{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 使用示例" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 一、引入依赖的包\n", "- 需要安装baostock、pandas、ta-lib等" ] }, { "cell_type": "code", "execution_count": 137, "metadata": {}, "outputs": [], "source": [ "from bs_agent import bsAgent\n", "from strategy import *\n", "from indicator import *\n", "import matplotlib.pyplot as plt\n", "import baostock as bs\n", "import backtrader as bt\n", "import backtrader.feeds as btfeeds\n", "import pandas as pd\n", "import math\n", "import datetime\n", "from backtrader.indicators import EMA\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "plt.rcParams['figure.figsize'] = (16.0, 4.0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 二、拉取股票数据\n", "- 可以选择拉取k线数据的 股票代码、起止时间、时间周期 等\n", "- 重放策略可以选择 Indicator.MACD_X、Indicator.KDJ_X 等" ] }, { "cell_type": "code", "execution_count": 142, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "login success!\n" ] } ], "source": [ "bs_a=bsAgent(stack_code='000001.sh',start_date='2019-01-01', end_date='2020-09-01',freq='d')\n", "# bs_a.replay(Indicator.KDJ_X,start_date='2020-05-01', end_date='2020-10-13',view='true')\n", "# bs_a.plot(Indicator.KDJ_X)" ] }, { "cell_type": "code", "execution_count": 143, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting Portfolio Value: 100000.00\n", "2019-06-21, Close, 3001.98\n", "2019-06-24, Close, 3008.15\n", "2019-06-25, Close, 2982.07\n", "2019-06-26, Close, 2976.28\n", "2019-06-27, Close, 2996.79\n", "2019-06-28, Close, 2978.88\n", "2019-07-01, Close, 3044.90\n", "2019-07-02, Close, 3043.94\n", "2019-07-03, Close, 3015.26\n", "2019-07-04, Close, 3005.25\n", "2019-07-05, Close, 3011.06\n", "2019-07-08, Close, 2933.36\n", "2019-07-09, Close, 2928.23\n", "2019-07-10, Close, 2915.30\n", "2019-07-11, Close, 2917.76\n", "2019-07-12, Close, 2930.55\n", "2019-07-15, Close, 2942.18\n", "2019-07-16, BUY EXECUTED, Price: 2938.64, Cost: 2938.64, Comm 5.00\n", "2019-07-16, Close, 2937.62\n", "2019-07-17, Close, 2931.69\n", "2019-07-18, Close, 2901.18\n", "2019-07-19, Close, 2924.20\n", "2019-07-19, K, 39.05\n", "2019-07-19, J, 51.54\n", "2019-07-19, D, 32.80\n", "2019-07-19, SELL CREATE, 2924.20\n", "2019-07-22, SELL EXECUTED, Price: 2925.79, Cost: 2938.64, Comm 4.97\n", "2019-07-22, OPERATION PROFIT, GROSS -12.85, NET -22.82\n", "2019-07-22, Close, 2886.97\n", "2019-07-23, Close, 2899.94\n", "2019-07-24, Close, 2923.28\n", "2019-07-25, BUY EXECUTED, Price: 2923.19, Cost: 2923.19, Comm 4.97\n", "2019-07-25, Close, 2937.36\n", "2019-07-26, Close, 2944.54\n", "2019-07-29, Close, 2941.01\n", "2019-07-30, Close, 2952.34\n", "2019-07-31, Close, 2932.51\n", "2019-08-01, Close, 2908.77\n", "2019-08-02, Close, 2867.84\n", "2019-08-05, Close, 2821.49\n", "2019-08-06, Close, 2777.55\n", "2019-08-07, Close, 2768.68\n", "2019-08-08, Close, 2794.55\n", "2019-08-08, K, 21.30\n", "2019-08-08, J, 21.67\n", "2019-08-08, D, 21.11\n", "2019-08-08, SELL CREATE, 2794.55\n", "2019-08-09, SELL EXECUTED, Price: 2805.59, Cost: 2923.19, Comm 4.77\n", "2019-08-09, OPERATION PROFIT, GROSS -117.60, NET -127.34\n", "2019-08-09, Close, 2774.75\n", "2019-08-12, Close, 2814.99\n", "2019-08-13, BUY EXECUTED, Price: 2798.05, Cost: 2798.05, Comm 4.76\n", "2019-08-13, Close, 2797.26\n", "2019-08-14, Close, 2808.91\n", "2019-08-15, Close, 2815.80\n", "2019-08-16, Close, 2823.82\n", "2019-08-19, Close, 2883.10\n", "2019-08-20, Close, 2880.00\n", "2019-08-21, Close, 2880.33\n", "2019-08-22, Close, 2883.43\n", "2019-08-23, Close, 2897.43\n", "2019-08-26, Close, 2863.57\n", "2019-08-27, Close, 2902.19\n", "2019-08-28, Close, 2893.76\n", "2019-08-29, Close, 2890.92\n", "2019-08-30, Close, 2886.24\n", "2019-09-02, Close, 2924.11\n", "2019-09-02, K, 79.03\n", "2019-09-02, J, 86.60\n", "2019-09-02, D, 75.25\n", "2019-09-02, SELL CREATE, 2924.11\n", "2019-09-03, SELL EXECUTED, Price: 2925.94, Cost: 2798.05, Comm 4.97\n", "2019-09-03, OPERATION PROFIT, GROSS 127.89, NET 118.16\n", "2019-09-03, Close, 2930.15\n", "2019-09-04, Close, 2957.41\n", "2019-09-05, Close, 2985.86\n", "2019-09-06, Close, 2999.60\n", "2019-09-09, Close, 3024.74\n", "2019-09-10, Close, 3021.20\n", "2019-09-11, Close, 3008.81\n", "2019-09-12, Close, 3031.24\n", "2019-09-16, Close, 3030.75\n", "2019-09-17, Close, 2978.12\n", "2019-09-18, Close, 2985.66\n", "2019-09-19, Close, 2999.28\n", "2019-09-20, Close, 3006.45\n", "2019-09-23, Close, 2977.08\n", "2019-09-24, Close, 2985.34\n", "2019-09-25, Close, 2955.43\n", "2019-09-26, Close, 2929.09\n", "2019-09-27, Close, 2932.17\n", "2019-09-30, Close, 2905.19\n", "2019-10-08, Close, 2913.57\n", "2019-10-09, Close, 2924.86\n", "2019-10-10, BUY EXECUTED, Price: 2923.71, Cost: 2923.71, Comm 4.97\n", "2019-10-10, Close, 2947.71\n", "2019-10-11, Close, 2973.66\n", "2019-10-14, Close, 3007.88\n", "2019-10-15, Close, 2991.05\n", "2019-10-16, Close, 2978.71\n", "2019-10-17, Close, 2977.33\n", "2019-10-18, Close, 2938.14\n", "2019-10-21, Close, 2939.62\n", "2019-10-22, Close, 2954.38\n", "2019-10-23, Close, 2941.62\n", "2019-10-24, Close, 2940.92\n", "2019-10-25, Close, 2954.93\n", "2019-10-25, K, 32.97\n", "2019-10-25, J, 34.40\n", "2019-10-25, D, 32.26\n", "2019-10-25, SELL CREATE, 2954.93\n", "2019-10-28, SELL EXECUTED, Price: 2958.69, Cost: 2923.71, Comm 5.03\n", "2019-10-28, OPERATION PROFIT, GROSS 34.98, NET 24.98\n", "2019-10-28, Close, 2980.05\n", "2019-10-29, Close, 2954.18\n", "2019-10-30, Close, 2939.32\n", "2019-10-31, Close, 2929.06\n", "2019-11-01, Close, 2958.20\n", "2019-11-04, BUY EXECUTED, Price: 2964.58, Cost: 2964.58, Comm 5.04\n", "2019-11-04, Close, 2975.49\n", "2019-11-05, Close, 2991.56\n", "2019-11-06, Close, 2978.59\n", "2019-11-07, Close, 2978.71\n", "2019-11-08, Close, 2964.18\n", "2019-11-11, Close, 2909.97\n", "2019-11-12, Close, 2914.82\n", "2019-11-13, Close, 2905.24\n", "2019-11-14, Close, 2909.87\n", "2019-11-15, Close, 2891.34\n", "2019-11-18, Close, 2909.20\n", "2019-11-19, Close, 2933.99\n", "2019-11-19, K, 29.41\n", "2019-11-19, J, 43.34\n", "2019-11-19, D, 22.44\n", "2019-11-19, SELL CREATE, 2933.99\n", "2019-11-20, SELL EXECUTED, Price: 2928.11, Cost: 2964.58, Comm 4.98\n", "2019-11-20, OPERATION PROFIT, GROSS -36.47, NET -46.49\n", "2019-11-20, Close, 2911.05\n", "2019-11-21, Close, 2903.64\n", "2019-11-22, Close, 2885.29\n", "2019-11-25, Close, 2906.17\n", "2019-11-26, BUY EXECUTED, Price: 2912.52, Cost: 2912.52, Comm 4.95\n", "2019-11-26, Close, 2907.06\n", "2019-11-27, Close, 2903.19\n", "2019-11-28, Close, 2889.69\n", "2019-11-29, Close, 2871.98\n", "2019-12-02, Close, 2875.81\n", "2019-12-03, Close, 2884.70\n", "2019-12-03, K, 33.05\n", "2019-12-03, J, 36.37\n", "2019-12-03, D, 31.39\n", "2019-12-03, SELL CREATE, 2884.70\n", "2019-12-04, SELL EXECUTED, Price: 2876.91, Cost: 2912.52, Comm 4.89\n", "2019-12-04, OPERATION PROFIT, GROSS -35.61, NET -45.46\n", "2019-12-04, Close, 2878.11\n", "2019-12-05, Close, 2899.47\n", "2019-12-06, Close, 2912.01\n", "2019-12-09, Close, 2914.48\n", "2019-12-10, Close, 2917.32\n", "2019-12-11, Close, 2924.42\n", "2019-12-12, Close, 2915.70\n", "2019-12-13, Close, 2967.68\n", "2019-12-16, Close, 2984.39\n", "2019-12-17, Close, 3022.42\n", "2019-12-18, Close, 3017.04\n", "2019-12-19, Close, 3017.07\n", "2019-12-20, Close, 3004.94\n", "2019-12-23, Close, 2962.75\n", "2019-12-24, Close, 2982.68\n", "2019-12-25, Close, 2981.88\n", "2019-12-26, Close, 3007.35\n", "2019-12-27, Close, 3005.03\n", "2019-12-30, Close, 3040.02\n", "2019-12-31, Close, 3050.12\n", "2020-01-02, Close, 3085.20\n", "2020-01-03, Close, 3083.78\n", "2020-01-06, Close, 3083.41\n", "2020-01-07, Close, 3104.80\n", "2020-01-08, Close, 3066.89\n", "2020-01-09, Close, 3094.88\n", "2020-01-10, Close, 3092.29\n", "2020-01-13, Close, 3115.57\n", "2020-01-14, Close, 3106.82\n", "2020-01-15, Close, 3090.04\n", "2020-01-16, Close, 3074.08\n", "2020-01-17, Close, 3075.49\n", "2020-01-20, Close, 3095.79\n", "2020-01-21, Close, 3052.14\n", "2020-01-22, Close, 3060.75\n", "2020-01-23, Close, 2976.53\n", "2020-02-03, Close, 2746.61\n", "2020-02-04, Close, 2783.29\n", "2020-02-05, Close, 2818.09\n", "2020-02-06, Close, 2866.51\n", "2020-02-07, Close, 2875.96\n", "2020-02-10, Close, 2890.49\n", "2020-02-11, Close, 2901.67\n", "2020-02-12, Close, 2926.90\n", "2020-02-13, Close, 2906.07\n", "2020-02-14, Close, 2917.01\n", "2020-02-17, Close, 2983.62\n", "2020-02-18, Close, 2984.97\n", "2020-02-19, Close, 2975.40\n", "2020-02-20, Close, 3030.15\n", "2020-02-21, Close, 3039.67\n", "2020-02-24, Close, 3031.23\n", "2020-02-25, Close, 3013.05\n", "2020-02-26, Close, 2987.93\n", "2020-02-27, Close, 2991.33\n", "2020-02-28, Close, 2880.30\n", "2020-03-02, Close, 2970.93\n", "2020-03-03, Close, 2992.90\n", "2020-03-04, Close, 3011.66\n", "2020-03-05, Close, 3071.68\n", "2020-03-06, Close, 3034.51\n", "2020-03-09, Close, 2943.29\n", "2020-03-10, Close, 2996.76\n", "2020-03-11, Close, 2968.52\n", "2020-03-12, Close, 2923.49\n", "2020-03-13, Close, 2887.43\n", "2020-03-16, Close, 2789.25\n", "2020-03-17, Close, 2779.64\n", "2020-03-18, Close, 2729.62\n", "2020-03-19, Close, 2702.13\n", "2020-03-20, Close, 2745.62\n", "2020-03-23, BUY EXECUTED, Price: 2677.59, Cost: 2677.59, Comm 4.55\n", "2020-03-23, Close, 2660.17\n", "2020-03-24, Close, 2722.44\n", "2020-03-24, K, 18.66\n", "2020-03-24, J, 22.60\n", "2020-03-24, D, 16.69\n", "2020-03-24, SELL CREATE, 2722.44\n", "2020-03-25, SELL EXECUTED, Price: 2775.30, Cost: 2677.59, Comm 4.72\n", "2020-03-25, OPERATION PROFIT, GROSS 97.71, NET 88.44\n", "2020-03-25, Close, 2781.59\n", "2020-03-26, Close, 2764.91\n", "2020-03-27, Close, 2772.20\n", "2020-03-30, Close, 2747.21\n", "2020-03-31, Close, 2750.30\n", "2020-04-01, Close, 2734.52\n", "2020-04-02, Close, 2780.64\n", "2020-04-03, Close, 2763.99\n", "2020-04-07, Close, 2820.76\n", "2020-04-08, Close, 2815.37\n", "2020-04-09, Close, 2825.90\n", "2020-04-10, Close, 2796.63\n", "Final Portfolio Value: 99989.48\n", "Total ROI: -0.01%, Annual ROI-0.0%\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABFsAAAFFCAYAAAAzROJEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xl8lOW9///XlYQESFBAsSJiXRCq\niBuUxQUSBKpQtx5X1GOrLT169NRaly/Wth7rKbXt6XLcjljXuKBHsdq6ohKtP1ekIgpKKbVlsxbD\nlgSyfn5/zOJkcmcyM5mZ+56Z9/Px4EHmnnu55rq36/7c1+LMDBERERERERERyYwSvxMgIiIiIiIi\nIlJIFGwREREREREREckgBVtERERERERERDJIwRYRERERERERkQxSsEVEREREREREJIMUbBERERER\nERERySAFW0REREREREREMkjBFhERERERERGRDFKwRUREREREREQkg8r8TkCskpIS69evn9/JKBod\nHR2UlCjelknK02DT/gkO7YvcUD73nvLQH8r34NC+SEz5kxvK5+Dwc180NTWZmeXNgRCoYEu/fv1o\nbGz0OxlFo66ujurqar+TUVCUp8Gm/RMc2he5oXzuPeWhP5TvwaF9kZjyJzeUz8Hh575wzu3wZcNp\nypuokIiIiIiIiIhIPlCwRUREREREREQkgxRsERERERERERHJIAVbREREREREREQySMEWERERERER\nEZEMcmbmbwKcmwPMASgrKxu7aNEiX9NTTBoaGqiqqvI7GQVFeRps2j/BoX2RG8rn3lMe+kP5Hhza\nF4kpf3JD+Rwcfu6LmpqaJjOr7O5751xf4BWggtDIy4+a2Y+cc5cAlwEHAEPMbFN4/nOAq8OLNwAX\nmdmy8HfHA78BSoHfmtlPU02v78GWWJWVlaahn3NHQ6hlnvI02LR/gkP7IjeUz72nPPSH8j04ArUv\nnAv9H6Dnl0DlTwFTPgeHz0M/9xRscUClmTU45/oArwLfAZqBzUAdMC4m2HIUsNLMNjvnTgCuM7MJ\nzrlSYBUwHVgHvA2cbWYrUklvXjYjqquri/7rxLnPL8LJzJ+EBQsWcNdddwFw6623MnLkSEaMGOE5\n78cff8ygQYOoqalh4sSJnHTSSXz44Ycpb/OZZ57hl7/8ped3f/7zn5k5cyZTpkzh2GOP5dlnn+0y\nz5/+9CeOPvpoJk+ezNSpU1mzZg0Aa9asYfLkyVRXV1NTU8M///lPAM444wyOOuooJkyYwD333APA\nihUrqK6uprq6mkmTJrHbbrt12c5rr73GmDFj6Nu3L+vWrYtOf/311znqqKOYPHkyP//5zz3zadq0\naZ2meeXpz372MyZMmMDRRx/NpZdeSiQweM899zBu3DgmTZrE9773PQC2bdvGUUcdRXV1NePHj+fF\nF18E4OWXX+boo49mypQp1NTUsHbtWs/0TJ06laOPPpqf/OQn0ekXXHABQ4cO5Zvf/GaXZSLpuOGG\nGzy/S5T+GTNmRPO2X79+LF++HIBLLrmEiRMn8uUvf5mHHnoIgKamJk477TSqq6s59dRT2bJlS5ft\ndJff8+bN48tf/jLjx4/v9nh69NFHmTx5MlOmTGHKlCk8//zznb5/7rnnmDhxIlOmTGHmzJl89tln\nAFx11VXR3zB06FBuuukmAJ588kkmTJjAscceywMPPBBdzzvvvMOMGTOoqanhqquu8kzLjTfeyHHH\nHUd1dTUvvfQSAFdeeSVTpkxh/PjxXHnlld3mtYiIiIiIFDcLaQh/7BP+Z2b2JzP72GP+18xsc/jj\nG8De4b/HA6vNbI2ZtQALgJPTSVBg/vXv39+SsXjx4ui/TkJx7uTnT0J1dbW1tLSYmdknn3xiLS0t\ndsABB3jO+9e//tWOO+646OfXXnvNxowZYzt37kx5u8cee2x0uxGtra122GGH2dKlS83MbNOmTXbY\nYYfZX/7yl07zbdy40bZt22ZmZk899ZSde+65Zmb2ve99z+655x4zM7v77rvtrLPOMjOzVatWmZnZ\njh077IADDrAdO3Z0Wt/DDz9s3/72t7ukccuWLbZ9+3abMmWKrV27Njp93Lhx9re//c3MzGbOnGkf\nffRRp+Xi88nMPPM0ki4zs9NPP91eeOEFMzP74he/aNu3bzczsylTptiKFSusvb3dWltbzczsL3/5\ni40bN87MzJqbm6PruPPOO+2KK67osp0zzzzTXnnlFTMzO+6442zlypVmZrZu3TpbvHixXXjhhV2W\nMQvl4Y9//ONO02KPse7SH7Fx40YbPXq0mZktX77cqqurzcxs27Zttv/++5uZ2a9+9SubN2+emZkt\nWLDArrnmmi7p8Mrvbdu22YgRI6ytrc1aW1vtwAMPtIaGhk7Lvfbaa1ZTUxPNy8bGxmg+RPztb3+L\nHr+33HKLXXvttV22P2bMGFu3bp21t7fbyJEjbdu2bdbS0mITJ060zZs3W3Nzs02bNi16THp5+umn\nbe7cuV2mx+6/yZMn2/vvv9/tOpKRzjVAskP7IjeUz72nPPSH8j04ArMvIuV8j7K+nwKTPwVO+Rwc\nfu4LQjVUlsT8m2NxMQVCzX7eJdQs6Ma47z4Gdo9fJvzdFYSaCwGcFvk7/Pk84Gav5RL9y7uaLbG1\nUzpVX/Ko0ZJw/iSsXLmSL3zhC/Tp0weg09/JmDRpEmPGjGHJkiWsWLGCqVOnMmXKFI477jj++c9/\nsnLlSk455ZTo/BdccAF//OMfARg7diwvv/xyp/W9+eabHHzwwRxxxBEA7Lbbblx00UXRWhDnnHMO\nAHvuuScDBgwAoLy8nLKyMgBGjx4drRlRX1/PoEGDADjwwAMB6NOnDyUlJbi4vLz//vs599xzu/y+\nXXfd1bO93tatW9lnn30AGDduXEo1it59991o7YxIuuJ/x5e+9CW2b99OS0sLLS0tDBw4kJKSkuj3\n27Zt49BDD40uFxE7PX6bxx57LACzZs3ilVdeAWDYsGFJpzti9erVPaY/4sEHH+Sss84CYK+99qK8\nvJzW1la2b9/O4MGDAVi1ahXjxo0DYPz48SxevLjLNr3yu1+/fuy1117s2LGDHTt20K9fvy7H7t13\n383cuXOj+7B///7RfIgcS/vssw8VFRXd/oalS5eyxx57MGzYMDZt2sSQIUMYMGAAffr0YeTIkbz1\n1lu8/vrrVFVVMXv2bKZOnRo9xmM98sgj7Ny5k+OOO47zzjuPrVu3RrcJ0NraSmVlJXvttVeC3BcR\nEZFCEls7vc6jDCQiRafNzMbF/JsfP4OZtZvZ4YRqqYx3zh3S00qdczXAhXzef4tXcCHl9ot5F2zJ\npffff7/bJkPJGj58OOvXr2e//fbjhRde4OWXX+a0007jtttu46CDDmLbtm188sknNDQ0sHz58ujD\n7siRI6PNSyLWrVsXfaiO+OIXv8j69esBOjXbAGhsbOT73/9+tPnFtGnTuP322zn00EO5/fbbmTlz\nZqf5f/KTn3D22WdHH64BPvvsMz788EOOPvropH/z7rvvzrJly2hpaeGFF16gvr6+yzzvvPNOtBlK\nbBDs8MMP79JcpK6ujo0bNzJ58mQAzj33XI444ghGjhzJMcccw9ChQwFYv349xxxzDDNmzODUU0+N\nLv/UU08xbtw4br31ViZNmtQlLR0dHdG/Bw4cGG0qk44RI0b0mP6IBx54gNmzZwMwaNAgDjzwQEaO\nHMnhhx/OtddeC8CYMWOiTcWefvppz7z0yu+ysjJmzpzJqFGjGDlyJHPmzOkUeAJYu3Ytw4cP9/wd\n8cfSP/7xD2666SYuuuiiTtPvv//+aGBmyJAhbNq0ifXr17Nt2zZeffVV6uvr2bBhA8uWLeOBBx6g\ntraWb33rW9EmVREbNmygpKSEF198kQkTJjBv3rzod5deein7778/Q4cOZdddd/VMr4iIiBSu+PKi\niEhPzGwLoT5ajk80n3PuUOC3wMlmFnkQXAfEPijtDWxINQ15F2zp9kIb+/AWUzPD7wvz2rVrGTZs\nGOvWrePkk09mypQp3H777dG+Q77xjW9wzz338Mgjj3DmmWdGlzOzLjVMhg0bxt///vdO0/7+9797\n1sBobW3lzDPPZO7cuRx88MEAXH311dxwww289957XHfddfz2t7+Nzn/ffffx/vvv86Mf/ajTeh5+\n+GFOP/30LmlJ5I477uDqq6/mxBNPZP/99/esjTB27Nik+tJ57733mDt3Lg8//DDOObZv3851113H\nRx99xF/+8hdWrFjBW2+9Fc2fV199lbfeeotLLrkkuo5Zs2axZMkSbrjhBq655pou2ygp+fw02Lp1\na7RWSSbEpz9i5cqV9OvXj/333x+ARYsWsX79elavXs2HH37INddcQ3NzMxdeeCE7d+6kpqaG9evX\ne+alV36vWrWKxx57jDVr1rBmzRruvffeaFAuYvjw4V2OJy/btm3jtNNOY/78+eyxxx7R6e3t7Tzx\nxBP8y7/8CwDOOebPn895553HOeecw5gxY9hrr70YPHgwRx11FLvssgvDhg1j9913j/YXFDF48GCO\nPz50HTz++ON57733ot/ddNNN/PWvf2XTpk2efRSJiIiIiIg454Y45waG/+4HTAO67UTVObcPsBA4\nz8xWxXz1NnCgc24/51w5cBbwZKrpybtgSy4dcsghrF69Ou3l33rrLZYvX864ceO4+eabmT17Ni+/\n/DJz5syJvtk//fTTefzxx6mtreX888+PLvvnP/+Z0aNHd1rfxIkT+eCDD3j33XeBUFOg2267rVOQ\nBkI1Nc4991xOOeWUTs2UzIzdd98dgD322IPt27cD8MQTT/Dggw9SW1vbKfAAoRoOXk2IEhk9ejTP\nPvssv//976mvr+eEE05IafmI1atXc8EFF7BgwYJouktKSigvL6eqqorS0lIGDRrE5s2baW5uji63\nyy67RJtR7dy5Mzp94MCB9O/fv8t2DjvsMF577TUg1DlxfA2UdHmlP6K2tjZaIwRC+2bQoEGUlpYy\nYMAAWlpaaG9vp7y8nJtvvpnFixez7777ctppp3XZjld+mxkDBgygoqKCfv36UVFRQUNDQ6flvvGN\nb/DTn/40On3Hjh28+uqrnebZsWMHp556Ktdccw0TJkzo9N2LL77IuHHj2GWXXaLTJk+ezEsvvcSD\nDz5IQ0MDEyZMYMKECaxatYq2tja2b9/Op59+2qXD5erqapYsWQLAkiVLojXKIvuvrKyMyspKz/0n\nIiIi/kl3EIpeiR0Uo5sBMkSkKA0FFjvn3iMUMFlkZn9wzv2Hc24doRoq7znnIrUOfgjsBtzqnHvX\nObcEwMzagEuA54CVwCNm9kGqiSnreZbgSap2SzLz9+Cggw7ik08+oaWlhfLycv7v//6P22+/nQ0b\nNjBt2jSuv/56jjrqqE7LvPPOO9TU1LBz50523313HnroISoqKjjllFO45JJLeOihhzrVROnbty8T\nJ05kw4YNDBkyJDr97bff5sYbb+y07rKyMh555BEuu+wympqaaG9v54Ybbog+mJ5zzjk88MADLFy4\nkKeeeop//OMf3H///YwZM4abbrqJa6+9lm9/+9uUlZXR2toaHWXnnHPO4Utf+hIzZswAQgGWYcOG\nsWbNGpqbmznooIOiaXj33XdZtGgRV155JatWreLiiy9m2bJlnH322cyePZuLLrqIX/7yl/z+978H\nQqPJxP6unsSu/7LLLmPLli3RINSVV17JrFmzuOiii5g0aRJ9+vThwAMPZNq0abz77rt897vfpbS0\nlNbWVn79618DoWYukSBSeXk58+eHmvXdc889DBs2jOnTpzNv3jwuvPBCWlpaOOGEE6K/99prr+WZ\nZ57hk08+Ydq0aTzxxBNUVnYeaeyee+6JFjAmT57MXnvtxdtvv50w/WbGo48+yuuvvx5dz/Tp03no\noYc45phjaG5u5tJLL6V///6sWLGCiy++mNLSUg499NBofzCx6ffK7yFDhjB+/HgmTpyImVFTU8Oo\nUaM6pX3SpElcfPHFzJw5E+ccZhZtvhQ5lm655RaWLVvGjTfeyI033sj06dP5/ve/H83b+EDcVVdd\nxdtvv01ZWRnz5s2joqKCiooKLr30Uqqrq2ltbeXGG2+ktLS0077++te/zre+9S1qamro06cP9913\nXzQdn332Ga2trRxzzDG+11QTERGRnsUHX5K6fyczrHN8TXYFWUQkhpm9BxzhMf1/gP/xmP5NwHPo\nWTN7Gni6N+lx8X0n+KmystIaGxv9TkYnCxYsoLGxkQsvvDBr27jsssuYNWsW06dPB+DZZ5/lgw8+\niA5rnC0arz7zlKfBpv0THNoXuaF87j3loT+U78HR076IBFZi5/GallBs0CTm2SSp9SQTpMkiHau5\noXwODj/3hXOuycwqe54zGHwPtjjn5gBzAMrKysYuWrTI1/Tk2rx589ixYwfXX399zrfd0NDgOZqQ\npE95GmzaP8GhfZEbyufeUx76Q/lefKpragBSHnUo3eUyRcdqbiifg8PPfVFTU6NgS7qCWLOlkClC\nnHnK02DT/gkO7YvcUD73nvLQH8r3YPCsWRJXk6THmi091FqJiARNelWzpZttxUurmVOCdelYzT7l\nc3CoZkvy8rLPFhERERERyQPxQZA4XR7awvOmVVOlu21109RID+8ikk0ajUhERERERBLLVYe0ZmCW\neiBEHeaKSMCoZouIiIiIiHSrrq4OFi/u2izIaz6/RGqtpBpwiZ8/QF0siEh+K4hgy5tnXNztdxMe\nuTWlddXU1PA///M/jBkzBoBt27YxduxYPvroI0pKOlcEuu666xgxYkSX4W9FRERERAqFZy2TSJAi\n3Nwn2RGIug3IpBvkSLScR+Cly/bTDdKIiPSgIIItAMNnn9xl2toHn0h5Peeeey4PPvgg8+bNA2Dh\nwoWceuqpXQItIiIiIiJFKxKkSHGY55z2k+IRSKmurva3Bo6IFI2CCbZ4WXXiJFbV1np+d95553lO\nP+2005gwYQI/+clPcM7x4IMP8vOf/5z//M//5Nlnn6Wjo4Mf/vCHzJo1q9NyI0aMYPXq1QBMmzaN\n3/72twCcccYZjB49mrfffpu5c+fy/PPPs3z5ck4//XTmzp3L1q1b+da3vsVnn32GmTF//nxGjBiR\nwVwQEREREcmQHDazyXhgJq42johINhV0sAXgyCOP7DJt6dKl3c6/6667csghh/Daa68xYsQIPv30\nU8yMP/7xj7z22mts3bqV8ePHc8IJJyS1/fXr1/PKK6+wZcsW9t13Xz7++GN23313Ro0axdy5c5k3\nbx5f+9rXOOuss1i2bBn/7//9Px599NG0f6+IiIiISNHzGoEorjaOFLZMDvEtkg7fgy3OuTnAHICy\nsrKE1frWrl3rOX0k8PHHH3f9Yrf+3tNJ3IHXYYcdxs9+9jOGDx/O+PHjWbhwIUOHDuXll18GoKKi\ngieeeIKPP/6Y1tZW6urq2LFjR3Sd9fX1vPHGGwB84QtfiP6922678eGHHwLQ0dHBiy++SF1dHb//\n/e/56U9/CkBpaWnOqjY2NDSoGmWGKU+DTfsnOLQvckP53HvKQ38o34MlmX2RaJ7qFNbTa/G1Vurq\nut1+7Ofu5umJjtXcyEQ+az9lRpCPeedcX+AVoIJQrONRM/uRc24/YAEwGFgKnGdmLeFlzgCuAwxY\nZmazw9PPB64Nr/oGM7s31fT4Hmwxs/nAfIDKykpLFHGsra31rKnS8PvX2XfffbtM/8v2Tz2n19fX\nJ4xsHnXUURxyyCFs2LCBxx57jPr6eq644gqmTJnC1q1baW5u5uSTT2bZsmWMGDGC6upqKioqmDRp\nEu3t7XzyySdMnDgRgMGDB0e31a9fv+jflZWVTJkyhcmTJzNp0iROPfVUAFpaWigvL+82bZlUV1en\nCG+GKU+DTfsnOLQvckP53HvKQ38o3/3XKRCRoX1RXVMT+iPXI/6Et1edxKyR35pKh786VrMvnXxO\ndh9KagJ+zDcDU82swTnXB3jVOfcMcDnwKzNb4Jz7X+BC4Dbn3IHAXOBoM9vsnNsDwDk3GPgRMI5Q\nEOYd59yTZrY5lcSo11cP5eXlVFdX079/f/bZZx8OP/xwjjrqKCZNmsSMGTP47//+7y4d5l5yySVM\nnDiRf//3f2fvvfdOelvf//73eeSRR5g6dSo1NTXcdNNNmf45IiIiIiIpqa6uzvwDlZmGVhaRrLGQ\nhvDHPuF/BkwFIn113AucEv77W8AtkSCKmX0anv4VYJGZ1Ye/WwQcn2p6fK/Zkiqv/lZG0s3IQydO\nStg/SyLz58/v9Pn666/n+uuv7zTtuuuui/59+eWXc/nll3dZzwsvvBD9O9KBLsD7778PhPqIeeih\nh9JKo4iIiIhI4OVxgEW1I7wpX8QnZc65JTGf54dbykQ550qBd4ARwC3AX4AtZtYWnmUdMCz898jw\nMv8fUApcZ2bPhr+P7cMkdpnkE5vqAn7qbgQhupk+IYtpERERERGRwqZggkigtJnZuEQzmFk7cLhz\nbiDwOHCQ12zh/8uAAwm1Mtwb+KNz7hDAJVgmaWpGJCIiIiIiIoXNuc9HqZKCZ2ZbgDpgIjDQORep\naLI3sCH89zrgCTNrNbO/Ah8RCr6sA4bHrC52maQp2CIiIiIiItTV1XX6V1QiTZ30QC6St5xzQ8I1\nWnDO9QOmASuBxcBp4dnOByJ9kPwOqAnPvzuhZkVrgOeAGc65Qc65QcCM8LSU5FUzIpF8o/asIiIi\nkm+KttwS27dMsQWbRArDUODecL8tJcAjZvYH59wKYIFz7gbgT8Cd4fkjQZUVQDtwpZl9BuCc+zHw\ndni+682sPtXEKNgikiGRwIrXmyAFXUTySOSNZh536CgiIlmg+4NIoJnZe8ARHtPXAOM9phuhYaG7\njHRjZncBd/UmPQq2iGRYJKASG3RRkEUkT6jquIgUifiXQyqrSDpiXygG+uWi7u/iA2c+R2adc3OA\nOQBlZWVjFy1a5Gt6iklDQwNVVVV+J0MkZ3TMB0eQ90V1TQ0AdYsX+5yS3gtyPucL5aE/lO/BoX3x\n+X0hIvb+oPzJjUzkcyHd3/3k5zFfU1PTZGaVvmw8Db4HW2JVVlZaY2Oj38koGnV1dcGMPOepQEfz\nBdAxHyRB2hddzt0CqiYepHzOV8pDfxRCvgeuXBB3bfOqkRARm+ZC2Bfp8Nx/HvcH5U91wmmZ3F6y\n6+32eI6v3VIA93k/+HnMO+fyKtiiZkQiuRJ7gdfFXcQfCQIp0UJi/LzdzC8ikpIAB3KLMVggqUkl\nkOJ3oNGrSX8nATwHpTAp2CKSK2ZqLyqSS/HBkh7Ovy6FQhXGRCTXAhyQEYHEA0FEJAqy+BqI0Xkl\nOaZgi0gGdBs5T4YKViIZ0eU8XLy4czt7BTzT4vcbShERCY5EA0H0qjycKpWfJQ8o2CKSAV7tnUUk\nd3oc/as3QRY1JxKRXujSRDGWHhglD+VLmVcvCcRvCraIiEje6zHgGXmQSSboEv/QoxoxItILST/w\n6TojeUJBDJHklPidAJFCkdKNx7nP/8Wpq6vLmzcGIrmSrfNC55qI5JxXGUCBFilAKtNKsVPNFik6\n6fQ/kPE+C2LfnKuAJeKbbDYBVF8nItKJV1Oh+GZEKhNIAcrF/TCVTnpFcsWZz21EnXNzgDkAZWVl\nYxctWuRreopJQ0MDVVVVfiejoPSUp5HOOusWL044TbJDx3xw5GpfxJ9fnTrMDUvm3MvX89SvfC4k\num74o1jyvbtrVDbKCemup1j2RTK88lD50zvJHpfx+ZzL+04h3+PS4ecxX1NT02Rmld1975zrC7wC\nVBCqWPKomf3IObcfsAAYDCwFzjOzFudcBXAfMBb4DDjTzD4Or2sucCHQDvyHmT2Xanp9D7bEqqys\ntMbGRr+TUTTq6uoKPurrFUnPZs2WtPI07i1WtMBV4PvGD8VwzOeLVPdFxt6KpdsZZRrLedWYyfXx\nl4ljvsvbwkjAyquGXoDKFJnSUx6qBlN2FML1Oq1jw+tcysD1J1GgOStlm0LlsS+KJX8yVX7uMi3J\n4zuaz/G1v8LLZfVaXMD3uHT4ecw753oKtjig0swanHN9gFeB7wCXAwvNbIFz7n+BZWZ2m3PuYuBQ\nM/s359xZwKlmdqZz7mDgIWA8sBfwAjDSzNpTSa+aEUlR6LaZQJBGGTFTu1aRbMvRed7j6Ehx8+VD\nQT0f0iiS9yIdcmfo4S563nqtR2UOyUdqcicJWKgmSUP4Y5/wPwOmArPD0+8FrgNuA04O/w3wKHBz\nOGBzMrDAzJqBvzrnVhMKvLyeSnoUbJGi4BVRBwI3yoiGkBZJXtDaZ+vclaTpLakkEvswGaAyikgx\n6PQSROdfEJU555bEfJ5vZvNjZ3DOlQLvACOAW4C/AFvMrC08yzpgWPjvYcBaADNrc85tBXYLT38j\nZrWxyySf2FQXEAmybL8lTvZtdUYFqfaNSED4ci56bN9r292mR+dycVAgRTIli2/wFRyWhHQdC50j\nixcr6BI8bWY2LtEM4aY+hzvnBgKPAwd5zRb+32vnWoLpKVGwRYpObx7MfHlzHrDaNyJBELRaYEml\nJc/O5aR+Ux79nsBQnkkABO0aKkUqE9fDyDoy3Hmt37VlpffMbItzrg6YCAx0zpWFa7fsDWwIz7YO\nGA6sc86VAbsC9THTI2KXSZqCLVKwslqIyOQb6rjldXEXyT+F+ODS47Uo9s2nAgif13bqaUbll4gE\njG/9h8VeD9OtTROZP917sGrxFBTn3BCgNRxo6QdMA24EFgOnERqR6HzgifAiT4Y/vx7+/iUzM+fc\nk8CDzrlfEuog90DgrVTTE7xgiw54yYDe3jR6XF6FZREpVsncnzM0oko+KZSOkCU/6RiTfNMlQJ3r\ne4PK8YVqKHBvuN+WEuARM/uDc24FsMA5dwPwJ+DO8Px3ArXhDnDrgbMAzOwD59wjwAqgDfj3VEci\ngoAFWw5qavI7CVIgVNgQKUxBqD0Sm4ZMpcfvPmgkOXqgle7k8tqUqeNQx3FxStS5fNI19DLA9+NP\noxoVJDN7DzjCY/oaQqMJxU/fCZzezbr+C/iv3qQnUMGWlf37gwIu4pfYi21Mu88gPNyJSIjvhbME\naejNtSIIvwsy9BAXX3D1oSAnBy5aAAAgAElEQVQbtJGqpHjk8ljzuuaozCLJijR/7SnYn+4xlfRy\nSdRo6WldOu4lqJz5XJ3XOTcHmANQVlY2trUtNCJTXYY7OZKuGhoaqKqq8jsZvquuqQFSP+Yiy0XU\nLV6ctTxNN43SmY754Mi3feF1vmdjPbHfZ+J8z1U+x/+ueHWLF/t2Hettnqaah8kcK7qm9yzfrhHZ\n5Pfxon3xOa99UWj5k+n7UNAlc375fQ4GjZ/HfE1NTZOZVfqy8TT4HmyJVVlZaY2Rmi0BSlehqqur\nK7i3fWm9lfXoRyCpt6LdLJeVPC3wvg5ypRCP+XyV6r7wvflGps7BZNaTwfM93XyOSDu/fe6zpcvx\n0ottx+ahV/4ks61MpqdY5Nv1OqvXqLjjxWtb2dx+vu2LrIqvqWeWd/mT1PHTze+MXy6dbaXD7/NL\n1+zO/DzmnXN5FWwJVDMikaDJp5unSKEKRPXgIitg6dqXmPJHYgXhGqVjMscK/Z4Q0N/n+4sXkRQp\n2CIiIoFW9IWqfHyjlk9p7aUux6fHby/6Y7gABSHAIpJLQbiO+ZaGyCik+Xg/Fl8p2CISRwWo/KM3\nHVKwNEpCYGTl3qCCe97rrolZtqiMIuITXaclDQq2iMSJbYOfkC66IpKqVK8bkbdp4ruMBnN1/5B0\nOEc16qRTMk8vq0SyQ8EWEQ+66YiI5IfYmm2ZfusfWZ9qz0lPsnpsxAXnsrglERHJIAVbetBl5IHI\ncGh6KyUFQA8QElQZGxUnH8W3Dc+RIDRP6M2oPdm8nhXV8Sci3VP5X0RSoGBLklTQCiC1dZc4Ch4V\nnqLdl15DJmdZNmqGpCt6Lnt92c21P+Gx4tW5oe4hIiIikkXOfC5kOOfmAHMAysrKxra2tQHBbY8a\nqdkS1PSloqGhgaqqKr+TkbYg7ots5WkQf6tfepMX+X7MFxLti+QVyjGfzu/wWqa318NoDdUwv6+r\nQUtPUATp2C122heJKX8yL5flXpWxU+fnMV9TU9NkZpXdfe+cGw7cB+wJdADzzew3zrnDgP8FqoCP\ngXPMbFvMcvsAK4DrzOwX4WnHA78BSoHfmtlPU02v78GWWJWVldbY1BT64EO6vN6K96ZKc9DV1dXl\n91tjj33hd82GrOVpOsddEsv4nV/J6OkcjH0T39PvyPtjvoD0tC/y4djMmV7cd5LN53i5vo5122zM\na5lurgEppzl+3X7fUwqofJEJQb9eF9M1Kuj7wm/5lj+5PHYzdX3Oappzua0C4ecx75zrKdgyFBhq\nZkudcwOAd4BTgHuBK8zsZefcBcB+ZvaDmOUeIxScedPMfuGcKwVWAdOBdcDbwNlmtiKV9KoZkeQn\njc6RUZ0CFvH9EgXkAaC7ZgVdLvaxx4YeWkSS4nehMqnhc7N53dc9RUQk4/y+t6Qkch9IpoZLQMrG\n0pWZbQQ2hv/e7pxbCQwDRgGvhGdbBDwH/ADAOXcKsAZojFnVeGC1ma0Jz7MAOJlQ7ZekFWywpTed\nKwalzbokoOFQM6q3N8NcvAVIOqiiY0OKQCG8eUvpPu3V10oqBeNEdL0QESle8QETPQcGXZlzbknM\n5/lmNt9rRufcvsARwJvA+8BJwBPA6cDw8DyVwNWEarBcEbP4MGBtzOd1wISUE5vqArnW2wJlOst5\nNSMSCZQkqtZ76fF8in3oyMEDSHx6Ujrf9DZB5HP59JYtLkiS1H3a63dFpvX2Ph1fi08kAZULRYqc\n7hV+azOzcT3N5JyrAh4DLjOzbeGmQ//jnPsh8CTQEp71P4FfmVmD67xvvXZ0yoWswAdb/JQPN9RC\neLspKejuAp+pC3/8CB0+3VASBjzT6bcm1eVECkDg7mEefaHE63Ivy+Z5W8TXhKIeWr2XlFcSaPkU\neM9XqkEdeM65PoQCLQ+Y2UIAM/sQmBH+fiQwKzz7BOA059zPgIFAh3NuJ6G+XobHrHZvYEOqacnL\nYEuuAgxBGgZTBOj+DWyKF/6Ex3V3TXLyMXCRL+kscrrOpiY2vxIOkRxgur8GQyF2/i8iIsXLhaqn\n3AmsNLNfxkzfw8w+dc6VANcSGpkIMzs2Zp7rgAYzu9k5VwYc6JzbD1gPnAXMTjU9eRNs8atQpjcY\nqVFNmxxIpqlPD4GXnDTbyUDhPe3z3mubzoUeSPUw4bueajXoITxOJOgZPqeq+XyIyurq6uJ7w5bt\nc7jYAg/FdvwkoVNZJh9fNEjR6FJLLcE8KptLkTgaOA9Y7px7NzztGkKBk38Pf14I3J1oJWbW5py7\nhFBHuqXAXWb2QaqJyZtgi/pRCUnrgulDwTHh6DZeiq1w2xvxTX0i4guEmWxalKRO+z2FTeR0+FkJ\nDO33FCTqwC/J872Y751JiW/mVCz5lez9ogjv03V1dbB48eflGJGASva+Gfj7QL4Ff4vwuhh0ZvYq\n3v2tAPymh2Wvi/v8NPB0b9LjzOeDwzk3B5gDUFZWNra1rQ34/K1dpkRulL1db6bWk0teac7l70hm\nW+mkJ4j7oqGhgaqqqoyvN/63JrNPs5U/sYXOTO/TbEk2zSL5Kkjnm6THz32Yrft0b2TrfpqOYj+/\ngrQvgihI+VMox2rQf0fQ05dtfh7zNTU1TWZW6cvG0+B7sCVWZWWlNTY1hT6E0+VVkyOZ2h1d5snE\nSC2ZXE+auhu9JeU0ZykS222+x2zLM83ppMcj+l2XyugWWVBXV5ebbSezT5PIn7SP1bhtpbtP0zqe\n06W3D72Wqf2T0/1eLDyOb+VzZvh1XU+rrOOxnqSWS+b6mONraLbyvadR8GL7E1KfNiE5OwfylJ/5\nk8yxmpcdYqdxPcyETjW0e/k8WMj8POadc3kVbAl0M6LAV3ULkKQvDrmWzR67PS5w1dnZUn7x6jyX\n/DifAnXsSmYkUSDRfs+ufDj3pXue/YcEtYCfw5c7qYo/DxI9gHqOihXTb5Lfv0WKU28DDrrX9kyd\nt0umBTrYUlAHfJZv0Pl4AU23fw8h8XHUTc2WgjqfRCRp6ng4/3R5gZJKnyrdrCupckJMWSXlB7sA\n9rWQTK2VpM8LBVhEJAHVHhUvgQ62ZFs+nxSJCgeB/V2RgpjPTX0KVnxBMIdVvXO5XK/pzWTuBPDh\nSyTwwiOndeoLwCOIHnsNjXbkmiAwk7BskInrYYA72u2uvKEApIiIZFNwgy1xD+YZWVeOZbPmRjJv\nZKIFqwxvO20xb8rEH9kIcOVddVYFWTKnp4embDYjlM7imjkUa6d9eS3RiFPx4gIyyVxPI7U60roP\n9xDAiW6jh/mDIL65kMolUpD0YiltSZVPla+SpOAGWyIHcSZugrEF/tgCQExhNBs3Wz8eJpPquyXX\nhaCYC1KyBZvA1s6RkDTar/u+T8PBPp+2Hnip7J/ABXIlJPZaG/4/sq/0QFlg0iwjpXJ+d/rcw/DH\nnn2cRHiVv7Ik9jqW7DGvcobkm6zXUhORjAlusCVbYi9CQe1UNiydh9OEBYwAv2lKiqL0wZLmfghs\nZ86SNPXQn3/0Br8wZbO2YloB8jT6E8sGHetSyJI9JwvlPMjb36HykFCMwZYC0qtO3fI98CJ5SwGW\nYOtVDSRdV0QkAHSfkULT02haXgrlPMjLTt5VHpKwvA62pPRQEJSoYhpRzu4uLnpTKSLxfBkaUoWK\nvFAoBe9i0esmAr3s+y5jx0syadYbYJEuYu/n8WV+Xc8DTn3WSZgzn29szrk5wByAsrKysa1tbUBq\nnftF2hHnokPAdLeVyzQmo7u217HpC1K+eqU3KHkZq6GhgaqqKr+TEQhBO+ZB+yciU/vGaz3JXFsk\nd3TM957yMCTT142Iupj+YHSdCCadA4kpfzLP65qQb/lcyNc1P/dFTU1Nk5lVdve9c244cB+wJ9AB\nzDez3zjnDgf+F+gLtAEXm9lbzrldgfuBfQhVRPmFmd0dXtf5wLXhVd9gZvemml7fgy2xKisrrbGp\nKfQhQbq6vLn1eCOSzNvdtN4AJ/H2xXO98culu54kJLVc7PZjI69endqlUQsn5Yh73La8auxEC2gB\nOmbj1dXV6W1DRFxEP5VRM7KlGPaP1znYaZrH+Z7s27KUry2xn2PXE4BjoVgUwzGfbfmehxnrnLyb\na3rK6+6u/BGZRupp7jIqUh7vryDK93Mg27KVP/Hnge8DDeRSN892Qf7tXa5DefDcki4/94Vzrqdg\ny1BgqJktdc4NAN4BTgF+DfzKzJ5xzs0ErjKzaufcNcCuZna1c24I8BGhQE0VsAQYB1h4PWPNbHMq\n6c3rZkSZ0qugS6x8PZm8Cjx+VX2Lq/Yc5IuqJCl8XlT7m4qClXJTQo/R2arJwZuXuJFy1ARSJDcy\nfh+NuaandR7HlpVS6DQ3UZNqlRWkGOg4zw/aT/4ys43AxvDf251zK4FhhAImu4Rn2xXYEFkEGOCc\nc4QCLPWEar58BVhkZvUAzrlFwPHAQ6mkR8EW0jwpvGqAZHL+XsjISZ7rtoYetZIkz+Vr8DFPxbfn\n9jqPugzZ7DFUcHd0XopIPD8eKvKys0wRSY/6c5KuypxzS2I+zzez+V4zOuf2BY4A3gQuA55zzv0C\nKAGOCs92M/AkoeDLAOBMM+twzg0D1sasbh2hoE1qiU11gazLwMkU+BtwEDpNMgtVAfM3FZ4UERZJ\nT2zApdtmRL1Yd1JUIBKRDOnu2uUVWFbZQfJJd02EIor+eFZZQrrXZmbjeprJOVcFPAZcZmbbnHM3\nAN81s8ecc2cAdwLTCNVgeReYChwALHLO/RHwelhP+cAMXrClB8kOddbTfGkHZOJPfr+DJsVEF17J\noEItoCd6KPGFzluRwpCjczmZPqS6CyyL5DsdzyK955zrQyjQ8oCZLQxPPh/4Tvjv/wN+G/77G8BP\nLdSR7Wrn3F+BLxGqyVIds9q9gbpU05J3wZYugZQ0gx0ZHdIwrv+DdIdZVMFBRDIt3euJrkciknPO\nhUq24dq3kLivFhERkVjhvlfuBFaa2S9jvtoATCEUMJkK/Dk8/e/AccAfnXNfAEYBa4DVwE+cc4PC\n880A5qaanrwLtkDcDTYITXIiYgoHIpIfkh2Jp6CotomIBJHHtUl9tEgh03EtknFHA+cBy51z74an\nXQN8C/iNc64M2AnMCX/3Y+Ae59xyQk2HrjazTQDOuR8Db4fnuz7SWW4q8jLYEmTJNGESkeBIOES7\nFGcwSkREJAcUTBTJLDN7Fe/+VgDGesy/gVCtFa913QXc1Zv0OPP5ocI5N4dwZKmsrGzsokWLUl5H\nZBzzrA9dmsHt+51mgIaGBqqqqjqlJxl+pjnoYvNUgqen/ROE87JY6FzJDeVz7ykPs8/r2qt8Dw7t\ni8SUP7mRb/lcyGVKP/dFTU1Nk5lV+rLxNPgebIlVWVlpjY2NqS/o8TY6p/0NpPM2PIk0Z/s31NXV\nfb7uZH5DANIcdJ3yVAIndv94Hqt5WLMlW+dcTq8/kjXK595THvpD+R4c2heJpZM/sffY7mqQFnuZ\nOl7Qj8Mu+ysPy5TJ8nNfOOfyKthS4ncCpHCoCqTktaD0/SQiIiJFI8gBBBHpncLqsyX2YSlfqmx5\npNmXoEUvo66Kvku+6XKsBqmzbZ8pcCoiIuIvlalF8l9hBVtiAwb58rAQTrNXFcJ8euDRDUGkcOh8\nFhERERHpncIItuRjW7i4NOvhRkRERERERKQwJNVni3PuY+fccufcu865JTHTL3XOfeSc+8A597OY\n6eOdc3XOuT8755Y6555yzo3Jxg8QEREREREJorq6uryqrS4imZNKzZYaM9sU+eCcqwFOBg41s2bn\n3B7h6V8AHgFmm9lr4WnHAAcAyzOW8h7ktKZIPtasEZG8o76RRERECo/u6yKFqTfNiC4CfmpmzQBm\n9ml4+iXAvZFAS/i7V3uxHRER8aA3ZSIiIiIiwZTs0M8GPO+ce8c5Nyc8bSRwrHPuTefcy865L4en\njwaWZjqhxai6ujrQkW496In4K8jXBxERERGRZHVpcudc3o8U6iyJJjDOub3MbEO4qdAi4FLgVuAl\n4DvAl4GHgf2BxwjVbHkivOybwC7A82b2HY91zwHmAJSVlY1dtGhRJn6XJKGhoYGqqqqk56+uqQGg\nLl+G1fZBqnkqudXT/vHzGC+280vnSm4on3tPeegP5XtwaF8kpvzJjXzL50Iu1+VqX3jlYU1NTZOZ\nVXa3jHNuOHAfsCfQAcw3s9845w4H/hfoC7QBF5vZW865c4Crw4s3ABeZ2bLwuo4HfgOUAr81s5+m\n+huSCrbE/YDrwgmZRqgZUV14+l+AicB/AB1m9qOYZU4DvmpmX0+07srKSmtsbEwpPZK+urq61N6M\ne0QWIwe/3rCHpJynklM97p/IMe5HP0xJbLuQ+mzRuZIbyufeUx76Q/keHNoXifWUP7H37vha4crX\n5AX9OOxSRvMq1/lZzsygTO+L7lpLRIItsfnlnOsp2DIUGGpmS51zA4B3gFOAXwO/MrNnnHMzgavM\nrNo5dxSw0sw2O+dOAK4zswnOuVJgFTAdWAe8DZxtZitS+W099tninKsESsxse/jvGcD1hAIuU4E6\n59xIoBzYBNwCvOmcey6m35b+qSRKAsrjwlCd+1SIFJ4Uq0jG3pSCXPAQERGRz0Xu2WqKL8UmPhgV\n+9lrWrrMbCOwMfz3dufcSmAYoW5RdgnPtiuwITzPazGLvwHsHf57PLDazNYAOOcWEBocKLPBFuAL\nwOMu9DBQBjxoZs8658qBu5xz7wMtwPkWqibziXPuTOBG59ww4FNCQZjrU0mYiEjOmXVuH5qrNw+R\n7SZJARYRERERyTeJAo2JyrerV69mzZo1AH2cc6tivno6/M/LF4BJwN2ERku+yTl3E6F+ay9zzs2I\nm/804L3w9GOBjph5BgJf8lgm1iYz69R3bY/BlnA05zCP6S3Aud0s8wYwpad1i4gEToCqdurNl4iI\nSGEopKbAkiEF0qwoFenU7uro6OBf/uVfOPTQQ5k2bVpZ3759YzuMOSP8rxMzcy0tLbuVlZU1lJaW\n3tra2rpLSUlJS2lp6c729va+7e3tvy0vL6+PzN/e3l7e1ta2a3l5+Sbn3D3t7e19Ozo6Kvr06XNY\n+Pt+HR0dffr06fPl+G1FvPzyyxXOueFm1hSZ1puhn0VEJAleN5RUCluqdiwiIpLfFGQR6SqZIOT7\n77/PgAEDqK2tZePGjQwdOjThOs2Mzz77bFBFRcWOAQMG7ATYuHFj/z333HObcw4z2/nJJ58MjKyn\npaWlbPPmzQMHDx78WZ8+fQygubm5ffv27aW77747ANu3by8FOgYMGNDtdsPzdhrtOelgS7iTmCXA\nejP7qnPuOODn4RU2AF83s9Xhec8FriLUc28boQ5lrjCzLcluT0Sk0PS2oKWCmoiIiIgUimTKti+9\n9BJTp05Nan1mxubNmweWlZW1DRgwIDryTklJSXtzc3N53759W5qbm8tLS0vbANra2ko3b948eODA\ngZv79OnTHpm/vLy8tb29vaytra20tLS0fceOHf0GDRq0OdXfl0rNlu8AK/m8Y5nbgJPNbKVz7mLg\nWuDr4SGSvgucYGbrw0Ga8wm1mVKwRUQKXzrVQuP7iwEowOECRUREip1enkixyESt7JdeeonLL788\n+vmtt94qu/TSSweWlJRYWVkZd95555bHHnus7x/+8Ie+QMnatWvLZs6c2XH99ddXvP322+66666z\nsrIypk+fPvCSSy4x55xt2rRp+7/+678Obmho6DN06NCSW265ZWB49bbHHntscs7x+OOP73jggQeG\ndHR0cP755++cM2dO27x58yqffPLJvh0dHW6//fZru++++7aUl5d3m/akgi3Oub2BWcB/AZFf6tmj\nL/B9QrVY1gOYWTtwVzLbERHJeymOLNRJfHBGzYZEREREAiuvm3jnoM8Yr6bwqeTZFuDDDz9k0qRJ\n0WnDhg3reP755z/bdddd7Xe/+13FD37wgwEPP/zwlrlz5zYCTJ8+ffA555yzfY899mi99tprd1+4\ncOHm/fbbr33GjBmDzzrrrK0HH3xw++zZswfffffdW/bee+8Or+0uW7asrK6urvTll1/+pKTk85ZB\nl19+eWNkO2edddbAp556quLUU09t7i79ydZs+TWhZkGxjZS+CTztnNsBbAMmhqePBpaSJOfcHGAO\nQFlZWX4fsHmmoaFB+Z1hytNgy8n+WbyY6poaoOvNpNOQzZF5kqi9UojHlM6V3FA+957y0B/K9+DQ\nvkgs2fxRHvZOvhyH0T5I4j57TfOaJ5fS3X5v9kWisnG8auAV4IgjjgCguTkU0xg2bFg0QFJeXm5l\nZZ+HND755JOSv/3tb6XHHntsK8C2bdtK9ttvv3aAI488svXFF1+s6Nu3b3NTU5O75JJLdv3nP/9Z\ncskllzSeffbZO2O3/fDDD/etrKy0qVOnDq6srLRbb7116xe/+MWOiooKINRpb0dHByNHjmxL9Ht7\nDLY4574KfGpm7zjnqmO++i4w08zedM5dCfySUAAmdtkxQC2hIM01ZvZw/PrNbD4wH6CystJUrS53\n6urqVI0xw5SnwZaN/ZOoY6/4aH50npjaL5Ggi9dbhUIeuUDnSm4on3tPeegP5XtwaF8k1lP+FPK9\nPFW1tbVdpp133nlJLZuvx2Gi8mGieXIp1e3ncl+8W1rK+FGjqPjsM9hrr07fbd++3f3gBz/Y5e67\n7452VVJbW9vva1/7WjRwsttuu3UsWbKkbMyYMW2LFy+umDlz5s5169aVLF++vM/777//6S677GKT\nJk3afcaMGc277bZbtDC+cePG0vr6+pKXXnqp/ne/+13Fd7/73V0XLly4GeCHP/xh1f3339//gAMO\naPviF7/oWTMmoiTRl2FHAyc55z4GFgBTnXNPAYeZ2ZvheR4Gjgr//QFwJICZLTezw4FngH5JbEtE\nJC/V1dVF//UoNrBiVlRD/omIiEjxOvLII6P/ikZ8n3yStMPb2/nTmjVdAi0tLS2cdtppg66++uqG\nQw89NFq7ZMGCBf3OP//86NDLd9xxx5arr756lxNOOGHwvvvu27bXXnu177bbbh0HH3xw6z777NMx\ncOBAGzNmTOuHH37YqRLKoEGDOmbMmNFcUlLCV7/61eYVK1ZEv7/++usbVq9e/em+++7bfscddySM\ncfRYs8XM5gJzAcI1W64ATgE+cc6NNLNVwHRCnecCzAN+4Zw72czWhacp0CIihaGb9q0pR/gVYBER\nESlo+dDsRXIgUuaLDbj4GXzJo8DPFOB7b77Jzp076du3LwDt7e2ceeaZg0466aSdZ5xxRrQWy4oV\nK0qdcxx00EHRUYUOO+ywthdffLG+ubmZE088cfCJJ57YvPvuu3c0NTW5rVu3uv79+9uHH35YFmlq\nFFFTU9Py+OOP9wV48803+0S+37FjB/369aOkpIRddtmlo3///gkL9KmMRhRlZm3OuW8BjznnOoDN\nwAXh7552zg0BngmPRLQFeB94Lp1tiYj4JVHzHxEREZFEqqurFXDxSW+aLGVUd53QRkahzJL4Mmyn\nz17BnyAyY1fg4JNP5vXXX6cm3PT+4Ycf7vv8889XfPrppyUPPvhgv9GjR7fOnz9/27333tv/rLPO\n2hG7innz5lU+9dRTfQGuuOKKhj333LMjPH37V77ylcGtra3uggsuaNprr7061q9fXzJv3ryqm2++\nedusWbOan3nmmYqjjz56t46ODu64446tAP/xH/+x64oVK8o6Ojo44IAD2ufNm7c90U9IKdhiZnVA\nXfjvx4HHu5nvXuDeVNYtIhJ4cTdGFaBEREQklvpoCfEKduRabFOlpUuTHr8lM1SDOWOmTp3KSy+9\nFA22zJ49e+fs2bM/iZ/vxhtv7BL4mDt3bnT0oFizZs1qnjVrVqdRhIYNG9Zx8803bwMoKSnh1ltv\n3Ra/XCTokqykgy3hWipLgPVm9lXn3H6E+nAZTGj0ofPMrCU877mERi8qBdqAtwkNB73Fc+UiInko\nmYKUAjIiIiLFR/d/n4MdAhTGcTh16lT+7d/+jR//+Md+JyVlqdRs+Q6hfll2CX++EfiVmS1wzv0v\ncCFwm3PueEIjFZ1gZuvDQZrzgS8QalIkIlI0VIVYRESk+BR7zRZJIIfNd+KbEWVD/LoTjbSZjtGj\nR9PY2Mjs2bP5xz/+QUVFRSCrDbW0tAB0Gp0oqWCLc25vYBbwX8DlzjkHTAVmh2e5F7gOuA34PqFa\nLOsBzKwduKv3yRcRyZ3YG0fs39WprCR8M61WVVIRERGRjHjzjIu7TJvwyK2+rSdlWewzxc8XfNkK\nMJaUlLBw4ULWrFnD9OnTmwlV5AiiTWbWFDvBWRIPAc65RwmNMjSA0GhEXwfeMLMR4e+HA8+Y2SHO\nuXpgPzNLqj2Tc24OMAegrKxs7KJFi5L/OdIrDQ0NVFVV+Z2MgqI8DbZM7J9ItL5u8eJezVPsdK7k\nhvK595SH/lC+B4f2RWLKH2/19fX0798/+rmpKfQMGj9t8ODBnZZrXPP3Luuq3H+fTvncuObvlA8e\nGP2+pX4Llfvv0+P2vbbV03oyKb58GITyYrQWSpLp6CnNqa4vVTU1NU1mVpnxFWdJj8EW59xXgZlm\ndnHM0M/fAF6PC7Y8bWZjYoMtzrkxQC2hIM01ZvZwom1VVlZaY2OX/mskS+rq6lTFMcOUp8GW6v7p\ntpO72DcRWay1Usid7OlcyQ3lc+8pD/2hfA8O7YvE4vOnkO/dqaitrfXssyV+WvwIQW+ecTHDZ58c\n/bz2wSeY8MitnfK5u3l62n5P23px+6ddfkdGRzCKH5mou5GKMiDhaESpSCLN3Y7emYXf5ZxLGGwJ\nxyXuA/Yk1KRnvpn9xjn3MDAqPNtAYIuZHR5e5lDgdkLdpXQAXzaznc65scA9QD/gaeA7lkxNlRjJ\nNCM6GjjJOTcT6BtOxK+Bgc65MjNrA/YGNoTn/wA4ElhsZsuBw51zN4cTKSKS/9QsSEREpOipT7bC\no059w4I+LHT32oDvmSp6DRsAACAASURBVNlS59wA4B3n3CIzOzMyg3Puv4Gt4b/LgPsJDfazzDm3\nG9AanvU2Qi1w3iAUbDkeeCaVxJT0NIOZzTWzvc1sX+As4CUzOwdYDJwWnu184Inw3/OAX4T7eYlQ\noEVEJAUqwImIiIhIb8X3Q5hUGdOs9y8Xnct50MbMNprZ0vDf2wkN8DPs8yQ5B5wBPBSeNAN4z8yW\nhZf5zMzanXNDgV3M7PVwbZb7gFNSTU8qoxHFuxpY4Jy7AfgTcGc4gU8754YAz4RHItoCvA8814tt\niYgUFY1iJCIiIvmitrY2K+tddeIkVtXWUllZGd3GyKxsKX1evz2jzY96KbZMmagZUcabwGWnJniZ\nc25JzOf5Zjbfa0bn3L7AEcCbMZOPBf5hZn8Ofx4JmHPuOWAIsMDMfkYoQLMuZrl1xARtkk5sKjOb\nWR1QF/57DTC+m/nuJTRCkYiIpKnY23uLiIjkk9raWoYPHx79G4L10J0p3QVWstUE58gjj2Tt2rWM\nGjUq7fWO/P3rvPn71zOWpnhBa35UwGXINjMb19NMzrkq4DHgMjPbFvPV2XxeqwVC8ZBjgC8DTcCL\nzrl3gNhlIlKOHvUYbHHO9QVeASrC8z9qZj9yzj0AjCPUpukt4Ntm1hpe5njgekL9u+wEPgKuNLOu\n3UuLiIiIiIgUkCOPPDIQD93ZkongQqYCIJHaLz2J71Q3GekMD+31u3IypHQCOQ2++Ny3oXOuD6FA\nywNmtjBmehnwNWBszOzrgJfNbFN4nqcJ9T97P6F+aSNi+6hNWjI1W5qBqWbWEE74q865Z4AHgHPD\n8zwIfBO4zTl3CHATcJKZrQwn+iRgX0DBFhERERERkTyRrSZCkF4AxEs2a5akk8ZM/a7AjG6VJx3m\nhvtkuRNYaWa/jPt6GvChmcU2D3oOuMo51x9oAaYAvzKzjc657c65iYSaIf0roRhHSnoMtoQ7hGkI\nf+wT/mdm9nTMj3qLzyM/VwM/iQRawut4MtWEiYiIiIiIBF0x9LEWtGYykj2eAZ74oZ+D62jgPGC5\nc+7d8LRrwrGLs+jchAgz2+yc+yXwNqFmQk+b2VPhry/i86GfnyHFkYggyT5bwh3dvgOMAG4xszdj\nvusT/kHfCU8aDfwi1YQAdDS3dKmq5XeVKxERERERke5EHkqzWQNEilsua7h4BlkgHwItmNmrgGdC\nzezr3Uy/n1CzofjpS4BDepMeZym0qXLODQQeBy41s/fD0+4AGs3ssvDnpcA3YsapfhHoT6in4C5B\nGOfcHELjV1NWWjr26Uejzapoqd9C5f77pPvbpAcNDQ1UVVX5nYyCojwNNu2f4NC+yA3lc+8pD/2h\nfA8O7Yvk1dfXM3jwYAB27txJU1NT9HPsPPHi5/FT45quvT40D6yif//+0c9NTU1dPgMpz9O+4VPK\nBw+Mfm6p3wLQadr2jjb69+9PS0sL5eXlNDU1UbGlwXOeTG0rdj3x2/J6Pq2vr+9xW5X770N1TQ0A\ndYsXA3T5nA/8TnNNTU2TmVX6svE0pDoa0RbnXB1wPPC+c+5HhIZI+nbMbB8Q6lRmmZl9BhzunLsC\n8LxKh4dqmg/Qr6yPjaYi+t3aZ99gwiP/mkoSJQV1dXX+t/8rMMrTYEt1/wSmnWwB0rmSG8rn3lMe\n+kP5HhyJ9kXQh7zNtvhyQm1tbTRwMnz4cJYuXUpjY2OX5eKb5MTPk608TKbmzchn3+jS38iqEycx\natSo6LSlS5d2+QykPE/DXU923tazbwCd+zt5sXEro0aNYu3atdE8HRaXxsg8mdpW7HritxVa7g1i\nNcblj9e2Yp9p48+nTp8jtUfCFSJyVRaNbQqXzLZi51F5uXvJjEY0BGgNB1r6EepY5kbn3DeBrwDH\nmVlHzCI/Ax53zr0R029Lf0RE8oxuGsFQ7IV5EZEg66kvj3RGcykkyfR1ksv+ULy2FTutIYvDIxeK\ndEc1mhDzNxD9nGgeLj4j/YSmoLq6OrW+h+KCQuItmZotQ4F7w/22lACPmNkfnHNtwN+A10Od/rLQ\nzK43s+XOue8A9znnBgCfERqF6EfZ+QkiIXogEylc6phPRPJJIZRJIr+hsrIy+ne6vyFTI7MUi0I4\nfqR7w2ef3ON5kMw8vjBTzcMUJDMa0XvAER7Tu1023IPvU919n226QBWv+Aey+GNBx4GIiIjkQiEE\niY888kjWrl3LqFGj8vY35KtCOH4ksTdPv4gJ/3fb57VETr/I3wRJxqXUZ0s+0QVKQMeBiIiISC7F\nv+ga6VM6Ms2rOVSumngko9iba+Wj4bNPZkO41pdXLZYdaRxf3fXLoxfO/kimz5bhwH3AnkAHoVGF\nfhPz/RXAz4EhZrYpPO144HpgF2An8BFwpZl17d46j+giJiIiIiKSWKH2AeJnc6hkamuruVZh6Xfr\nI0kFXGL7Whk+fDhDhgzp9H2yL5yz0TSo2IM/ydRsaQO+Z2ZLw32wvOOcW2RmK8KBmOmE+mQBwDl3\nCHATcFKkg1zn3EnAvrHz5StdxLqn5lsiIiIihavLi8cTJ/mTkCKk2tqFbcL/3ZbWcrW1tQwfPhyA\ntWvXAnQJtmRLsh3qxh67UFzHbzJ9tmwENob/3u6cWwkMA1YAvwKuAmKjDlcDP4kZiQgzezKdxK06\ncRKrfOxzo1CrQWZTsd4IMtmJnIiIiEgmxQdJVnkESZItt8S+eFy1/dPeJSyPpdPEI5OSeU5JZqhn\nyZ0Njz/b7XdvhvtriQ26rDpxEsPDf0f25cj4mmIx5/KRRx6Z0+cvdZLbM2cpDNfknNsXeAU4BKgm\nNOzzd5xzHwPjzGyTc24p8A0zW5bkOucAcwDKSkvHPv3owuh32zva6N//81Gjm5qaomPXJ1JfX5/W\ncj2tp33Dp5QPHhj93FK/hcr990l5vUHR0NBAVVVVxtbnle8VWxq6zJetPPPafk/HQeOarpWt0klf\nZNstLS2Ul5enfcxJdmX6mJf0pbIvkrmm19fXd1kul9efoNIx33vKQ3/ke757lSHj5fJ61Ljm753K\nsMmUsb3KNhVbGnpcD9Bj+bl5YNd9G/RyU3weRp4DYo/V+vr66O/YuXOnZ1kU6LG8ms483eWzX+tJ\nd1uA5zGWjeOwu23Frid+Wy31W3rMn2S25bUegFkXng/AosefYHtHW5fjyeu3JzrmIr8j9vzyev5J\n5ZzsTRkukp5ktxWvpqamycwqk5o5AJLuINc5VwU8BlxGqGnR94EZPSyzG/Ai0J9QXy+/iJ/HzOYD\n8wH6lfWx0VREv3uxcSujRo2Kfl66dCmNjY1dthMfia+tre2y3Ne+9rWEv6+7yG/sehruerJzM6Jn\n32DCI/+acL1Blulhu7zyfdizb3RpepWJPPPqP6fxxEldtt/TcfDmrRdnJH2R37527VqGDx+e1DEn\nuZfKMa9mcdmV6r7o6Vyura3tUrPO6/oDb3RartD73dLwjL2nPPRHvud7/HWrSxkyQ+WhZMWXd7zK\n2F7X1fiyTfx11Ws90HP5edWJk7pcs3sqN2Wz78Rk1t2lzBh+Dog9Vmtra6MPjZE86yl/MjVPd/ns\n13rS3RbgeYxl4zjsblux6+lSlvD4HJ8/yWzLaz2xRlPBi41buxxPXr890TEX+R2xz9Aj49YB8P+z\nd97hURVrA//N9mQ3vUEo0qsiCiooYhAQ7GIDC1jArqBXLHgFwYoNkaugfIhgQbDDVcQe6wUpghQF\nKaGEQBopm2Szbb4/dhOTsEk2m012A/N7Hh6yc6a85505c855z8z7fluc7fc12ZhnuIq6a7ZV8x3/\nqBU8+He91+ZvVgixDKgQJBYokFL29ZaZAowHXMBEKeWX3vSRwMuAFlggpZxZ/xlXxy9jixBCj8fQ\n8q6U8mMhxElAR2CT8ISqagtsEEKcDmwFTgU2SSnzgL5eJ7pB+zzRVFtVwn0LjHr5q47yn6NoasJ9\nTjhWacplz/XNGz6jTfjgWDfSKBQKRTjSlM9+1V5gi7OPcmWg3AkoWjLh7rS6pl8X63//F+j1Xpu/\n2dEVGYQQLwKF3r97AWOA3kAq8I0QouJyfxWPf9oDwFohxAop5baGnJc/0YgE8Abwp5RyFoCUcjOQ\nXCVPBv9sI3oO+EQIsbqK35ZIFEEhGC9/FS8TJSMHsGau5+/menHw5YcnUMtluKOMY4qm5lgeY/XN\ndc1tkFHGXYVC0dSEOuql8u9RnfruQxXPtFX99SkUwSJ11EjGAlu3bPF5DDw+YCqc4wabbv/9H2tq\nMcpUvEP68v0EoX0WrcffbIVt42rgXG+RS4GlUspyYI8QYidwuvfYTinlbm+5pd68wTW2AGcBY4HN\nQoiN3rRHpJQraznBzUKIScBbXmtSHp4oRI81RLBg4muw1DY4GkowHY4FA39fvtpdeylFlNPu2kub\n/cXB182ruV5kmtvpcTUr8oxXjxqH/jxEhfrhSxHeNNfqm3A07KiVR01POPa7QhFqgvVi7ev+XvN5\nqLmfAUI1r/rzrB6sZzZf/Rdo3aeeeir79++ne/fu6j6kCCoHP1nl2dpTT76K7VVNQc2tRvuXLK/2\nDrmjxtYjaJZ5QyeEWFfl93yvW5Kj8PqbPQVYUyX5bOCwlPJv7+82VN9jfsCbBrC/RvoZDRa2vgxS\nyp8BUU+eDjV+fw583lBhAsGn1c2HwcPXy3ywbig1vbLXrNefZek1b5z+3sh95VMvIHUTymV0gRqV\n1Fd1RTgQjLkl3CJ3qahz9aPuKQrF0dS8LgK9Tvy5vx8vzwD1Pav7emYL5Bm7Zr1qXlMogsdR7+bB\nDw/vlFL2ry9TVX+zUsqiKoeuAd6rmtVHcQloaklvEP5sI1oIXARkSylPrJJ+D3A3nn1Rn0spH/Sm\nnw48h8ciVIxnGc/D3q1HTUJLuAnVlNEfmf25EdSXp64lYFWpebNSKyf+oSm/7KpVK4pgU3O8htKQ\n4fMh2OsUseqXwFAvvw7nfcxqjlAoFIq6qe8Z+6h5NPgvfwqFogqhDg9f099slXQdcDnQr0r2A0DV\npUFtgYPev2tL9xt/thEtAl7B49W3QtAhePYs9ZFSlgshkr3pKcD7wLVSyl+9aYOAzkCTGVsUdRPI\nVxP1gF+delcrNeLG3RKMhQ0l3MfPsbw1orm+1vky5Prq42AZllsawRxjx+IccaxwLM8lipZLMLfJ\nHCuE+uVPoVA0D778zVZhGPCXlPJAlbQVwBIhxCw8DnK7Ar/hWfHSVQjREcjE40T32obK4882oh+9\n+52qcgcw0+tIBillxax1N7C4wtDiPfZzQ4VShAf1GWDC6eU5mPj7lV3duOsm3F8Qj8UX/ObGHyPt\n8YwaY6GhuQ0gx2s/K0NT+KC2lCsUCkUldfmbHUP1LURIKbcKId7H4/jWCdwlpXQBCCHuBr7EE/p5\noZRya0OF8Sv0sw+6AWcLIZ4CbMBkKeVaPCGTFgdY53FNqJfR+0PNF6uWIHOgHA8PKepBuTpqmfE/\nNObaDncjWzDwFVXNH/xxqO4rOpui4QTDOXlN/Lku/F3xdazQFHpuTvyd68Lp3ljb/HM8PLeEO03l\npFShUPhPXf5mpZQ31pL+FPCUj/SVgM+gQP4ipKzfz4t3ZctnFT5bhBBbgO+AScBpwDKgE569UYul\nlMu9+dYA0cBXUspJtdR9K3ArgE6r7bfyw8ptVRS7nURG/hM1urS0FKBamutgNob42Mrf9vwCymMt\nDc5TWloaUFtAtTRfMhsLrEeVC4Y8jZXZhsSE8ClPzfMKVOaa5+6PfordTmoSHx9f7XfJ7n1N1qeN\nOS+73Y7BYGjU+KmJr/Fj7tT+qHwNJT8//6jzqqnnQPHVPzVlzs/PP6pcsNqvDavVisVi8Xnu/o7V\nmgSjLwLF13n4GvM1qalnX30RjPmwrnmj6rUSjLnOn+vUn3ks0Hk+EHkCvV80ZMxVjHl/8DUO4Oh+\nr0korwFf1LwuauvT+iiP9ehNo9HgdruBwK4Lf/RTsnvfUWnhpFdf8vlz7TTmHBoydv0lkLnO173R\n37k3GHNmzTxNOf/UVk/V+TqQeoL1rN6UOgz0ebW+Z7+mvMfVzNOU7zuheE+pwJeegzUOa2uraj1N\n9SxR21i9cPwNAHz9yfJa5amZp2KOstlsR+m9olxd8vk6d195KmSueIesWcZXOV95fI2N+uqpuKcM\nGTKkVEpppoUQ6MqWA8DH0mOp+U0I4QYSga3AqcByACnlGUKIK/E42PWJN1TTfIAInV72xlh57NuS\nQrp37175u8JSXzXNunBF9S+pq1az4+KBDc6zYcOGgNqC6l9yfcncZtXqo8oFQ57GyryVcnpj9ClP\nzfMKVOaa5+6Pfr4tKTzqC02bpd9QlQgf8gWrTxtzXhXh1xozfo46d5/9UzVCWeBfaWue1+WXX14t\njz/bQnx+nfch8xnvjzuq/ZrnWlJSUi2PP18TG7JCJz09nbS0NJ/nHtBYLc4mf3/VqHC+VyY01Vd0\n8G9OqPn1uSYlXqe19dXT0PFc17xR9VoJxlznz3XqzzwW6DwfiDyB3i9qXkt1UTHm/cHXNVnzvI7S\nz5Ll1JyP4Ogx35x+nGpe336NVR9ONXdUcebs71j11VbN/vKli6PuaUuWN6ifm5o1c+/0qZ+GnntD\naMjY9RdfY7zePq1lzmyKZ0h/nseacv6prZ6q10Ag9QTrWb0pdRjo82p9z35NeY+rmacp33dC8Z5S\ngS89B2sc1tZW1Xqa6lmitrFaQW+MR8nT+8QTfeapMLb4uldVnEdd8vk6d195KmSueIesWcZXOV95\nfI2N+upp7D0lVARqbPkUOBdIF0J0AwxALvAqsEYI8WUVvy2RtdShUDSI42F7gr/UpwtfD/O+jCKB\ntlVfuPNAqVmPv4aU+payV1AycgBr5t4Z1C1Cvs69oWO1rqg9VetuinD1x/u1pAgOoQpf2xK2s/oK\nLx5O12C4OzT3l6bcGhtO/aVQKI5f3n7rLbr993+c8cG8UIui8BN/Qj+/B6QBiUKIA8BjwEJgoXc7\nkR24wbvK5ZAQYjTwrBCiDZCNxwjzeBPJr1Ao8P2w7OvhsL6X9aZycBqojwvww5Diw3BSm4GoiHLa\nXXtpszo09nXuvla/qId5hb8E8lIZbkYJX9dFoC/GLcFXRUPDi/szb/jr86em4aQ5jT+BGHIq5DOb\nzZV/+zs2/DHYKxQKhULRXPgTjeiaWg5dX0v+1cA5jRFKoVA0nGA9LDfVQ/fxvCojGKtfFIqq1Hc9\n+Xph9VWmqQwV/hhug2L8PYYdWdc3b9S2qrDmVsf6nKn6Mv74MsgESoOjllXZvtW9e/dGGU1agiFO\noVAoFMcugW4jUigUCoVCEQb4ioDj64W1OQnEmOjviouaBgdF3QRqcGjoahx/CbRPm2pbpUKhULR0\nkpKSQi2CohYaZWwRQtwHTAAksBm4CU986seBq4AKb5cfeEMqKRQKhUKhCDLHykqppnrBVygUCoVC\noWhuAja2eH2yTAR6SSnLhBDvA2OAHkAr4CQppU0IEQXcHxRpFQqFQqFQKBQKhUKhOM5JHTWSscDW\nLVtCLYqiFhq7jUgHRAghHHiiDuUDtwAdpJQ2ACllMTC9ke0oFAqFQqFQKBQKhUJxXHPwk1WVf39b\nnM2pdeRVhBbhCSIUYGEhJgFPAWXAV8CzwGIp5SkNqONW4FYAnVbbb+WHH1ceK3Y7iYz8J3J0aWkp\nQLU018FsDPGxlb/t+QWUx1oanKe0tDSgtoBqab5kNhZYjyoXDHkaK7MNiQnhU56a5xWozDXP3R/9\nNKcOAx0btclst9sxGAzNPn5q1hOs/vKnrUD7tKZ+gtVf/oz5YI3DcBvPTTnm/akH/B+HVa+VYJxX\noOO5IeOngkDHc1ONjbr6NNh6DrTfa+YJ9P7eVPUEa6w2do6q67yCNf8ES+ZAzqshY6Ou+2lTzhuB\n6Cfcrp1A55/a6qnaF8fSGGuofgJ59jtWxmoo3lMq8KXnYI3D2tqqWk9TPUvUNlYvHH8DAF9/sjzg\nsVr1t6+0mvL5qsdXngqZa3ue9lXOVx5fY6O+euz5BZg7tWfIkCGlUkozLQRNoAWFEHHApUBHIBUw\nA5fVyHOTEGKjEGK/EKKdr3qklPOllP2llP11CHpjrPxXUlJCu3btKv+VlJQclZa4anW1MomrVgeU\nJ9C2aqb5qsdXuWDI01iZTV59+3NegcociH6aU4fBPi+DwRCS8dNU/RUsmZtyPAcy5ptzrLaEOaGp\n5sO62qp6rQTjvIKl50DHfFPNh429xwVbz4H2eyA6bM56gqXDphxjTTX3Bus5Kthjo677aVPOG+E2\nZzbn/FNbPVX74lgaY8G6vo6HsdqcMvuj5+a8pzTVs0RteSpozFit+ttXWs06fNXjK099z9O+yvkj\njz/1JK5aTVpamj82inZCiO+FEH8KIbZ6F4dUHLtHCLHdm/5cjXLthRBWIcTkKmkjvfl3CiEe9sdG\nUpPGbCMaBuyRUuZ4hfkYSAPaCyGipJTFUso3gTeFEFsAbSPaUigUCoVCoVAoFAqF4pil6hYhRUA4\ngfullBu8vmPXCyG+BlLwLBTpI6UsF0Ik1yj3EvBFxQ8hhBZ4FRgOHADWCiFWSCm3NUSYgFe2APuA\nAUKISCGEAIYCvwNvAK8IIUxVBDU0oh2FQqFQKBQKhUKhUCgUilqRUmZJKTd4/y4G/gTaAHcAM6WU\n5d5j2RVlhBCXAbuBrVWqOh3YKaXcLaW0A0vxGGsaRMDGFinlGuBDYAOesM8aYD7wbyAL2CKE+B34\nCVgMHAy0LYVCoVAoFAqFQqFQKBTHNTohxLoq/26tLaMQogNwCrAG6AacLYRYI4T4QQhxmjePGXgI\nmFGjeBtgf5XfB7xpDRO2oQWqIqV8DHjMx6GHvf8UCoVCoVAoFAqFQqFQKBqLU0rZv75MQggL8BFw\nr5SySAihA+KAAcBpwPtCiE54jCwvSSmtns06/1Tho9oGRxZqlLFFCDESeBmPP5YFUsqZ3hN5HLgK\nKPFm/UBK+VRj2lIoFAqFQqFQKBQKhUKhqA0hhB6PoeVdKWVFqOMDwMfSE4r5NyGEG0gEzgCu9DrM\njQXcQggbsB6oGuCnLQHs1AnY2FKb0xhgHNAKOElKafM6prk/0HYUCoVCoVAoFAqFQqFQKOrC60v2\nDeBPKeWsKoc+Bc4F0oUQ3fD4lM2VUp5dpex0wCqlfMW7gKSrEKIjkAmMAa5tqDyNWdlS6TTGK9xS\nYBRwC9BBSmmDSsc00xvRjkKhUCgUCoVCoVAoFApFXZwFjAU2CyE2etMeARYCC71Rku3ADd5VLj6R\nUjqFEHcDX+LZxbNQSrm1tvy10Rhjiy+nMTcB+7wGFoVCoVAoFAqFQqFQKBSKJkdK+TO+/a0AXF9P\n2ek1fq8EVjZGHlGHQafugkJcBYyQUk7w/h4L3AzESilP8abdBEwCEoAzpZT7fdRzK3ArQEJCQr8O\nHToEJI+i4ZSUlGA2m0MtxjGF0ml4o/onfFB90TwoPTcepcPQoPQePoRFX7jcuEvKcJeUIu2O0MpS\nAycSU6skhNEQalGOacJiHCqA0PbF+vXrkVLWZkxBCGECfgSMeBaWfCilfMy7SuVeoDOQJKXM9eYX\neHzQXgCUAjdWhI4WQtwAPOqt+kkp5eKGytsYY8tAYLqUcoT39xQ84Z//hWcbUXGVvFuAi6SUGXXV\n2b9/f7lu3bqA5FE0nPT0dNLS0kItxjGF0ml4o/onfFB90TwoPTcepcPQoPQePjR3X7hLbdi378G+\nbTf2rTspW70J+9Zd4HaDXoe+fWvQaJpNnjqREvueTITLhemsU4i+4RIsFwxWhpcmQM0J4UMo+0II\nsb6uaERe44nZG11ID/yMZ/FHOXAESAf6VzG2XADcg8fYcgbwspTyDCFEPLAO6I8nCtF6oJ+U8khD\n5G3MNqK1+HYaEwO8IoS4zesgV4vHAY1CoVAoFAqFQqFo4TgP51G++W/sm3dQvvlvXIdyg1KvK68A\nx55M8H4MFhFGjP16Ezf5RiIGnoyxX280EcagtBUsfvz0M07aW0DR2yvIvnUGuQkxRKadTsSZfTEN\nPBl9l/bUCCmrUCiaCK8fFqv3p977T0opfwd8XYuXAm95y60WQsQKIVoDacDXUsp8b7mvgZHAew2R\nJ2BjS21OY4QQ/waeALYIIYqBMmAxAYRKUigUCoVCoVAoFM2PdLvJe+xVUt/7nAzDP0E9pMOJu+Af\n94y6Dqme1SZBMCgYUjpjufI8DD07YejZCX2HVIRW2+h6mxJ3rIW4yy4i9p5rKUtfS/HSLyj7aT3W\nj74GQJMYi6HrCUevxqmhL218DKZ+vTD1742hTzc0pvAyKikULQXvYo/1QBfgVSnlmjqy+/JD26aO\n9IbJEug2oqagZ8+ect68eaEW47jBarVisVhCLcYxhdJpeKP6J3xQfdE8KD03HqXD0KD0HmJcbuJf\n+xRz+u8Un9oVkRBbeUhqBM7WCTg6tMbeoTXSbAqhoKHH51iVEt2hfIzb9mDcmoE2t7BGqaPfv3S5\nhehyCjxHtVrsnVpTdloPSs/sgyslromkbzmoOSF8CGVfDBkyZC9QdSndfCnlfF95hRCxwCfAPVLK\nLd60DKpvI/oceMbrWBchxLfAg3jCRBullE9606cCpVLKFxsib2O2EQUds9ms9uI1I2rvY/BROg1v\nVP+ED6ovmgel58ajdBgalN5Dh3Q6yb7naazpvxP3wE3sP60jaUOGhFqssCWYY9V5OI/y9VuxrdtK\n2a8bMS75htgl32Ds3xvLqGFYRg1Fl3R8Gl4aomdXkZXSr36l7Id1yHJ70wrWEPR6LKOGEjn0jBa9\ntSzE83NuXT5bqiKlLBBCpOPZ/rOllmwHgHZVfrfFsyPnAJ6tRFXT0xsoa3gZWxQKhUKhUCgUCkVo\nkA4n2Xc+gfXT74ifcgtx/xoH6emhFuu4QZeSgO6CwZgvGAyAY18W1k+/w/rxN+T9+2Xyn5hH9E2j\niL3nupAbXdzFLKZrggAAIABJREFUJTh2H2i29vS7MimP217rcSkl9i07KfnsB0p/XAcOJ5rEWLQx\nUc0mY324jhRhfX8Vhp6diL3rGiyjhiIM+lCLdUwhhEgCHF5DSwQwDHi2jiIrgLuFEEvxOMgtlFJm\nCSG+BJ4WQlRcaOcBUxoqjzK2KBRBRrrduItLcBcU4y4oRjqdoRapGvou7cPqxqNQKBQKhSK0uPIK\nsK3fRtHi5ZR+9SsJ0+8k9q5rQi3WcY++fWviJl5H3MTrsP+1h4JXllD4+gcULV5OzPgriL37GrTx\nMc0qk3Q6KXr7v+TPfAN3fs3tUU1HKzxLDepD1741MbdcieXCwRj790aES+QqQNodWD/5loJX3yP7\n7qfIe2o+8Q+NJ/q6C0Mt2rFEa2Cx12+LBnhfSvmZEGIinu1BrYA/hBArpZQTgJV4IhHtxBP6+SYA\nKWW+EOIJPEGBAB6vcJbbEJSxpQYZGRlMmDCBb775pjKtS5cu7Ny5k1WrVpGTk8PYsWNrLV+RN1Dm\nzJnDxIkTfR67++67mTRpEl27duX1119n4cKFGAwGpk+fztChQ9m2bRvz589n9uzZAbevCAzpdFIw\nZwmpr7zLbuu0Si/6YYlBj3nYACyXDyfyvDPDzqu/QhEKpNuNY9d+yjdtp/yPHTj3HiScfJpp42KI\nGj0S08CTW/TSY4XieKLs5w04D+eFWox/kBJZZsNdWo4sLcNdasO5/xC29dtwZmR68ui0JD49iZhb\nrgytrIqjMPToSPIr/yb2vrEceX6Rx/Dy5ie0+XQOxpO7N4sMZT9vIPfROdi37sJ01inEjL+82VZm\nbN68mZNOOqnOPLrWSRhO6hq290lh0BM1eiSWq0dQ+u0aCl56i5x7Z+LYtY/4R28LK8NQS0VK+Qdw\nio/0OcAcH+kSuKuWuhYCCxsjjzK2NICRI0c2eRu1GVsOHTpEVlYWXbt2JTs7m9dff501a9Zgs9kY\nMmQIa9asoVevXuzatYucnBySkpKaXFaFB/vOfWTf/RTl67dh79ed1LQBaGKj0MREoY2xgCGMIp+7\nXJT9vAHrJ99SsvInhDkC83lnYujVGX2X9hi6tkffoQ3CGEYyKxR+Il0uXIdykeUOpP2ff25rKe5C\nK+7CYlyFxZV/uwutuLwr0Ow7MpAlZQAIkwF9x7ZHR44IIbZfNlK85HP03U4getylRI0eiTa2eVao\nuQqLcReVNEtbfiEEutQk9VCqCGsKXnufvKn/CbUYdaPVok2Ox3RqT6LHXYzp1F4YT+6OxhIZaskU\ndWDo3J6U16YRd+9YMi+5myMvvU2rRU82aZvOQ7nkTplNyWc/oGvfmpQ3n8R84eBmNWrYjA7MaWc1\nW3tNiRAC87ABRA45jdwpsyn4zxKcWTkkvzxFbSs6xlDGlgawaNEiDhw4wKOPPsqyZct4+umn6dKl\nC1arlSlTppCWlobD4WDSpEmsWbOGQYMG8cILL+BwOLjjjjvYtWsXDoeDWbNmcfrppzN58mR++eUX\nTCYTt99+O5mZmWRmZpKWlsbYsWMZP358ZduffPIJw4cPBzyrb3r16oVer0ev12M2m9m1axfdunVj\n2LBhLF++nAkTJoRKTccN0u2mcMHH5D/5GsJkJOX/ZrAuVsOJYe7QzzziLBKm30nZrxuxfvwNpd+s\nxvrJt/9k0GjQd22P8eQemPp2x9i3B4YTu6oVMIqQ4zyYjXS6/klwubFv34Nt/TaPQ8ENf1YaTOpE\np0UTY0Eb4zGKamIsRI05H+PJ3TGe3B1DtxMQuvC6PbpLbViXf0fR4uXkPTqH/CdfI2JwfyLOPpWI\ns/th6Nkp6MYHx74sCl5+h6L3VoIjvLZDalslYrk4DfOlQzCddqIyvCjCCuvnP5I37RXMFw4mfupt\noRanGhqTEREZgSbSBAZ92K4AUNSPoUdHoq+/mIJX38OxL8sTfrsJsH72Azn3P48sLSN+yi3E3DFa\nPRMGCaHVkvjsv9C1TiL/6f/DlXOEVoueUgbPRiCEMAE/AkY8to4PpZSPCSE6AkuBeGADMFZKaRdC\nGIG3gH5AHjBaSpnhrWsKMB5wAROllF82VJ7wepoME9avX1+nh2WXy8XUqVNZv349JpOJvn37Vh47\nfPgwU6ZMISUlhZ49ezJt2jSWLFlCly5dWLBgAYcPH+byyy/nl19+4YsvvmDTpk3odDrcbjcajYa5\nc+eS7sMR2ZYtWxg1ahTg2aq0ceNGioqKKC4uZtOmTeTne7aQdevWjVWrVgVVHy0Vx/5DlKX/hm3D\nn7iLSnAXlyCtpbitpdVf2AJEltlwHjhM5LABJL30ELpWiS3GiZzQaok8ux+RZ/cDPE7O7Lv24/h7\nL/a/92Hf8jdl36/B+r5nLAmjgcgRZxF15XAihw5QVndFs5Pz8EsUvfGx74M6LcbeXYgafT6GXp3Q\nRBgRBgPCoAO9Hk2U2WtcsaCJiUJEmlrcC4Ym0kT0NRcQfc0FlG/+m6J3P6Ps+98o/epXz/HEWIx9\nuiN02mrlEvPyyPq/Lyp/iwgThp4dMfbshKFXF3TtWx1lqHBkHOTI7LcoXrYKNBqir78IY98eTX+S\nfiLtDsrS11L01goK/+9DtK2TiDj7VIS+yiONRkPk0AGYzx/UpIYY6XBSsvInXPkFTdZGgxECfYc2\nGE/ujjYuOtTSHHfY1m8l+47HMZ7ak+S5Uz1GDYWiiYgZP4qCuUspXPgxidN97oQIGHdxCblTZlO8\nbBXGvj1Invsohq4nBLUNhWeVS9x949C2SiTnvufIvPAOTAP71llGE2Um9q5rmm2FawujHDhXSmkV\nQuiBn4UQXwD/Al6SUi4VQryGx4gyz/v/ESllFyHEGDzOdEcLIXoBY4DeQCrwjRCim5SyQS+Rytji\ng379+h3ls6Uqubm5pKSkEBXlGeCnnPLPtrA2bdrQqlUrANq2bcuRI0fYvHkzv/76a6URpLDQ40xq\n5syZ3HzzzWg0Gh544AF69+7tl3zx8fHMmDGDiy++mJSUFE4++WRSU1MBjyfulvYSEUxsv22m+ONv\nKEtfi2PXfgA0CTFoE2LRWCLRWCLRJ8WBPjjGgrgHbyZqzPktXueaKDOmvj0wVXmhklLiysqhfONf\nlP64Huvy7yhZ8T2auGgslwwh5o7RGDq3q6NWhSI4FC5eTtEbHxN17YWYBvSpdkzfsS3GPt2Oqxca\n40ldSZp5HwDOzMOU/rSBsp/W49iecZSfGW2xFafjnzR3kZWSFd9X+pUSkRFooqp/QXPlFiB0WmJu\nvIzYe65Fl5rcxGfUcGJuvAx3cQklX/2K9dPvKPv592q+smSZjeK3/4uhZyfi7huH+ZI0hFZbR40N\nQ7rdWJd/x5Fn3sCxp/micTQU3QmtMZ7cA33ndghN3fcpfbcORF0+rJkkOzZxZBwk6/qH0aYk0Ort\nmcfVvKQIDbo2KZgvHEzxO58R/8DNaMwRjarPlVeAfec+HNszODL7bZyZ2cTdfwNx999Y3aCtCDrR\n11yALjmBnAdewPrxN3XmdRdasW/fQ6vFT7f4d5Bg4/XBYvX+1Hv/SeBc4Fpv+mJgOh5jy6XevwE+\nBF4RHqVeCiyVUpYDe4QQO4HTgf81RB4RTg4Ae/bsKefNmxdSGQ4dOsTzzz/Piy++CIBp/XaufO4x\n3lm2tNJB7rXXXsuNN97I/PnzMRgMTJgwgUmTJtG3b1+uu+463n33XQDuv/9+HnjgAVavXo3D4eCq\nq64CwOFwoNPpsNvtGI1GNm/ezAcffMDjjz/O2LFjefvtt4+Sa/ny5QghuOSSS6ql5+Xl8dxzz/Hs\ns56IVh9++CEmk4mLLrqo3nO1Wq1YLJZG6SucMH+/gbh5nyINOsp7dcR2chdsfTrjbJsEzTQRHWs6\nrYbThWnzLiJ/3ETEb38i9Tpyp1yPvXv7UEvmN8d0/7Qw/O0Lw58ZJM94E1ufzuQ+dD1o1XaRhuBL\nz6KsHP2BbPT7DqPfl40od1Q77oo1Yz3vdNzxLXhVhMtF5K9biP7oB/SZOTjaJFJybj+ksbqh3Rkf\njbN1As6UeKjlRaKaDqXEtHEnMUu+wpBxCHu7ZAqvGYa9a/gYnoXLjS4zB8PuTAy7DmLYfRBtTt0r\nb4T3WbBwzFCKrkhrBinrp6XN15qiEpKnLkBTWEL2U7fgbHPs+M5raX3R3IRaP4a/9pIydQH5Ey6m\nZMTp9Rdwu9Fl5aE7mIv+YC66TO//B3PRFpdWZnO0iif/niuxdwuP+S3Ueg4nLJ/9StziL/zv8yAT\nyr4YMmTIXiC3StJ8KeX8qnm8kYjWA12AV4HngdVSyi7e4+2AL6SUJwohtgAjpZQHvMd24QkBPd1b\n5h1v+hveMh82RN6wMlGazeY6t+80BxkZGcTFxZGWloZ0udj3wGto8wrps3onuzt3xmKxMHToUJ59\n9lmmTJlCx44d6dixI6effjpnnnkmERERlecQFxfHgAEDuOKKK7jnnnuYMWMGAP379+fpp5+u9MFi\ns9mYNm0aaWlpnHvuubz88suMHj2aMWPGVMrVvXt37rrrrsq6x40bx/79+4mMjOTdd9+tXH3zwgsv\nsHDhQpKT6/8SmZ6eHnJ9B4uCeUvJm/sJEWmn0erNJ0O21/FY0qlPhg2F+8Cx9yBZV99Pq6feIuX/\nZmAe0TIclh3z/dOC8KcvHAcOc+COF9F2aEPHD15WIcsD4Lge80OHIh+5m5L//sCRlxajf7uOrdYa\nDbr2rdC1TqruGFlKig5lE+kWuIusuAut4HKha9+a+LmPYrl8WFBXzIQK6XKRPfEZWPolHbt3I+7u\na+sv1MS0hLHrPJxH6Ve/UPLFz5T9uB4pJakfvkS3gSeHWrSg0hL6IpSEWj/yHEnmhz+R8sMftHtq\ncp1bJ93WUrKuewjbrxsr07RJ8ei7tMNwRl/0Xdqh73IChi7tPdtMw2h+C7Wewwk5eDBZ+/NJePtL\n+oy9AmOvzs3afoj7IldK2b+uDN6tPn2FELHAJ0BPX9m8//v6Ii/rSG8QYWVsCQc6dOhQuYVIaLW0\nWTmP36b14siLixnWqS2JL0wG4KqrruLaa6/F4XDQr18/OnXqBFAt7HPVrUivvfbaUW358s2yePFi\nn3K1bt2a1NRUduzYQbdu3XjrrbeOyrNt2zY6d+7sl6HlWEFKSf4zCyh46S3MF6eRMm+qiqTTDOhP\nSKXN53PJuvYhDo17hKQXJhM99uKQyCLtDsp+2oAzJ7/evJF//UXRIT8cqAYB02m9MXRuOat+wg13\nqY1D46ZAuYNWbz+jDC2KgBBaLZbLzsV86RDceQVUW8zrcuHMysGxcx+OXftx7NrvCdPrdlerwxVj\nwdTpBDTRFjQxFvQd2xB15XnHlO8qodWS/PLDYHeQP2MeQq8n9rarQi1W2OLYl0X2PU9j+98mkBJd\nu1ZEj7uEqNEjmy0Er0JRgRCCmFuvJPuupyhLX0vkuWf4zOcuKSPr2gex/baFhOl3YhrQB32X9ur+\n2gIRGg3J/3mEA2k3cfi2GbT96v+U02IfSCkLhBDpwAAgVgihk1I6gbbAQW+2A0A74IAQQgfEAPlV\n0iuoWsZvlLGlHnRJcaTMm0bU6PPJeeBFsi6/F/PFabyXu5sPN6+luNzGFSf1Rz//E/KaWJYZyb1h\n6bfk8W21dBFpIuqqEfTq1YuXX365iaUIH6TLRe7DL1G0aDlR119E0guTw8oCf6yjTYwj9ePZHBo/\njZx/PYd9577gWNYNOvQnpKLv2LZW545SSsrXb6P4/S+xLv8Od36hX1UnADmNl9A/hCDyvDOJvWM0\npjP7qj21DcBVWEzOpJnYt+yk1bvPKod8ikYjhECbGHdUuq5VIqZTfH3w+oe/09PDPspcMBA6Hclz\npyIdLvIenYMw6Ii5aVSoxQo7yjdtJ+vaB5E2O3EP3oR55NkYendWc7wipFguPZe86fMonP+hT2OL\nu9RG1vUPY1uzmeTXphI1SvlnaunokuNJfvXfZF19P3mPvULSc/eHWqSwQAiRBDi8hpYIYBgep7ff\nA1fiiUh0A7DcW2SF9/f/vMe/k1JKIcQKYIkQYhYeB7ldgd8aKk+LMbbk/nsO5Vv+DkpdxhO7kvjU\nxAaViUw7jXY/LubIS29RtOAjLnU4uJR2oAW2FVK4rUHbt4KKLHdw5PlFWC5JI/bua4/5rypSSkq/\nWU3+E69h/3M3sfdcR/zU29SDTgjQWCJp/c5Mcu57lsK5S4Nff2wU+g5t0ERFer5Iez9LOzMP48w4\niDAZMI8chOWq8zB071hvfatXr2HAAN9ffIKJtDuwfvwNhW9+wsHLfsHQpxuxt1+N+cJzlMPEOpAu\nF0Vv/5f8mQtw5xeR8PhdmIcPDLVYCsVxg9DrSJn/GIdunkrug7Mo+/l3LJedS+SwgeqrKVDyzWoO\nj5+GNj6a1I9n+3XfUSiaA2E0EH3TZRx5biH2nfswdPlnZa27rJxD46Zg++V3kuc+qgwtxxCRQ04n\n5q4xFL66lIiz+2G5OC3UIoUDrYHFXr8tGuB9KeVnQohtwFIhxJPA78Ab3vxvAG97HeDm44lAhJRy\nqxDifWAb4ATuamgkImhBxpZwQBNhJOGRW0h45JZQi1INZ1YOhf/3IUWLlmP99DtMg04lcnC/ep3C\nRu3ZzZGN+4MujzDo0Xdsg77bCehPSEXogjfMbBv/Im/GPGw/b0DXoQ0pbzyO5ZIhQatf0XCEXkfy\nK/8mfsoEpCMIIbVt5Tj2HsSx5wCO3Zk49hxAlpV7GxMgwNCtA3H3jcNycRqaKLPfdbv2xKE/IbXR\nMvpD/EPjiZ14PdYPvqTgtffJvvNJhPlFLBedg+WqEUQMOkWtxPIipaTs5w3kPToH+7bdmAaeTOKT\nEzH26RZq0RSK4w5h0NPqjcfJe+I1ij/6mpIV3yMiIzCPOJOIQaeCrmnmLU2UGW18DJq4aLTxMeBw\nNkk7gVL09gpyHpiFoVcnWi95Dl2rxFCLpFBUI/qGSzky+21yHniRiNNPqkwv+99GbKv/IGnOFKKu\nPC+EEiqagoRHbsX26yYO3zId+7/GEfevcUF992ppSCn/AE7xkb4bTzShmuk2wOe+WSnlU8BTjZGn\nxfREQ1eiBEpGRgYTJkyo5m8FqIxENHbs2FrLdunSpZrPloYyZ84cJk48+jyfe+45PvroI3Q6Haee\neipz5sxBCMGiRYt45ZVX0Ov1nHnmmTy38UMy5y/jksceRPfZImy4mRzZgTMNsaxxFPJiSQZaBBoh\neN7SjVStkapeLg64bDxs/Ru7dJNmiOfOSM82tYeLd/CD/QhphnieierasJPS69B3aos2LiZgvVQg\n7XbKN/yJJiGGxGfuJXrcJcfUnvmWjq5NStDqMvQ4Nr4WaiKMnn3811+E7X+bKP7wK0pWpFO8bBXa\nlAQSn7gHy6ihoRbTb6TbDS53/Rlr4C6yUr51J/atOynfshP71l20PpTNHvkC0lbuMaZJia59a1Le\neBzzxWlqpZpCEUKE0UDikxNJmH4nZb9upGT591g/+wHrJ9/WXzhItBWCjKT/oGubgq5NCrrUpKN8\nsmmiLRj79sDYt7vffiek2320X568Qs/8tG0X9q07sW/PQJbb/8ngljh27iPi3DNo9cbjIXPCr1DU\nhS45npgbL6NwwUfVHOAKk5Gk2Q8RPeb8EEqnaCqEQU/rD2eR+/BLHHn+TUq//42UuVPRd2wTatFC\ngjfS0FtAK8CNJ1rRy0KIk4HXAAuQAVwnpSzylpkCjAdcwEQp5Zfe9JHAy3j2siyQUs5sqDwtxtgS\nakaOHNnkbdRmbBk1ahQPPvggAFdffTXfffcdQ4cOZfr06WzZsgWLxUJaWho7MvfT/V83sXriWHQS\ndu/ezZix13P9L9/S1m7nGoPnIWXhokUs3/4XF51/AecMHlzZzr/HXs+ztz3L2YMGMfz8kdhnz6ZH\n9x68lJnJ3zt38s5779HJh6Pfmrht5Th27ce+Yy+OHXux79yLu0oouUARugji7r+B2LuuadBqBoUi\n1AiNhoizTiHirFNwP3MvpV//j4JXlnD4zifQJMQQObhOp+ohRbrd2Fb/QfEHX1KyIh13kbVR9Wlb\nJWLs3QVbcjTxHU5ARBjRmIxoU5OIGj0SjUltVVAowgWh0xE5uD+Rg/uT+Ox9OLNy6y8UCG437uJS\nXEcKcecX4TpSyK61G2irj8SZmY39rz2UfrcGWXO1i/2fsOX6zu0w9u2BJrr684EsteHMzseVnYcr\nOx9XbgHVPSVXR5uajLFnJ4Q5olq6ZdRQ4u4bh6glRLhCEQ4kPjWx2T5QK8IHbbSFlLlTiRw+kNzJ\nL7J/yE0kPjWJqNEjjsdVLk7gfinlBiFEFLBeCPE1sACYLKX8QQhxM/AAMFUI0QvP1qHeeHyzfCOE\nqFha/SowHI+z3LVCiBVSym0NEea4074/FBUVcfPNN7Nx40bGjRvHvffey6JFizhw4ACPPvooy5Yt\n4+mnn6ZLly5YrVamTJlCWloaDoeDSZMmsWbNGgYNGsQLL7yAw+HgjjvuYNeuXTgcDmbNmsXpp5/O\n5MmT+eWXXzCZTNx+++1kZmaSmZlJWloaY8eOZfz48ZXydO36z2oSg8GAznvR9OjRg+LiYgwGA3a7\nndjYWDQaDRqvUaW43Eafk09GGA0Yq3wNKi4r5eRTTgG9rtpXoo1//MHgoecCcOHFF/PT6tX07NOH\ntp06snPfXoRW41ekH63RgPbUXphO7dW4jlAojkE0JiOWi9OIOKc/mRfeyeGbptLm87khW80jpcS5\nL4vyDX/itpZUO+bYm4X1429w7j/k2UZw4dkYujTcWa2IMGDo1QVj786VTkq3p6dz8nHgdFShOFYQ\nOh36dq2arb2iDrEk1zNHuAqKKd+0nfIN27D9/ie2NX/gtpVXy6MxGtAmJ6Br1xpTv95ok+IQ+uqr\nYkWUGWPvzhh6dvJsYVIoFIoWSNSoYZhOO4nsu54k596Z5E39D6ZBpxB5zmlEpJ2GvlPbY37lsJQy\nC8jy/l0shPgTaAN0B370Zvsa+BKYClwKLJVSlgN7vL5bKrYb7fRuP0IIsdSbVxlbGsuBAwdIT09H\no9HQs2dP7r333spjLpeLqVOnsn79ekwmE3379q08dvjwYaZMmUJKSgo9e/Zk2rRpLFmyhC5durBg\nwQIOHz7M5Zdfzi+//MIXX3zBpk2b0Ol0uN1uNBoNc+fO9RkOuoL09HSysrIY7F2Ncv3113PKKadg\nMpm4+uqrad26NQCZmZmMHj2aHTt2sHDhwsryn3/+OY899hhFRUWsXLmSAwcOVKvfXWVZbWxsLIcO\nHWqUHhUKRe1ooy20fu95MkfcStY1D9Bm1evoUhIaVacz5wj2zTtw7Muq88stgPtIMbbf/6R8/VZc\nOUd8Z9JoiDinP/GP3IL5/LPR1PjSq1AoFKFEGxtF5Dn9iTwnfFcHKhQKRXOib5tC6sezKVn1C2Xf\nraE0fS2lX/wMQOT5g2i1+OkWaXDJnTIb24Zt/Nx56Il7elzsV9Qcp3Trfux0bttUfcSJh502fYxG\nn7mnx8Ulv3cZEVvotifs6XHx32u7DE8yCq1tT4+Lbwb4rcvw5Aih/RigzO2KrGjrj64josql21SR\nzydu90H3kaJhnXN+qlx2GVbGlpKSkjqNDc3BoUOHaNWqFb/95onsZLfbSU9P56+//iInJ4fly5dj\nMplYv349AKmpqWzc6NkXmZCQwF9//cVff/2F2Wxm5cqVrFq1iq1bt7J0qSdSS2FhIenp6Vx33XVc\ncMEFaDQaRo8eTceOHSkrK6v1/Hft2sWsWbN4+umn+eGHHygtLeWhhx5iwYIFRERE8OijjzJv3jx6\n9vSEsHzyySc5dOgQEyZMqGzbbDbzwgsv8P333zNhwgQmT55crT2bzVb5e/369RgMhsrfGzduJCsr\nK+T9E+5YrValozAmHPtH/6+rSX7sDf6+5E6yZ4xHmupfPVaJ243lizWYNu3EkJGF9khxg9p2tEnE\n3rsD5V0HYe/aFne0pXr1JgPS7I2etHZNg+quj3Dsi2MRpefGo3QYGpTewwfVF3Wj9NM8KD03EDNw\n8WlwUX90h/Ixf7selv/Eun8/T8l5R/mJbRDN3Rea4lLafPULrZa9gLa4WCeEqFxmHRkRURZhMtlq\nlnFLyZGCgrhWkZElJqPRkup0lhSXWOPdbpkYazCUl9rKSE5IjI62Wg16nY4Ik0kARBUX6w16fQSA\n3eHQx0RFRQOU2WxGh9Opj7ZYomuT88DwWxIAIxCexhaz2UxaiJeVZ2RkEB8fXylHREQEaWlpZGRk\nYLFYuPTSS3n44Yfp378/JpOJrKws+vbtS1paWmVegLi4OAYMGEB+fj7nnHMO9913H+Ax3uj1es44\n4wweeeQRfv75Z1566SU++uijWs9/586dTJ48mZUrV3LCCZ6xVVJSQkxMDOeffz5arZZFixbRqVMn\nBg4ciNHo8XmQn59PUlISaWlp2Gw2TCZTpQx79+6t9PVSwcCBAzEYDJx55pk888wzzJ49u9J4A7Bl\ny5aQ90+4k56ernQUxoRl/6RBSdsOHBr3CF3nf07UdRdh7N0FfZd2de6zlXYH2ROfwfrR1+h7dMQ4\n/CyMJ3XBeGJX9J3bQT2RjjSRppA6eQzLvjgGUXpuPEqHoUHpPXxQfVE3Sj/Ng9Jz45BjLier8H4S\nlnxD39vHom/fOuC6mrsvrP9Np/TMUzB3OYGS7Gx3cnJynQ7EpJTk5eXFmxPal0VFRZUC6MEV4Qnt\njMPh0DoLCoz6pCSXobjYCWj0UVGekKq5uRpjVJQDwF5cbNInJroAbMXFGgO4KvP5QoijHtzDytjS\nEtBqtUyfPp1BgwbRsWNHkpOTMRhq/xJ9yy23cM899zBkiCc8cf/+/Xn66ac5/3yPR3Cbzca0adMA\nj7Fj1KhRjB49mjFjxlTWce+991JQUMANN9wAwAMPPMCFF17IHXfcwcCBA9Hr9XTt2pVhw4axceNG\n7rvvPrSRM+alAAAgAElEQVRaLQ6Hg9mzZwPwzjvv8Pbbb6PRaDAYDMyfP589e/awaNEi2rRpw/Dh\nw3nmmWcYP348drud888/v9LQ8uijj/LFF19w6NAhhg0bxvLlyzGblYNahSJYmEecRdLz95P7yMuU\n/bQB8EQDMfToiPmic4gZf3k1p9BuaymHbvw3ZT+sI/7R24ideF2LXBKqUCgUCoVCoWh6hBAkvfQQ\n+88eR869M2n94UsIjSbUYvlF2U8biDj71Mrfv/32m+6ee+6J1Wg0UqfT8cYbbxQA3HDDDbEazznp\nXn/9dduJJ55YMnHixOh169bpbTabGDRokP3ll18uKi4ujrriiiuEy+VKKCkp0dx2223i9ttvt7pc\nLq3L5dIZDAaH2+3mwQcfNGzbti0xOjra/Z///EfbqVOnI8uWLTNNnTo1at++fTqbzZZVn+xC1rOv\nvznp37+/XLduXajFqBeHw4Fer8fhcNCvXz+++uorWrVqPqdxwUJZiIOP0ml4E+79Ix1O7H/v9YQg\n3bqT8vV/Ylu9CU1sFDG3X03MhCuQ5Q6yrnkA+9ZdJL30INHXXBBqsQMi3PviWEHpufEoHYYGpffw\nQfVF3Sj9NA9Kz8Gh6O0V5PzreRKf/RcxN48KqI7m7AvpcrH/nBtJ/WAWutZJZGdnOxwOR77FYpEx\nMTHy008/Nb733nsRycnJ7pNOOslxww03uObOnZuwa9cu97Rp09x2u52EhIQil8ulGz58ePTMmTNd\nffv2LTMajcUmk4mCggLRp0+flLVr17oBYmJiCk0mU/mKFSuMy5YtM8+aNUu3bNkysXPnTuecOXPy\ncnJyhMVikb169Ures2dPdlVZ93S/yOjOLzyhc85PlaE71cqWAFi0aBHvvvsuRUVFjBs3rkUaWhQK\nRfgh9DqMvTpj7NWZqKtGAGDb+BdHXlzMkZlvUPjqUjTRZlxHimj1zkzMwwaEWGKFQqFQKBQKRUsh\n6vqLsa5IJ2/GPCKHnoH+hNRQi1Qn9i070SbGoWudVJnWpk2byqguBoNB6nQ6evfu7SgoKNAYjcYy\nm81WlJqaSnJycmWYTbvdXm6xWIwnnnjikZiYmMrVJlarVfTs2dOekpKSX7Xd77//3nDJJZeUpqSk\n2K677jpx/vnnJwAkJSU1aKWKMrYEwC233MItt9wSajEUCsVxgKlvD1q//Qzlf+zgyKy3KN/0F6kf\nz8bUr3eoRVMoFAqFQqFQtCCqbifKnjST1m8/U22renPitpVj/3M39s1/U755B/Yde5F2BzhdSJcL\nXC6E0UjkeQN9li8uLhZTp06NfvPNNwuio6PdI0aMSFi0aFGk3W4Xa9euzanId+utt0Z//vnnEeee\ne64tNjZWAjidTgYPHpywfft23YwZM46KMHHkyBFNXFycGyAuLk4eOXIkoP36ytiiUCgULQBjn260\nWvRkqMVQKBQKhUKhULRg9G1TSHziHnLue5Y9nc/H0LMjptNOwti/N6bTTkTfqW1QfAFKKSnftJ3i\n976g9OtfkeX2KgfBlV8ILo+/WU20BUOPjmgskQitFnRahFaD22ZHlpUfVbfdbufKK6+Me+ihh6x9\n+vRxXnnllbEzZswovvLKK+0LFixIuO+++5Kfe+45d2RkZOn8+fOLSkpKSq+44orEpUuXGocPH+6O\njY0t/PXXX/Oys7PFaaedljJixAhLTEyMjI2NLTAYDI64uDh3Tk6O6fDhw7GFhYXExMQEpANlbFEo\nFAqFQqFQKBQKheI4Ifr6i9B3akvZL79jW7sF6yffUrR4OQCahBhM/U/E1L83xlN6ook0VStr2L4P\nm3lL7ZVLSdlvmyle+gWO7RkIk4HIoQPRJlQ3WGjiYzD26YbxpG7oTmjt08Bj35FB9j1PI6WsPO5y\nuRg9enTcJZdcYrv66qttniYlSUlJbiEEbdu2LSkuLjYkJiYW7t+/P8loNJaXlZVFm81mR1JSUrHR\naBQFBQXRycnJeTqdzmA0Gmnbtm22RqPRFxYWxiQlJeUOHjzY8dFHH8WOGTPm8MqVK00DBgyIcbvd\nQqPRqG1ECoVCoVAoFAqFQqFQKHwTcWZfIs7sC4B0u3Hs2Itt7WZsa7diW7eV0i9/8VkuBcj0o37T\naScS++IDmC8dgjYmKiAZ9V1PQDqcOPdkou/UFoBly5aZvvrqK2N2drZmyZIlEb1793ZMmzbNettt\nt8VotVqcTqd4/fXXCzQajbzzzjtFQUFBnN1u1w4cOLD8vPPOs+/YsSNy3LhxOp1Ol1BeXq578MEH\nSyMiIsjMzHQ98cQTuldffVUzbNgwsWLFCtdZZ50VHx0dLefOnVtms9lMq1evds2YMSPq0KFDmnPO\nOSfhjjvuKBkzZoytNvnDKhpRz5495bx580ItxnGD1WrFYrGEWoxjCqXT8Eb1T/ig+qJ5UHpuPEqH\noUHpPXxQfVE3Sj/Ng9Jz86MpLkWfcQjh3epTQVlZGREREXWWdabE42ydEBQ54t/5ijYD+2G5/iIK\nCgpcQohKB7lms7nUbDaX+pTB6dTm5uYmJCcn57hcLm1eXl48IAASExNzdTqdKy8vL95isViNRqMd\nIDc3NyE6OrqovLzcIKUU0dHRVoCioiKLEEJGRUWV+GoLWkA0opycHCZPnhxqMY4bSkpKMJtD4xDp\nWEXpNLxR/RM+qL5oHpSeG4/SYWhQeg8fwqov3G5kuSM4dWk1CL0OGumbIqz0cwyj9Bw+hKQvNn4F\n855h9+7d2vz8/Oz6srvdbpGfnx8XExNTpNFoZFFRUWR0dHRRZGSkrbS01FRQUBCbmJiY19Rih5Wx\npUOHDqxbty7UYhw3qHj1wUfpNLxR/RM+qL5oHpSeG4/SYWhQeg8fwqEvXHkFFC74iMIFH+EuOCpw\nSOBoNOhSk9C1b42+U1ti7xiNoVuHBlURDvo5HlB6Dh9C2Rcnd+3uLP1hnaGuPFJKikusUXqd3i5N\nJncpGKxFBZFxUTG2UiEMUkq3rbhQXxoda3CVlshSnd7oMniqtBcXae1mi8bpdGocTodOF2k2ANhK\nS/R6nd5ZajDU3rbbramZFFbGFoVCoVAoFAqFQqEAcBw4TOHcpRS9819kWTnmC87GctlQ0Df+FcZd\nZMW5LwvHviyce7Owfvod1o+/IfGZe4m65oKgRGNRKBTBxbrvYGn2nU+sr+14idupuWT3j+c4pRs3\nkjRLSsETrfvs+m9h5qA5OdtNVrdTdDZayu9K7FY80Jy4fr+9JPnBgxt77rGXaKM0Ovd9ST1KL4hJ\nXWeXbv3UrD8G/WDNjtSAHBffSdyc0GmtQWhqX1qn0RwAqvlvUcYWhUKhUCgUCoVCETZIKSlavJzc\nf88Bt5uoK4YTO/G6Bq86aQjOQ7kcvuMJcibNpOyn9SQ9PxmNJbLJ2lMoFA1nt936d4ety0fUdlwI\nMQj4CdgMuN85ktH1nSMZrwJ6oANQfMhpa/VLSe7rUsopHYW4E7gTiDgM+rsy1/0lD8gRQohewCrA\nDuiezd4W+Wz2tuFSSpfvln1z1FIXhUKhUCgUCoVCoQgF7lIb2Xc/Re4DLxIx6FTar11G8iv/blJD\nC4CuVSKpH84i7uHxWD/+lgPnjqd80/YmbVOhUAQXKeXPUkohpewDnAlsB34F+gDdpJQnA5cBp3qL\nXArcIqXsDHQCThWeZW2XAvOklF2klB2A34HTGyqPMrYoFAqFQqFQKBSKkGPftZ/M82/D+sFXxD10\nM63few5925Rma19otcTffyOpn87BbSsn86I7sX7ybbO1r1AoGo8QQiuE2AhkA18Du4ACKaXTm+UA\n0Mb7dxtgP4D3eCGQUDXdRxn/ZVGhn49fVAi14KN0Gt6o/gkfVF80D0rPjUfpMDQovYcPjeoLtxtt\nXhH6Azlo8wsRNjuasnKEzY6wORBV30PcbiJ/2YzUasifdBW2vl2DcwIBoiksIfGF9zD+tZfCq4ZQ\ndNUQn5GL1FhtHpSew4dQ9sWQIUP2ArlVkuZLKef7yiuEiAU+AaYBb0opu3jT2wErpZQnCSG2AiOk\nlAe8x3bhWcHyOPA/KeU73vQ3vGU+aoi8YeWzxWw2Ky/TzYjy6h18lE7DG9U/4UNL74vSH9ZR/P4q\ncLvrzCdMRvSd22HodgKGrh3QtW+F0GqbScqWr+dwQOkwNCi9hw/+9IV0OnHsPYhjewb2HXux78jA\nsWMv9r/3IUvLjsovjAZEpAm01RfZG/r1JnnOFLq1axXMUwgYOXI4OZNfgKVfkGoXJP/nETQRxmp5\n1FhtHpSew4cQ90WulLK/PxmllAVCiHRgABArhNB5V6+0BQ56sx0A2gEHhBA6IAbIr5JeQdUyfhNW\nxhaF4njAXWqr/wVNr0MY64xqplAoQoB0OMl/ZgEF/3kXTUIMmqi6v+zIklJcOUcqfwujAWGOqJZH\n6LRok+LQJsZ5/k+KJ3LoACIG91PRMBQKRYOQUlL++58UL11F+eYdSJsdabcjy+1Iu/Po54+aK9x9\nLHhPtZeTYZhVrY2auItKwP5PkA5tajKGbicQfd2F6Lt3wND1BHTtW6OxRKIxRyCCEE2oORBGA0lz\npqDv3oH8x1/j4N6DtP5gFtrYqFCLplAofCCESAIcXkNLBDAMeBb4HrgSWArcACz3Flnh/f0/7/Hv\npJRSCLECWCKEmAWkAl2B3xoqT8uY6ZqRjIwMJkyYwDfffNNsbc6ZM4eJEyf6PHb33XczadIkunbt\nyuuvv87ChQsxGAxMnz6doUOHsm3bNubPn8/s2bObTV5FYNh37Sf/idcp+fyHevMKo4Go6y4ibtJ1\n6FKTm0E6hUJRH469Bzl82wzK128j+oZLSXj8bjSRpnrLuQqKcezIwP73Phw79/L/7J13eBTV2sB/\ns32zaZvegEBCKKH33lG6goKKKBa4YkVs6BUrXj7sINhFL1IUvaAiKiIlSpMivSeBBEJCejbb28z3\nx0AgEpqUBJjf88yzu2dOeffM7Nkz73nP+4oOd6XzkseDv6gMf1Ep3qyj+POLsXy4AF3jeoSMu42g\nYX0U5auCgsJZ8eUWYP12GdYFS/GmZyMYdBjaNkEID0XQaREMOgSt9jRLEuB0pe7fPltyczHHx501\njyowAG39OuiOK1ZUQaZL8r1qAoIgYH5kJLp6CRwb/TzWr38mdNxt1S2WgoJC1cQCswVBUCP7p/1G\nkqQlgiDsAb4WBOE1ZGe3s47nnwXMEQQhA9mi5XYASZJ2C4LwDbAH8AEPX2gkIlCULTWCMylbjh07\nRl5eHvXr16egoICPP/6YDRs24HK56NmzJxs2bKBx48ZkZmZSWFhIZGRkNUivcC78JRZK356N5fNF\nCHodoY/cgToy7KxlPPuzKP/yB8rn/kjwnQMxjx+FJv7KOYhTUFCQkUQRX3YezjVbKH75A5Akoj97\nlcCbep53HerQINTtmmJo1/S88osuN7ZFy7F89A2Fj/0fJa99TNBt/dEm10JTKwZtQgya+CgEnfaf\nfi0FBYVrANHhwv7zH1gXLMX5+2aQJAztmxH6zjOYbuqJOvjS+FTYnZZGc2X7BqYB3dDWTcC5Zqui\nbLmE+PIKQaVCEx1e3aIoXANIkrQDaFlF+kGqiCYkSZILGH6Guv4D/Odi5FGULeeBJEmMGzeO3bt3\nI4oi06ZNo3nz5vTo0YP169czY8YM5s+fz/r163nzzTeJj49n+PDhPPjgg2RmZuL1ennnnXdo164d\nTz31FGvXrsVgMDBu3DiOHj3K0aNH6dGjB3fddRf3339/Rbvfffcdffv2BWSLm8aNG6PVatFqtZhM\nJjIzM0lJSaFPnz788MMPjBkzprq6SAHwZBwmZN4yilbtrkiTXB5s/1uGaHMQPGoQ5mfuO+8/E/OT\noymbPpfyuUson7sEQ4uGqKPCTm41iDhxhFZsPRAMehCOr1IJAqhVV9Q/hILCtYBj9V/YFv6GZ+9B\nPPuyKvwN6Fs3Jvrjl9DWiTtHDReHyqAneORAgu4YgDNtE2UffE3ZzPmVzf0FAV1qMsaurTB2aYWx\nY/OreiVZEkUcKzdinf8TYll51ZnOtKXqQtMvsI6IkhJyP1zyt+Qz5T//+lUmo7y9omE9dI3qok2M\nV8ZrhUr4S8vx7MnEk3G40hYdAPeuDGyLVyHZHGhqx2J+cjRBI/qhrXvBwTIULgBDl5bYv1+J5PMh\naJTHqH+KJIo4f9+M5fPvcCxbh6DXEvH6EwTfMaC6RVNQuKQoo8R58MMPP+D1elmzZg0HDx7k9ttv\nZ+PGjQQGBlJYWMjq1auJjIzEYrGwatUqZs2axaxZs0hOTuazzz4jPz+fYcOGsXbtWn755Re2b9+O\nRqNBFEVUKhUffPABaWlpp7W7a9cuhg4dCkBycjLbtm2jvLwcq9XK9u3bKSkpASAlJYWlS5deyS5R\nOAXJ78fy8beUTPmUIJ+Pcn1lx2nGzi0If/FBdA3rXlC92tqxRL79NKGP34XlwwW49x7Ek3kE/5/b\nEUvKT99nfSY0agSDHpVRj2DQo2tUD9OAbphu7IQ6wnxBMikoXMu4Nu2i5P8+xbl6C6qQQHRNUwi+\ncyC6RvXQNa6HvkXDK/owLAgCAT3bEdCzHZLbgy+3EG/OMXxHjuHLzsO1aSfln3+H5cMFoFajTa6F\noDlVPoHwID1le49haNsUfdP6NW47kmhzYP3qZyyfLcR7MAd1ZBjaegmnZzzTeHeG9DOOjhdSz/E0\nlc2JqDpFAXSmyi9QRo/Fiu2HVRXnBb0OfctGGDu3wNilFfrWqac54lS4upEkCX9+Md6sXHzZuXgP\n5+E7cgzJW1mR4i+24Nl7EP+xojPUBILJSOCQngTd1g9Dx+YIqtO3BylceoxdWmGd8yPunekYWjaq\nbnFqJJLfjz+/GN/RAnw5+fjLbZXOiyUWrF//gvdgDqqIUEIfHYnrrz0UPvZ/uP7cQcTUCTV67JNE\nEdeGnahCg9A3qlfd4ijUcBRly3mwf/9+OnXqBEC9evUoLZWdHfbs2ZMVK1bgdDoZPHgwK1asoLCw\nkNjYWHbu3Mm6desqlCAWiwWAqVOnct9996FSqXj66adJTU09LxnCwsJ45ZVXGDx4MNHR0TRv3py4\nOHl1VZIkxYliNeHJPEzho/+Ha9MuAvp3IX1oJ7oNHXxJ29DWiiFiyvhKaZLPh7+kHH9R6fGjDH9B\nCZLbI0/cJQkkkES/7BzP5UZyexDtTlx/7sCxbB2FKhWGdk0J6NEW4VL8qWk0aGIj0MRHoYmPRh1p\nViZ/CjUe0ebAvTOdsvfm4lj+J+pIM+GvPUbw6CGoDDVnsifodWjrxp+2ai063bg278K5egveA1mV\nHuwlnx/d1j0Uv/i+nKDTokuqBTXIesKbdRTJ5kDfJpWoZ+4jcHCPGrc9Ki0tjcaXaQuFaHfiSc/G\ns+8Qnt0ZuDbspPTdOZS+PVu+XvVrw4lx9JT/+Ur/+X9/L4A6MgxNfDSahCg0CdGow0MvzNLneBua\n+Gg0dWKVsfwf4C+x4NqwQ7626dlVR+YRBNQxEacpQVWBARi7tpIVvY2S0DWse5p/KJXJWOOUp9cD\nxs7y7gTnmi3XvbJFcntw787Asz8Lz/5DePdl4UnPxpdbAL6zu7YwtG2C+Zn7CBzUHUGvQ/L7KXn9\nc8re/RL39n1Ez5os/1/VECRJwv3XHmzfrcC2eBX+Y0WozMHUXj9PHl8VFM6Aomw5Dxo0aMDixYsZ\nM2YMBw8eJDRU/lH16tWL8ePHc8MNN9CrVy/uvPNO2rZtC0BqairJyclMmDABAI/HgyRJ9OnTh8GD\nB7NmzRpefPFFFi5ciOoMk5gmTZqQkZFBnz59ALjlllu45ZZbyMvL47777qN27doApKenn7fS5nrH\nezgP+89/4C8ouei6RLsL6/wlCAY9UR9MIvDWG9j/+7md314KBI0GTVQYmqiz+36pCkmS8OzKwP7z\nH9h/WU3J1M8ug4SAVnNezkOvJBHJ8Tj1ZgwdmikKyqscX0EJtkXL8ReXXXBZyebAk3EYb3o2vqMF\nAKhCgwib9AAh9w9DFRhwqcW9bKiMegK6tiaga+sqz+9PS6NLo6a4Nu/GtWkn3oM5ZzH7uPLoWzQg\n+K7BGFo1rm5RqgWVyYihRUMMLRpWpPnLbbg27MS1biue9MNy4qnWMVW9PzXJ78eXk49rww7EMutF\nyygY9WiTa6NrWBdNfPQlUbyoQgMxdGwhW1vVIOXfxeAvs+LauBPn2q04V/+FZ1dGxfXRxEehrV+H\n4FGD0CbVQlsnDk1iLNqEGEVhcpWhiQ5Hm1IH55qtmB+9s7rFqRYkt4fyuUsonTanwvpK0OvQJtfG\n0CYVTe0+aBKi0cRHo02IRvW3yE2CVnOagkJQqwn/91gM7ZpS8PBr5PS6D01sZV+UMQ4HhwM+ubxf\n7gyI5Xb8hSUIeh0Bvdtj7NKKohdnUvzqR0RNf7ZaZFKoGkEQagFfAjGACHwiSdJ0QRBaAB8BBmSH\ntw9JkrRREIQeyJGJDh2vYpEkSa8er6sfMB1QA59JkjT1QuVRlC1VsHXr1goFR0hICN9++y0//fQT\nXbp0we/3M2PGDADatm3Lvn37mDp1KsnJyRw7doxevXoBMHbsWB599FF69pSdKLZp04YpU6bQv39/\nAFwuFy+++CIAHTt2ZOjQodx2223cfvvtFXLcfPPNPPzww4wbNw6Au+++myNHjhAQEFAhA8Bvv/3G\n559/fpl75erFezgP2+JV2Ben4d66FwDBcGkmNwG92hPx+hNoYiIuSX1XAkEQ0Detj75pfcIm3o9o\nd57/lqSzcGKbgy9XNhv1HS1AcrnPXfAKIXm8eBf9Ru6QR9C3bYL50ZEE3NhZWbG9ipAkCde6bZT/\n93tsP/0BXh9oLvxBTTDo0SXXxtCpBbr6ddDWr4OxW+tL5kyypqGJDidwYDcCB3arblEUzgN1cCCm\nvh0x9e140XWJNge+o/n4iy0XXFby+/Fl5+E5kIVn3yFc67bhyzvztpYLE0wOP6wKMmHo2Bxjpxao\nwkLkc8cV4QH792HNd530g3NCQX7CJ1mltBMvf0+vfL6qskJV9Z9Wtopzfj+efYdwb9+Pe8d+fNl5\n8im9Dn3bJoRNvB9Dl5boU5OvKgWuwrkxdm6FdcFSJK/vqglhfSmQvD6sX/9M6Ttf4svJx9ChORGv\nPYauSRLaOnGXxIeNqU8Haq2cRek7XyJa7ZXOlRUUYI6qpgidWg0B3dtg6t+1wj+aL6+QshnzCbpj\nAMYOzapHLoWq8AFPSpK0RRCEIOAvQRB+A94AXpEk6RdBEAYc/9zjeJnVkiQNOrWS49GM3gf6AjnA\nJkEQFkuStOdChLl+RojzJDExkeLi4tPSP/3009PS1Gp1xfYggOzs7Ir3Wq2Wjz766LQyVflmmT17\ndpWyxMbGEhcXx4EDB0hJSeHLL788Lc+ePXtISkoiqroGnxqMa8seSt+ejWPZOgD0LRoS9uI4Agf3\nRJt4eR1cXk2oTMZLU1FgAOrwUPRN61+a+i4De/o2o0WOjbIPvubY3f9Gm1IH8+N3ETi0t+Lo7hIj\nSRKevQdxLF2Le/s+pL8p9MKLisj7/NcLqtObcQRvejaqkEBC7htK8Oib0NWvcynFVlC4plAFBqBr\ncGH+wirR9dLJciq+Y0U4123DtXYrzjVbKv6nTyUcKLg8zV9SNIlx6Js3JPjumzC0aoS+TWqN2oKo\ncOkxdm1F+Rff4d6697yjzF2NiE43nt0ZuLftw719P841W/Dl5KNv3ZjIdydi7N7mslgJa+KjiXz7\n6dPS96al0awGRcUyP3kPtu9WUPTM2ySsmHVdKd5qMpIk5QF5x99bBUHYC8Qj24AGH88WAuSeo6p2\nQMbxKEYIgvA1cBNyKOjzRvj7BLg6adSokfThhx9WeS70i5/RZuVdkna8ibGU3Xt+3q4jXpuNNucf\n/N3/w26VDDr8IYGIISb5NTgAVJdnu4PH40GnO7uFhz8kEG+dGLy1opBqsLOqU9HtzSLkf2kYdmTi\nDzRiG9ARe7cW+KMvvzNYm81GYOC1uTp+LVBxffx+jH/uJnjRH+gO5+ONCaN8WHccXZv/I0sJheP4\n/ej3ZmPctA/j5n1oCmT/Vt74CKS/KbNOOAi/EMRAI/buLXB2aoKkmN6fF8qYdPEofXj5UVlsCG7v\nKXMnCYfdQUCAbBEiVLl16m8TrdO2VB13PCxxev4z5KWqvCfa/3teBLyx4UiBl2jBogaj/AYqoyq3\nE3//VMpu7431lh7XXP/o0nMI/nYlhu2ZCMet0PwhJjxJ8dhuaIerVcoF+4C6FNTEfjZs2kvkG/Mp\nG3Uj1pu6VLc4V4zqvBY9e/bMBk41s/xEkqQq95cJgpAI/AE0QVa4/IpsqqgCOkmSlH18G9FCZOuV\nXOApSZJ2C4JwK9BPkqQxx+u6C2gvSdIjFyJvjVLBmUwmepxBY1n02w7cZc4qz10o+oQEWpynZrRk\nQya+3MJ/1tCFjkOSbPLrLyzBX1iKf282osV27nJXCE1iHLqk2qCrQbeNKMnOXx0uRJcb0erAl3UU\ndaSZkJceJOSem6+o+W5aWtoZ72GF6qfS9endG+m5R3AsXUPJW/9F+8F3RC/5k8hpE8/o/0LhdESr\nHcfKjdiXrsax/E/EMiuCXoexW2tM/bsQcEPnKsOdK7+VK4PSzxeP0ofVQ1paGl2Vfq8RKL+B0zmS\n+i2xR0tp3aPHNdM/7p3plLw+C8eva1GFhRD88B0Y2jRG36Ih6tjIavd1VyP7uUcP8rZnIyz6nWZP\njkWbEF3dEl0RqvlaFEmS1OZcmQRBCERWojwuSVK5IAivARMkSVooCMIIYBbQB9gC1JEkyXZ8e9H3\nQH2qfpK/YHOKGvTUfHYi/vPYFWknKyuLMWPGsHz5cgDCJt5/Wdo5Eca5W7fKe+idTidDhgzBqXbi\ni/Dx4rRJ9O/fn5UrVzL5tdcAsJSXo1Kp2LxxI+vWrWPcQw+Rnp5O+v79JCTIITPXr1/PU08/jUaj\nYX8/AFUAACAASURBVNCgQTz91FOnyXDPvfeSnp6OTqdj+rRpNGvWDEmSeOzxx9m+bRshISHMmvIG\ngXmleHZn4t57EO/BIyDWHGsoBAHBqEdl0KEJDUJI1BMy9laCRw2qcc5ZFWoegkqFaUA3Avp3xfHb\nOopffJ/8sS9R6/fZVSoIFE4iSRJlM+ZT8vos8HhRhYVgurEzAf27EtC9jeKjQEFBQUHhmsXYpRXl\ns3+Qo0Be5bh3HKD03S+xL/kdVUggYc+NJeRftyr/4+dJxJTxHOlyF8XPTydm9pTqFueaxV9iwV9Q\nQhNNoCEzsutZI8MUiR5NC03Q+xEq7fKPghvvz4zsmpqiDrj3h9AWH2dGdk3dG95p901l2zpkRnZN\nzYiQLZIyI7uSEdEle3Dp1oAvQpp0HmdM0P7ptTQ80VZPrbkV4DtH25akwtU5pyZcNcqWa41t27aR\nk5NzmrJFo9Hw6aefkpiYSFFREZ07d2bAoEH07tuX3n37AvDGG28giiKCWk2TZs1Yv349gwYNQlCr\nK7z6j58wgYULF1K7dm0GDhzIzUOHkpKSUqn9ffv3s2HDBo4cOcLdd9/NqlWr+HXpUpxOJ6vXrOHL\nL7/k3a/mMHXqVEz9rh/TOIXrD0EQMN3QGW2dOHL6jKFwwuvEzHu92ldxaiqSKFL8/HtYPluIaWB3\nQh4YjqFtquL3RkFBQUHhusDYpRWWj7/FtXl3dYvyjzjhcL50+lycqzaiCjJhfuoeQsaNQB0SdO4K\nFCrQ1o7F/OQ9lLz2MYc7j8LYuRXGzi0xdm6BOuLyuzC4HpAkibw7JyIY9MxpOzBFpzP8dubMYPJ5\nQucKSWKwRlcPuAvga0+8QavR/a5TqTyS6Nct8NXS6XSG30RJUqkQRATwiqJ2ri/OHKk1ftsbKPa6\notRa/UoVgv8db3xkiEZXqlGpbjtT097sXFVmZNe6SYWrK7bjKDPjs3DgwAH+9a9/IUkSMTEx/Pe/\n/+Wbb76htLSUxx9/nDZt2jBmzBjGjRtHu3btWLt2Lfv27WPChAmIokhERASzZ8/GYrEwYsQI1Go1\nkiSxePFi3nnnHaxWK8uXL2fevHnEx8cDsmPdxMREAAwGQ5U+DebPn8/ixYsBOVpSVVgslorQ0G3a\ntCEtLa2SsuWE012AWrVqcejQIdxuN2lpaQwaJDtjHjx4cJVOfhUUrlV0DeoS9sKDFD8/HeucHwm+\ne0h1i1TjkNwe8h/+D/YfVhLy4G2Ev/yQEtFJQUFBQeG6wtCxOahUONdsgfZJ1S3OBeHasoeiSTNw\nb9qFOtJM2PP/Ivi+oddsRL4rQehDtyMY9DhXbcT6zVLKv/gOANPA7kR/+rLiPPci8R48Al4fcT9/\niLaw8KyBYdxut05dXGzUaDQ+IBIgKCioPEqlslgslmBAMAiCVDskxKLT6bDZbAaHw2ECMAiCFB8c\nXKrXy35KI51OS3l5eThAPaPRERwc7DubnIcaDNJKOCs5f1Su/Fl45plnePXVV+nWrRuvvvoqn376\nKcOGDePBBx9k9OjRxMXF8fvvvzN06FDCwsLQarU8/PDDzJ07l9q1azN9+nRmzZpFXFwcXbp0YcqU\nKRUROZ544glycnKYNGnSGdsfP348zzzzTKW0nTt3EhISUqFIORMRERFs376dRo0asXz5cgYPHlzp\nfJMmTZg8eTIej4e9e/eSk5NDaWkpJSUlmM2yFjY0NJSSkpJ/0nUKClctIWOG4Vi2lqIXZmDo3BJd\nUq3qFqnG4C+3cWz087jWbCH8lYcJfej2cxdSUFBQUFC4xlCHBKFvloJzzdarStniLy3n2KjnQKMm\nYuoEgkYORHWVBMCoyQhaDaEPDCf0geFIXh/uHfux/7SashnzKHziDSLfe06xlr4InKu3YOza6rz6\nUK/Xe+Li4qqMqhMVFVX097TAwEBHYGCgo6r8RqPRbTQaLyownqJsOQsHDhygU6dOAHTq1IlFixaR\nkJBAXl4eK1asYPDgwfz444+sWLGCnj17ArB7927uvvtuAFwuF3369GHs2LFs376dUaNGUatWLV55\n5ZVztj158mTMZjP33ntvpfQ5c+YwatSoc5b/9NNPefLJJ5EkiXr16hEXVznUcePGjenduzd9+/Yl\nKSmJ1NRUIiMjCQsLo6ysDJCtY04oXhQUrhcElYqo957jSLfRFDz8GvFL3q+R22P8xWVYFy7Htug3\n/MVlV6RNsdyOWG4j6oNJBA2/8Yq0qaCgoKCgUBMxdmlJ2cffIrivHivYokkz8JdaSPjtM/RNkqtb\nnGsSQavB0DoVQ+tUBKOe0jc+R1MrhrBn7qtu0a5anKu3EHznwIrPGzdu1Dz66KOhKpVK0mg0zJo1\nq2zhwoWGJUuWGACOHDmiHjJkiGvmzJnl7777bsDMmTMDRVHk0KFDFYqT9957L2D27NkBWq1Weuml\nl6z9+/ev5IDJZrMJI0eODC0uLlaFhoaKc+bMKQsLC5OKioqEO++802yxWIRmzZp5P/roo/KzRdes\neU8QNYiUlBTWrVtHt27dWLduHQ0aNADkbTlvvvkm8+fPJzs7m+nTpzNjxgxAthj56quviI2NBeTw\nyj6fr0LBMmbMGH799Vd0Oh0+X9WWSDNnziQ9PZ3Zs2dXShdFkUWLFrF58+Zzyp6amsrSpUvxeDwM\nHTqU/v37n5bn5ptvZtq0aezatYupU6eiVqvp3r073333HTfffDM///wz3bt3P/8OU1C4RtDERRH5\n5lPk/+tlSqZ8RuCtfatbpAp82blYFyzFvmwdeH3omtbH0LbJlWlcUBF0ez8lWpOCgoKCwnWPoXMr\nmPkVun2H4SpYf7Av/xPbN0sxPzFaUbRcIcxP3YPvyDFK3/wCTUI0wSMHnruQQiVEmwPPznQM7ZpW\npMXHx4vLli0rDgkJkb7//nv9Cy+8ELRgwYKy5557zg7Qt2/fsNtuu80JcNttt7kefvhhR4MGDSr2\nHuXl5ak+++yzgM2bNxc5nU6he/fu4X379i3SnLK4+v777we0bt3a+9JLL9nmzJljmDJlSuBbb71l\n/c9//hM4fPhw55gxY5yjRo0KXbJkiX7IkCHuM8mvKFvOwtSpU3nggQeQJImoqCjmzJkDQO/evfnl\nl19ISkqid+/ezJgxg9at5YeP999/n3vuuQev1wvAc889h9frZcqUKWg0GvR6PV26dKG8vJyZM2ey\na9cuZs6cSUxMDAAFBQWMHz+ejh07VljLrFixArVaTVpaGs2bNyc0NLRCxgMHDvDQQw+xfft27rjj\nDkaOHMmDDz7IO++8w48//gjA008/TWRkJAB33nkn8+bNq0gPCgoiPDyc999/H4Abb7yRJUuW0LVr\nV4KDg/nyyy8vdzcrKNRIAof2xv7rWspmzKNsxrzqFqcS6kgzIWNuIei2fuhTlQmTgoKCgoLClcbY\noRlo1Bh2H6puUc6JaHNQ9NSbaFPqYH7i7uoW57pBEAQi334aX14hhU++iSY2koCe7apbrGrBd6wI\nyeG64HKuLXvQNa1fKTpWfHy8eOK9TqeTTlWSHD16VJ2VlaVLSUkJLSgoIDg42KHT6eyAqqCgIBJg\n27ZtQv369VU6nQ6dTicFBASoNm7cGJWUlERISIjFYDC409PTNUOGDPHn5+dHNWjQgPfeew/Aunr1\nav2kSZNsAIMHD3b9/vvvOkXZcgEkJiZWhH1u2LAhv//++2l5hg8fzvDhwwHo2bMnFoul4lyTJk34\n9ddfTyszYMCASp/NZjPr1q07LV9UVBR+v79K2Xr16kWvXr0qpaWkpFTIeypPPPEETzzxxGnpJxQt\nAG+++eZpMdJVKlWF4kVB4XonavqzBA7tjeTxVrcoFaiCAzF2aqE4W1NQUFBQUKhGVIEB6Fs2IuCP\n7ThWbcTYo22N9ctR/OpH+HILif/pAwS9rrrFua4QtBpiPp/M0cGPcOye59GlJFY6b+zamrAXHqix\n987FIkkSpVNnUfrO7HNnrgJNYhwh9w6t8pzVahVeeOGF4C+++KJiP/28efOMw4YNc0ZHR1tEURQK\nCwsj9Xq9GxCjoqIKARo2bBi8e/duY1lZmVBSUqLdvXu32ufzFYWHh4vFxcXher2+oEmTJt5ffvkl\neMCAAYXz5s3Tl5aWhni9Xk1ZWZnKbDZLAKGhoWJJSclZo0Qos3UFBQWFMyDodZhu7FzdYigoKCgo\nKCjUQML/PRb72BfJG/Ekhg7NCXtuDMZOLapbrEo4122j/IvvCHlg+JXbdqxQCVWQidiv3qD4lQ8R\nLdaKdNHqkK2n1SrCn/9XNUp4eZDcHgrGT8W28DcCR/QjoEebC67Dk34Yz4Gs09M9Hm699VbzxIkT\nbc2aNavwzbFgwQLD3LlzSwGO+3Tx+v3+ighBkiRhNBqNkyZNsg4YMCAsMjJSlZqa6q9Vq5ao0Wj8\narXa5/F4tPfdd5/38ccfF3v06BHavn17T0xMjN/lchlCQ0PFsrIyISwsTLJYLCqz2SyeJtwpCCei\n49QEGjVqJH344YfVLcZ1g81mIzBQCfN2KVH6tGajXJ+ag3ItrgxKP188Sh9WD0q/1xyUa3F27KVl\nRG/YT/DCNNRlNlypdfEmRFa3WBUYtxwAQeDY248gGa5eq5Zr8j6UJMwfLyZwxWZKxwzCdmP76pbo\nvDifa6GyOgh/8ysMe7MoG9kH683d4B9Y76gsduInzyY+7QsErYaysjK/JEniv/71L3X37t2lcePG\n2UwmkwNgz5496rvvvtu8efPmIgCfz6cuKioKj4qKKkxKSoo8dOhQgdvt1lksluATkYn27t0b+sgj\nj2hXrFhRCFBaWhpy3BIGt9utN5vNlhkzZgS4XC7d2LFjpZdfflls0aKF75577nHec889IcOGDXOd\n2EZ0qMEgvVhiqZNUuNp2Qv4aZdliMplO29aicPlIS0tT+vsSo/RpzUa5PjUH5VpcGZR+vniUPqwe\nlH6vOSjX4uykpaXRZupExBfHU/7f77HMWoS4eX91i1WByhRA1Ix/06CGWdxcKNfqfSh17cqxeybB\nrJ9o2KUjgQO7VbdI5+Rs10Ly+nDvzqDgucl4D+cR9fFLJA3rc1Ht5c5dAXsPoW/bBEEQxBUrVthW\nrFgRWlxc7Fu0aJExNTVV88knn5TPnj074Pbbb3cCiKIolJSUmH/99Vfn559/Hnbs2DFV9+7dw599\n9lmxS5cuzttvvz00JydHbTAY1O+8844d4OjRo6rXXntN9/bbb7t3796tGj9+vEGj0WiaNGninTJl\nihvQPv/887Y777zT/NFHHwU0bdrUN3DgwDP6a4EapmxRUFBQUFBQUFBQUFC42lAFGAh96HZCH7q9\nukVRuIoQNBqiP3mZ3GHjKRj3Cur/vYuxfbPqFus0/KXleA5k4T2QTdCW7ZTuyj150u3Fk56NZ28m\nnvTD4PWhMgcT9793MXZsftFtG7u1xrl6S8U2uJEjR7pGjhx57O/5Xn/9dSvIW4VKSkrMRqPROXr0\naPvo0aM5kZ6fnx9tNBotX3/9tR3AarUGAgLIjncnT57sV6vV/mbNmvkXL17sjYiIKDklnxgaGiot\nW7as5HxlV5QtCgoKCgoKCgoKCgoKCgrVgCrAQOy81zk64EGOjZyIrllKdYt0ErcHb9ZR/IWlFUmh\nwN+1DZqEaHQN6xLQuyO6xvUwdmmFJibikohg7Nqaklc/PK9IWpIkUVpaGqrRaHxBQUH2U8+53W69\nWq32aTSaCj8rBoPBVVpaag4MDLT5/X613+/X6HQ6L4Df79f4fD61Wq32O51Oo9lsLv17e+dCUbYo\nKCgoKCgoKCgoKCgoKFQT6vBQYr95m6Ln30O02M5d4Eqh1xFwQyd0KYlok2ujS0lk3d6ddO12ynYn\ntQqVQX/5RGhaH19+MUUvv4+ltEwQDMYz6jC8fr/W4nYaBfB1+vrD2KjAYGneLfeXHy0v841d/KXZ\n4nJKqVHxYZ8MHlWuOx4y2un1uNN9vigAk05vK1KrNQA+v8920OMJB9BrNC5Bq4Oz6E8kr/e0yESK\nskVBQUFBQUFBQUFBQUFBoRrR1okjdu7U6hbjnEhZB1CZjFesPUGtJmrGv/EcyGbyvffnvBSY9PLZ\n8uuAB8v33Oj1u+oeLCkzumb/+O4dpX891FEb8s0rgY033Hxo2+hxM988Mi244coTZU6EK3IdP/6e\n7gPKzy1q/qnOcaGGRSOKiIiQEhMTq1uM6wa73Y7JZKpuMa4plD6t2SjXp+ZQ466FJCF5feD1Ifl8\nIEoIRj2CXvePvOfXFGpcP1+FKH1YPSj9XnO4oGvh9yM63UhuD4JKBWoVgloNGrU8looi+EUkUZTf\n//0xRJKQfD4knx98fvkVieMuFeQXlQpBq0HQauVXnUYeq1WnLSpfEZR79cqg9HPNoTqvxV9//SVJ\nknTWH7sgCAnAbOA/wBPAYKAQiJEkyScIQkfgZUmSbrzc8tYoZUubNm2kzZs3V7cY1w3Xqlfv6kTp\n05qNcn1qDtVxLSSvD19+Mb7sXDwHsvDsy5Kdve3Pwl9Yta8zwahH16Q++qYp6Bomoq2bgLZeApr4\nKPkBooaj3PMXj9KH1YPS7zWHv18Lf2k53uxcfIfz8B05hvfIMbyZR/DsPYg/v/jSNKrRIIaE4jMF\n45PU+H2gVYsEB0uIVgfuo0WoRV9FdhEBR1g80Z2S0DVOYvaaJMoikxBjYgkKVhEYCM2bQ+fOcv71\n68Fshrg4CA6+OFGVe/XKoPRzzaE6rsUf2X+wu2A3D0146DB9Obv5z++MpR6/4kVPNn1pw2zW8Qw3\n8hIAJZjZzCPcwOTzaPon6SXp8D+Vu0YpWxo1aiR9+OGH1S3GdcM1Ga++mqnoU1FEk1eMLuMoKpsT\nkOSVcvkdklGPaNQjBRgQA/QVn8UAPZJBD+rqWZ251lHu+ZrDZb0WfhHtkXz0e7PR781Gk1+CuqQc\nlcWOcMp/nmjU402IxJsQhT8qFL85GH9YEH5zEAgC2qxj6A7loj2Yhy4rD5XzZHQ/SaPGFxmKGBSA\nGGiUj6AARIMeyahDMugQ9TrEoAC8ibH4w4KqxUJGuecvHqUPqwel32sGKosNcfsBgvNK0R3KQ5uV\nh6a4sjG9aNTjiwnHWzsab+0o+TU+EvwiaqsDwebEccyDxyYRliDPgdZsjeNwQQhl5XqsVg3l5Vpi\n41yMezQbf7CJkWO7kZsXUKmd9u2LmTp1JwAPjG2Jzm4jVl1AnCqf2v5s2oTsJ0V9EM2xkoqx3i4Z\nSffV5YC/LuH1NbTu5sCrMzDlvZbk+GPY6WuE1ggRER6GDcvh5ptz8XhULF4cS2Skh7g4J4mJdrTa\nMz8vKffqlUHp55rDlb4WfsnP2K1jub3p7TjtThGBCge3aq3ardFpKiZofp9fK/pEndagtYs+Uevz\n+Axao9bmtruDDYEGC4AkSiqP0xOkN+ktZ2t3R/4O/e/Zv0+z/9s+6Z/KXqN8tphMJkVjeQVRNMSX\nDsnjxblhB/t/WEZ0sR33tv2IVvu5C54BdaSZwBE3EnLvULR14i6hpNc3yj1fc7jU18JfXIZtye84\nlq3DtWFHhXM5TUI02pRENB0j0MRFoYmNQBMfja5BIuq4KIQzKEAkCYqKwOOB+HjZu/27/y5CzMpB\nl3+EgJIcgmz51NKVU0tvQTyUT/kRC0E4q6xPFRnGnyUpHNKnkG+sQ5kpDmtQPEPvC+WuuwWcTpg2\nDaKjISYG6tSBpCQwGC6uX5R7/uJR+rB6UPq9epB8Plyb9+BYuQHnyg24t++XT6hUaJNroe/RHl2T\nZHRJtdAkxKCpHYM6JAi/HwoKIDZWzv7hh/Dbb5CRAZmZ4HBAw4awd698fmJ32LoVoqLkI7IupLSG\nLne0AeCDD+Vx2GyGsLATRzhGYw8A9qcDhADxp30H0e6UrRd3ZxK8JxPzroO03L8OKa8c5vkBeDfo\nRwC8ugCORLViZ0A76tZrQ/fu3Tl4UOD990/Wp9fLVjEvvQQDBpzeZ8q9emVQ+rnmcKWvxYacDSTn\nJDOl7xQKCgr8UVFRRWfKa7FYdE6nUysIQogkSYIkSYJerze43W4hJibGLQgCbrdba7VafREREe4z\n1QMwfcN09R/Zf1zUSlmNUrYoKNRUJLcHX0EJ+EX531+SkEQR95Y92Jetx7lyA6LVTpBajdi0PoG3\n3oC+ZUMMLRuhjokAAXnvsiAgiSKSzYFotVN82EFuup3yPDuOQjvuEjuS1UHnmEwsH31L2QcLOFy7\nM+ktbsHdtDUxsQIxMXCqA3AFhesVf5kV+89/YPtuBc7VW8DvR1s3AdOQnhg7NsfQoTnaWjHnXd+s\nWbJp+dat8gOB0wnDhsHChSAIAv/3WSRudyShoS0JDYXgGBgyBJ55Ri4/ahSoVSJBWjeBKicBahdd\nGxXRKuAA9q0HqL30AK2tm1A7/HDc0t73nJGcOXVwN2nJz++3YbO3GS5kDYsgwMyZ8NBDUFwM8+ZB\naqp8REdf1a5kFBQUagD+EguevQcrDvfeg3j2ZCLZnaBWY2iTSthzY9lrgg53jcCvNaDVymV//RV+\nmSUrUzIy4NAh0OmgvFwem7Ztg337IDkZ+vSRlccpp0SzXbECNGd5Crnppn/+vVQmI4aWjTC0bFQp\nXZIkJJcHsdyGaLXj2XcIZ9omjKs2Uu/AGpgMWTODMTZN4fAz9SmPTeFAQHPWZ0SyaZP8/UD+bt98\nA48/LiuKFBQULi8rD62kV91eldJ69eoVtn37du1DDz1knzx5coVT2vnz5/see+wxldfrzXO5XDq7\n3R4YFhZWVlJSYh4xYkR4bm4uNptNM3z4cM+kSbLByrPPPhu0cuVKvVarlWbMmGFp1aqVj0uEomxR\nuK6RRBH/sSK8R44hllkRy6z4y6yIFiu+owXynuSso/hyC2UlSxWoo8Iw3dQT0w2d2Cw46d7vhopz\noihPQHbvhl275Nf9+2H16kCMcfDGR/Jq9qkYDGC1QkRBAV+N+IEGexfTJ3sN2Yvi+c51I6uM/dhV\nLC8dPfoo7NghT2BSUqBRI2jSBBQ/0wrXKqLNgX3pGmzfrcCxaiN4fWgS4wh95A4Cb+6NLjXpjNYq\nIP+MMzNlpcqff4LbDZ99Jp/79FP5oaFlSxg3TrYuadbsZNljx+BsblrmzgVQAcbjB0Ac0IyQ4+9E\nlxvf4Ty8Wbl4s+Txxb0rHRZ8y39DvgKtFk/DpuQmd+Evcy/atQsH5Mn9+PEn2woLgxYtYOpUaNsW\nfD5ZNkUBo6Bw9eC3WHFv3YcvJx/fsUL8x4rx5RUi+fxo68ShTZQPTe04VMEmBL0OwaCTX/W6Ksc6\nyePFX2LBX2JBtNiQXG4klxvR5UayOfBkHMGzJ/M0/yqq0CB0jeoRdFt/jF1akh3Zmh/WBZGRAZs2\nlVDyhoHsbCgslK1NVq+Wx87kZFkBfNNN8nu/X1aifPzx2b/72RQtlwtBEBCMelRGPUSHo0uuTeCg\n7kiShO/QURx/bMa9fT+enel45v4Pg8dLM52Wbg8Mx7z4blRBskPQtDR57H33Xbj/fujS5fKFvFVQ\nUIAVh1YwpfeUSmlffPFF2dKlS/U5OTkVMzOn08n3339vjIuL8/+9juDg4PJp06aZNRqNShAET4cO\nHbSPPvqocODAAfXmzZu1GzduLMrKylKNGjXKvGbNmkvkfEpRtihcZ3gOZGH7fiXunel4D+Xgy85F\ncnmqzKuOCkObGI+hc0u0deLQxEWBRi1PbgRknw7JtdE3bwCCipwc+HP+DjbtgtGjITIS3nkHnn76\nZJ21a8sKEbsdjEa4917o21depY6IgPBwMJmOPzDFRXHXmrGIrrux/rAKzZxfeHzD5zzO5xy9qQVB\nI/oRH9qDbaKJxYtl812Apk1lBQzIkwG1+uRqeO3aysOYwtWH6HDh+G29rGBZsR7J5UETH0XI2FsJ\nvLkX+hYNz6hgcTgg4Pi2/9deg+nT5e1BAIGB0KOHrIARBFi2DILO4lrlUvjDVRn06FIS0aUkVv6O\ndieuP3fg+GMzzlUbSfzuPRJVMzFmtKR8aB+6D+xOXl4Qu3efVN5u2XJym9HcufDkk9CmTeWjBrll\nU1C47vFm5+JcvQXX5l24Nu/Guz+r0nlVeAiamEhQq3D/tbtiO+SZqFC66HWg1SBZ7efewqzToWtQ\nB0+Ltmwtr8dBoR47HfXYUxBBzjqBFZPlLTNrPpbHlNBQiI7W0K4djBx5ckx54QWYPPnamFMIgoC2\nXgIh9RIq0iSPF8++Q1g++ZayGfMp/+pnwp4dQ/CdA3n8cQ39+8Mbb8Ann8Ann7QnIwMm/WOvDgoK\nCmci35bPUetRWsW2qpRep04d8e9533rrLdMDDzxgf/LJJ0MADAaDx2AwlABoNBp/fHx8EUB5ebmQ\nkJAQZjKZpP3792tatmzpBUhMTBQPHz6sdrlcGC52H/dxFGWLwjWPNycf23fLsS1cjmd3BqhU6Bok\nokuqRUDvDvLKUe04VGHBqEOCUIUGyStIVSy7+HyQlXVy//DGjfB4F/nhp7wcQF4Gb9FCNpsdMECe\nqDRpAo0bn+7xvlmzyivnVaEy6Am5rR8ht/XDe+QYtm+XYV3wC4WPT2WE8V3uHdiNoFf74Wramn0H\n1LhOCQ7/1VcnFS8gP1zef/9Ja5q0NKhXDxISqi1iooJClUhuD46VG7B9twL7r+uQHE7UkWEEjxqM\n6eZeGNo2kbfmHefltJcB8Hk05OxJ4OCWuvgzu7NpE+TlyYrMmBgYNAg6dpSPxo0rK1AuNiLFxaAy\nGQno3Z6A3u3hlYdlxfCi5VgXLqdwwuvw1FsYWjWiZY+2dOreBsODjRG0J8eo5GR5y9PmzfIDgO+4\nAezChbLN/5o1UFIiW+0kJFwbD0gKCjUdye/H/dce7L+uxb5sHd59hwBQmYMxtG5M0LC+6Ns0Rls3\nAU1UmKw0OQV/mRVv1lF8h/MQ7U4ktwfJ5UFye3BbPeRmeXCVe/BYPXjsHsoDTaQMCaFO8xAyGAkm\n/QAAIABJREFUi0OZ/G4gBRY9FpceNzockpGPF0Uw6CYNS5bAHUPkhZ6EBKhVGzp0lBd8AO64A4YP\nl+c6aWlbTvPPoL/GjTkEnRZ9sxSiZj5P8JhbKJ40g6Kn3qL880XEzP4/GjSIY9YsePlluO++Qtzu\n6IqyJxT41xMn/oMrpfU4Pa26OREY5mwWsAo1i1VZq+hWuxsa1dnVFsXFxcKaNWv0L7zwgv3JJ588\nY76bbrrJvHbtWt2YMWMcGo2GZs2a+WbOnGlyu93s3LlTk5ubqy4uLlbFx8efpsz5JyjKlitInz59\n+Oyzz0g8wx6PnJwcRo0ahd/vRxRFpk+fTps2bZg/fz6ffPIJAPn5+TRu3JiFCxdWKvvBBx8wbdo0\nRFEkIyOjIv3gwYOMHz8eu91OQkICX3755WX7fjUJye/ns2njafDLEeK3yyFdC+sHk3VvClkdo3CZ\nT8wSCo8f28ECWODlei9X1FNcLJvCbt0qKy0OHpQfYj77TFZaBAbKe3jvuku2HPF6tzJqVEvCwuTy\njRvLx6VCWysG8xN3EzrhLtx/7cG64Bds363A9r/fUMdGkjKoO8Ze7RGdLVEZ9WzfLj9g7dlDxYr4\nCXmcTujVS54U6PWy0iU5WbbKueUW2RT48GGoVat6zH0Vrj+8Wbk4Vm3AsXIjztV/IdmdqMJC2N85\njKxOURQ0MiOpy8C5CP5YBIDoFxD9KjQ62LemAQsn34rPo0VQicQ1yKH98ENMXb0eU6gDkqFOMuQC\nC4th4erTZagpk0NdSiJhz47BPPF+3Nv2Yf95Nc7fN1P61n8pffMLVEEmAvp2JHBYHwJ6tqNLFy1d\nushlnU55vNq1C8LCvIBs0fO//8nnAwOhQQNo1UpelQU5v1otO7c0m//Zg4IkSeD1IXl9SH4/glYr\nm+srKFxnvL7wWVJ+O0r95bkYLR5ElUBBo1ByRtfnaItwyuMDjv/IDoJ4EDKRj1PwOHUk5f6bjIyG\nHDzYkCNHIDcXnnsOHhgv/5+3blK5TGgovP8wNBsJIZkQuhuSI2SFyomjbQc5b79+4PWe2WKvOpXP\nNQ1Di4bE/TgT+49pFE54g4LHphD3/XsIKhW1asHzz++le3dZ2fLTT/Dmm/Dee+deTLtaqEqR8k/K\nXen/V9HuxL5sLd79WXJo8owjeA/mIAToCRzQDdOg7hi7tKq0cKFQPZztHltzeA09Enucs45XX301\n6Jlnnjm7OSDwww8/lNpsNqFLly7hI0eOdDZr1sx32223OXv27Bler149f4MGDXzR0dGXRNECirKl\nRhEUFMQ333xDVFQUe/bs4YEHHmD16tWMHDmSkSNHAvDQQw/RrQrvqLfccgtjx46lUaPKzsAeeeQR\nZs2aRewJ9/DXOP7Scqzzf8LyxXf0ys7DYdaxfXhdDnaLwRYTUGUZSYKSnHDy0mM4lhHL3GcyqN8+\nnfa3bMBZbuSN5ydijishOimfDm2KCK9VTK9eNwOy4iItTR4k8oGsrCxKdiRW2c6l/JMRBAFDm1QM\nbVIJn/wojmXrsH7zK+VzFmP59H8IBh2Gji0I6NEWQ2oyHRok0rlzeCVNvkYjy75370kHdxkZsl8K\ngOxs2aGdRgN168qKmORkWbF0wkeEKJ50GKdwdfBPJ03/qK0q7vkT7R/OPMT2Qz8SkWEhIr2cqH1l\nBOfJkXxskQaOdgonp20keU3NSJqTFixet4a8A3Ec3lWLI7tqk729Dv0f/YXmN24nqm4BrQf/Rd2W\nh6jTPAtD4FmdzFctcw1bnRME4aSjx+f/hb+0HOfqv3Cs3ID959XYFi1HFRqEaVB3Aof0xNCuKUaT\nkfbtoX17+TcO8N//woQJsu+X/ftlx5W5uSfbefBBWLdOfq9SyQrYzp1h6VelONdv5+MXjqIuOEaU\nlE+UmE+IVIZR4yVA5wOfH5/bj5rKW6QlBHT14tGlJjN3QzIHpGSKg+rgCo3BFKKhd2944AE579tv\ny1uigoLkIzBQVgAnJcljdGnpSeX21YYkSUgOF6hVZ/SzoXB183LayyBJRB6w0PDnIwzbUIggShxt\nFcGhrtEcbRGO16StsqylIJije+PJPRBH7r54ktpk0vmOtUiiwJgxoNXK/qNq14auXeX3IP8+0tJO\nKlHCwqhwXgvyb+eLL84s8z9ZRDmf8bGmjaGXCkEQCBzSE9HqoPDxqZTP+ZGQ0Tedcl5+tdth507Z\nivDBB+HVV6lYgLtuECVMxS6CjjkJOuZAb/MhAd/8cC8AkgpAOP4KCAJlCSaONTXzcs9XLrp578Ec\nLF98h3X+z4jlNlCp0NSORZdUC2PH5vgKSrD+7zfKv1yMKjSIgD4dUJtDQCXIF1IQUIUEoq2XgK5e\nLbT1Eir89ShcOBc774wNjOWP7D/OmS89PV09ZcqUwClTppCfn6++6aabYj755BMxICDAERQUZBNF\nEa/Xi16vx2g0SgaDQTIajRLAhAkTHBMmTHBs27ZNM2XKlEDNJVxlvmqULUXPvyc7EbwE6JvUJ+I/\nj1V5LisrixEjRpCamsqmTZt47rnnWLZsGTt37mT48OE899xzrFq1ildffRWfz0dYWBgLFizAYDCw\nYMEC3n33XYxGI/369WPixIlMnz6dOXPm0KBBAyyWs4byJiQkpOK9Tqfj7xfa6/Xyyy+/8Pbbb59W\nNjo6+rS07OxsHA4H48ePp6CggEcffZRbbrnlfLroqsN76ChlH32D9aufkJxuDB2bs+KWcI60jaz0\noAYg+lXYS00ERViRRIFptz9OeaHc9yq1n8jEQgSVbGZoDHby7JL/Q2+q/NA2O3sbZF+YjOcz2PyT\nCYnKoCdwSE95EuB041q/DceKDThW/EnxSydjF6pCg9ClJMphGiPMqCPMtIgw07puKOq28md1eCgq\nk+zY02yWo7OcqohZvVqe7LVtC2vXypYxdeqcVMQkJcGIEbI1jMKV50oqUs6HCnkkiaBjTsIzy2mT\nUU54RjnmzHK0voMAuIK0FNUPZl//WuQ2D8caa6yYuVqLA/E4dYQnlOAsN/LWLU8h+uSl2LCEYlJ7\n7Ca8luzHLCy+lH6PLL183+PE52p8cFCbgyt+79IbT+JI2yRvk1y0AuvcJaBWo2+WgqFDM4wdmqEu\nL0Hy+jCZNHTqBJ06VV3vtGlwMN1HWXoRpGcSdeQvEnO3kNVIXm6/GXBog7EYoykzxFGka0JopIY2\nHTQIWg1Lf1Njc2rwCRr8qPEJGurHOmhrzsS9M52hBWlyQ4XgQ02BKhZ/ejyFB6LBFMCRtw04JAMO\nKYBSMZgSyUy/O81MejsMly6I8HB5HNfpTipkJkyAxx6DsjLZ0vBEeojBTZRQSOdOEs3a6LC5tfy8\nXIc2yIAuQINeLyuTGjWSLXncbtnnlckkHzrduS17JI8XT8ZhPPsP4U0/jK/IgrfUhs9ix2+xIZbb\n0bjtSFYbotUhmwoex6/R4dfoMcSHEdS7HaUN27NL1wJDsJ7Q0JPbVMPDle2dNZFK44EoEZFRTsuN\nhdTaVEhIrgNPgIZ9/Wuxv18CtmhjpbKV5h8SfHDPwxQdjgRApfETXS8frUH2I6c3uRn/1TSCI8tR\nqU8usv4J/Jl2ijypp8hzqb7X38jKyiLthOb2AspdUJ6rRCETNHIAtkW/UfzyB5j6dpT9+Z3CiBHy\nNvIXX5TDX3/9tWxZeOed1STwObgU8waVVyRqXxkJfxURs6OE4GNO1N4LNwzIbxiC880dGDtcmEmQ\n5PbgOZCNe3cG9u9X4ljxJ6JaILtDFAduTOFofCTFBRGUHDVTmhuG3Wqi5cRI3qjXgiNf/k7pDxvR\n+j3HHRKJCJKEEVelNooJY5u+HVvDe5Ib14bX3tDRtCkcOSIvXiQlyQpRxRL80lM7pDYrs1ZidVsJ\n0gdVpI8ePTpkw4YNOrfbLfz111/an3/+uRTkBY569erFLly4sFCtVvsnTZoUffPNN3ubN2/u7tWr\nVziAx+MRbr31Vmf9+vX9AD179gzz+XxCWFiY+NFHH539gf0CEaQa5D2vTZs20ubNm6s8dyWVLZ07\ndyYzM5OysjISExPJysoiIiKCBg0akJmZid1ux3R8U+vEiRNJTU1l4MCB9OjRgz///BOTyYTf76e4\nuJgbb7yRjRs34nQ6qVevHps3bz7jNqIT+P1+Bg4cyFNPPUWfPn0q0hcvXszChQuZPXv2GcsmJydX\nbCNav349/fr1Y8+ePQQFBdGpUydWr16N2WwGrv549ZIo4v5rD2UffI39pz9Aoybo1hsIeWA4+tTk\nSj4cju6NJ3tHHQ7vqM2R3bWIqlvA/e/PAmD1vC6YQh3EpuQSWacQje40B9bnTVZW1jmv74VyMRMQ\nX0GJ/DCwPwvP/kN49mXJEQ8KS+XQjlUgBBhRR4QeP2QljCY2An3LRuhbNkYIN6NWQ3o6zJkjK2Ey\nM+XXkhI5ykuHDjB/PkyceFIRk5wsr8T17y+vUFcHV/s9/3eqW7mitfsILHBiLHUTUOrGWOrBWOpG\nb/OidfrROnxoHT4CStzo7bITEZ9ORXG9IA5GgbdVLYqTg7FFGSqebg+sTyEvPYai7Ehy9iZQlmem\nUbc9jHjlGwBWz+1KVN2C/2fvTMOjKrIG/J7e0p19X0hCWMIOguyLIusIiAzouAE6OorOoKijooyC\niuOMOqOfuI6MOqIojsuIyyCMioAiIDvIHiDsSzaydtJJ963vR3UnAQMEgSTAfZ+nn+6uW7du3VN1\n61adOnWKlHZ79dKgBkJ9DxQMdxllS9dR+uN6ypatw7N6M8rjd/5tsWBLScCelqS3ogf/FvaAYeDN\nysO79xDe/VmVSgFxOrSVzKVdcF3SGUfrplhCa7YOrFX+ikr09rI79lKRuZ+Knfu0k/IDWSh3mbb8\nOB42K2XOSEpd0RQ7oiiyReHx2UhrrEhLA7dbsWheGTEVh4j3HSZG8o6bVJ4RQbYRQ7YRTXqPaFr3\njWefN5EJf01kv5FIvhFOiM1DtKuUZx4vo2+3Ur58ZyVr/xdMnKGtehJ9B2jk21dpyaNEyPeFUaRC\nKFahFKkQioxQ+gwJYXfQRvYeTGb1kouxYhAk5QThwSkexly2H9v6NaiyckpVEMsqLmZlRUc2eFux\nwduKdZnhpKXBv/6lt/1OSoJGjfQnKQlGjdKKIcM4P5UyZ7q9PlPtpaXCIGHjEVKXZ5O6MpvgI+UY\nVuFQuyj29Iwn85IEvC494iotdLFvUwp7N6ayb2MK+zanEJuaw+3+9XvfzexLUEgZKW32k9D8MDbH\nGdtt9IxyNvo2Z4L6ancrdh1g72W/xdXnYhLfe4ZFixbVWFfXrdMK4Ztu0gphn08/q/Vp3HamngPx\nGqSuyKbJD4dJWp+Ho9SHz27hcNtIjqSFUpgUTFGii6LEYMrC7Yh/uCmG32eKAaAQQ4elLcuiw8eZ\nBOeXEzy4F9GTbsPWpBF4fSivDwyDZV/P5+LExnj3H9Y7eO05iGdzJhUZuyvfXYWuYBak9CDzinhi\n+uRwcFsS/wyYUPqxO8v59YOf0a7/Rg5sTWLOtOHYgypwOMvpmNqS4GC4/84yWoUdIGP+PpZ9vJe4\n/B00P7QUl6+YEgnFMagPjW8dzDtbu/GHO6smA3r10htfjB+vJy3PVwLtc131Q+dsm8PU/lMZ1mIY\nWVlZFfHx8TnHi+vxeOxFRUVhsbGxeQBFRUWhAGFhYSddYnQsL/z4QvAj8x95pfjh4kd+ad4blLKl\nRYsW6sknn6z8H+23u8vLq+o4hYSEEBoaSnZ2NoahtaY2m42YmBgKCwspLa0aQMbGxuL1esnPz68M\nCwsLIzg4mMOHD1eGORwOoqKiOHLkCPv27WP69OlMmTKFhIQEbrjhBqb5vYk+8MADTJ8+nczMTKZP\nn47X66WgoID+/fvTp08fZs2axV133QWAxWIhOzubjz76iN///vcAPPbYYzzyyCMkJiZW3tMHH3xA\nRkYGnTp1YsSIERiGwfTp02natCk33njjUfc0bdo0Ro0aRceOHY97T/fccw8vvPACDoeDoqIinnrq\nKR5//HEAXn75ZUaPHk1aWhpFRUWV50dGRmKz2cjJqaq3LpeL8PBwcnNz8fo9LVosFuLi4iguLqak\npMrb/SmVU3Q0Rdm5uFWVQiOp1KDcZiG3mvlrdJGHsGIPu5OqFg27ikpJWZvJwWYJFCfHVIZ3fugN\n9t08hKw2VV7ka7qn+fObMX9+Gx54YCHR0SVn7p7OUN0rL6/aFSkhIQG3231UOa3yrKLAKGCAq2qf\n+T3ePWys2EjvoN5EWLR1TpkqY0HZAtJt6bSwt6iM+0PZDwD0cfapDNtbtJXcg5to32QINoeegVN5\nuQR9+gV070l5+9aVcS965C3cqXFs//3wyrCSDcspyskksd91lWGHvdmsrlhJu/K+NI6oMru8/vrr\nGDhwB+PGVSlUp73cmYO5Fp55rCpsd/k+Nvl+oqtvEHGhulIUlcKsT0q5qks0ca2r5Gx7ZxvBniIK\nx3Wpkt2in0j87ic23DMKX7i+J9+hcg59VIFrWATRzas6sx9szCQl0UOfmKr73FC+gb2+vQx1Da0M\ny/Jlsap8FV0cXYi3Vs1izS2dS6o1lfaOqoXzZ6OcMioy2O7dTn9nf5yivaMXGAW0TGpZJ3UvMiSE\n4L05HIiumqWNWb6Vpu98zaYHr8XdWMvEXlBC+6c/4MDQbhzu26EybpMFP1GREsf+FomVYfv3R7N6\ndUsGDFhNSIi+vs1mY/LkwVx66VYGDtxZGbeoKI3U1IIze0912e7V0EZ8W/otEZYIugRV1d2zUfeK\nD2zHsvxHQi65HBWrFS3WwhLSnp1JXv+u5PfvWhm3bMGXFIXZiOtatX19TXXvVNu9D7M+rNU9fVMw\nh8aSQsvwjpVhhWsW4TiYg3NYlVVm+IpNJH66iN3jf4MnWVsFWItKiPjXv5Ff/YrcNlWmdcnbD7M+\nez0xvQZXhlmWbCTymzUU3DsKX7huo4L3ZNH2bx+y64b+5PRpVxm3pnZPPskka1MQcZMbVd1TViQb\nN6bTseM2oqMLK8MTEhLIyfHg81XJBGKx2+1UVBysDPFuzqTZuwvIuWN45fNkLSwh6N8fsq/TIKK7\nV93Tn/6k7+Wpp76uDJv9WQu+WhzL048uJyJMv18LjAKWeJbQhk40cVUtJa6rune67d6Wsi1kqsyf\ntXtLPEtoZ29HY1vjKomejXYvMhKbxUJOtWc8cvsBmk2fw5YJv64qJ6+PuMgoCg0fbvfRbcT06c24\n5pqq99uGDamIRNChw6Z66UfUd7tXn/d0Jt65NdW9/Ss+Z2/beHqG9KwMO97z9O6cKAa3jKVD66qJ\n87ruR1wRcsUZK6eInzJp+uF3ZIwfQUlSlWbhVMopJCScLVtKiI3V4+CKQoMOj7xNwdB2HBzWvTJu\nm2c+AGDzQ1X9zYRF64nYmsWGawfgiNQKj8ydkTz8yK949tlv8W88o+8/oxWNGhUQEnLohPd0wrpX\nVExRtWc8/bX/UlaUz76JYyvDFv8Yz6svXsqrb88g0qatMErKfSzwzKeVs+kZrXv12ZaLCPHx8XXW\nRnxb8C2h+fncnXAdpW63AVSaTgU5HOVBdnvlEoTyigq71+ezBzudbgBPeYXDZ/hsgf+nwtwd84J+\nWDx77t0/NJrlD9rUPPv7LaeSRoNStpzIsqWu2LVrF7fddhvffPMNcLSlSPv27Vm7di1XX301kyZN\nolevXjz44IOEh4czfvx4+vXrx48//ojL5cIwDHJychgyZEilZUvTpk1PatkyceJEnE4nf/7zn48K\nLyws5OKLLyYjIwPLCaawqufX5/PRrVs3Fi1ahMvlonv37sydO7dyydHZnOVXhoF31wE8m3ZQvnkn\nFdt26RnNHftQ7potKmqLLTURe4s0HC0a42jbnNAR/U8447pokd4pqE+fs79uti4sJ+rDmsHq8RG9\ns4i4jAJit2kfG8FHPJUzFQGUQH5qKDktwsluGUFhcjAl0U5KoxyUeVwcORhJfNMsLFbFtqUt2PJD\na1S+hdCCUpr6gggqyuHp+3NQh7NZ/b8cijJziJds4iy52OVoiyMDC1m+aLKMWA4bsZThIsipd2RB\nYMXicsoP5hJPFnHkYvOfb4kKx9W3K6+u6s709T3IMmK1r4iELBp33M3wP84BoKLMjt1ZURfirZG6\nnLFTPh/lmzPxHsrRW4cWuzGKS/Duz6JsxQY867eBV8vP2igee7MU7E2T9XdaI2xJcVgTYo7aTePI\nEe0PaPNmbWbr1/ly1VUwe7b+bbVCixbQvTsEDPb27KnaAv1C5Ew/36czI13f1jp1gfL58B3KoWLv\nYbz7DmEcKURcTiwhLiTEiSXYxardO+g9cnjlEsuzie9IIZ712/Cs3YJn3VY867bi3VOllClMcHEk\nIYy8sHB86UJxvIu1+9uxYmdnjuRGUZgdTkFWBFabj/v/o5ccfzDlOrYsboPV7iUmykZkpPY3FngO\nX3xR+++JjKz6pKRQ6XA5L09vn36GdsGsNXXxPjVKPXh3H6Bi9wFtcbVrv/6/5yC+nHyM/CJtOuTH\nEhuJvV8fwq+8lNABXVm4JIg339Tt3JYt2jk1wL59kJysdyx0u/XS23O5TTvfrEKP5Ze0u+JTDJm8\nktDDpbxyXzLx7Zuf9Jyf5rfnm+mDKcyOoMnFmVwy+nuaddl51ixdzmQbXr41k/yX36d49nyUpxxX\nv25E3HY1wYN6Isfzsuxn4UJYsUL7DFu7Vj8rI0dCYK+PLl20xY/DoT8RliJuSf6Gy3p5wGrjnfes\niM1KTpmHoLQ2eCIS6DY0muEjrPh82so6MlJbkiQkQJMmZ7+9UuUVFM9ZRMHr/8GzYgMVTis7+iWx\n7tpmFEoYzlBtrfnuxLHsWJmOM7SUNn03037ATzS9eFelu4KGxKnUl7puE3bkZJA3+E7SBgxGiWAR\nOe46NaUUCsQiepSiUKIUBP6fCm6vW7wejzvUcBQZhcW2stWbtzfd8kWvU0nDXFn2C7j++uu59dZb\nadWqFREREYSHhxMdHc3DDz9Mv379CA4OrvTZMnbsWHr06EHLli1p2rTpCdNduXIl06ZNo0+fPvTr\n14+4uDg++ugjAD7++GNGjhx5lKJlxowZJCcnM3jwYD766COmT5/OgQMHGDRoEE888QS9e/fmmWee\nYejQoVRUVDBu3LgafbucSdzf/kjeM29SviWzyixcBFvjROzNG+Pq1Ql7eiq2lERtR2n4tIlghU87\nD3TYEIcDsdsQhx1x2MFuQ4LsiM2GNS4aS/CptaCXXXYWbrQeOZHT0bOFL8hKdptIsttEVgUaCnuZ\nXiricHsJzvVoZ6fbCmm8LIsW86u8byqBsnAHnnA7lgoDa7lBmFqBKvOgSo/2h5P/F7CEhdA6KRbb\nwDisiZ2xJsQi8XGouFhCm8ZhS4ylPDSKZKsNu10P2o/VQQ6v9jswoFr55r9pllWMe8Fyfpv1LTfF\nWMhqfQlLU6/m9V1HD6Reu+33GIaF1LZ7Seu0i6YX7yKqUd5Z6RTV9aBWGQblWzIpXbyGsh9WU7pk\nrR5UHIM4HQR1akPk+Otx9uiAs2t7rNFVvqWU0g6VN2+GSzuC2PXA7a9/hWoTRbhcMHGiHmxMmACj\nR0Nx8XJGj+7+M4enjRtzQVMbZ5N1de0LAbFasSUnYEtOAGr2E+D1FtaJogW0T57gy7oSfFmVxZEv\nr0ArXtZuIWT9NmIz91Ox7gDqBz1J14/1SNB/sLdqQtCwFjjaNkdFR+OouBxLaDB9brCxvft2KrLz\nMXLzkSNHiMktIO/vVizBToredrJjq4vCChelyolbuWjRwUn3j1zYEmLo1y+Yn37Sfm6iovSgZuBA\nePllnb9Jk7RCweXSSpngYL0737Bh+vjcudqPQeCYy1Xl1BXO/jIoo9hdtXRtx14qdu6lYpdWsPgO\nHW2JbriCKYtJJrRVE0L7RJPlCWfB6ggOl4WzrSiJrw60I/81Kytuha5OrVRZvFgrr/r3hw4d9DKC\nRn6jp+7da8iQSYOjNm3fsW2xsgpL/9CGYQ8uZ9gn2axs20w7WD0BHQZuoM2lW1j5eRcWz7qUdyfe\nxMXDVjNi4uenkftqeTwLbbhn3VaOPD+TkjmLkGAnYaOvIOK2q3C0bFJj/IIC7d9v717tIBj0kvLl\ny/X7vVMnveNldf9hq1Ydm0oYMKry39236289wD96Cy6rFW6++XTu8JchDjthowYRNmoQL755H63n\n7qXF1/tJXp3DookXcSRUW7Xc8NQsdq5qxob5Hdi4oB1rvuxMu34b+M1jH9d9pqtxrr3vkw8YuOPi\nkCduPune6gKglBBQriilw35BB96FwmVz+cKCwpRn3VZ1cPSDNXs6PwGmZcsFzNnQSpb+sIa8Z2cQ\n1LY5jrbNcbRthqNlkzrrqNY35/vsT21RhuH3ybAf36FsvAdz8B7Kwcgr1IozZ5D+uBxYoyOxJcVq\n64ikWGwJsaflG+JEBMpHKUX5ph0Uz55P4cwvMPIKcLRpRsS4qwn9zeWIM4jLx3+l19pvSKU4T780\ne1y9jCF3zUMpKMwOJyK+8CRXrJk6V64oRcX2PZQuXk3p96spXbIGI1ebMdvSknD16YzrkouxN03B\nEhqMJSwYCQvRs/tWK4ah321Wq56dmj5dbye+ebN2TgpV24p/+il8/rl2PtqmjQ5LS/v59qLms3Lm\nOJljy5osW861jlZ90hDrqlIK40ghFXsOUpGhHUOWb9iOZ+N2jJz8kycg4ncGeXIqgsMpDk0g35lI\noURQ4TGIifDSoa32pbDgay+eUh8WnxcxfNjER2KsjxbNfCivlw3rfJT6grQiBxclykVK61AGXh+P\nNSmOIb+N54gtDo8zDMMViiPEzrhx0K3bQnr06Md11x2tyHG5tO+vgQOhqAj+9boXZ0kerpIcnIXZ\nBGXvo4VzHxGF+yjL2AfZRytU8m0xOJqnkNApiX0k8/gbyezxNWKPL5kjKgIQZs/WM+8d6BWoAAAg\nAElEQVTffgu33QZxcVUz5k2aaCeoKSkn7fOfNzTEZ6CuOV472/az3XR5dzvbBifz47hWta4Q3nIr\nG75tT2RiPk067aYoJ4xlH/ekw6CfSGh+6KTJnM023Ch2U/rDGgrf+hT3/GVYwkOJGHc1Ebdfc9SE\nS4Dly7WVyoIFWnFiGFopm52tFa1bt2rlakxMDRc7BRp6PSxbuZFDt0zGKCjiu9vT2XVJ4lHHKzw2\ntixuTXB4Kc277cBd4GLBvwbQbeRy4ptmn9W8nen6Utdlkf/qv/GVuIm4/yby8vK80dHReQBut5sR\nw0dElpaVitfrZfLkySXDrxxe/umnn8ZO+79pBqAKCgvsVovVt2rNqtzqaX704UdBjz36WOiePXus\nxe7irEB4VlaW3PmHO8NzcnIsNptNffvtt7kigmfdVtvB0Q/uabLxs66cAqZli8kZxdXnYpL7XFzf\n2TCpZ8RiwZHeGEd6wzRTEBGC2qUT1C6dqPtvpnj2NxT882Oy7/s7eX97i+gHb+F/Lw1DbDaU0h2F\nBQvgR89mAHL2xPLqzXcR1SiPJhdn0rTTLtI67iI87ufWIfU1qPXl5uNetJLSBctxL1xROYNrS44n\neGAvXJdcjOuSzthTj+4M5OfrAUZgCdCmTfr+P/1UO307eBC++EIrUm64oUqpEtiOdORI/TGpO05U\nxxp659TklyEiWKMjsEZH4OzUmrBrLge0EsaXfQTjSIFeDljkxih2g2H4HZ5rx+eWyDBQClXqwSgp\nRbnL/N+lGO4y/V3s1oryfYeI2HuY+H17MY5sBJsNKbPiWWcFm5VLmtvAakXs+tuw2MBqx+q0gc1K\n0zALvrIK7ZS9NBvKygjKKSTvKa3wnVl97FYOFV4HvBqMuOBQ0Kv86SAYSn+UAmVA5KfC7ijwFpUx\nLOcIlmOswz3BkdAuBaNrV974XypZzlRyXSnkhyVjCQnmwQehwzDwHoA+qXClf/enmBi93DhgiDxg\nAOzcyXG5EBQtJprjWRVvGtGYsv059Pl6P4ZNWHFLy1pVDJvDR6ch6yr/Z65pwtKPerHkgz7ENs6m\n3YANdBiwoXK3vbOJUgrP2i2Ufqv7C2UrN4DXhyUmguhHbif8d6OwhuudDUpK9G6UCxdqq7bwcPjq\nK3j+eb05wuTJ0K+f/h3YmadVq7N+Cw0CZ9d2pHzzBodvfZRLX1hP9M4i1oxpjrJq0z17kJcOAzdU\nxt+/JZm18zqx8vNutOq9hUvGLCal7b76yn6DpnTxaoJ/P5Yytw3DG2wpLbG5ALwVTl566V/lTZo0\nUzk52TJ4cJ/wQQNHlQwaMNJzaZ+hQUopefXVF7wi+ALnBOjVc7D88MNId/fu7UOrH7v7rvudDz30\nRHm7dh0MgOJiQgEqyiyWQl9IGKeIqWwxMTG5oLG4gggffQVhNwyj7Ic15P71dbLv+zv5r35A9MPj\nCBl+Ga1bC61bwx+4BdDbxLacBgsWRLNoUTRr5mjnZF9+qWdcs7K0z5L09Lq9l/Lteyj5bAEl8xbj\nWbcVlMISGYbrsm4EX9YFV5/O2JomIyJkZ8PydbD2A72G+vrrYfhwPbAI7BCfmqotUy67TO9+AnDl\nlUcvETIxMWk4iAi2+GiIr52DMgkNPmuWhAGSjhNulHrwHczGezAb74EsDP+W2UZxCUZRCQczdxOZ\nkEgzQG+d5ae6RY7djjcqDkt8LBIfC3GxBLdoREhCWKU13TMnyFujRnqJg4nJL0aEb4dGExUcRts5\ne/HZLKy+Mf2UNXEXDf6J9O472LSoLRu+bc+it/vx3TuX8dAXTxMUXM618Y8TGwvx8SdPq7Z4D+dS\n9ME8imbNoWLHXhDB0aEFkX+4Hle/rji7d8DiDGLnTnhlKixbpq1bKyq0ImXYMO3b6a674L77tOXZ\nhY4tIYZGn0wj59GXaffmJ3TJjiL+hUn8Zc8bP4vbosd2/vjh8yz/tBvLP+nBm3feRpOLMxnz9Hun\ntTPZ+Wa56ssroHznPizN2hAChIQEW0S0AsThcNC0qX5LuFxOrFariBBqt9ux2/WKn88++9j2wQef\nWUU4auF6rH8tq4hIID2fz8u2bZvllVeet2dm7uCqq65Vt99+J/6I5KiYFE4RU9liYmJigh6kuC7p\nTPKcV3HPW0zuX/7J4d9NIahTayLvGk3IFZci/mma+Hi45x798fn09o6LFkGPHjqtt97SMz7BwXDR\nRXqNcseO8NvfahP4M0n5jr0Ufzqfks8XUL5JT8EGdW1H1EO/w9m3G1kxrVmXYSUyEno0086i09O1\neW+AlJQq30bt2unOVOvWNW/Rbc7kmpiYnAksriAszVKwN6u577px4UIuMq2yTM4FRFj12xZYvIp2\nX+zBsFtYe8PJHeYeS3CEm64jVvLf/xvu9wckXD/sYUD7BFq4UL+/27XTEyE9esCvf31q11BK4Z7/\nI4Vvf4b766Xg8xHU4yKM68awI6kPWw5FkpEBGU/CHXfoyZeiInjlFejcWStV+vfXm04E+giRkSe+\n5oWGOOzEPf1HnF3akjNpGnv73cy9k24j4o5rjnIm/PjCxwmOcNPvt4vofe1SVv23M9m74yoVLTtW\nNqNxhz3YgxrmlvBnG19uPuXbdlO6ZA3Wju2wueyEhoLPp7Ba+dk62LvvvkceemiiCg2tOrZ+/Xqi\noiKkTZu0466btViQwDkHDmSxceNP8s47M4w2bdowcOBAy5Ah/Y22bdtSEvTL7sNUtpiYmJhUQ0QI\nGXopwb/qTdEH8zjy/EwO3/YottREIm67mrCxwyvNaUH7IuncWX8CXHMNJCbCmjXaauT99+H11+F3\nv9PHJ0+G+fO1qXpqqv6kpWmrEdDOJp3O4zuNVF4v7q+WkP/GJ5R9rz3L+dp3IP7Juwm98jLunBrP\nivdg66M6LdCWK++/r01+r7tO+x0IKIECjipBO8HsekqrUU1MTExMTC5wRFjxu5ZYvQYdPtlF+AE3\nK25pSWn0LxuhpaTo93aAZ5+Fr7+GlSv18t45c7TfooCypV078Hj0eQkJEBGhrU5uukkf//tTXmLX\nfkO71e8Tk7+TQns0ub2up++zwyiJbkxqNWO4yEi9U2Cg/9Chg56oOdahvcmJCbvmclyXdiH7gWfJ\nfewVij9fQPy0STha/3zDFIernF7XLKv8X5gdznsPjcUZWkaX4avoNnIF4XE1+wk8HyxZlNdL6fer\nKZn7PeWbMynP2FXlWzA1kaCxVxNU7VF66aWX5D//+Y80b95cvfnmm+qJJ56QoKAgueaaaxSAYRjk\n5uZaXnvtNQJhx1JYWGgpLS3F5/ORk5NjiYmJMaKioiQxMZHk5GRLUVERPXv25KeffpK2bdv+Yie3\nprLFxMTEpAbEatXLi64bohUbr31I7mOvkPe3fxE8oAdBHVsR1Kk1QR1bYY08eglns2b689vf6v9K\naV8ngY5KYqK2cFm2DD7+WJvkpqRUKVuuuUbv4BEZqXfwcTiga8tC3v7zXkq/X8WOZz8jqjyLg754\nZpWN4xPPUFr64vjuDn3+7t3a+qZv36Md1QZ46aWzLDwTExMTE5MLDYuw7PbWFMe7uOjjTJLW5bL2\nhuZs+1UKynp8s9DaDJa7dNGfABUVVQ7qQftK27lT75C1di0U5CtCy/O5Jn03Zas20uvZT0iyZLHd\naMpr9kdYEz2QMX3sDGoOdqW3T27WTCtZYmOPtmINbMtscurYEmNJnPkUxbPnk/PwNPYOvJWYybcT\ncce1J9x9MCy2kJuee5vC727hs39fyo8fXcqYMRA17P+Oq3Q511BK4Vm3leKPvqJ49nx82XlIaDBB\nbZsTMvRSHC3TsLdogi8rl32frCD6rqpzJ0yYoCZMmKBAK142b94sL1Xr3IoIkZGRxrx58yyTJ0+u\n8dpKKUJDQ7FarcTGxhpKKQkKCpK0tDSKi4tV48aNZePGjdxwww2ntZuQqWwxMTExOQFitRIy9FJC\nhl6KZ91WCt78hNKlayn5YmFlHFuTZJzd2+Ps3gFnt/Y4WjdFqpulKIOkGC9K2RER7rpLr3EG8Hm8\nZGcWc2RvMWWrCvAezOGBxtmMG5iN7Ug2YYUHiC7eS/DKQvYP1ed4UrvwRdo95LXtTfNoG/+XBC1b\nVl1u3ryzLxcTExMTE5MLmcBgOeCI/PGFj4NF2HBVE3b3iqf7G1vp/q9tNFt0iNU3ppPdMgLDfmb2\nObfbISa4lNIfM/AdyGZiag5eew6+iFwqwvQuZcacIg7M0fHTenci+u4HaDaoJ5cfsx5YBMaOPSPZ\nMqkBESHsqkEE9+1C9v1/J/fRVyhdtIq4lx7GFhdVGe9nSrf+wL2QmakdEM+cCRuevI/kZL20KzT0\n3FzaXbHrAEX/+Yrij77SvoIcdkIG9yb0N4MJHtQTi/Noa7D920qoePxdrF4POI4+dvjwYe69917p\n1q0bo0aNApAFCxYom83Gd999R/v27Ymsts5t7ty5ZGdny9ixY2Xp0qXqr3/9qxw4cID+/ftb7rzz\nTnX11Verv/zlLzJmzBjxer0MGDCALtW1nL8AU9lyDLt27aJp06bMnDmTsf6W59Zbb+Xbb78lMzOz\nMl7r1q257rrrmDp1amXYwoULeeKJJzAMg4qKCsaPH8+YMWNwuVz07NmTsrIywsPDefzxx+nVqxe7\ndu3itttu45tvvqlMIz09ne3btzNv3jyys7O58cYbf5bH/Px8Pv/8c24K2AbWgmXLljF37lymTp3K\n7Nmzefjhh9mxYwfl5eUAlJaWMmLECEpLS/F6vTz22GMMHTr0uOnde++9LFumzd1GjhzJpEmTANi5\ncyf33HMPJSUlpKSk8M477xw3jW3btnH77bcD0LlzZ5577jlEhFGjRvHuu+8SEhJS6/szMakLgjq2\nIv7FPwHgO1KIZ/02PGu34Fm9idIFyyn+8H8AWMJCsISHYJR6UKVlqFJPVSJ2G+KwI0EOVJkH5S4D\nwAHs90dpDOCwY0uMxd4+CXvz/tibpWBvnoqjTXOapybSp87u2sTExMTExORUKEoKZv7kTjT54TBd\nZ2Twq8dX47VbCO3SoXJyxt40GVujk3u8VRVefLn5+A7nUr5tF2UrNlK2coP20+bzVcYTpwNrYiy2\n5ARCRw7Anp6Go0Vj7C2bYE9JOJu3a1ILrLFRJMz4C4VvfUruoy+zr9/NxL86heDLTrx2u2lTePFF\neOaZKr9/v/415OXBuHEwZkzD95tjFLsp+vB/FH38FZ4VekcmZ+9ORN55AyFX9vuZhbhSkJEBGzdC\nSUkIqbHN8az46WeySkhI4MiRI8rhcGAYBj6fD5vfv+LAgQPp1q3bUVYpQ4cODVi1qF/96ldq8ODB\nIiJGXl6eJTQ0VACjb9++asmSJVRUVFjy8vIwDAPL8db11wJR6rQsY84obdq0Uf/4xz/qNQ+HDh3i\n0UcfJT4+nieffJLy8nIeeeQRDhw4wHvvvQfAli1bmD17Nnv27CGQ38B5zzzzDFFRUfh8PtauXUuX\nLl0YM2ZM5bl79uxhypQpvPjii5SWlvL3v/+d5557rvL61eOeKI/HnncypkyZwn333UdUVBQFBQW4\nXC5uvvlmZs2aBYDX6yUnJ4fExEQKCgqYMGHCCRUl+/btIyUlBcMwmDBhAg8//DDJyclMmjSJiRMn\nEhMTc9I8TZ48mdGjR9O2bVuef/55Lr30Urp27cr8+fM5cuQIv/nNb2p9fw2F4uJiQmvyKmrSIDir\n5aMU1sNHCNq6m6Bt+6DCi3LYUUF2lMOGslkRr09/Knzg9R8PDsIIcWEEOzFCXfiiw/BFh2OEBR/f\nact5gPms1A2mnE8fU4b1gyn3hoNZFifmZPIRdxnOn3YStGU3jq17cOw8gPiMyuOGK0i/90OcYCh9\nzDAQrw9LkRtLkRupNl4znA7KW6TgaZFKeYsUvAlR+KLCUSHOc9PUoZacT/XQvvsQMc9/iO1ADkXD\ne1Nw/UBw2Gt1rlLw+eeNmDMniYyMMIKCfFx2WTZXX72Pli2Lz3LONbUtC2tuIaFzlxL69Uos7jLK\nU+Nx9+2Iu89F+OKqNESGobu8xcU2nnyyDZs3h1NYaEdEMXbsHq70LKd/hzxiHrkdwzBwu914PB6s\nViuGYRATE2O43W7x+XyEhYUpwzAsSimKi4ux2Ww4nU4ALBaLMgxDLBaLISL4fD6LxWIx3G63GIYh\noaGhhvifIcMwLPn5+YSGhhoOh4OSddv58doXygZsfemUrAEalGVLSEgI/erZ8/yuXbto3LgxkZGR\ntG3blu+//54xY8bw8ssvV+Zt9uzZPProo7z//vs4nU569uzJX//6VyZOnBgwYQK0Rg3A5XIddV9b\nt26luLiYPn36EBUVddSxQNwZM2awb98+HnnkEcaMGcPevXux2WxMnTqVJUuWsHPnTh5//HEmTpxI\nixYtuP3221FKkZiYyIwZM3BV2/KkqKgI4Ki8gTZrq0nexcXFp1QWUVFR9OnTBxHB6XTywQcfkJWV\nxYQJE7g6sIdsDeTl5XH77bdjs9nIzMwkIyODfv360bFjR0aMGMHLL79cq+s3JAKmpCYNE7N8Gg5m\nWdQNppxPH1OG9YMp94aDWRYnplbyGVb103CX4flpG979WXgPZOE7kI33QDZGcQlYrYjNClYLYrNh\njYnAGh+DNT4aW3w0trRGOFo1OWpXmwuF860eGteMJPfRl5G3PyNm6z7iX34E58VtanVu//56adGq\nVfD661ZmzUpk2LBE+vWDrCyYMQMGDdLOje210+GcEicqC6OoBM/6bRS9/yVFn3wDPoOQK/sROf46\nnJ3bUlYGGzboTSSWL4elS6FXL72RhFLw9NNw7bXQsyf07CkcPpzG+08pev3wdOU1wsLCjLCwMDwe\nD4WFhZbc3FyLz+dDKYXdbsfpdBoQ2NZZsFqtCrSvFkACyhgRwTAMi8fjweVyoZQSpZSyWCwYhoHX\n6620lPmlNChlS0Pimmuu4cMPP+S7777jhRdeqBz4+3w+Vq1axQsvvIDD4eCdd96hZ8+e7N27l87V\ntyM5AampqezfrxcMrFq16oQNR15eHrt372bx4sWBCkHjxo3ZtGlT5fKjkSNH8sQTT9C3b1+eeOIJ\nXn/9de6+++7KNLZs2UJaWlqt7/2ee+7hwQcfrFXcmTNn0rx5c5o0acLSpUtZs2YNmzZtIiwsjN69\nezNgwACioqJqPLdDhw7MmzePK664gnnz5lXGi4qK4vDhw7XOr4mJiYmJiYmJicm5gCXYiavHRfWd\nDZN6xhLsJO7ZBwgZdilZf/wb+4f8nsgJo4meeAsSVDuPxAHHyc89V7WibNkyeOgh/dtu1ztVdeyo\nd8JMT4eCAvB6ITr69A2hlFKUb9qBe8FyytdtxbN+GxU79wEgLifGr3/N9q7XUhDSiOv9w+Ru3bSy\nBSAqSitVunXT/0Vg8eKjr5GeDr/flYYv1cuhmx7GQGE5OuMGgNtdKj6fDyMsVAHk5eVZKrxeRASH\nw0FkRITyeDz4fIYKDnapI/n54vV6RRAcDocKDwtThlKW3LxcEQSFIjQkVPlc2iqmoqCMMp/N4BQx\nlS3HYcSIEQwaNIioqCiSkpIqw7/++msOHz7MkCFDAO135Pnnnyc1NZU9e/bUKu29e/fS1r81SJcu\nXX7ms6U6MTExjBs3jhtvvJHg4GAeffTRn6W3bds2evfuDUDv3r355JNPTu1mq/HnP/+ZqKgobrnl\nlpPG/eabb3j77bf54osvAIiOjqZDhw4kJycD0KlTJzIyMujevXuN5z/33HNMmDCBadOmkZ6eTqNG\njX5xvk1MTExMTExMTExMTM4lggf0IPX7t8md8jL5L7xLybzFhI+9kuBBPbE3T0VqoRGp7uZyxAg4\ncAAWLtQ7U61bB//7H0yZoo+/9Rb88Y/gdEKjRhAToxUv776rd6L6+mv4/nu9A5XDoRU2DgfccQdY\nLQZrfnCz8a1cjGenEbv5B0IKDwFga5xEUIcW/BAxhNmbWjL/UHvyXtO+WBITq7YynzwZrFbo3Fn7\noznZ7QUFQY+ewsZBTzGg7WGO5OV5I8PD84+Nd6zbmpO5sYkEjhQWRkWEhhZYLBZDKSgpdYfGer12\nAUKDQ4psNqs3EH/bNrFOWpa4Z9jxk6wRU9lyHFwuF6NGjapUigR47733mD17Nu3btwe0L5SvvvqK\n0aNHc/XVVzNy5Eji4+Px+XwsWrSIAQMGHHV+RkYGn3zyCX/84x8pLj75urqKigrGjh3LzTffzLvv\nvsvzzz/P/fffj9dbWfa0bNmSJUuW0LdvX5YsWUKrVq2OSqN169bs2rXrpNd6+eWXycjI4O23364M\n83q9ZGVl/UwR8uOPPzJlyhTmzp1buWQpPT0dt9tNUVERLpeLTZs2kZaWdtw0UlJSmD17Nkopbrrp\nJq666ipAOwBOSDAdeZmYmJiYmJiYmJiYnN9Yw0OJf2ESIcMvI3fqq+ROeYncKS9ha5xE8IDuhI4a\nhKt3p1qnl5QEN9ygPwECbn8CS5D279ef/FwvFVkFWHcVULolnz2v55D938MkWQ4TYz1MoiWLCClm\nz3MlqGI3EUoxBChVQSwp78r8iptY7erF1hWxWCyQ8xI4E+GOFGjdGlq10p8A11136vIZMAC+WhPH\nsN/GYc3KUq74+IpTT+XnuCCr+v9gOHK8uL4gVJbgPd7x42EqW07AAw88cNR/t9vNypUrKxUtAJdf\nfjmvvvoqs2bN4rnnnuP666/H5/Ph9XoZP348APv376d///54PB5CQkJ4/fXXiY2NrZWyJSsri+uv\nvx6r1Up5eTkvvvgiiYmJuFwurr76asaPH8/TTz/NHXfcgVKK+Ph4Zs6ceVQaYWFhxMbGcvjwYRIS\nEvj++++ZOnUqubm5DBo0iPHjx3PJJZdwzz330KtXL/r37w/A/PnzyczM5P777+fzzz8/Ks1bb70V\n0EuYQFupdOnShWeeeYahQ4dSUVHBuHHjSEhIICMjo8Y0Zs2axeuvv46IcOONN1bK9csvvzyhrxcT\nExMTExMTExMTE5PziZDBvQgZ3IuKPQdxL1iOe/4yij76isIZnxEy/DJipt6JvXHSyROqCWVQvnM/\nzXZuJTl/K57t2yjftAMjrwCAPP8mtP2AfiFgiYrAkpyAJDRChYURHB+KNTyEEkJYf8RN5ztGMybe\nybjgo61TJkw4LRHUSP/+MG2adqR7rtGgdiPq2rWrWrlyZX1n47xk6dKlzJ07lyeeeKIyrDaOpt57\n7z3Cw8O58sorf/G1TzWNUaNGMXPmzHPS4/j55rzrfMMsn4aDWRZ1gynn08eUYf1gyr3hYJbFiTHl\nUzdcqHI2Sj0U/OMDjrwwEwyDyAljiLxrNJZg53HPqdh3GM+KDZRn7KZi+x7KM/ZQsXMvyl0GgAQ5\ncLRtjqN9OrakOKwxkVijI7DGRmpnzMkJWEJcx02/Pspi0CA4dAhyc/O8Fkv0cS1QzhY+Hxafj2XZ\n2Qw/lfPOKcuWmsr02mth/Hhwu2FYDYuobr5Zf3JyILCT8MKFZy+PDZVevXrRq1evUz5vzJgxp33t\nU01j9uzZp31NExMTExMTExMTExOTcxmLK4io+24i7LrLyZ36D478/S0KZ36Bs0s7bMnx2FLisTVK\nwJdfSNmydZQtW493n3+jERFsaUk4mjfG1acTjtbNCOrYCkfrpoj9nFID8N//QlERxMe33wgHBtdT\nNgpP9YRzS8omJiYmJiYmJiYmJiYmJhcQtuQEEv75OOE3jyT/lfcpz9iFe8FylLu0Mo41Phpnz45E\njr8eZ/cO2Fs1weIMqsdcnzmcTv2Bg16lyK7v/NSWc0rZciKLlODgEx+Pjf3lFi0zZswgOTmZwYPP\njBItPT2d7du3nzTetm3baNeuHQsWLOCSSy5hyZIl3HHHHWRkZLB9+3ZSUlJ+dk6/fv3weDwEBQXR\noUMHXnrpJUA7/O3RowcAN954Y6XPFRMTExMTExMTExMTE5OGj6t3p0pnuUopjIJivPsPY3E5sTVN\nrtXuRSZ1R4Py2SIi2cDu+s5HHdAe2FCLeE0BO3AAKAasgAJaADuBmjwxtzrOsZquGQvk1DrXJrXB\nlGnDxiyfhoNZFnWDKefTx5Rh/WDKveFglsWJMeVTN5hybjjUZ1mkKaXi6unap0yDsmxpCIITkXbA\nG0AZUKaUGioijwPblVLvish9wGhgK9ASuMZ/6odoZUYn4B2l1DQR6Q88ipZzHnCdUqpMRLYrpbqe\nJB/d/WnHAW8opRZXO7YQGKuU2lfDeQvQCppy4Eml1Lf+8GKgBMgF7lNK7RKRlSfLh8mpYcq0YWOW\nT8PBLIu6wZTz6WPKsH4w5d5wMMvixJjyqRtMOTcczLKoPQ1K2dJAuBx4Syn1TxGxVD8gIvHAjUB3\nwIW2IAmQgt4tywA2A9OA5Uqp/v5znwGuBd6pZT4mA7cAz51i/q9RSuWISCrwjYh0VUoVAU384ZcD\nbwIDTzFdExMTExMTExMTExMTExOTWmA5eZQLjreAliLyHjDxmGNNgQ1KqQqlVCGwpdqxzUopt1Kq\nDPD5w9qJyFcisgj4NZB6vIuKyBsislBE7hKRK4CVSqncU828UirH/70XWAekHxP+PyDtVNM1MTEx\nMTExMTExMTExMTGpHaZly8/xKKUeABCRb0Tky2rHdqEVKDa0ZUurasdqcn7zCPCYUmqpiPwNOK7H\nIqXUbYHfIvII0E9EegMdgNYicp1S6oT+bER7RApTShWKSJj/3N0iEgqUKqV8InIRVWvs/nmi9Ex+\nEaZMGzZm+TQczLKoG0w5nz6mDOsHU+4NB7MsTowpn7rBlHPDwSyLWtKgHOQ2BETkVuBmtPLkEDAW\neJgqny0PADcA24DWwBWAA+1XZZA/je1KqXQRuQGYgvbvUuBP48nA8VrmZ4Y/7cUi0hJ4FeiC9g8z\nSyn1DxGZBMxBW9osA0rRflv+Tyn1gd//y3SgyH9fdyul1p2WoExMTExMTExMTG/a5jkAACAASURB\nVExMTExMTGrEVLacIiJiV0pViEg4sAZoqZTynew8ExMTExMTExMTExMTExOTCwPTZ8upM8m/G9Ai\nYIqpaDk7iEiSiDjrOx/nEyKSIiLR/t/HXdJmUj+Ydb5hYD4ndYNZ308fEUnzO8M362odY8q+4WC2\nJSdGRBLqOw8XAqacGw4NrSxMZcspopT6s1Kqn1LqYqXUrPrOz/mGiPQXkR3AF8Df6js/5wMicrGI\nZACfA9NEJEyZJm0NBrPONwzM56RuMOv76SMi6SKyEfgUXVebmXW1bjBl33Aw25ITIyK/CchHRKbU\nd37OV0w5NxwaalmYyhaTekFELCIyREQmi0hStUP3AXf4927vJCI3i4irnrJ5TiGaISLypIi0rXbo\nPmCSUqoz2pfPeBGJrZ9cXriYdb5hYD4ndYNZ388Mfhk+LSKXVQu+DZimlLoY2AhMEJHG9ZPD8xdT\n9g0Dsy05MSJiFZHLReQ+/4YYiIgFuAMYo5TqDlwjIsPrNaPnOKacGw7nWlmYyhaT+mIy8BAQD7wm\nIj384Rag3P97GnpHpXZ1n71zknFomVqB6SIy0B8eB3j9v18AEoEePz/d5Cxj1vmGgfmc1A1mfT9N\nRORK4EG00/unRWSU/1AHqmT4L3RdHlT3OTx/MWXfoDDbkhPzIvAn4GLgWRFpA4SiN+Yo8cf5J9A3\nsPTN5BdhyrnhcE6VhalsMTlriEjUccJDgbbAn5RSdwMZwLUi0hS9y1JgNnktYAC12rnpQkBE4v3a\n2+phgf+DgZeUUn8CvgSuFJFWwA9AE3+cHUAWulNicoYx63zDwHxO6gazvp8+ov1NBB0TZvX/HA18\nqJSaCrwO9BeR9sA3VNXNQ8AmoHsdZfm8wZR9w8FsS06MiIQdJ7wZEALcqJS6ET2uuxGIQtfPgKXP\n9/6wlLOf23MXU84Nh/OpLExli8kZR0RuF5FM4FMRGSvyM+dxzdHax2L//1n+sAj0LFKyP3yv/39o\nDWlcUIjIGBHZAswDfi8iEYFjSinDr7ndg5YXwGwgDGgGHATS/OFHgMNomZrP/xnCrPMNA/M5qRvM\n+n76iMiVIrIWWAD8UUQCdQ+llM8/yNwGBPyBfIOWVXdgM7rOAlSgB6AhImKrq/yfy5iybziYbcmJ\nEZF7RWQf8K6IjKghShPABhT5/78N9EXLwoW2BgKtFAxGD1JNjsGUc8PhfCyLc+rlIFPl8TORjnpM\nHTcdEWkCvKGUGnRM+BAgTik1s4ZzIoERSql3apsHEfkf0Bl4QSn15DHHfgdMV0rZazhvJpCKNpd6\nTyn1vD98KnrGthy4Wym1vrZ5OR38cgkBFiil8vyzDX2AKwEH8IA/6rt+OUUAmegXpB1AKbVatCd5\nO7AbuEhEEpVSh0SkJbDjQnJAJyKXo5cwLFBK7RHtN6I7cA+68XgIuBv4s+gtyBvj7/Dh1+gqpbaI\nSAV6IJkJXC4iaUqp3SLSGjiklDLq+t7OB8w63zAwn5O6wazvp4+IDAZao2W4wS+LHujlau+jzaEf\nB27xD/Q7KKWW+utmKIC/jh8BYtC7ISaJSAulVIaINEcPNh1ULYUzwZR9Q8JsS06M/50GsFAp5RGR\ni9CDyO5oa6p7RCRXKfWD+HfMA34C2gfS8B+L8//dA7QRkSV+eTfCP/AUETlX5XS6mHJuOFwoZWHO\n2NUSpdS8mhQtfiKBm04xyVuBiccG+l8iV6Ff3jWep5TqB/REO3AME5FOQHelVG+0KdULp5iXU0ZE\nXCLyLPAXYDjwlv+QC+iplNqAfiDeA0b6j40AeimlCtEzFW1EJNh/rAxoCbyDnjX6rYjEoF+oh8/2\n/TQERDuB+xPwNHAJ8A/RJs4u4FdKqf8B+9HrEH8tesa9G9BXKeUBcoC0ag1SKZCglJqPftbvEL0d\nWlPggP+a580M0NnGrPMNA/M5qRvM+n5mEJE7gGfRSyH+4lfiBaMHmf9VSpWh/U0ME72EJQUI+BE6\nCMT7O4ygZRislNoBbAX+ICLp6M7pbqWU+0Ksq8fDlH3DwGxLToyIRInIDOBJYAzwpv9QMJCmlDoA\nLAT+CwR8B90BdFVKZQNuoItUWWHmAV3Ry996A6NEOxbOxi+fC1EBYMq54XChlYWpbKmZcBH5l4is\nFpF7AUR7OZ8smlki8r2ILBCRvmiP6F1EZKGIXCEiLf2/F4nIB1KDd3Sl1L7jXPtu4DX02tOfoZQK\nOANzojV4bvRLZ5X/+F6gqRyzDvmXInpGuCaigOFKqS5KqVv8cceize+zRSRJKVUBbAGsItJJKfWO\nUurf/vMXoR+MFv7/O4FmSikfepapif+eNvrjnjfI8ZclhAE3Kb2t+Di0TB7wl2mQiDT2z7JvRJd7\nH6XUfKXUq/7zl6EHiAHncW6q5Pswuk4t86f7FZgvglPErPN1iBxnvS7mc3JGEZHo4wwSzfpeS0Tk\nZ1ao/vAw9ERMP6XUH9Cdx/uUUnloS6twAKVUYNnaYKXUFlVl7boGbV0RmP2zU7XUbTJ6Zn8OukM5\nx5/WeVtXa0KqLRU8JtyUfR0TUIbU0J6YbQmV/mdqkk8S0E4p1U0pdRPQSkQuQY/RtohInH+iYCsQ\nKSLNlVJPKaW+8p//FbqeBiYQVqMt8Q8A/+c/tgTt12b5WbzFBkFg/GPKuUFzQZWFqWypmRTgLrR2\n7J5jjkWjX7h9lVL9gcXogl2llOqnlJoD/A14VCl1GbrxH1ebi4p2ENZXKfXfk8T7CP2yWex/2WwA\n+omIQ0Q6+vNfo7Oxk6Qr/u/2IvKqiCwGZovItTVEjwVWikhgvexn6NmjFPQMRR9/eBGwHe0xujr/\nQc8cPSEirwId0RpJlFJrgHuUUk2UUo8qpUo5R6km02QReVlENgNDjxPdCuwTbVoL2p9EmmjT2IWB\n8/xlvgw9q1+deeiGZaJfpn3RijuUUluBx5RSTZVSD/k7nBc81cqnmYhMF5ENcvR2wNUx6/xZolo5\ntBOR10TkB+BjqTIxrY75nPxCqsk5SET+7JfzPGBKDdHN+l4D1WQYIyLTRGQresbtZyilitAmzIE1\n5J8DMaKXKy+jahYfdDkMPeb81cDXwO9EZDra6vVt/7F9wItKqVZKqT+eYALnvKGa7NNF5BURWQJ8\nJiI/syw2ZX92qVYWXf3vzsXAOyJycQ1KpwuuLakmn27+vt/3wAciclkN8kkHFoleCgswF72MwoW2\nxAw4ZM5CK6haHnP+O+glbH/319WmwEcASqnvgZv977S/qvN0WayIXFKtHr7qn3Qx5VwPiEhb0QYL\na0Sv1qiJC6osTGVLzWxWSrmVNjH1VT+glMpFN/IzReSfQKMazm+J1qjh/25dy+v+Ca2oOSFKqWvQ\nmvwrRKStUmoT2mnY12jl0Eb0bEutEJHeIvKbag1TC7RzuNv86T0gIt39cQOe+qPRD0HAy/MW9Jrb\nCGA92lQUwIOeiT7kPz9VRHr65fgcupOzG+1n5lC1ewxY8JyT1CDTJLS8dgCpUmUOW50otNwDg/09\naPPZVsB84Df+tC3o2fhi//8EERmilPKizXNfAnYB4/11A6gcfJpQWT4Dq5VPa/TSk3K0vGvCrPNn\nmBqek77oen8jWlaTRKSLP27gfWU+J6dIDXLugPb9dY9SqjvaX0U/f1yzja8Bvwx/R5WvuxB0J/A7\nIFb0MoZjz7EDK4Be/qAc9GCyL/ABMKRa9J34HbKKtja6AUAp9Sna/1AG8HulVOXM/YViSVGD7Duh\nl/jdjF6S/ZCIXOaPa/F/m7I/C9Tw7hyOfr7HoNvfP4lernVBtiU1yKcLut93K3pp60TR29RWl084\neuAYsNJahfZTU4aWRV9/+BG0c+Cd/vObiUgrpdRO4M/o91km2oLLHchT9d/nCyLSS7QLhQBj0HXj\nBiAXeFBEUvxxTTmfRWooi+5o+TRC1//qcQPWRhdUWZxTDnLrkOO+RP0v8HeVUjNEm0H+Ef0SqC7L\nbWirmO/831tred2WwMMi8jDaAdsHSqnrql1bALv/xVKG9jVQCqC0ifyrorcmnFTbAYOIfIzudOeL\n3qnjXaXU7GrH26LNaXP8QQEN4V70g9IC+BHdyIWg9zefi36hNEPLpaU/DdCm+yUiYvMPev5RS9mc\nMxwj08ZoDex6pdRKEbkZaIfufBzbGBSgZ286oc2S89HyDEavW3xARAaiB5c9qLK6SkcvfXP468Zs\nTGpE9JK+2WhHhwX+Ov8esEQp9aWIeIHuIjIn0IETqXSqZdb5M0gNz8mbwKdop7RKRA6gZ5Pb4F8m\n6cd8Tk6BY+SchlYyXYoe2KzzPxPz0DKFqvefWd/9iMgbaId8Wehlum/5O3tTReRXwDC0xWtutfYi\nwHr0zP0M9PszEz3o/Bi4TURuB75FO7j/u/+cSCBYRJxKqTKl1BKqJnAuKI6RfTP/LOa3wKf++oVo\nq4Hu6CUk1ZcOmLI/Q9Tw7myMluu/lFJ7/HHmARehB1lbuIDakuP0Ld5XSr1WLU4KetAY6E8H5LMJ\n3SY3QitmfkIrEveiFVj/FpG/oQemMVS11cOAtSKS4bfomXrWbrCBICLx6Oc3BMgTkVf8StFnlfan\nhIh8CoxFK+7AlPNZoYayeFkp9RkwT2mH1Qno5Tw/1PBevLDKQillfqp90BYj31T7v93/fTN6nW4y\neu/uhegXcFe0hdBctKnjQPQs+SK0suVjwFXDdV5HW6BsR3cajj2+vdrvSeiZSLv/uguBpcC91eJ8\nhe40fATEH5NWGFpJc+w1Lgde9f9OBV5E+z4AiAOeAArR5rdd/eEW/7cd+D1656ZAetuAdP/v6/x5\n2oFWSDnqu2zPcD2JBkL8v6U2MvWHdUF3ULrVkKagTZm/rha2GO0kDnSn8TN0J+YJtLO+/2/v3MOt\nqss8/nmBAEFUzLISxQuYWt4iMEnxCqE5Taml6XibrpiWSlNe5qEsHzO76JgOojVTZqNmWqiT1dOE\n1xARyxuiw4ApalAShFKC+M4f399iL7f7HA7n7L322nu/n+fZz9l7rbXXOuv7rv1bv/X7vZema1HG\nV3ad1lj+z8B3cnr+O3Bcbv3B6IH/TTW+29HXfJ3t013bk7UxOwO3AiOqvhu/k97rfAUKa30j6qQ8\njGaOZgHHV+kf17vOcy80I71p+vxt4Nu59aNQktWju/j+LulaHJA+/xA4Kr0fDVyb7HApsFmzz7dM\nr+60J913kdfoDcDeoX1DbdHlvRPon/6+K7UJQ6u+2/ZtyQb02QYNFK1I19zItDy7hgcDFwLn5fb3\nB5S4naTJXWnZiZnenfTKafWFXBtwLDAD5WXKX4cHk57jeG3/PHTug/YbY4u07IOoylCtfXaULZr+\nD8SrQYbVaOB5wOOpgzE6ty7rTB+F8r5kN8PJwN3p80DUiRyEZhfmU+nwWO47s1G8/2XpOG/M/w/N\n1qFOWhqacZmMwrxmI9e1I3Lru9P0rty+BqO476NIHcAax5uVGqFL0Uz9trl1w5qtR1lfKI77MjQY\nOhV4a1reL2efU4Bb0/vNUiP+g9w+hqDBzHdTY8CmU675PtphD9Sx/ClweNW6Df5OqHSYjgdu7OY4\nHf07QRMDl6KBppNJg/o9bY9QRbsZKAfO29DM0ciqY7T19Y68IX6EQkX6Va3L7nOTgF/mlo8BFlVp\n9JXU5ryhi338GA0UXIYmYnbJbdNxg4HpGj0QuBz4OZqFHpJbt0Htc+3EQakt6F99jNC+x7Y4CPVL\nPpSWDcit3+C9M7fNueQGIquO05JtSWofJ6HBk+8C+1Wt706fa9LnQcg7azBwHJqcXX+9p787UOm7\nTEdVRYfmjjO82Vo0+BrMdL4MDZ5O7ELn04Er0/s3o3LhX67aZgYKNat1rI7VuRd22Qfltzo5fc7a\n3A3aIi0bhjy5tqJqwKbTbBE5W9oEM9vJXlu9YxyaFfoAavT/kFvn6e/9wFsAXJng5yI3+ze7+xp3\nXwiscfc5yAX00Nzx+qXvnJAWrUE/shfWH8R9ZT3PsWiSplu4fvVHoFLdT6GbwTw0I0Za352mmyd3\nO1x5gJ4D3ubJBTp3vOz3eAyKWVwLTHVVWSF9f1X9z7Q1SfbZLL0fjmbsl6E4zregBhxkoiz87XHU\n4cFVUvIxlDRxeFq2Gj10jvaqpFqdcM33hhp2mIJcQX8AHGRmH0/rjB78Ttx9nSmn0VTkTVh9vI78\nnWTXqJllIauTkYfdl1Bb/+VsU7rXeYt0rzgGlb9d58rgvwi59WIqr91213umYXq/NercjwQOoFLV\noJq55OLO3X0esKmlksBJo2epxKDn49KzvycBD6GwiVPdfUFuf6WKLW8Uee3R9Xoa8uy9Gg28fL7G\n17rU3iuh0l+nduh0aN8FZradVSpW7ok0egcVG2TtBz25d7r7qyms6INUwrHyx2uptqRKnyPQfehx\n1O+bZmbjs203oM+WSZ+X3f3R1P+7DlW5yqrhZaHKi4Ez0MD3i2jQ6qXccf7SmLNtHknnwakP/T50\nz38KhQdPMbP1zxzpGuuP+niWli1L229tZsPSNvug/G3/UeN4HalzT0i2GJjeZ32MbVD/4YD02aFn\ntkjLVqFKb69Lmt1xtmj2aE+8+vZCgylL0ehg5i4+CHlgvL/G9tWzd/cD+6T3mwDXA5OqthmHQl/e\n2ezzbYKm02tpiBJwZa7JG6Up8A/IlfRi4JS0rKVd5JptHzTLvzS3zb9SFRaR3u+AQlN2T593Rp39\nsbltPokSTp9FxeW8ZlhSJ7+6sMMo4LncNgciV9DXeXF18TuZnD6fjnJhDUfu50d2oh3QjNAMFOpz\nc275Fmj2b6/0eQTKUfM69/saOv8EPVh9Le17OLB10v+QZp9zgRq+Ia0bikIY9sitq3abXgjsn/v8\n38Cxuc9j0Ez990gzqtX76MRXN9oPAXbLfT4aVQSr5U1YS/uPpvcnojCjbdDgTXY/7ah2ooe2sKTX\nMhRyflFaPhSFYg0Clld9pyf3zqxtORd5rQxFyWAPyY7b7HPvhT6zcvq8Cdght91lwDEboc/YquMc\nlpaPaNS5lPnVzXVY7Zl2a/a7r9L5IDSQkoWgHQJcAuycPn8NOBXd606gkgKhJa7DJtvia7l1g5An\n10Q0sZx5YPXEFqNy23wJ9S2OI3krdWL7HJ4tLUwaeT8VONjd90dVbqa4apNPADYxs6vM7H4z+4SZ\njXCNSL7BlDF9c/Qg9E9pl0NQwt1lZraVmV1iZg+ghIq/c/dHiz/LYqmh6Qgz+3RuxLc/Sth5D8qB\nQNK0XzeargaWp+9PQgMt44EdSVWjvA0roDSCLuxzqrs/BfyPmV1jKgf6GeDPZjYkd83viZIkPglk\n5cwHoVmmJWmbD6NBsPeiQcbl8JrZq4Au7TAFDb6sMLOsbN/bge1QyAo9bHs2R5XQPoYerN6NBjc7\n0Q6rUYL1j6LErP0B3H0FCtd6OX1egpIuHg4b1Hk18ga6CnWy7kKhHE+iELp2oysN17r7n10zaSup\nlJrE3d3EIWa2BUpyfkxun4tRknpMlfpmoao3myMvFzz1KjucrrRf7e7zTQUHQDOn87Pf9wa0fwpY\nnbyHjkMhdNcBY0lVbDqwnegJm6KJhHe5+8HARDM7HPibuz+f+o1/NbN9QbPb6d7Zv5t75zBgkSnx\n9pmoBPosZIuV0FK/g7w+B1HRZ7m7L7ZKCdsxKJchPdTnKTPbxsz+08zmIA/E2d6B5cITXV2Hevo3\nO87M5qG2dCms13mAmY1G2i+nUqp9ALC9uz9pqojzReCzqI++D6kQRQtdh0VSbYtJZnZ48mwZnNY/\nhgbL94DXXPNd2WI7d19oZpua2SeQ58p+wPtRzqKObJ9jsKXEmNmhZnaBmX2gxjpLN8c3UilP/R1g\nb1PIyjxUSvo2VNFjP+BMUzb0x1A+l5EoXv1tZnYWGoHcxN1/j26Uv0Czd/u4+7818lyLopea7o5m\ngrNBkXeiQZJsAOW9KJN2V5oOcfcH0v7mA+PcfUd3P9rdb2vQqbYkvbWPme2BYqbXobjPo1HOjylm\n9g7UCT8HzWbfAhxgZscir4kV7v48CgGYj2bqRrr7se4+q5HnW1Z6aYe90MP8Daj8589QwsTZwFgz\nG0X3v5NN3P1B9BB7MbCnu4939497ruRqO9GdzrA+zGEG8rxYhQYBM56gUjIV4JcobGs74FG61nmg\nuz/pcuH9KvKAHOPu01px0Le3GqYB8qwk6APAGFP4Gma2N5rpm4Y6mdcBA8zsYjO7BHnS3Zq+uwDN\nXo9KbfpNjTjPMtIX7dP6tWa2FRqQfSKt26D2rooXA1DC553dfYK7n+TutzfwdEuNmU00s4vM7Kgu\nNhmE2tas338lChvcPrfNLHTvxN1fMbOJaPCwu3vnn9BD8TRgvLuPc/dP5/o8paAP+owEhYCb2QTU\n93sk2yc90+dPaED7+NSffl2IS7vQB513Sp//gu5dNwJnmMoKT0Th3WcjLe8ATk7Lj0QhXKA25Gzk\nST7G3U9z9/l1PcEWope2OAANEh4NzHSFGD+M+tK7Js2X0rUtsjDN1agf8h53H+Hux7v73LqfZIsQ\npZ9LipmdhGYjfw18LHVObks3QEszb9ugMnq7ogt8IRppHIMa/SOA37j7i2Y2Hfi+u081s708F6ts\nZlNRgr9nUOcF4BV3/2UxZ1sMfdB0Fer0ZeUIVyHXxCzGeC4wxhWPmx2rlqbZDHRQgz7aZyfkvjzM\n3W9I+9sSufR/y8y280os6EIzOwOFGj2BHgaymY/HijrfstIHO6wEDnX3801x0zukfZwIvJRmO/Z2\nlevLjlXrd7LG3X9UzNk2j+50zm+XXbdptu99yBMFVDXrJCo5EuYCH3b3p5POG2rjcZXAfroBp1cI\nfdTQ0Gw0aBb0PDSbtxoNuk5Og4rZsc5BGq4AzskGplz5Gf7aqHMsK3XQPuMobba+v/Eo3Wt/dlr8\nirvfSoDJG+U8NEj1OZPn4Y9Tm90vzSSPQg9N26Lf/MOo/d4R5WsCtSkXUsl3dg8Kocna7Jr3TuBl\ndy9zWeZ66fMR4IFcP+5ueqbPWne/saEnWQL6qPNI4H+zAVOTh/LpqLLQN1Hy9uye9rSZrUOh3g+h\n0C6Av7v7xQWcaunpgy12Q8+QQ6gMohyGBmDmocm0bXPXfLUtvgPrvVdmF3KyLUAMtjSR1Dl5P3Kz\nehi4wCsJw45EeRBuNrPJKBniSjTzMBC5j69Co727pO8sRzP4O6IcK0+j8oa/QwmIfm1mA919dW5m\n6VVXCMaJ+f+tVV3uGqTpMjSLn7Ea3VT7u5JLrskdu0tNg4bZZym6WTxEJZEX6Nq/M9nppSr7PJiO\n15E0sO3ZGsCVVHtOOtYRKOQId/9bu7Y9teitzqmdXlO1uzuBz+U+zwQ+YWaT3P1XqIN0exoQ22Ab\n3yo0UEPPrjV3vzcd50BTyOgtScMs7GWdK1nf6Q081dLR4OsXU2LticCnTQmH9wRmJS+CbrVvp3ai\nJ5jCWI5EubJGo3wKt7j7s0ibme5+iZk9hHJlvYC83Qai2evnkCfi9sC9KBzL0UMUAO4+08y+b/JC\n3BqY6+5rki28q3tnGWzRIH1eRYmvMbOdga3c/bR0rW4NPJIeXkuvT70o4joEDWKb2buAq7OB16p7\n2u2oqlP+O22jc09okC3WolxbjibR7kWVuK5x96tzx+7WFsFriTCiAjGzYWY22cy2TYsGoyRaf0Xu\nXKPTdm9GHZsd03b/hxIP7QWQm/EZhtwZx6SRyhUov8HzaTbpQuAzpjjRaejHsibt41Vvg7i5gjQd\nR2VmAxQ/Pp+q30+7aFpPCrLPWOBZd18E3GFmN5nZfWgWamZuBrpj7VP078Tk+nuFmT2GErQuzv6X\ndrZDHXXOBnDfkv72Qzpulh0rPYB+Ffi4mT2MKuv8NjeA0JI6F6WhV/KDbGVmFyD9LkEd183TNuu8\nBUOrekuB2meaHoseFmYib9xDUZ6AjtO+mhq22AXlvpqJBk7HofAVkBfF5un9bDQBMRbWV0AEDZIv\nAfZIA7JL0/6eS8fbzcwuTvu5Bw2eZdV11pWtLSlIn31J+gDnA4eZ2R0oLG4/9NBaSn3qRYHX4bOm\n0M6jTbkmZ6dt78v+l1a9p9WLgmzxXmCRu1/u7qe4+/dcIYGPm9nY7H/pdFtsLOHZUhBm9iFUonAp\n8LCZ3eDud5nZlag6xGnI7f4+lOjwbuAbZvYSGkCZgxLgboFc6iag0carkavYKekBczjp5uDut5vZ\novT+icJOtiAK1vSPuUN/Dz3cry3gNFuWgu3zfDrsKeiGs9TdOz4kCAq3w7LcoecBV7r7IwWcZtNp\ngM77A1ea2QyX+/RzpsS3v0n7mO7uvzCzP6BJvQW0OAVrOAcNrryCwgf37JRrtRYFa/8AajtWo3LD\nt7j7wiLPt8xU2eIRM/shChO82FMIi5ldTyWkagmVBJbLzOxpYF9T4tppyOPzPPRQdj1wlJktQJ5I\nWWjGZmhme/ey3zsL1icLP16AvMRv7pRrtWidXclXt0SJhi/1Ds63Uk2BtlhBuuZNiXI9DSZ2lfcl\n6AEx2FJnzGxX4B9RubifuPtsM9sUdUbOdrncnoBmJA9IHigvmdmLqKMywBXz/Csz+1va120ojGUE\nsAYlMTrLFSuOmZ2KYvf/BbgchVMA7THIUkJNS5X4rdmUxD6/A3D3F1GMasdRMjvMpk3jdQvU+Ux3\nX5WOOQHFpb8CPAj8zN2fSbNRj9NilETDn7p7Njh4XTFn3nxKov1NabLi2uLOvHxshC0ucvcDUNU8\nS95rY6kkaX4GmGDKTfY0CgV4EfXxM1tkbfa5aFLiQuAiUnJRd7+PnBdBGSiBPl9HXsy4+/nFnHXx\nlETnBQDuflUxZ11OSmCLi6jY4jX5t4I+4CWoP90uLzSTMxdVQ5mCEr2NQlnK56C8Elmt8iXATrnv\nnoIqcOzQxb7PBb5Ztaxfrfft9ApNy/0K+5TjFXZoW537p79DgKHNPv/Qb6hELAAAA0BJREFUsLVf\noX15Xr21BQpfHgj8FlX/AXgr8rj9bPr8SeC7VcfLt9n9m33+oU85XqFzeV5hi/Z9hWdLfVkIfMRV\nUhMzG48u/IWmTNDvcPdn0rYPAh8EvpU+L0LxzsOBxaaEWwNRPPN7gLejUnLr8Vy8nLdv7FxoWm7C\nPuUg7FAMReuc5RtaTfsQGjaP0L489MoWrlCLzwML3P23AO7+vJndBJxlZnsA76RiN9I2+Ta7FXLh\nhD7FEDqXh7BFmxIJcuvLH919cfpRgDoib0rv7wQ+lNv2FpR8CwB3vxMlK/qomX0hXfivokoAS4Cp\nrgSgnUZoWm7CPuUg7FAMoXPfCQ2bR2hfHjbWFuMBTJVwxgHnm9m7zSyr0nQ78FkUAjDFW7/UcOhT\nDKFzeQhbtCnh2VJH3D2rAvGymY1GP5Kb0+rrgSvMbBNXffK1KBkZZjYU1S4/CGWQnmdmw1zxzscV\nexblIjQtN2GfchB2KIbQue+Ehs0jtC8PvbBFVtHtfahi1vYoUfHvzWyQq1Lc/PRqeUKfYgidy0PY\non3JYr+COmNmXwEGuvvZuWXTUZbnB4FPAV9w9zlp3STgAXdf3oz/txUITctN2KcchB2KIXTuO6Fh\n8wjty0MPbXG2K1nmkcDfgXvdfWVT/uGCCX2KIXQuD2GL9iIGWxqAqXTZdOBT7r4ijVAuREmOvgjs\nDfwcuNYr9c6DbghNy03YpxyEHYohdO47oWHzCO3Lw0bY4kdpRrujCH2KIXQuD2GL9iMGWxqAmX0L\nOBFlht4N+C/gEndf0dR/rIUJTctN2KcchB2KIXTuO6Fh8wjty0PYontCn2IInctD2KL9iJwtdcbM\n+gEvADcB1wL3u/ua5v5XrU1oWm7CPuUg7FAMoXPfCQ2bR2hfHsIW3RP6FEPoXB7CFu1JeLYEQRAE\nQRAEQRAEQRDUkSj9HARBEARBEARBEARBUEdisCUIgiAIgiAIgiAIgqCOxGBLEARBEARBEARBEARB\nHYnBliAIgiAIgiAIgiAIgjoSgy1BEARBEARBEARBEAR1JAZbgiAIgiAIgiAIgiAI6kgMtgRBEARB\nEARBEARBENSRGGwJgiAIgiAIgiAIgiCoI/8PiywnB0qWywMAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x137db8f28>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "[[<matplotlib.figure.Figure at 0x137db8f28>]]" ] }, "execution_count": 143, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Create a cerebro entity\n", "cerebro = bt.Cerebro(stdstats=False)\n", " \n", "# Add a Stratey\n", "cerebro.addstrategy(KDJMACDStrategy)\n", "\n", "# Pass it to the backtrader datafeed and add it to the cerebro\n", "data = bt.feeds.PandasData(dataname=bs_a.k_data,\n", " fromdate=datetime.datetime(2019, 5, 1),\n", " todate=datetime.datetime(2020, 4, 12),)\n", "\n", "cerebro.adddata(data)\n", "\n", "cerebro.broker.setcash(100000.0)\n", "cerebro.broker.setcommission(0.0017)\n", "\n", "print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue())\n", "# Run over everything\n", "cerebro.run()\n", "print('Final Portfolio Value: %.2f' % cerebro.broker.getvalue())\n", "return_all = cerebro.broker.getvalue()/100000.0\n", "print('Total ROI: {0}%, Annual ROI{1}%'.format(\n", " round((return_all - 1.0) * 100, 2),\n", " round((pow(return_all, 1.0 / 10) - 1.0) * 100, 2)\n", " ))\n", "\n", "# Plot the result\n", "cerebro.plot(style='bar')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 三、查看数据" ] }, { "cell_type": "code", "execution_count": 145, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>code</th>\n", " <th>open</th>\n", " <th>high</th>\n", " <th>low</th>\n", " <th>close</th>\n", " <th>preclose</th>\n", " <th>volume</th>\n", " <th>amount</th>\n", " <th>adjustflag</th>\n", " <th>turn</th>\n", " <th>tradestatus</th>\n", " <th>pctChg</th>\n", " <th>peTTM</th>\n", " <th>pbMRQ</th>\n", " <th>psTTM</th>\n", " <th>pcfNcfTTM</th>\n", " <th>isST</th>\n", " </tr>\n", " <tr>\n", " <th>date</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2019-01-02</th>\n", " <td>sh.000001</td>\n", " <td>2497.8800</td>\n", " <td>2500.2780</td>\n", " <td>2456.4230</td>\n", " <td>2465.2910</td>\n", " <td>2493.8960</td>\n", " <td>1.099320e+10</td>\n", " <td>97592573952.0000</td>\n", " <td>3</td>\n", " <td>0.328717</td>\n", " <td>1</td>\n", " <td>-1.147000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-03</th>\n", " <td>sh.000001</td>\n", " <td>2461.7820</td>\n", " <td>2488.4790</td>\n", " <td>2455.9250</td>\n", " <td>2464.3620</td>\n", " <td>2465.2910</td>\n", " <td>1.243975e+10</td>\n", " <td>106922790912.0000</td>\n", " <td>3</td>\n", " <td>0.371963</td>\n", " <td>1</td>\n", " <td>-0.037700</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-04</th>\n", " <td>sh.000001</td>\n", " <td>2446.0190</td>\n", " <td>2515.3160</td>\n", " <td>2440.9060</td>\n", " <td>2514.8680</td>\n", " <td>2464.3620</td>\n", " <td>1.688777e+10</td>\n", " <td>139298676736.0000</td>\n", " <td>3</td>\n", " <td>0.504935</td>\n", " <td>1</td>\n", " <td>2.049400</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-07</th>\n", " <td>sh.000001</td>\n", " <td>2528.6980</td>\n", " <td>2536.9770</td>\n", " <td>2515.5080</td>\n", " <td>2533.0880</td>\n", " <td>2514.8680</td>\n", " <td>1.773050e+10</td>\n", " <td>145513242624.0000</td>\n", " <td>3</td>\n", " <td>0.530082</td>\n", " <td>1</td>\n", " <td>0.724500</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-08</th>\n", " <td>sh.000001</td>\n", " <td>2530.3000</td>\n", " <td>2531.3450</td>\n", " <td>2520.1640</td>\n", " <td>2526.4620</td>\n", " <td>2533.0880</td>\n", " <td>1.580992e+10</td>\n", " <td>123379040256.0000</td>\n", " <td>3</td>\n", " <td>0.472663</td>\n", " <td>1</td>\n", " <td>-0.261600</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-09</th>\n", " <td>sh.000001</td>\n", " <td>2536.4170</td>\n", " <td>2574.4070</td>\n", " <td>2536.1570</td>\n", " <td>2544.3440</td>\n", " <td>2526.4620</td>\n", " <td>1.918879e+10</td>\n", " <td>160812527616.0000</td>\n", " <td>3</td>\n", " <td>0.573680</td>\n", " <td>1</td>\n", " <td>0.707800</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-10</th>\n", " <td>sh.000001</td>\n", " <td>2543.8530</td>\n", " <td>2551.8250</td>\n", " <td>2531.6630</td>\n", " <td>2535.0980</td>\n", " <td>2544.3440</td>\n", " <td>1.598743e+10</td>\n", " <td>132692332544.0000</td>\n", " <td>3</td>\n", " <td>0.477903</td>\n", " <td>1</td>\n", " <td>-0.363400</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-11</th>\n", " <td>sh.000001</td>\n", " <td>2539.5480</td>\n", " <td>2554.7860</td>\n", " <td>2533.3580</td>\n", " <td>2553.8310</td>\n", " <td>2535.0980</td>\n", " <td>1.494441e+10</td>\n", " <td>122375663616.0000</td>\n", " <td>3</td>\n", " <td>0.446693</td>\n", " <td>1</td>\n", " <td>0.739000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-14</th>\n", " <td>sh.000001</td>\n", " <td>2553.3280</td>\n", " <td>2556.2930</td>\n", " <td>2533.0100</td>\n", " <td>2535.7650</td>\n", " <td>2553.8310</td>\n", " <td>1.448255e+10</td>\n", " <td>116243415040.0000</td>\n", " <td>3</td>\n", " <td>0.432811</td>\n", " <td>1</td>\n", " <td>-0.707400</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-15</th>\n", " <td>sh.000001</td>\n", " <td>2537.3690</td>\n", " <td>2571.5010</td>\n", " <td>2532.4330</td>\n", " <td>2570.3440</td>\n", " <td>2535.7650</td>\n", " <td>1.602655e+10</td>\n", " <td>137374982144.0000</td>\n", " <td>3</td>\n", " <td>0.478956</td>\n", " <td>1</td>\n", " <td>1.363700</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-16</th>\n", " <td>sh.000001</td>\n", " <td>2569.0690</td>\n", " <td>2574.2360</td>\n", " <td>2563.0060</td>\n", " <td>2570.4220</td>\n", " <td>2570.3440</td>\n", " <td>1.493015e+10</td>\n", " <td>126876315648.0000</td>\n", " <td>3</td>\n", " <td>0.446119</td>\n", " <td>1</td>\n", " <td>0.003000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-17</th>\n", " <td>sh.000001</td>\n", " <td>2573.5750</td>\n", " <td>2582.5560</td>\n", " <td>2557.7110</td>\n", " <td>2559.6370</td>\n", " <td>2570.4220</td>\n", " <td>1.624681e+10</td>\n", " <td>127546126336.0000</td>\n", " <td>3</td>\n", " <td>0.485445</td>\n", " <td>1</td>\n", " <td>-0.419600</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-18</th>\n", " <td>sh.000001</td>\n", " <td>2567.7380</td>\n", " <td>2598.8830</td>\n", " <td>2565.9040</td>\n", " <td>2596.0050</td>\n", " <td>2559.6370</td>\n", " <td>1.907672e+10</td>\n", " <td>151270432768.0000</td>\n", " <td>3</td>\n", " <td>0.569924</td>\n", " <td>1</td>\n", " <td>1.420800</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-21</th>\n", " <td>sh.000001</td>\n", " <td>2599.0570</td>\n", " <td>2618.9800</td>\n", " <td>2599.0570</td>\n", " <td>2610.5090</td>\n", " <td>2596.0050</td>\n", " <td>1.634251e+10</td>\n", " <td>139915485184.0000</td>\n", " <td>3</td>\n", " <td>0.488057</td>\n", " <td>1</td>\n", " <td>0.558700</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-22</th>\n", " <td>sh.000001</td>\n", " <td>2609.6420</td>\n", " <td>2609.6420</td>\n", " <td>2573.0610</td>\n", " <td>2579.7040</td>\n", " <td>2610.5090</td>\n", " <td>1.525378e+10</td>\n", " <td>122995437568.0000</td>\n", " <td>3</td>\n", " <td>0.455629</td>\n", " <td>1</td>\n", " <td>-1.180000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-23</th>\n", " <td>sh.000001</td>\n", " <td>2575.2580</td>\n", " <td>2589.5120</td>\n", " <td>2572.4050</td>\n", " <td>2581.0040</td>\n", " <td>2579.7040</td>\n", " <td>1.314268e+10</td>\n", " <td>105101324288.0000</td>\n", " <td>3</td>\n", " <td>0.392285</td>\n", " <td>1</td>\n", " <td>0.050400</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-24</th>\n", " <td>sh.000001</td>\n", " <td>2584.6480</td>\n", " <td>2597.2890</td>\n", " <td>2569.7000</td>\n", " <td>2591.6930</td>\n", " <td>2581.0040</td>\n", " <td>1.540420e+10</td>\n", " <td>131575042048.0000</td>\n", " <td>3</td>\n", " <td>0.459787</td>\n", " <td>1</td>\n", " <td>0.414100</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-25</th>\n", " <td>sh.000001</td>\n", " <td>2596.2610</td>\n", " <td>2617.0020</td>\n", " <td>2595.6290</td>\n", " <td>2601.7230</td>\n", " <td>2591.6930</td>\n", " <td>1.593940e+10</td>\n", " <td>135415169024.0000</td>\n", " <td>3</td>\n", " <td>0.475734</td>\n", " <td>1</td>\n", " <td>0.387000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-28</th>\n", " <td>sh.000001</td>\n", " <td>2615.7110</td>\n", " <td>2630.3180</td>\n", " <td>2591.1000</td>\n", " <td>2596.9760</td>\n", " <td>2601.7230</td>\n", " <td>1.469818e+10</td>\n", " <td>127465635840.0000</td>\n", " <td>3</td>\n", " <td>0.438618</td>\n", " <td>1</td>\n", " <td>-0.182400</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-29</th>\n", " <td>sh.000001</td>\n", " <td>2592.3540</td>\n", " <td>2601.7350</td>\n", " <td>2559.9820</td>\n", " <td>2594.2530</td>\n", " <td>2596.9760</td>\n", " <td>1.555811e+10</td>\n", " <td>126749048832.0000</td>\n", " <td>3</td>\n", " <td>0.464280</td>\n", " <td>1</td>\n", " <td>-0.104900</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-30</th>\n", " <td>sh.000001</td>\n", " <td>2584.7450</td>\n", " <td>2598.8150</td>\n", " <td>2575.4090</td>\n", " <td>2575.5750</td>\n", " <td>2594.2530</td>\n", " <td>1.205026e+10</td>\n", " <td>101103927296.0000</td>\n", " <td>3</td>\n", " <td>0.359597</td>\n", " <td>1</td>\n", " <td>-0.720000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-01-31</th>\n", " <td>sh.000001</td>\n", " <td>2581.3310</td>\n", " <td>2606.6280</td>\n", " <td>2571.5780</td>\n", " <td>2584.5720</td>\n", " <td>2575.5750</td>\n", " <td>1.543039e+10</td>\n", " <td>126013247488.0000</td>\n", " <td>3</td>\n", " <td>0.460461</td>\n", " <td>1</td>\n", " <td>0.349300</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-02-01</th>\n", " <td>sh.000001</td>\n", " <td>2597.7770</td>\n", " <td>2618.4760</td>\n", " <td>2590.5540</td>\n", " <td>2618.2320</td>\n", " <td>2584.5720</td>\n", " <td>1.319868e+10</td>\n", " <td>111522627584.0000</td>\n", " <td>3</td>\n", " <td>0.393684</td>\n", " <td>1</td>\n", " <td>1.302300</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-02-11</th>\n", " <td>sh.000001</td>\n", " <td>2613.1740</td>\n", " <td>2654.0960</td>\n", " <td>2613.1740</td>\n", " <td>2653.8960</td>\n", " <td>2618.2320</td>\n", " <td>1.548989e+10</td>\n", " <td>137307189248.0000</td>\n", " <td>3</td>\n", " <td>0.461971</td>\n", " <td>1</td>\n", " <td>1.362100</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-02-12</th>\n", " <td>sh.000001</td>\n", " <td>2654.0340</td>\n", " <td>2674.4770</td>\n", " <td>2648.8290</td>\n", " <td>2671.8930</td>\n", " <td>2653.8960</td>\n", " <td>1.841012e+10</td>\n", " <td>156741541888.0000</td>\n", " <td>3</td>\n", " <td>0.548622</td>\n", " <td>1</td>\n", " <td>0.678100</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-02-13</th>\n", " <td>sh.000001</td>\n", " <td>2674.5190</td>\n", " <td>2727.0750</td>\n", " <td>2666.5220</td>\n", " <td>2721.0680</td>\n", " <td>2671.8930</td>\n", " <td>2.437940e+10</td>\n", " <td>207125315584.0000</td>\n", " <td>3</td>\n", " <td>0.726602</td>\n", " <td>1</td>\n", " <td>1.840500</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-02-14</th>\n", " <td>sh.000001</td>\n", " <td>2715.5350</td>\n", " <td>2729.4550</td>\n", " <td>2707.4860</td>\n", " <td>2719.6990</td>\n", " <td>2721.0680</td>\n", " <td>1.970373e+10</td>\n", " <td>170330836992.0000</td>\n", " <td>3</td>\n", " <td>0.587201</td>\n", " <td>1</td>\n", " <td>-0.050300</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-02-15</th>\n", " <td>sh.000001</td>\n", " <td>2712.7860</td>\n", " <td>2715.6320</td>\n", " <td>2679.7840</td>\n", " <td>2682.3850</td>\n", " <td>2719.6990</td>\n", " <td>1.960043e+10</td>\n", " <td>169823260672.0000</td>\n", " <td>3</td>\n", " <td>0.584028</td>\n", " <td>1</td>\n", " <td>-1.372000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-02-18</th>\n", " <td>sh.000001</td>\n", " <td>2699.8170</td>\n", " <td>2754.3560</td>\n", " <td>2699.8170</td>\n", " <td>2754.3560</td>\n", " <td>2682.3850</td>\n", " <td>2.604360e+10</td>\n", " <td>224184078336.0000</td>\n", " <td>3</td>\n", " <td>0.776072</td>\n", " <td>1</td>\n", " <td>2.683100</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2019-02-19</th>\n", " <td>sh.000001</td>\n", " <td>2759.4960</td>\n", " <td>2780.7830</td>\n", " <td>2737.5860</td>\n", " <td>2755.6450</td>\n", " <td>2754.3560</td>\n", " <td>2.880463e+10</td>\n", " <td>247121051648.0000</td>\n", " <td>3</td>\n", " <td>0.858027</td>\n", " <td>1</td>\n", " <td>0.046800</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>2020-07-22</th>\n", " <td>sh.000001</td>\n", " <td>3315.1816</td>\n", " <td>3381.9757</td>\n", " <td>3311.7862</td>\n", " <td>3333.1635</td>\n", " <td>3320.8947</td>\n", " <td>3.933353e+10</td>\n", " <td>540577040593.6000</td>\n", " <td>3</td>\n", " <td>1.090166</td>\n", " <td>1</td>\n", " <td>0.369443</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-07-23</th>\n", " <td>sh.000001</td>\n", " <td>3306.1489</td>\n", " <td>3336.3002</td>\n", " <td>3257.8269</td>\n", " <td>3325.1102</td>\n", " <td>3333.1635</td>\n", " <td>4.070425e+10</td>\n", " <td>546887089707.7000</td>\n", " <td>3</td>\n", " <td>1.151218</td>\n", " <td>1</td>\n", " <td>-0.241611</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-07-24</th>\n", " <td>sh.000001</td>\n", " <td>3310.6449</td>\n", " <td>3319.1268</td>\n", " <td>3184.9645</td>\n", " <td>3196.7684</td>\n", " <td>3325.1102</td>\n", " <td>4.270540e+10</td>\n", " <td>584311865016.6000</td>\n", " <td>3</td>\n", " <td>1.207739</td>\n", " <td>1</td>\n", " <td>-3.859776</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-07-27</th>\n", " <td>sh.000001</td>\n", " <td>3210.3863</td>\n", " <td>3221.9846</td>\n", " <td>3174.6583</td>\n", " <td>3205.2268</td>\n", " <td>3196.7684</td>\n", " <td>2.993190e+10</td>\n", " <td>402231919288.9000</td>\n", " <td>3</td>\n", " <td>0.829119</td>\n", " <td>1</td>\n", " <td>0.264592</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-07-28</th>\n", " <td>sh.000001</td>\n", " <td>3226.1329</td>\n", " <td>3245.2967</td>\n", " <td>3208.4939</td>\n", " <td>3227.9604</td>\n", " <td>3205.2268</td>\n", " <td>2.893779e+10</td>\n", " <td>389873696214.7000</td>\n", " <td>3</td>\n", " <td>0.817955</td>\n", " <td>1</td>\n", " <td>0.709267</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-07-29</th>\n", " <td>sh.000001</td>\n", " <td>3221.9883</td>\n", " <td>3294.5521</td>\n", " <td>3209.9902</td>\n", " <td>3294.5521</td>\n", " <td>3227.9604</td>\n", " <td>3.249241e+10</td>\n", " <td>453094399515.5000</td>\n", " <td>3</td>\n", " <td>0.918285</td>\n", " <td>1</td>\n", " <td>2.062965</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-07-30</th>\n", " <td>sh.000001</td>\n", " <td>3299.5718</td>\n", " <td>3312.4508</td>\n", " <td>3282.1617</td>\n", " <td>3286.8220</td>\n", " <td>3294.5521</td>\n", " <td>3.407041e+10</td>\n", " <td>476974005608.8000</td>\n", " <td>3</td>\n", " <td>0.962841</td>\n", " <td>1</td>\n", " <td>-0.234633</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-07-31</th>\n", " <td>sh.000001</td>\n", " <td>3280.7959</td>\n", " <td>3333.7859</td>\n", " <td>3261.6135</td>\n", " <td>3310.0065</td>\n", " <td>3286.8220</td>\n", " <td>3.537590e+10</td>\n", " <td>495778040702.2000</td>\n", " <td>3</td>\n", " <td>0.999587</td>\n", " <td>1</td>\n", " <td>0.705377</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-03</th>\n", " <td>sh.000001</td>\n", " <td>3332.1826</td>\n", " <td>3368.1028</td>\n", " <td>3327.6773</td>\n", " <td>3367.9658</td>\n", " <td>3310.0065</td>\n", " <td>4.074609e+10</td>\n", " <td>572430759824.7000</td>\n", " <td>3</td>\n", " <td>1.127570</td>\n", " <td>1</td>\n", " <td>1.751033</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-04</th>\n", " <td>sh.000001</td>\n", " <td>3376.4402</td>\n", " <td>3391.0743</td>\n", " <td>3352.5017</td>\n", " <td>3371.6875</td>\n", " <td>3367.9658</td>\n", " <td>4.423286e+10</td>\n", " <td>604942141521.3000</td>\n", " <td>3</td>\n", " <td>1.249419</td>\n", " <td>1</td>\n", " <td>0.110503</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-05</th>\n", " <td>sh.000001</td>\n", " <td>3363.3324</td>\n", " <td>3383.6365</td>\n", " <td>3333.8770</td>\n", " <td>3377.5648</td>\n", " <td>3371.6875</td>\n", " <td>3.858230e+10</td>\n", " <td>526515054657.5000</td>\n", " <td>3</td>\n", " <td>1.089812</td>\n", " <td>1</td>\n", " <td>0.174313</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-06</th>\n", " <td>sh.000001</td>\n", " <td>3380.7621</td>\n", " <td>3392.7048</td>\n", " <td>3334.3341</td>\n", " <td>3386.4631</td>\n", " <td>3377.5648</td>\n", " <td>4.153025e+10</td>\n", " <td>570488248065.2000</td>\n", " <td>3</td>\n", " <td>1.172942</td>\n", " <td>1</td>\n", " <td>0.263453</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-07</th>\n", " <td>sh.000001</td>\n", " <td>3370.5878</td>\n", " <td>3374.1330</td>\n", " <td>3307.7127</td>\n", " <td>3354.0352</td>\n", " <td>3386.4631</td>\n", " <td>4.039296e+10</td>\n", " <td>561435649551.0000</td>\n", " <td>3</td>\n", " <td>1.140678</td>\n", " <td>1</td>\n", " <td>-0.957574</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-10</th>\n", " <td>sh.000001</td>\n", " <td>3341.5276</td>\n", " <td>3399.9323</td>\n", " <td>3335.0427</td>\n", " <td>3379.2524</td>\n", " <td>3354.0352</td>\n", " <td>3.813796e+10</td>\n", " <td>527083944584.7000</td>\n", " <td>3</td>\n", " <td>1.053404</td>\n", " <td>1</td>\n", " <td>0.751847</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-11</th>\n", " <td>sh.000001</td>\n", " <td>3379.4874</td>\n", " <td>3409.0589</td>\n", " <td>3336.0945</td>\n", " <td>3340.2900</td>\n", " <td>3379.2524</td>\n", " <td>4.004527e+10</td>\n", " <td>514020764101.4000</td>\n", " <td>3</td>\n", " <td>1.130021</td>\n", " <td>1</td>\n", " <td>-1.152989</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-12</th>\n", " <td>sh.000001</td>\n", " <td>3327.4929</td>\n", " <td>3335.7290</td>\n", " <td>3263.2653</td>\n", " <td>3319.2656</td>\n", " <td>3340.2900</td>\n", " <td>3.783290e+10</td>\n", " <td>480731246079.0000</td>\n", " <td>3</td>\n", " <td>1.067596</td>\n", " <td>1</td>\n", " <td>-0.629418</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-13</th>\n", " <td>sh.000001</td>\n", " <td>3328.1754</td>\n", " <td>3338.1518</td>\n", " <td>3309.4629</td>\n", " <td>3320.7261</td>\n", " <td>3319.2656</td>\n", " <td>3.242913e+10</td>\n", " <td>387162288598.3000</td>\n", " <td>3</td>\n", " <td>0.915025</td>\n", " <td>1</td>\n", " <td>0.044001</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-14</th>\n", " <td>sh.000001</td>\n", " <td>3315.6687</td>\n", " <td>3362.0267</td>\n", " <td>3302.7357</td>\n", " <td>3360.0988</td>\n", " <td>3320.7261</td>\n", " <td>3.059984e+10</td>\n", " <td>367467421740.0000</td>\n", " <td>3</td>\n", " <td>0.863395</td>\n", " <td>1</td>\n", " <td>1.185665</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-17</th>\n", " <td>sh.000001</td>\n", " <td>3373.9018</td>\n", " <td>3450.8987</td>\n", " <td>3369.3742</td>\n", " <td>3438.8010</td>\n", " <td>3360.0988</td>\n", " <td>4.345983e+10</td>\n", " <td>537425075053.0000</td>\n", " <td>3</td>\n", " <td>1.199713</td>\n", " <td>1</td>\n", " <td>2.342259</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-18</th>\n", " <td>sh.000001</td>\n", " <td>3441.9337</td>\n", " <td>3456.7206</td>\n", " <td>3432.6402</td>\n", " <td>3451.0894</td>\n", " <td>3438.8010</td>\n", " <td>3.807293e+10</td>\n", " <td>493052155326.1000</td>\n", " <td>3</td>\n", " <td>1.072958</td>\n", " <td>1</td>\n", " <td>0.357345</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-19</th>\n", " <td>sh.000001</td>\n", " <td>3444.5646</td>\n", " <td>3454.4613</td>\n", " <td>3406.1642</td>\n", " <td>3408.1288</td>\n", " <td>3451.0894</td>\n", " <td>4.057222e+10</td>\n", " <td>498262158316.3000</td>\n", " <td>3</td>\n", " <td>1.143290</td>\n", " <td>1</td>\n", " <td>-1.244842</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-20</th>\n", " <td>sh.000001</td>\n", " <td>3385.9645</td>\n", " <td>3394.5570</td>\n", " <td>3352.7767</td>\n", " <td>3363.8988</td>\n", " <td>3408.1288</td>\n", " <td>3.356010e+10</td>\n", " <td>401815550096.0000</td>\n", " <td>3</td>\n", " <td>0.945410</td>\n", " <td>1</td>\n", " <td>-1.297780</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-21</th>\n", " <td>sh.000001</td>\n", " <td>3380.2269</td>\n", " <td>3393.9175</td>\n", " <td>3358.0005</td>\n", " <td>3380.6825</td>\n", " <td>3363.8988</td>\n", " <td>2.874883e+10</td>\n", " <td>361281752664.8000</td>\n", " <td>3</td>\n", " <td>0.809851</td>\n", " <td>1</td>\n", " <td>0.498936</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-24</th>\n", " <td>sh.000001</td>\n", " <td>3391.1132</td>\n", " <td>3396.5663</td>\n", " <td>3368.0258</td>\n", " <td>3385.6383</td>\n", " <td>3380.6825</td>\n", " <td>2.662278e+10</td>\n", " <td>345683380014.8000</td>\n", " <td>3</td>\n", " <td>0.734262</td>\n", " <td>1</td>\n", " <td>0.146592</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-25</th>\n", " <td>sh.000001</td>\n", " <td>3392.8797</td>\n", " <td>3408.8697</td>\n", " <td>3364.1602</td>\n", " <td>3373.5781</td>\n", " <td>3385.6383</td>\n", " <td>2.771134e+10</td>\n", " <td>355997790768.0000</td>\n", " <td>3</td>\n", " <td>0.780096</td>\n", " <td>1</td>\n", " <td>-0.356216</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-26</th>\n", " <td>sh.000001</td>\n", " <td>3371.8083</td>\n", " <td>3382.6032</td>\n", " <td>3320.1355</td>\n", " <td>3329.7388</td>\n", " <td>3373.5781</td>\n", " <td>2.944510e+10</td>\n", " <td>381928906554.3000</td>\n", " <td>3</td>\n", " <td>0.828902</td>\n", " <td>1</td>\n", " <td>-1.299490</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-27</th>\n", " <td>sh.000001</td>\n", " <td>3333.4909</td>\n", " <td>3351.8324</td>\n", " <td>3312.9859</td>\n", " <td>3350.1128</td>\n", " <td>3329.7388</td>\n", " <td>2.370994e+10</td>\n", " <td>317153391524.5000</td>\n", " <td>3</td>\n", " <td>0.667422</td>\n", " <td>1</td>\n", " <td>0.611880</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-28</th>\n", " <td>sh.000001</td>\n", " <td>3346.2893</td>\n", " <td>3405.8768</td>\n", " <td>3339.6494</td>\n", " <td>3403.8066</td>\n", " <td>3350.1128</td>\n", " <td>2.713255e+10</td>\n", " <td>379367046371.3000</td>\n", " <td>3</td>\n", " <td>0.763806</td>\n", " <td>1</td>\n", " <td>1.602746</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-08-31</th>\n", " <td>sh.000001</td>\n", " <td>3416.5497</td>\n", " <td>3442.7363</td>\n", " <td>3395.4675</td>\n", " <td>3395.6775</td>\n", " <td>3403.8066</td>\n", " <td>3.234739e+10</td>\n", " <td>436930125416.2000</td>\n", " <td>3</td>\n", " <td>0.892028</td>\n", " <td>1</td>\n", " <td>-0.238824</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2020-09-01</th>\n", " <td>sh.000001</td>\n", " <td>3389.7424</td>\n", " <td>3410.6068</td>\n", " <td>3381.7108</td>\n", " <td>3410.6068</td>\n", " <td>3395.6775</td>\n", " <td>2.469992e+10</td>\n", " <td>326850955347.9000</td>\n", " <td>3</td>\n", " <td>0.695129</td>\n", " <td>1</td>\n", " <td>0.439656</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0.000000</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>406 rows × 17 columns</p>\n", "</div>" ], "text/plain": [ " code open high low close preclose \\\n", "date \n", "2019-01-02 sh.000001 2497.8800 2500.2780 2456.4230 2465.2910 2493.8960 \n", "2019-01-03 sh.000001 2461.7820 2488.4790 2455.9250 2464.3620 2465.2910 \n", "2019-01-04 sh.000001 2446.0190 2515.3160 2440.9060 2514.8680 2464.3620 \n", "2019-01-07 sh.000001 2528.6980 2536.9770 2515.5080 2533.0880 2514.8680 \n", "2019-01-08 sh.000001 2530.3000 2531.3450 2520.1640 2526.4620 2533.0880 \n", "2019-01-09 sh.000001 2536.4170 2574.4070 2536.1570 2544.3440 2526.4620 \n", "2019-01-10 sh.000001 2543.8530 2551.8250 2531.6630 2535.0980 2544.3440 \n", "2019-01-11 sh.000001 2539.5480 2554.7860 2533.3580 2553.8310 2535.0980 \n", "2019-01-14 sh.000001 2553.3280 2556.2930 2533.0100 2535.7650 2553.8310 \n", "2019-01-15 sh.000001 2537.3690 2571.5010 2532.4330 2570.3440 2535.7650 \n", "2019-01-16 sh.000001 2569.0690 2574.2360 2563.0060 2570.4220 2570.3440 \n", "2019-01-17 sh.000001 2573.5750 2582.5560 2557.7110 2559.6370 2570.4220 \n", "2019-01-18 sh.000001 2567.7380 2598.8830 2565.9040 2596.0050 2559.6370 \n", "2019-01-21 sh.000001 2599.0570 2618.9800 2599.0570 2610.5090 2596.0050 \n", "2019-01-22 sh.000001 2609.6420 2609.6420 2573.0610 2579.7040 2610.5090 \n", "2019-01-23 sh.000001 2575.2580 2589.5120 2572.4050 2581.0040 2579.7040 \n", "2019-01-24 sh.000001 2584.6480 2597.2890 2569.7000 2591.6930 2581.0040 \n", "2019-01-25 sh.000001 2596.2610 2617.0020 2595.6290 2601.7230 2591.6930 \n", "2019-01-28 sh.000001 2615.7110 2630.3180 2591.1000 2596.9760 2601.7230 \n", "2019-01-29 sh.000001 2592.3540 2601.7350 2559.9820 2594.2530 2596.9760 \n", "2019-01-30 sh.000001 2584.7450 2598.8150 2575.4090 2575.5750 2594.2530 \n", "2019-01-31 sh.000001 2581.3310 2606.6280 2571.5780 2584.5720 2575.5750 \n", "2019-02-01 sh.000001 2597.7770 2618.4760 2590.5540 2618.2320 2584.5720 \n", "2019-02-11 sh.000001 2613.1740 2654.0960 2613.1740 2653.8960 2618.2320 \n", "2019-02-12 sh.000001 2654.0340 2674.4770 2648.8290 2671.8930 2653.8960 \n", "2019-02-13 sh.000001 2674.5190 2727.0750 2666.5220 2721.0680 2671.8930 \n", "2019-02-14 sh.000001 2715.5350 2729.4550 2707.4860 2719.6990 2721.0680 \n", "2019-02-15 sh.000001 2712.7860 2715.6320 2679.7840 2682.3850 2719.6990 \n", "2019-02-18 sh.000001 2699.8170 2754.3560 2699.8170 2754.3560 2682.3850 \n", "2019-02-19 sh.000001 2759.4960 2780.7830 2737.5860 2755.6450 2754.3560 \n", "... ... ... ... ... ... ... \n", "2020-07-22 sh.000001 3315.1816 3381.9757 3311.7862 3333.1635 3320.8947 \n", "2020-07-23 sh.000001 3306.1489 3336.3002 3257.8269 3325.1102 3333.1635 \n", "2020-07-24 sh.000001 3310.6449 3319.1268 3184.9645 3196.7684 3325.1102 \n", "2020-07-27 sh.000001 3210.3863 3221.9846 3174.6583 3205.2268 3196.7684 \n", "2020-07-28 sh.000001 3226.1329 3245.2967 3208.4939 3227.9604 3205.2268 \n", "2020-07-29 sh.000001 3221.9883 3294.5521 3209.9902 3294.5521 3227.9604 \n", "2020-07-30 sh.000001 3299.5718 3312.4508 3282.1617 3286.8220 3294.5521 \n", "2020-07-31 sh.000001 3280.7959 3333.7859 3261.6135 3310.0065 3286.8220 \n", "2020-08-03 sh.000001 3332.1826 3368.1028 3327.6773 3367.9658 3310.0065 \n", "2020-08-04 sh.000001 3376.4402 3391.0743 3352.5017 3371.6875 3367.9658 \n", "2020-08-05 sh.000001 3363.3324 3383.6365 3333.8770 3377.5648 3371.6875 \n", "2020-08-06 sh.000001 3380.7621 3392.7048 3334.3341 3386.4631 3377.5648 \n", "2020-08-07 sh.000001 3370.5878 3374.1330 3307.7127 3354.0352 3386.4631 \n", "2020-08-10 sh.000001 3341.5276 3399.9323 3335.0427 3379.2524 3354.0352 \n", "2020-08-11 sh.000001 3379.4874 3409.0589 3336.0945 3340.2900 3379.2524 \n", "2020-08-12 sh.000001 3327.4929 3335.7290 3263.2653 3319.2656 3340.2900 \n", "2020-08-13 sh.000001 3328.1754 3338.1518 3309.4629 3320.7261 3319.2656 \n", "2020-08-14 sh.000001 3315.6687 3362.0267 3302.7357 3360.0988 3320.7261 \n", "2020-08-17 sh.000001 3373.9018 3450.8987 3369.3742 3438.8010 3360.0988 \n", "2020-08-18 sh.000001 3441.9337 3456.7206 3432.6402 3451.0894 3438.8010 \n", "2020-08-19 sh.000001 3444.5646 3454.4613 3406.1642 3408.1288 3451.0894 \n", "2020-08-20 sh.000001 3385.9645 3394.5570 3352.7767 3363.8988 3408.1288 \n", "2020-08-21 sh.000001 3380.2269 3393.9175 3358.0005 3380.6825 3363.8988 \n", "2020-08-24 sh.000001 3391.1132 3396.5663 3368.0258 3385.6383 3380.6825 \n", "2020-08-25 sh.000001 3392.8797 3408.8697 3364.1602 3373.5781 3385.6383 \n", "2020-08-26 sh.000001 3371.8083 3382.6032 3320.1355 3329.7388 3373.5781 \n", "2020-08-27 sh.000001 3333.4909 3351.8324 3312.9859 3350.1128 3329.7388 \n", "2020-08-28 sh.000001 3346.2893 3405.8768 3339.6494 3403.8066 3350.1128 \n", "2020-08-31 sh.000001 3416.5497 3442.7363 3395.4675 3395.6775 3403.8066 \n", "2020-09-01 sh.000001 3389.7424 3410.6068 3381.7108 3410.6068 3395.6775 \n", "\n", " volume amount adjustflag turn tradestatus \\\n", "date \n", "2019-01-02 1.099320e+10 97592573952.0000 3 0.328717 1 \n", "2019-01-03 1.243975e+10 106922790912.0000 3 0.371963 1 \n", "2019-01-04 1.688777e+10 139298676736.0000 3 0.504935 1 \n", "2019-01-07 1.773050e+10 145513242624.0000 3 0.530082 1 \n", "2019-01-08 1.580992e+10 123379040256.0000 3 0.472663 1 \n", "2019-01-09 1.918879e+10 160812527616.0000 3 0.573680 1 \n", "2019-01-10 1.598743e+10 132692332544.0000 3 0.477903 1 \n", "2019-01-11 1.494441e+10 122375663616.0000 3 0.446693 1 \n", "2019-01-14 1.448255e+10 116243415040.0000 3 0.432811 1 \n", "2019-01-15 1.602655e+10 137374982144.0000 3 0.478956 1 \n", "2019-01-16 1.493015e+10 126876315648.0000 3 0.446119 1 \n", "2019-01-17 1.624681e+10 127546126336.0000 3 0.485445 1 \n", "2019-01-18 1.907672e+10 151270432768.0000 3 0.569924 1 \n", "2019-01-21 1.634251e+10 139915485184.0000 3 0.488057 1 \n", "2019-01-22 1.525378e+10 122995437568.0000 3 0.455629 1 \n", "2019-01-23 1.314268e+10 105101324288.0000 3 0.392285 1 \n", "2019-01-24 1.540420e+10 131575042048.0000 3 0.459787 1 \n", "2019-01-25 1.593940e+10 135415169024.0000 3 0.475734 1 \n", "2019-01-28 1.469818e+10 127465635840.0000 3 0.438618 1 \n", "2019-01-29 1.555811e+10 126749048832.0000 3 0.464280 1 \n", "2019-01-30 1.205026e+10 101103927296.0000 3 0.359597 1 \n", "2019-01-31 1.543039e+10 126013247488.0000 3 0.460461 1 \n", "2019-02-01 1.319868e+10 111522627584.0000 3 0.393684 1 \n", "2019-02-11 1.548989e+10 137307189248.0000 3 0.461971 1 \n", "2019-02-12 1.841012e+10 156741541888.0000 3 0.548622 1 \n", "2019-02-13 2.437940e+10 207125315584.0000 3 0.726602 1 \n", "2019-02-14 1.970373e+10 170330836992.0000 3 0.587201 1 \n", "2019-02-15 1.960043e+10 169823260672.0000 3 0.584028 1 \n", "2019-02-18 2.604360e+10 224184078336.0000 3 0.776072 1 \n", "2019-02-19 2.880463e+10 247121051648.0000 3 0.858027 1 \n", "... ... ... ... ... ... \n", "2020-07-22 3.933353e+10 540577040593.6000 3 1.090166 1 \n", "2020-07-23 4.070425e+10 546887089707.7000 3 1.151218 1 \n", "2020-07-24 4.270540e+10 584311865016.6000 3 1.207739 1 \n", "2020-07-27 2.993190e+10 402231919288.9000 3 0.829119 1 \n", "2020-07-28 2.893779e+10 389873696214.7000 3 0.817955 1 \n", "2020-07-29 3.249241e+10 453094399515.5000 3 0.918285 1 \n", "2020-07-30 3.407041e+10 476974005608.8000 3 0.962841 1 \n", "2020-07-31 3.537590e+10 495778040702.2000 3 0.999587 1 \n", "2020-08-03 4.074609e+10 572430759824.7000 3 1.127570 1 \n", "2020-08-04 4.423286e+10 604942141521.3000 3 1.249419 1 \n", "2020-08-05 3.858230e+10 526515054657.5000 3 1.089812 1 \n", "2020-08-06 4.153025e+10 570488248065.2000 3 1.172942 1 \n", "2020-08-07 4.039296e+10 561435649551.0000 3 1.140678 1 \n", "2020-08-10 3.813796e+10 527083944584.7000 3 1.053404 1 \n", "2020-08-11 4.004527e+10 514020764101.4000 3 1.130021 1 \n", "2020-08-12 3.783290e+10 480731246079.0000 3 1.067596 1 \n", "2020-08-13 3.242913e+10 387162288598.3000 3 0.915025 1 \n", "2020-08-14 3.059984e+10 367467421740.0000 3 0.863395 1 \n", "2020-08-17 4.345983e+10 537425075053.0000 3 1.199713 1 \n", "2020-08-18 3.807293e+10 493052155326.1000 3 1.072958 1 \n", "2020-08-19 4.057222e+10 498262158316.3000 3 1.143290 1 \n", "2020-08-20 3.356010e+10 401815550096.0000 3 0.945410 1 \n", "2020-08-21 2.874883e+10 361281752664.8000 3 0.809851 1 \n", "2020-08-24 2.662278e+10 345683380014.8000 3 0.734262 1 \n", "2020-08-25 2.771134e+10 355997790768.0000 3 0.780096 1 \n", "2020-08-26 2.944510e+10 381928906554.3000 3 0.828902 1 \n", "2020-08-27 2.370994e+10 317153391524.5000 3 0.667422 1 \n", "2020-08-28 2.713255e+10 379367046371.3000 3 0.763806 1 \n", "2020-08-31 3.234739e+10 436930125416.2000 3 0.892028 1 \n", "2020-09-01 2.469992e+10 326850955347.9000 3 0.695129 1 \n", "\n", " pctChg peTTM pbMRQ psTTM pcfNcfTTM isST \n", "date \n", "2019-01-02 -1.147000 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-03 -0.037700 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-04 2.049400 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-07 0.724500 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-08 -0.261600 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-09 0.707800 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-10 -0.363400 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-11 0.739000 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-14 -0.707400 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-15 1.363700 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-16 0.003000 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-17 -0.419600 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-18 1.420800 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-21 0.558700 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-22 -1.180000 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-23 0.050400 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-24 0.414100 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-25 0.387000 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-28 -0.182400 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-29 -0.104900 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-30 -0.720000 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-01-31 0.349300 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-02-01 1.302300 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-02-11 1.362100 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-02-12 0.678100 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-02-13 1.840500 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-02-14 -0.050300 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-02-15 -1.372000 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-02-18 2.683100 0.000000 0.000000 0.000000 0.000000 0 \n", "2019-02-19 0.046800 0.000000 0.000000 0.000000 0.000000 0 \n", "... ... ... ... ... ... ... \n", "2020-07-22 0.369443 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-07-23 -0.241611 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-07-24 -3.859776 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-07-27 0.264592 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-07-28 0.709267 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-07-29 2.062965 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-07-30 -0.234633 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-07-31 0.705377 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-03 1.751033 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-04 0.110503 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-05 0.174313 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-06 0.263453 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-07 -0.957574 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-10 0.751847 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-11 -1.152989 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-12 -0.629418 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-13 0.044001 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-14 1.185665 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-17 2.342259 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-18 0.357345 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-19 -1.244842 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-20 -1.297780 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-21 0.498936 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-24 0.146592 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-25 -0.356216 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-26 -1.299490 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-27 0.611880 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-28 1.602746 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-08-31 -0.238824 0.000000 0.000000 0.000000 0.000000 0 \n", "2020-09-01 0.439656 0.000000 0.000000 0.000000 0.000000 0 \n", "\n", "[406 rows x 17 columns]" ] }, "execution_count": 145, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bs_a.k_data" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }