\n30B3sZi8YFIoRHXZu1DeVK5YZlDWWKaYbS5IL0DhiEJkJGQMfEmPyQRs397b4G3fDowZI68Cys8P\nnYHHn/4EfPVVb+WPzSaSPa+9BsxSJkmCWWtnqyvJMzdzLjKNysql+764D6faTollXT1VPznJOZiY\nOnHIJ3iFMp01gIzFfnK2Csy8tDzFoCM3Nbd/FZjyB1Luy3bqlNh3wn1fNuMAkkpEA9HcDFRVyQcW\n9fXAuecCF1ygvH7VKuDdd4ERI4D09N63664DFi0CwDhMvjOQPvGAKjA9mUzKfdnGjJEn4/PyQqdP\nTKHF4QCOHeuNv85Y3NoK/Nd/Ka+3WIDsbGUcHj1axOgeOovF5AWTQkGuratN9XSZypZKjEsa13us\n8GBnm91Jkjjy3H3gUV4OzJ7d29gtWCACSjBqbOxd4jV3rjjFy9OHH4pGPT8/5Kp+AOC5Tc/ho5KP\nUNlSiS57lyvJ8/jix1GUWRTo2wsZOmsAGYuHqL8VmO4bjI5PGo+I8EHuEdHRId+DYssWkfBx34Ni\n6lTuQUGDd+aMOBjBM8mzeDFwzTXK63/7W+Ctt+QDixEjgIsvHvRpmYzDNFB99Yl9UoHpTpLEISHO\n/vDmzWJAPmeOvE+clubT50g6Ikmiytc9Bjc0iPHMK68oxycOhxi7pKXJ43B6OvCTnwx6PKOzWExe\nMCkUJOrb61U3GG2wNCA3LVd1bXNs5BBPrbLZxFHw7kvBHA75jMesWUB0EFeUvPce8PrrIhHU3d2b\n7Ln7btFYB7lT5lMoqS9xnd7lPMHrgXkP4KapNymu33NqD7od3chOzkZ6fHpQb+bsqaamBitXrsTh\nw4fhcDhwxRVXYPXq1Yg6yx4nv/rVr/DYY4+5Pk9MTERbWxtOnjyJBx54AH/+858HfC9DaACfBLAR\nwNd9XPM9AF0Atg7i9/sDY3E/9TXbnBybrJr8GVQFpqdTp+TJ+IMHRdLHvSJzzBjfPEnSppoasf+d\ne5KnoUEkeZYvV17/7rvAm28qBxaLFomqsyHdSv9ivUocfgzAr9w+bwOQCGAMgN8CuH5INzYwvo71\njMMD0Fef2GcVmJ66usRR8O77AQHyZPzMmcHdJ6bA++YbsWTLMxa/9Zb6acPFxeKkOfc4nJ4O3Hkn\nEBk5LLc8yD7xWAC/B1AIIBzA/wF4BIDtLD+n5Tgf0pgUGkYOyYHq1mrVhq7b0a1a3pqdnD342WZP\nTU29s86bNwO7dgETJ8obvOzs4KicaWgQiR7nW1ERsGyZ8rr9+0VZexBW/dgddpw0n0RFSwVGJoxE\nQXqB4prVm1fji/IvxNKunuVd2cnZmDJiClLiVPY4GgJJktDU1IS0AMxqSZKEefPmYeXKlbj99tvh\ncDhw1113ITU1Fc8//3yfP2swGGA2m71+3l/d3d2I7Glg/TwrsgqAGcALfvr9A8VY7OFsFZhqp8sk\nxSb55sHtdpH0cU/Gt7Yq92WLV572Rzpy4oTYM8pzL4hFi4D77lNe/8knwBtvAOnpaEhMRPq4cWJg\nMWeOeBsmA4n1KnHYDMDQx+f9FQmgexA/N1Cr0P9Yzzjsoa8+sV2y+74C01Njo3xftl27xL5s7vsB\ncV82WrdObB7umeT54ANxsrKnq68WyRzPJVvXXw/EDDFx6aahoQHpPlq5MYg+cRiA7RBJofcgkkKv\nA2gC8JOz/KyW43xIY1LID2x2m5ht9mjoyhrKYIwxqiZ/RiWO8m3VhySJ0nD3gUdNjZgBdDZ48+cH\n3x4UH30ErFzZu9ePc4Pniy4SiaEg93nZ5/jdd79DRXMFqk3VSItLQ05KDlYWrcQt024J6L399jcv\n4m+ff4r1X28c9sf++uuv8dRTT+Gbb75xfc1sNiMnJwfV1dX46KOPsGvXLrz00ksAgCuuuAKPPPII\n1q1bh//+7//GtGnTMHXqVLz//vuupFBlZSWuvPJKHDhwAHa7HY8++ii++eYbWK1WrFy5EnfddRc2\nbNiAxx9/HKmpqSgtLUVZWRkAWQPYBtGQLQVwGsBNABoAzATwGoA4AMcA/BBAC4B3AXwO4C8AKns+\nvxJAFMTshhViNsEOoB7AfQA2+edftd90G4sDUoHpyWzu3Zdt82bx8ejRyn3Zwvu5sSmFpuPHxX52\nnssEiouBxx9XXv+Pf4hKHs+BxZQp4nRPL/766af48Y//A0fLK/33XPowkFjfE4f/BmA1gEsB/BjA\nAQAHASxH72AhGyLuTgMQAeBZiNnbGIhByesAlgB4GmJQUgAg3+PWAh3rdRuH++oTJ8Um+a8C052z\nT+xekXnypLxPzH3Z9OGTT8T+aJ4J9w8/VD8VbsUK8f/Hc+nsRRepV/4Mg927d2PhwmJYLB0++TsZ\nRFLoAgC/gIjDTgYAFQDGAbgRwByIuAiIKiI9xPmQ1p+6tLcBXA6gDuKFAoBUAB8BGA/xj3gDxD+u\nrrR3taueLlPRXIGxxrGuBu6CnAtw79x7UZhe6LvZZk+dncDOnfI9KBISehu7lStFR3KYShFlnCd8\nOff7KS0VgyC1CpGLLhKz6EFS9dPe1Y6yxjJUNFfITvBaOG4hHjv3McX1uWm5eHjBw8hJzsH45PG+\nH2CeRUNDA95+4zX882/vI6yrAVJ0Os6/fDkuu/IaPP7zx7Dk3LnDej9OJSUlmOMxW20wGJCVlYXy\n8nJFoxYWFoawsDA8++yz+P3vf489e/b0+fvfeustJCcn47vvvoPVasWiRYuwdOlSAMCePXtQUlKC\n8ePHq/1oPIAdAB4C8DiAJyCC/h8ArATwLUR56RMAHgQg9byh5309RMN3N0RDdydEw2MG8OLZ/2X6\njXHYC0mSUG2qdsXgQ/WHvFZgXjjhQt9XYMpvRnQ23ZcfHD0qluEuXAjcey/wv/8bvPuyUf8dOwas\nXavck2fuXODXv1Zef+aM2CcqPR3IzARmzBADi4kT1X//RReJNxXe4vyNtyzH/ffeCWNi4KrMBhrr\n0RtTH4WIuWc78WEFRJybCzFY2ARgfc/3ZgGYAuCEys/5KtZvAbAHYmDhjPXvgrG4zz6xewXmhRMu\nxH1z7/NtBaanjg7RJ3afGE1M7K0Auvde0Sfmvmyh749/VN98ec0a9fi6bRtgtYpYPHNmb+I9OVn9\n97/1ln/v3wtvcf77K+7C3XcuR2Q4ArmFxBQAuzy+ZgZQBWASemOnU6jFeX/36YNSfzIE7wB4CeIf\n1OlRAP8A8DyAn/Z8/qjP7y5INFgaVDcYrWuvQ25qrmvQceOUG1E4ohB5aXn+TwacPi1v7PbvFzOI\nxcXArbeKDcoyladR+Y0kqSdx/vlP4Npr5VU/t90mOsRqUlP9e58e2rvaUdFSAYfkwPSM6Yrvrz+2\nHqu+WYWcZLGsKzc1F0snLsXUkSqbWAMoSC9QXSY2HC6cNw6TDKdwzRw77l0BxMcAFmsTNpY+jhsu\neRwjEgCj0bdL0vqrr4bLF43a+vXrceDAAaxZswYAYDKZUF5ejsjISMydO9dbQggAHBCdeQD4AMAn\nAIwAkiAaD0CUxnrbuOiTnve7Afyb29d93VLrPg57zjaXNorlX6UNpbIKzBkZM3DT1Jv8U4GpuClb\n7x4Uznhst/cOPJYvFxv1cw+K4HfsGPCHPygHFrNni/13PLW3i72g0tPFwMM5sBg3Tv33L1jgk33u\n+orzy857HOFWIGnMlCE/zmD5O9ZDzABPA+BcT26EGIR0A/gO6gMFwHex/l2IWeaEns/DoLNY7K1P\nXN9eL6vAdMZhv1RgenLvE2/eLI6JnzKlNw6/+urw9olp8N55Bzh0SBmL//IX9bFDdbVoiydOFCsg\nnNU83l7vs2xZEAz6ivPXf+8XOF0vwWjwksQaHn2VPfqiJDLQcd7fffqg1J+k0LcQJV3urkJvydh7\nADZAQw3ge3vfw5bqLa6GrsveJSttPT/nfBSOKEROco5/Zps9ORxASYl84NHcLDqYCxcCzzwjllYl\nJJz9dw2V1SrWXbtX/ZSViZLb775TXr9kCdDSEhRVPwBwqP4QnvzmSVflj7nLjOzkbFxbcK1qUuja\nwmtxbeG1AbjTgWloaMAkwym89kO77OvxMUBUBGCxAisvArZaulFdXQ2j0QiDwYDwYVqyMnnyZFfC\nxslkMqGqqgqTJk3C3r174XA4XN/r7Owc8GO8/PLLuMhjZn3Dhg1I6P/fRRjUG7O+/vNae97b0b94\nOli6i8PHmo7hnb3vuAYex5uPyyowz88+HyuLVqIgvQDJscPUOWpqEntQuO/LlpMj4vCVVwLPPis+\nD5J4pwveJiSOHwdeekk5sJg6Ffi//1Ne73CI31NYKDZndj+6V8306cALw7vFQF9xfnw6UNkAPHMj\n8NbeMJw4cQJGoxFGoxERw1gNMdBYD2Aw2YJ7IZIw7pYAaO/nzw8l1u8G8AOP72k6Fr+z5x1sq9nm\n6hPb7DZZBeYFEy7wbwWmJ7td9IndJ0abm3sr4597TvSJuS/b8HEujVSLxa+9Jj9hy/m2dq14vTxZ\nrSLJPnmyfMmWt8m9RzXzpwag7zg/Jwc4fFLCb5cDP/s0EhUVFUhKSoLBYDjroS0+dgi9CRsnI4As\nAOUQy7XcBxihFuf93acPSoN9whkAzvR8fKbnc80wd5kxLWMabphyAwpHFGJ04ujhLdFraxP7Tjgb\nvG3bgJEjRfA891wRAAsK/LcHhc0m9h/KyVF+r7ERePBBedVPQYHYnE+Nn5MOdocd1aZqsbTL7QQv\nQ7QBr1z+iuL6lNgUXJ1/tavyJyMxA+Fhob+Xx9tvvIZr5tgVX7fagJXvAr+7DQgPA17/369QfE4h\nWtttaO+wISEuGsbEeCQZE2A0GpBkNMKYlIyk5FQYk9NgTEpDUnIyjEYjkpKSZO+dH8fHx5/17+OC\nCy7Ao48+ivfffx/Lly+H3W7Hww8/jB/84AeIjY1FTk4OXn31VUiShJqaGnznlmCMioqSbRKt5uKL\nL8Yrr7yC8847D5GRkThy5AjGjh3bn3+6cIh1wx8BuAUi+WIC0AxgEUTJ6nKITn5/mSEaR3/TdBzu\ndnQjMjwSN0y+YfgqMN1Jklj65T77XFMjlgcVFwM/+5mYlVTbaJIGR5IAi0V9gqOyEnj6aeXAIj+/\n95Qgd9HRompn1izlvjxqcnOBVat8+Wx8zluclyQR539+DTArG2hadwSL509Ba5sNZosNcTFRSDLG\n98R6g4jfbnE+KTkdxqQkRWx3f5+QkNCvSYSBxPoe7muabTj75qF/B3APgH/1XJcHoKYf/3z+jPWa\njsVtXW2YnjEdN069cXgqMD2ZzWLS0ZkA2rZNbDGwcCHwve8Bjz3Gfdl8zWoVCR61KteXXxavhefS\n2b/+Fbj4YuX1yclis3v3GNxXLP73f/ftcwkx3uI8ADz6IfD/ioFz8wFDRCvOK54Gk6UbpvYuREdF\nIskQB2NiQk+cN4j+e1KK6MunpIu4rxLneyRBxDSH6oPLfQ2x589yAO9D7AH0AkRVeyfE3kJ3QyRg\nxkIbcV7zfJEFc1+Ppwn3zr13eB+wqko+8CgrEx3Z4mJxtPr774tOrT/Y7eJYd/eqn8pKUYZ58KAy\n6z9mjEhYDROH5MCZtjOoa6/DjFHKstHypnJc+P6FyE7Odp3gdUHOBV6XcI02jA74hs/+8M+/vY97\nVyi//ut1QO4o4KqeLR6umN0FcbKimBg3d1ph6rCi1dIMUwdg6gBaLT3v6wDTCaCiMxomaxRaOyJg\n6gwT37c40NreDZPFhi6bA8bEWBgT45BkTITRYIDRmISk5BSkpI3EE089g5EjR2Lt2rW455578PTT\nT8PhcODyyy/Hr34lTqVcuHAhcnJyMHnyZBQWFsr2pLjrrrswffp0zJkzB++//76sM+r8+I477kBl\nZSVmz54NSZJcj+fcm6gP7RCN1c8hOvM39nz9doh1xPEQe0d4zgx7co+DnwNYA+BqiJmOzWf5WV/Q\nXBzOT8/HqiWrhu8BOztF5Y/7fkDx8b2zz/fcE7h92UJVRwdgMokBnKeaGjHB4JnkmT1bvY1JTBTV\nsZ6bfXrbB2LsWOChh3z7fALMW5z/aBvQ1CaqQSMjgLLn5XG+3doFU0cXWi0tIra7x/pGoLUaqLZG\no8Qa2RPnw3vaAQda2+0wtdvQYe2GISGmJ7GUCKMxEUnGpJ7kUjoe/unPkZeXBwBYu3Yt7r7nbjz5\n1JPotndj0QWLcNvdt2H9sfXAKLhifQ/3fSleB7C/52vLIY9pzo/fhKia3A0x4KgDcC3OHgP9GesN\nABZCxHrNxeL75qmcducvkiSWA7lXxh850tsnvuce//aJtcjhEJVUsbHqCfff/EZsbO9eVdnRISp5\nrrhCef2ECWKrB/c4nJbmvTLrppt8+3w0zluc33YU+HI/cPh5wBgPHHjGBufp75IEWKw2mDpsaO0w\nwdRxqrcvbwFMrUDrKaDWGomSjgi0doTDbI1EW0c4TB0SUhIASxfqumyIiopEV1QELFERaA8Pgzk8\nHK2ShBa7A03mTrxkd2Bbzy1dC+AViL17wiEODXButroZIjF0CMBhaCPOD2efPiD6m+rPRu+O4ABQ\nClHCdRrAaIhMnucoXHriiSdcnyxZsgRLliwZ/J1qRXc3sG+fvMHr6pIfCz97tu+OLbTZRBl9aSlw\n2WWAZ3mhJAF33SWqgpzVP5Mm+fTYxIEwW8346Vc/FRU/zRU40XoCxhgjZo2ahS9v/TIg9xQKLp2b\nhnX/0aT4+orXgUkZwM+u9t9j27qhTCj1fP6ff4nFh5/+C/Pnz/ffDfTDhg0bsGHDBtfnTz75JCDi\n32CPwgyEbAw8DgOMxerOnJEvP9i3T5Sru58K1r9qM32w2cTyObNZvTL09Gng+9+XDyzsdtGeqVXy\nmEzAl1/KkzxpaQFre0KBtzj/y7VAVSPw+h3+e+xuO2DuhHyg0RPnX/h7DB5+6h3cfPPNrusrmisw\n839mwhBtgDHGCGOMEbbjNoRVhuGKPDHQdIvDw8GXsT4b7BP7hs2m7BPbbL37shUX+7ZPHOokSawm\naGgQCfEUlX0iX3wR+PTT3ljc3Cy2eHj7beCaa5TXb9oktnlwj8VJSVwGHSCXzk3DXx8QcT7a7SX4\nYBPwh2+B9T/z32PbHUCbSpxv7QDe+QbS+gP4OYBf+e8OhiyU+vRBZ7BJoecBNAJ4DmLddDKU66d1\ne/ymTHOzKHV1Nng7dgDZ2fKBx8SJvg2+//VfotTWWfUzdqxI+PzhD6LTPczMVrMryeM8wavWXIuP\nl32sqOLodnTj1R2vIiclx7XEKyFaPrNhsViwceNGrFmzBlVVVcjKysKyZcuwePFixOt0Dfkli/Lx\nyYojiPfoN+07AVy2Gjj+axHY602AMQ5IigcSYvxfbV34mAF/+WKb+6xwUHA7ftOE0CkLzcbA4zDA\nWCxmSg8dkg88Ght792UrLhbLwoZjX7ZgIElAa6sYNJhMYtDlqbFR7JPkTPCYzWJ2uKAA2LgRgDwW\nn66owIWRkZh72WWYtXQp4saNE/+eHFj4jLc4X9cKFDwClK4GYqKA6sbeOG+I9X+cv+zXSbj3yf/F\nZZddNqCfG8QxyEPhy1ifDfaJB6e5Wb4v286dok/sngSaMEE/ccNqFbG2vl5sE6G2h9nq1cAHH/RW\nU0ZFicTNCy8A112n6BMvTEjAJQsWYPoFF4g4nJrKCtdh1GBpwOm20zBZTTBbzTBZTTBZTZg/dj6m\njFQeAvDspmfxUclHruuazI0Ij5DwZgZwu1vEstqAnP8AvvypWAFQflrEeWO8eB/h5zh/5xvofHMD\nfgxxPHywCqU+fdDpT9T9E8QGeukQpVi/APBXAB9DbChVCfXjN/XXAEqSOMHEfeBx4oTY8M7Z2C1Y\n4L3c/WycVT9lZeLt5pvVZ7LffRcwGIat6qezuxOVLZXIS8tT7M8jSRJGrB6BjMQM1/Ku7ORs5KTk\n4Or8qwe8KeENN9yAHTt2oLa2FjabzfX1qKgoZGZmoqioCB9//LFPnlcoef6ZX2J6y+O4ROVghkue\nA66fB3y6E9h6PA4xsTFoNVnQYbXBEB8FY0IUkuIjYIwPQ1IcYIxzwBjTjaRYG4yx3T1fEwMMtfex\nUd77b2MeiMeOvUeQGWSnfgzzYMQXBhuHAT3G4vZ25b5s6UYQKuEAABnLSURBVOnyiszCQu3sQWGx\n9A4YWlqA889XXmM2i/anoUEMQuLjRdn/+PHA118rr7fZxOSC+3G9bv9ejMVDY+22wtxlRntXO8Yn\nKzdQtdgseG7TczB39Q4q9h3eC2P3UexQqQf84VvASIOY5X17cxhioiPR2WFHl9Uh9o6Lj0RSQgSM\nceEidsc6YIjtgjHWjpTYbjG4UIvzPV+Pj/Ee5xf+KgnPvfZ/WLRo0YD+DUIwDgPsE/efJAHl5fLt\nEaqqRALeGYvnzx98nzjY2O0i6eWMxZmZ6ntzrl4tTkNraBDLlp3VOT//OXDDDcrrjx4VbZqzmjIu\nzvUtxuGhcUgOtHe1w2Q1ISE6QfXQinVH1+GbE9+IBE+XyZXsuafoHiyb7LnXMvD4Px/HJ6WfwBhj\nlFVK3j7jdnwv+3uK6481HYPJaoIhRlz7xm9/j9mtT+FSlf78c58DB6qBognA43+JRnJSIkxtFpjb\nrYiLiRT9eY84nxRnhzHGJvr0KrHd/WuJsd7j/L/9Bm1rd+AeiD2ESIP82RhrvwF0nsTlvgQhOlo+\n4zFjxtAz9P/5n+IoxspK0cg4l3ndf7+YYRlmz256FgfqDrgqf5o6mjAuaRy2rtiK9HjlxnGSJPlk\nU0KLxYIpU6agsrLS6zXZ2dkoKSnRXcVQQ0MDfn7TKMVpBQDwzxLgnndEZdAvfvMprr5arCXr7u6G\n2WyGyWSCyWRCa2ur8n1rM0wtjWhtboTJ1IzWlhaYzGaYTG1oNbfD1NYBu90BY0I0jAmRSIoPhzEu\nDEnxEoyxDny82YLGphYYDMFVzRmig5HB0n4srq6WDzxKS4GZM3vjcHGxmIUNBTabSNo4BxZNTcC/\n/Zv6dRMnimscjt7kTUYGsG6dsmfnPMXSObBQ20C0nxiLxSEH22u3y2aDzV1mWLut+Ominyqub+9q\nx/TXprsSPA7JAWOMEaMSR6HknhLF9dZuK57d9KxroGCMMcLR6cCHv/x/+PR65T6g5aeBBauAeZOA\nS374Eu69V+yN6HA4XHHeGduVcb4Frc31MLU2wdTSjNbWFvE9UxtMbe1oNXegy9YNY0I0khKiYHTG\n+TgJxjgH/r7Xhg2bdmDatGmK++oL47DGdHaKU6bc92WLjZUn46dPD42qFecyLfeTC8ePF8fce1q9\nWpx41tIill05kzz33w/ceKPy+tra3mSQ0TjoqijGYaGqtcqVWHEm0c1WM84dfy6KxxUrrn/m22fw\n+x2/h8lqQrutHXGRcTDGGPH0eU9jxWzlZj7rjq7DvjP7ZAkeQ4wBhemFGG3wcjrlEPTVn29pByY8\nCFw5G8iY92M8v3o1ABHn29vbVfvyvXG+1RXnW1uaYHLFeTOqqk/CZkdXtx1RsdGwJcTAlhgDuzEe\nUnI8kJKA8G3liDrTihsBfObzJ01BgUmhgairE2WvzgZv716RnHFv8MaN69/vcq/6cW7wfNtt4iQF\nT7t3iw78pEmigfUxh+TASfNJxQleTy15CuOSlM/n1R2vIiE6wVX1M8YwZliOIf3yyy9x1VVXyWZD\nPEVFReGzzz7DJZdc4vf7CTYXzhuHiYZTuGaOHd8rEDO7Fiuw4TDwo7eAUy3Azl17MHPmTJ8+bldX\nl9cBR3h4OG65Jfg29uZgJIQ592VzT8Z3dir3ZfNDrBwwh6N3mZb72223AZ7HhEuSSFy1tMg38UxP\nBz76SH0gVVkpvj/My7RCKRY7JAfautpcyZi2rjbMzZyruK7b0Y37190vG1iYrCZ0dneqJm1sdhsW\nv7u4d5DQM2BIjk1W3SDdITlwvPm46/qYiJhBTZZ4i/PflAIPfQAcPQ38ec0nuPbaawf8u/tis9lg\nNptVBxydnZ1Yvnz5gI9EZhwOcXV1yn3ZCgrk2yP0t0/sb52d8mR7fb1IqhcVKa998UVxumR0tDwO\n/+AH6pU8jY2iSmiYl2mFUhwGRKLbGVfNXWakx6djrFG52uGzss/w19K/wtQlX361smgl7i66W3H9\ny9+9jDWH1ihi8ZX5V2JRlrJ6sb69Hp3dnTDGGJEYnTgs45eB6ivO//xjYF8VsPq/X8SDDz7ok8dz\ni8UREMuvnG9Jbu8TISoiW33yoBR0mBTyxuEQyRr3GY+6OlF+72zw5s4VJ6IM1C9+ATz/vKj6KSgQ\nlT/5+eIoRz9U/kiShAZLAxKiExAfpZwtWPzOYhxtOio7wSsnJQfXFlyLtPjh34PImzvuuANvvfXW\nWa9bsWIF3nzzzWG4o+DT0NCAt994Df/82/sI62qAFJ2O8y9fjrSRo3HHHXfg2LFjmDBhQqBvM+A4\nGAkhLS3KfdmysuQDj0mThicp0t6uTPDU14sjdNWSUGlpYrDgeWLWK6/IlgC4NDeLmeYgX9YWiFgs\nSRI+K/tMlrBxDhh+d+nvFAkWh+RAynMpaOtqQ3xUvGvAYIwxYuuKrapLnV/d+aprQOGs0DFEG5CX\nlje8R3Cfhbc4P+uceVi6dCm+/vprnK+2hDDIMA6HEIcDOHxYvj1CQ4NY/uWsji8qGlyfeKDsdlFB\n6RmHc3OB885TXv+b3wA/+YkyDi9bBlx/vfL69nYRg9VidBAJVJ/4SOMR7Du9zxWHnUme87LPw+V5\nlyuuf+bbZ/DEBrHJunulzf1z71etzNlWsw0ldSWyGGyMMSLTmInUuFSfPY9g5y3OX3rF1ZgzZxZe\nffV/sGKFyjFlg6CzWExeMCmk5t//Hfj4Y5H1dw48Fi4UJ9OoddbVqn7KyoDrrhNH7npqbhb7Ofhp\nr581h9Zg44mNss2dYyJj8MkNn6iuZ+12dCMyPPjLeZcuXYp//OMfZ73uoosuwvr164fhjkKH3W7H\n7bctx+tvvKnpMuL+0lkDGJqxeNs24M47RTXMOef0xuH589VPXBmMM2dEst8z0fPAA6Ks39OECaJS\nyX1gkZ4OPP20+vU2m/LERw3wGosjAcQAiBbvz1l4Dp741RO4dNKlqrOxN//lZjR1NCk25Dz949OI\njVQm2a77+DpXqb/7YOHuortV2zCT1YTE6ERFAkjL7rv3Hjzyk0eRlZUV6Fs5K8bhEHHXXcCf/yxi\nnXsy3lufeKA6OoCTJ5VxODcXuOoq5fWvvw489pgyDl9yieh3e+ruFpWZQZTY9QWvcTgMrhiMGGDu\norn45epfItOYickjlId+fFr6Kd7e87YswWOymnD3OXerVj1+dPAjrDm8BsZooyyBvihrEeaPVZ40\n22HrQHhYOGIieYKcr/zyqSdx8aWXoUit0m0QdBaLyQsmhdTs2iWqeEaNkn+9q0t9H4ZXXhGnALhX\n/RQUAFOn+uy0L4vNIlveVdlSiesKr8OCcQsU1/5x/x9R114nO8ErKTbJJ/cRSKwUIl/RWQMYmrG4\nsRGoqBD7svU3sXL8uDga3X0fiIYGMUs8YoTy+vnzxQbM7gOL9HTg4Yd9l3gKcja7DZHhkaqVMO/t\nfQ+NHY2yhI25y4zYv8fivTffU/6yR3redwGwAhnJGZgzbQ7+fP2fVatU1x5ei7ioOMWGnMmxyUFV\nmUP+wTgcInbuFMvAMjL6d73ZLA5dcVbwuCd5br1Vef2HH4rlWp5xePFi9SPUNUiSJHQ7uhEVoWzr\nDtYdxDeV38iqJE1WE0786wQ2vrRR+csWAFgCwCreRhhHYEbhDNw89Wb8cNYPFZcfrj+MI41HZFU8\nzjislpwn7dFZLCYvmBRS09QEbNokr/wpLQUuu0wc6+4HNrsNXfYuxfHrAPDj9T/Gy9+9jPHJ42Un\neF1dcDUK0lWOIdGoUFs/TcFLZw1g6MbigwfFppyeSZ7//E/1vSquuEIkk9wHFunpwIoVPkvQB5Na\nUy1ara2KSpubpt6EuCjl0oerP7wa1a3VsgSPzW7DqYdPYUSCMmn24Jei0tVzOVVCdQKWXbOMsZiG\nhHE4RLS0APv3Kyt5Jk4EVq5UXr9uHfDoo8o4XFQEXK5cXhTq2rvaXUeQu1faZCdnq250vPbwWjy3\nWX6yYFtXG+6fez9+fcmvFdd/dfwrrD28VrGcynzMjIdufohxmIZMZ7GYvGBSSM3WrWI5gLPyx/k+\nI8Mn5ac7anfgi6NfuDZ0rmypxOm203j+wufxwPwHFNdbbBbERsbqqgReDU9aIF/RWQMYurH4+98H\nTp1S3wsiXXnSYTCTJAntNnH07ciEkarLnV7a/hJOmk8qNjv+cNmHGJmgPD2t6I0itHe1y5I2xhgj\nXlz6IlLilJVOW6u3IjoiWjYjHBcZN+CqHMZi8gXG4RDx7bfy5VrOODx1KrB0aaDvbsC67F0wW80I\nCwtT3aNm3+l9WFu6tjfZ3nMM+fnZ5+ORhY8orv9g/wd4YsMTimWtl0y6BLfNuE1xfa2pFidaT8j2\nOUuMThzwNg6Mw+QrOovF5EXwbyQTCAsWAF98MaAfkSQJde11YolXz14+hSMKcU2BsvS1qaMJ3Y5u\nLB6/GLfPuB3ZydkYlzTOa4OgVnavR/Hx8a71s7W1tbLZkaioKGRmZqKoqIiNH5FWvPtuoO9A5mDd\nQTRaGhUzwnfMvkN1cHHxBxfjUP0h10xwXGQcDDEGbFuxDeOTxyuu7+zuhCHGgDGGMbIBgyHaoHo/\nO+7cMaD7V1tuPBiMxUQ6cu65IjEUJJo6mlDWUKbYdH5CygRcmX+l4vrPyj7Dg39/0FVNaZfsMMYY\ncdv021Qrc2wOGyRJQqYhE4b03mT7hBT1QzpunX4rbp2usizOi0xjJjKNmf1/wl4wDhORL7FSaAC6\n7F2IjlDuKfThwQ+x4rMViIuMEyd49ezls3TiUlw44cIA3Km2WSwWbNy4EWvWrEFVVRWysrKwbNky\nLF68mI0f9YvOZkU0F4vPxjkT7Bww5KXlqS6nenbTsyhvKlckedbeuBaTUicprl/28TLUW+pls8GG\naAMeWfiIaiVPeVM5YiJiYIgxDGomONgxFtNQMA5rm0NyoL2r3RVXoyOiVRMre0/vxRu73nBV5Dhj\n9+Lxi/HixS8qrv+y/Eus2rBKsax1wdgFuHnazYrrWzpb0GBpcMXs2MhYTe1ZxjhMQ6WzWExeMCmk\norq1Gp+Wftpb9dNT+XNp7qX403V/Ulzf1tUGh+SAMUbl9BkiCjo6awBDNhZvrtqMk+aTihnhB+Y/\ngLHGsYrrz3vvPGyt3uqaCXa+fbzsY+Sn5yuuf3/f++js7lQsv8pLy+MGm0R+xjgcGura67CtZpti\n77IJKRNUjxT/4ugXuPkvN7uqI51x9fLcy/HCxS8orj/SeATrj61XLL8alTgK45JU9o4jIp/SWSwm\nL5gUUrH/zH68tvM1UfWTnOOq/EmNS9XU7AKRXumsAQzZWPzAugdQa64VCRu3429vm3EbRiWOUlzf\n3NGMuKg4xETEMFYTBTnG4dCwvWY7fvntLxWnBE4ZMQXXFl6ruN7abUVndycSoxMRER4RgDsmooHQ\nWSwmL5gUIiLd0VkDyFhMREGHcZiIKPB0FovJC30fZ0VEREREREREpFNMChERERERERER6RCTQkRE\nREREREREOsSkEBERERERERGRDjEpRERERERERESkQ0wKERERERERERHpEJNCREREREREREQ6xKQQ\nEREREREREZEOMSlERERERERERKRDTAoREREREREREekQk0JERERERERERDrEpBARERERERERkQ4x\nKUREREREREREpENMChERERERERER6RCTQkREREREREREOsSkEBERERERERGRDjEpRERERERERESk\nQ0wKERERERERERHpEJNCREREREREREQ6xKQQEREREREREZEORQ7x5ysBmADYAdgAzB3qDRER0YBU\ngnGYiCjQKsFYTEREIWioSSEJwBIATUO/FSIiGgTGYSKiwGMsJiKikOSL5WNhPvgdREQ0eIzDRESB\nx1hMREQhZ6hJIQnAVwB2Arhz6LdDREQDxDhMRBR4jMVERBSShrp8bCGAUwBGAPgHgFIA3zq/uWrV\nKteFS5YswZIlS4b4cEREA7dhwwZs2LAh0LfhL33GYYCxmIgCT+NxGGCfmIhCgA5iMQ2CL8tcnwDQ\nBuCFns8lSZJ8+OuJiHwjLCwM0GaZv2ccBhiLiSgIaTgOA+wTE1GI0Hgspn4ayvKxeACGno8TACwF\ncGDId0RERP3FOExEFHiMxUREFLKGsnwsA8Bat9/zRwDrh3xHRETUX4zDRESBx1hMREQhy5+lYiyV\n1RCLxYKNGzdizZo1qKqqQlZWFpYtW4bFixcjPj4+0LdHNCA6K5VlLNYIxmHSEsZhClWMxaQlOovF\n5AWTQnRWN9xwA3bs2IHa2lrYbDbX16OiopCZmYmioiJ8/PHHAbxDooHRWQPIWKwBjMOkNYzDFIoY\ni0lrdBaLyYuhnj5GGmexWLBjxw5UVlYqvmez2Vxft1gsnB0hIvIDxmEiosBjLCYirRrKRtOkAxs3\nbkRtbW2f19TW1mLjxo3DdEdERPrCOExEFHiMxUSkVUwKUZ/WrFkjK49VY7PZsGbNmmG6IyIifWEc\nJiIKPMZiItIqJoWoT1VVVT69joiIBoZxmIgo8BiLiUirmBSiPmVlZfn0OiIiGhjGYSKiwGMsJiKt\nYlKI+rRs2TJERUX1eU1UVBSWLVs2THdERKQvjMNERIHHWExEWsUj6alPFosFU6ZMUT1pwSk7Oxsl\nJSU8aYFChs6O32QsDnGMw6RFjMMUahiLSYt0FovJCx5JT32Kj49HUVERAHGigvsGe1FRUcjMzERR\nUREbPyIiP2EcJiIKPMZiItIqVgpRv1gsFmzcuBFr1qxBVVUVsrKysGzZMixevJiNH4Ucnc2KMBZr\nBOMwaQnjMIUqxmLSEp3FYvKCSSEi0h2dNYCMxUQUdBiHiYgCT2exmLzgRtNERERERERERDrEpBAR\nERERERERkQ4xKUREREREREREpENMChERERERERER6RCTQkREREREREREOsSkEBERERERERGRDjEp\nRERERERERESkQ0wKERERERERERHpEJNCREREREREREQ6xKQQEREREREREZEOMSlERERERERERKRD\nTAoREREREREREekQk0JERERERERERDrEpBARERERERERkQ4xKUREREREREREpENMChERERERERER\n6RCTQkREREREREREOsSkEBERERERERGRDjEpRERERERERESkQ0NJCl0CoBTAUQA/9c3tEBHRADEW\nExEFFuMwERGFrMEmhSIAvAzRCE4GcDOAQl/dVCjasGFDoG9h2PC5apOenquGMBa70dP/YT5XbdLT\nc9UQxmEPevp/zOeqTXp6rkTA4JNCcwGUA6gEYAPwIYCrfXRPIUlPwYPPVZv09Fw1hLHYjZ7+D/O5\napOenquGMA570NP/Yz5XbdLTcyUCBp8UygRQ7fZ5Tc/XiIho+DAWExEFFuMwERGFtMEmhSSf3gUR\nEQ0GYzERUWAxDhMRUUgLG+TPzQewCmL9NAD8DIADwHNu15QDmDjoOyMi8p9jACYF+iZ8gLGYiEIV\n4zARUeBpJRZTAERC/AfKBhANYC90vqkeEVEAMBYTEQUW4zAREenWpQDKIGY/fhbgeyEi0ivGYiKi\nwGIcJiIiIiIiIiIiIiIifbseQAkAO4DZHt/7GYCjAEoBLB3m+/K3VRAnTuzpebukz6tD0yUQr91R\nAD8N8L34WyWA/RCv5XeBvRWfexvAGQAH3L6WCuAfAI4AWA8gOQD35Q9qz3UVtP+3qtc4DOjj9WUs\n1gbGYu3/reo1Fq+C9l9bxmFtYBzW/t8qBUgBgDwA/4K8AZwMsc46CmLddTkGf/pZMHoCwEOBvgk/\nioB4zbIhXkOtr5mvgGgUtOhcALMgbxSeB/CTno9/CuDZ4b4pP1F7rlr/WwX0G4cB7b++jMXawVis\n7b9VQL+xWOuvLeOwdjAOa/tvlfrJHw1QKURm1dPVAP4EwAaRcS4HMNcPjx9Igz3NLRTMhXjNKiFe\nww8hXlMt0+rr+S2AZo+vXQXgvZ6P3wNwzbDekf+oPVdAu6+tk57jMKDt15exWDsYi7X72jrpORZr\n+bVlHNYOxmHtvrY0AMM5KzEGojzNqQZA5jA+/nC4D8A+AG9BO6WGTpkAqt0+1+Lr504C8BWAnQDu\nDPC9DIcMiJJS9LzPCOC9DAct/632RQ9xGND268tYrG2Mxfqgh1is5deWcVjbGIdJdwabFPoHROmZ\n59uVA/w90iAfP1C8Pe+rALwKIAfATACnALwQoHv0l1B7rYZqIUSJ5aUAVkKUXOqFBG2/3lr5W9Vr\nHAYYi/WEsVi7tPK3qtdYzDisH4zD2qX1v1Xqp8hB/txFg/iZWgDj3D4f2/O1UNLf5/0mgM/9eSMB\n4Pn6jYN8lktrTvW8rwewFqJU+NvA3Y7fnQEwCsBpAKMB1AX2dvzK/bmF8t+qXuMwwFjMWKxdjMWh\nR6+xmHG4F+OwtjAOk+74e/mY+xrFzwDcBCAaIiOZC23tYD/a7eNrId/ESwt2Qrxm2RCv4Y0Qr6kW\nxQMw9HycAHEqiNZeT0+fAbi95+PbAXwawHvxN63/rXrSUxwGtP/6MhZrG2OxdukpFmv9tWUc1jbG\nYSIfuBZinW0HRIZ1ndv3HoPYmK0UwMXDf2t+9QeI4xr3QQQPLa4/vRRAGcRr+LMA34s/5UCcJLEX\nwEFo77n+CcBJAF0Qf6s/gDhV4ito7/hNz+f6Q+jjb1WvcRjQx+vLWKwNjMXa/1vVayzWw2vLOKwN\njMPa/1slIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIKbv8f6ViEf8u2ROEAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }