
Anatomy and classification 
of load testing tools
by Andrei Pokhilko, JMeter-Plugins.org



My Experience Building Tools

● JMeter-Plugins.org

● Loadosophia

● Yandex.Tank

● Blazemeter Taurus

● Encarno



Why to Learn Tools Internals

Choosing a tool Use your tool better Develop your own



Anatomy



Configuration Interface

● Command-line parameters

● Environment variables

● Configuration files

● GUI

● Programmatic configuration (function calls etc.)



● Protocol adapter is part of it

● Can be as simple as single request

● All the way to full programming language

● Log replay as useful DevOps alternative

Familiarity of scripting language 
often guides (and misleads) the tool choice.

Scripting Engine



Workload Controller

● It’s a heart of load testing tool

● Runs the script according to workload profile

● Rare tool gets beyond parallel workers

● Throughput, arrivals, open workload model

The problem of workload realism is still there.



KPI Aggregator

● Accumulates and processes results of individual requests

● Averages, percentiles and detailed statistics

● Takes some dedication to make it right

● Distributed tests require hyper-aggregator



Reporting

● Live feedback is crucial to save time

● Can be as subtle as exporter into DB

● Or as advanced as UI with dashboards and comparison

● The trend is to bring LT results into monitoring systems

● Static report is what many people need



Self-Awareness
● Detect self-overload 

● Report measurement accuracy

Can we trust results or not?

Auto-Stop
● Wrong test config or dead target

● Enough statistics accumulated

● Target is over the brink

Save time and resources



Horizontal Scaler

● Distributing the load across multiple generators

● Doing hyper-aggregation of results

● Control cloud provisioning and orchestration

Implementing it is a significant challenge.



Extensibility

● Expand protocol coverage, load profile, reporting

● Turns the tool into potential ecosystem

● Very strategic feature for choosing a tool





Classification



Quick Benchmarks

● No scripting, one URL and go

● Usually with subtle reporting

● Popularity through simplicity

Examples: ab, wrk, hey, vegeta



Load Generators

● Can do all “quick benchmark” does

● Complex workload profiles and scripts

● Some with decent built-in reports

● More difficult to master

Examples: JMeter, Locust, Gatling, k6, LoadRunner, drill, encarno



Distributed Scaling Controllers

● Take load generator and run it on multiple machines, maybe in the cloud.

● Collect and aggregate results.

Examples: 
beeswithmachineguns, artillery, JMeter, k6, LoadRunner, Gatling, Locust, 
Autometer and whole bunch of solutions on GH



Automation Frameworks

● Many tools claim they’re CI-friendly, but don’t offer much for that

● Features around configuration, export formats, automatic test shutdown

● Ability to write smaller load generator tools and reuse reporting/configuration

Examples: Yandex.Tank and Taurus 



Hosted Solutions

All-you-can-eat, off the web, cloud-provisioned and high scale

Examples: BlazeMeter and clones, NeoLoad, HP StormRunner, 
Gatling FrontRunner, WebLOAD, LoadComplete



Code-integrated solutions (DSLs)

● Focused on staying inside IDE / familiar programming language

● Appeals to developers, shift-left & continuous testing

● Molotov, Gatling, Locust, k6 are close, but valueprop is different

Examples: JMeter Java DSL, NBomber



In Conclusion

● We learned LT anatomy

● We applied classification

● Choosing, using and creating own is easier and better

What’s the next step of evolution? 



Thank you!

andrei.pokhilko@gmail.com


