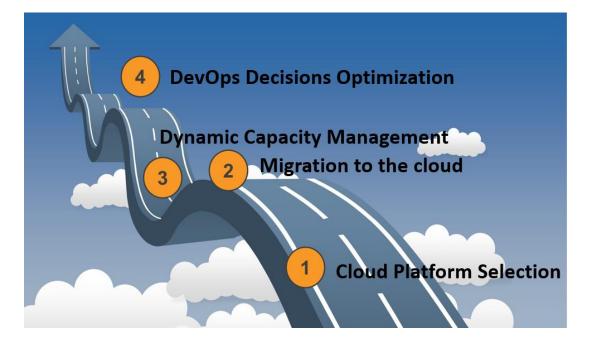
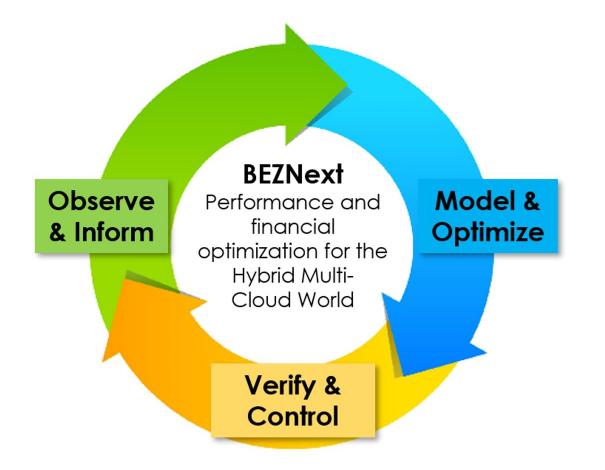
Modeling expands load testing and benchmarking results

Performance and financial decisions optimization in the hybrid multi-cloud world

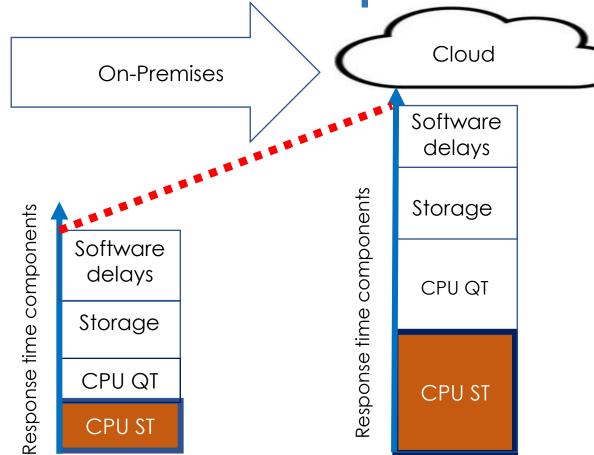

Boris Zibitsker, PhD and Alex Lupersolsky, PhD, BEZNext, www.beznext.com

The Eleventh International Workshop on Load Testing and Benchmarking of Software Systems (LTB 2023)


April 16, 2023 Coimbra, Portugal Co-located with ICPE 2023 The 14th ACM/SPEC International Conference on Performance Engineering

Challenges Performance and Cost

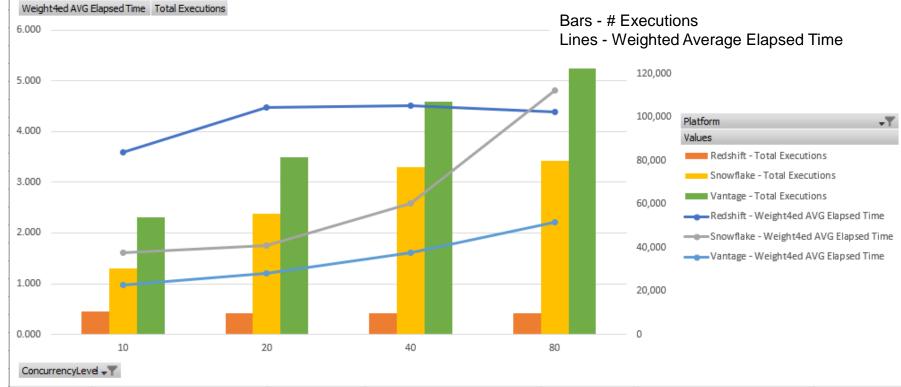
- How to meet business performance goals in the cloud at the lowest cost?
- Mix workloads with different resource demand and performance requirements
- Many options of resource allocation and workload management
- Uncertainty and risk of performance and financial surprises


Our Goal Automate hybrid multi-cloud performance and financial decisions optimization

Observe and Inform

See details in our whitepapers accessible through out website www.beznext.com

We use benchmarks and load testing to compare CPU service time and MB per request in clouds vs on-premises



Differences in the CPU type, number of CPUs, software, sophistication of DBMS optimizers, affect CPU Service time

Response time, CPU service time, #I/Os and MB/Query, and queueing time change after migration to the cloud

Load testing results

	Column Labels 🛛 🖓 🖵					
I	Redshift		Snowflake		Vantage	
Row Labels 🖵 🛛	Weight4ed AVG Elapsed Time	Total Executions	Weight4ed AVG Elapsed Time	Total Executions	Weight4ed AVG Elapsed Time	Total Executions
10	3.592	10,655	1.618	30,377	0.976	53,967
20	4.467	9,817	1.748	55,343	1.199	81,385
40	4.501	9,661	2.588	76,943	1.609	107,073
80	4.385	9,886	4.817	79,705	2.213	122,489
Grand Total	4.222	40,019	3.008	242,368	1.626	364,915

Relative CPU Time per Query and MB per query measured during TPC DS Benchmarks on different platforms for short, medium, and complex queries

			INTERVAL					
Teradata	Va	antage to	VCL to	Redshift 1 to	Redshift 2 to	Redshift Aqua to	BigQuery to	
on-prem	T	D	TD	TD	TD	TD	TD	by TD CPU Time
1		2.087	2.025	0.226	0.113	0.023	5.431	<130,881
1		1.652	1.580	0.050	0.023	0.007	1.412	130,881-311,093
1		0.758	0.756	0.047	0.031	0.009	1.022	>311,093

Physical IO (MB)									
Teradata	Vantage		Redshift 1	Redshift 2	Redshift Avg		BigQuery		
on-prem	to TD	VCL to TD	to TD	to TD	to TD	2XL to TD	to TD		
1,107	11.405	0.488	0.889	0.962	0.416	406.688	6.934		
1,818	14.708	0.586	0.715	0.728	0.430	357.033	6.567		
8,799	5.504	0.577	0.191	0.165	0.101	111.957	1.182		

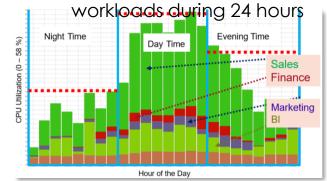
Process

- Run benchmark queries serially
- Measured CPU Service Time #IOs and MB/IO

Limitations

 Does not answer business questions

Automation of Inform functions in Hybrid Multi-Cloud environment


Data Collection

- Performance
 - Response time
 - Throughput
- Resource utilization
 - CPU
 - Storage
 - etc.
- Data usage
 - Databases accessed by workloads
 - Level of parallelism during accessing data
 - Etc.
- Configuration
- Cost

Workload Characterization

- Workload Aggregation
 - Aggregation measurement data into business workloads
- Workload characterization
 - Build performance, resource allocation, data usage, cost and carbon emission profiles for each workload

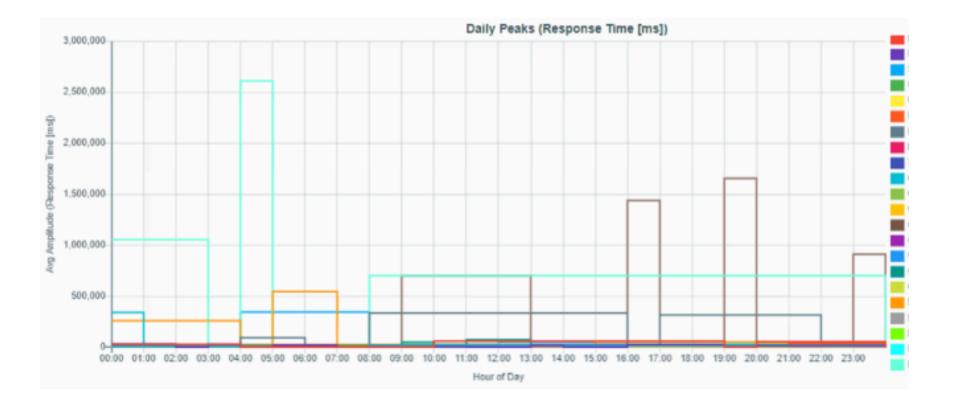
Example of the CPU Utilization by business

Anomaly detection

- Detect most frequent and severe anomalies
- Root causes
- Critical SQL
- Databases accessed
- Candidates for tuning

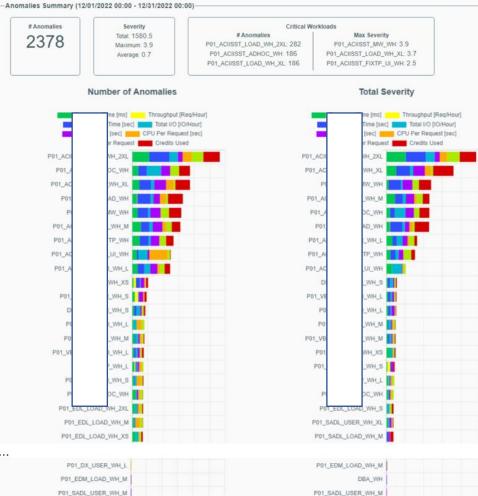
Value of Observability and Inform functions

- Automation reduce efforts
- Detect anomalies to focus the performance efforts on the he most frequent, sever problems
- Generate regular FinOps reports


Determine the frequency of accesses to databases by virtual warehouses / workloads

Row La	bels		# QUERIES	TOTAL ELAPSED TIME SEC	TOTAL MB PROCESSED
C01_A		1	523	15,468	5,919,596
P01_A0		D_WH	475	3,856	1,235,928
P01_A0		_WH_XL	1	1	1,561
P01_ED		WH	29	10,098	3,657,447
P01_ED		H_M	1	1	0
PO1_VB	<u>.</u>	H_L	17	1,512	1,024,659
C01_A	Customer Specific	VS	23	51	66,292
PO1_VB)e(H_L	23	51	66,292
C01_EE	S		2,230	630,238	106,448,025
DBA_W	er		15	8	0
P01_D>	E	_WH_L	228	730	596,724
P01_D>	stc	_L	48	445	293,849
P01_ED	ŝŋ	WH	72	74	1,677
P01_ED	0	(H_2XL	127	62,151	10,797,767
P01_ED		(H_3XL	18	12,546	19,145,243
P01_ED		(H_L	96	38,448	7,323,541
P01_ED		(H_M	589	255,647	13,237,666
P01_ED		/H_S	304	17,296	402,705
P01_ED		(H_XL	104	218,088	35,534,391
P01_ED		H_XS	11	556	17,541
P01_OF		VH_L	9	1,606	750,921

- Dozens of Databases with Thousands of Tables, accessed by dozens of business workloads
- Different frequency of accesses with different access time and different MB processed



Business workloads seasonality used during building the resource allocation rules

Determined frequency and severity of performance and financial anomalies is used to determine the root causes and critical SQL needed tuning on of the cloud platform

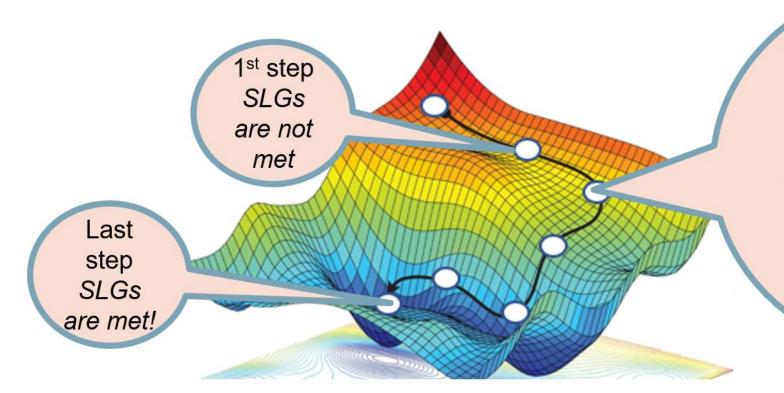
50

100 150 200 250

50 100 150 200 250 300

Determined top queries causing most frequent and severe anomalies are candidates for tuning

Top 10 queries of all root causes ordered by CPU execution time


QueryID	applicationId	userName		executionTime	elap sed Tim e	c puExecution Time	to talc puTime	logicaliOs	logical IOsK B	physical IOs	physical IOsK B
306063201135690131	- Anton			0:26:07	0:26:08	720,969	720,969	1,248,626,170	143,201,301,856	175,634,683	143,201,301,856
306193201135964541			ИL	0:22:56	0:23:13	176,674	176,674	170,822,327	7,634,657,048	12,791,779	7,634,657,048
305473201135772402			ИL	0:08:26	0:08:26	166,325	166,326	185,208,046	8,749,232,808	17,569,488	8,749,232,808
306423201138154090	Custor	ner Specific		0:12:13	0:12:20	124,430	124,431	568,270,099	61,955,713,784	85,742,757	14,767,239,040
306333201135806108	Custor	nei specific		0:09:39	0:09:40	119,957	119,958	573,344,173	62,639,315,760	83,872,277	14,614,633,576
306193201135964791			ИL	0:10:56	0:10:56	114,057	114,067	102,277,216	4,565,186,396	10,535,569	4,565,186,396
305473201135772443			ИL	0:05:44	0:05:48	113,631	113,631	111,353,325	5, 258, 605, 636	12,463,626	5,258,605,636
305423201138153781				0:06:36	0:06:37	113,163	113,164	196,042,613	22,727,423,684	39,656,802	5,749,523,068
306023201136113060					0:14:04	0:14:05	105,219	105,220	668,027,682	55,407,807,244	399,434,868
306673201135533582				0:14:51	0:14:52	101,251	101,251	655,230,691	54,082,685,484	384,211,070	34,061,062,252

Query IDs are used to find and tune critical queries

Model and Optimize

See details in our whitepapers accessible through our website www.beznez.com

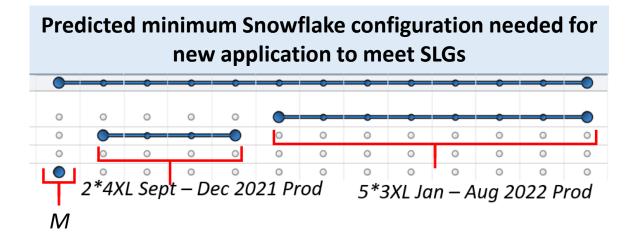
We developed Iterative modeling and gradient optimization software to optimize performance and financial decisions for the Hybrid Multi-Cloud environments

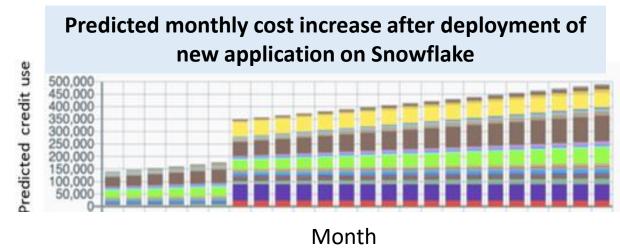
- Size of the Next Step defined based on the ratio between predicted Response Time (RT) and SLG
- Direction of the Next Step is based on a Ratios between each component of the RT and predicted total RT

Examples of the performance and financial optimization projects performed in large Hybrid Multi-Cloud environments

Most of the functions performed by our software are automated

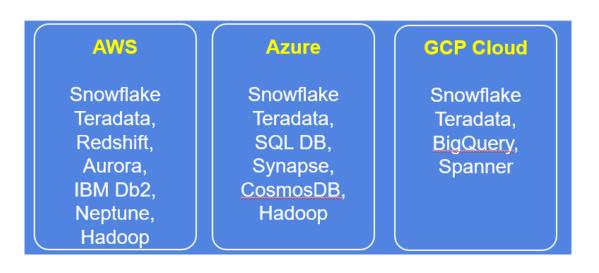
Project 1. DevOps decisions optimization for new applications before deployment


O TEST O BUILD O TEST O OPERATE O O OPERATE


DevOps, MLOps

- Performance measurement data collected during testing of new application after each major build
- Detected anomalies and their root causes presented to application developers for tuning them prior to deployment of new application

Recommendation to operations on minimum configuration and budget needed to meet business performance goals on different cloud platforms

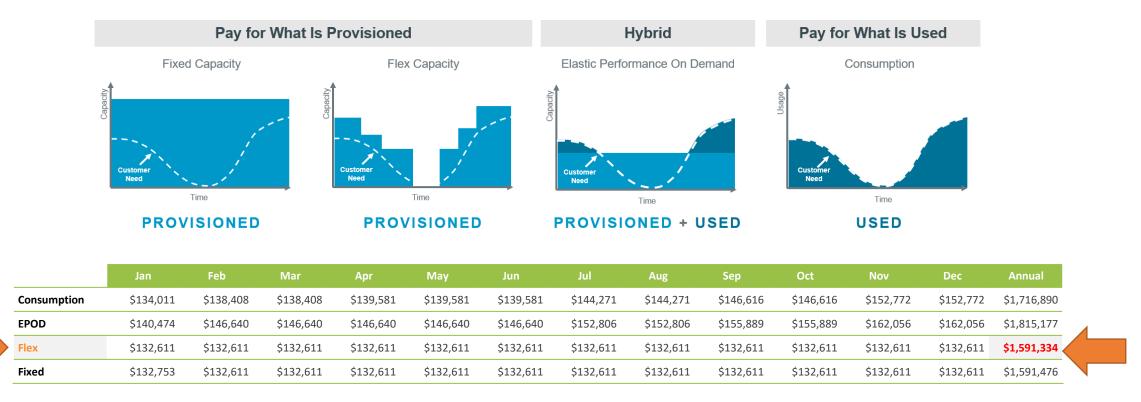


Project 2. Cloud Data Platform Selection

Objective

Use modeling and optimization technology to determine the minimum configuration, and budget needed to meet performance goals for on-premises and cloud Vantage, Redshift, or Snowflake platforms

Many options

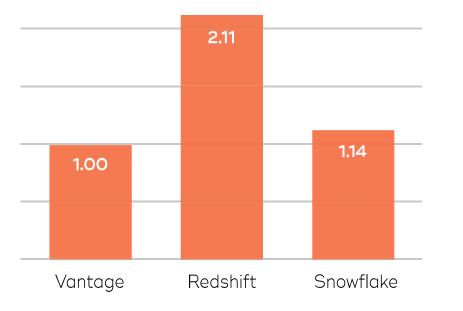


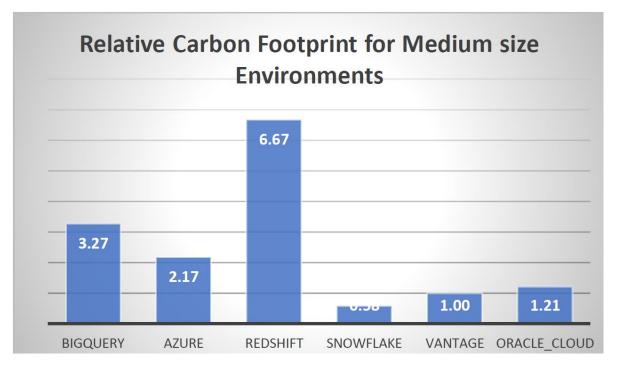
Predicted minimum configuration needed to meet performance goals

Platform	Instance Type	Shift	# Instances (Clusters) / Month											
			JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
	m4.16xlarge	1 st	10	10	10	10	10	10	10	10	10	10	11	11
Teradata Vantage	m4.16xlarge	2 nd	32	34	34	34	34	34	36	36	36	36	38	38
vantage	m4.16xlarge	3rd	13	13	13	13	13	13	13	13	14	14	14	14
	ra3.16Xlarge	1st	52	52	52	54	54	54	56	56	58	58	58	60
Amazon Redshift	ra3.16Xlarge	2 nd	130	130	130	140	140	140	140	150	150	150	150	150
Reushin	ra3.16Xlarge	3rd	72	74	74	76	76	78	78	80	80	82	82	82
	2XL	1 st	5	5	6	6	6	6	6	6	6	6	6	6
Snowflake	4XL	2 nd	3	3	3	3	3	3	3	3	3	3	3	3
	3XL	3rd	5	5	5	5	5	5	5	5	5	5	5	5

Example of selecting the best pricing model for Vantage

- Predict the monthly and yearly cost for each pricing model needed to meet SLG of each workload
- In this example the Flex pricing model will allow to meet SLGs for business workloads with the lowestcost

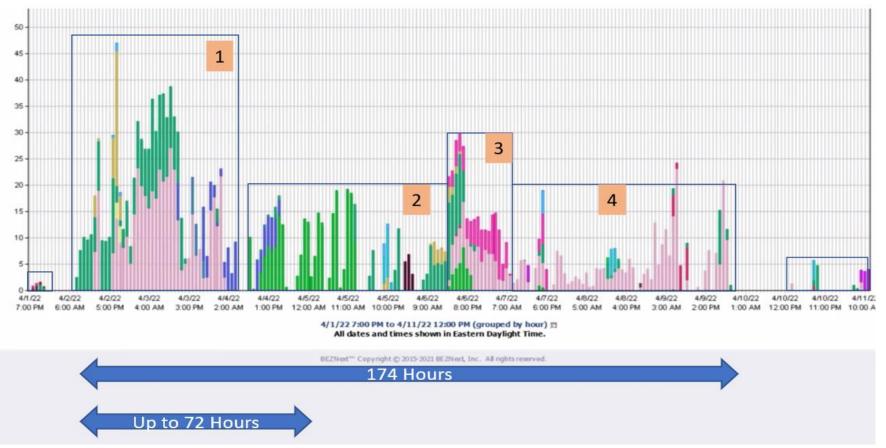

Predict the budget needed to meet SLGs

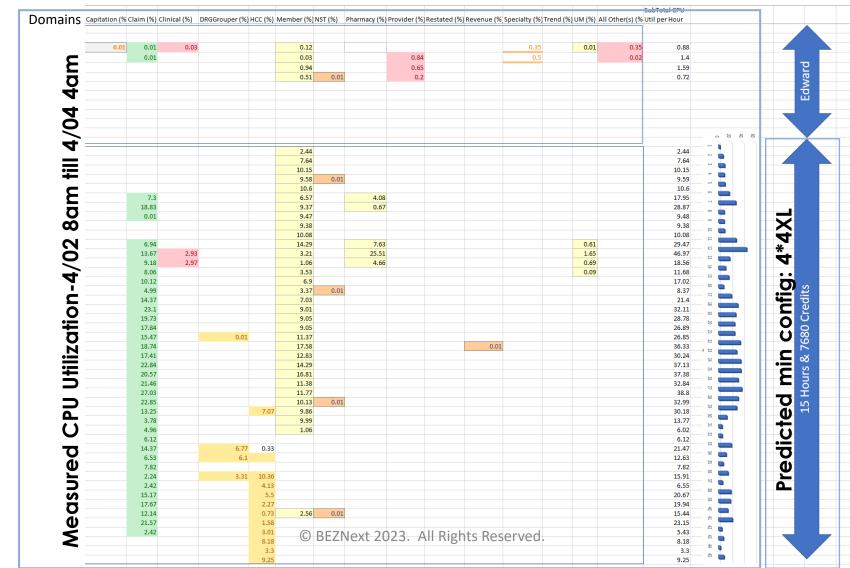

		Jan	Feb
data	Cost per month	\$234,778	\$241,453
intage	Cost per query	\$0.0040	\$0.0041
mazon	Cost per month	\$807,206	\$813,466
Redshift	Cost per query	\$0.0139	\$0.0138
Snowflake (1	Cost per month	\$1,255,660	\$1,255,660
system)	Cost per query	\$0.0210	\$0.0208
Snowflake (4	Cost per month	\$1,658,880	\$1,670,400
systems)	Cost per query	\$0.0287	\$0.0286

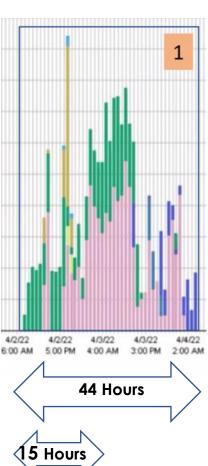
Predicted power consumption, carbon emission for production workloads on different cloud data platforms

The relative carbon footprint for large, well-tuned cloud data platforms

Value of decisions optimization during cloud data platform selection


- Determine the minimum configuration and budget needed to meet business SLGs on different cloud platforms
- Set realistic expectations
- Reduce risk of performance and financial surprises
- Duration of the project was 3 weeks




Project 3. Examples of the applying modeling and optimization to determine how to reduce ETL time from 13 to 3days

Each phase of ETL processing has a different demand for CPU resources

CPU Utilization during ETL 1sr phase of ETL load & Predicted min configuration needed to meet SLG

Predicted cost, and carbon emission to reduce load time from 13 to 3 days on Snowflake

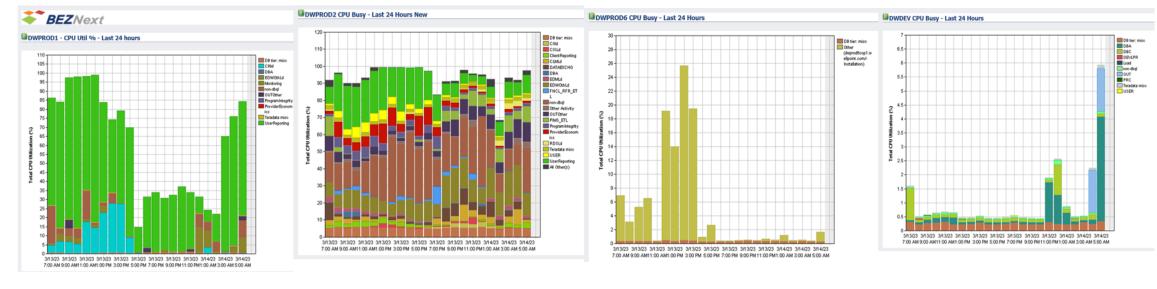
Predicted **monthly** Snowflake credits / budget needed to meet SLGs, power consumption and carbon emission for Load and analytic workloads

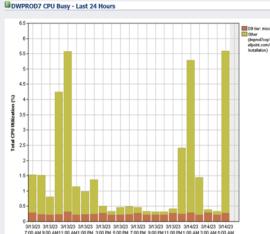
Workload	Credits		Power KWH	CO2 kg	Objective
Load	15,744	\$56,678	270		Reduce monthly time from 12 days to 3 days
AdHoc	22,176	\$79,834	446	179	RT should be the same as on Prem
Application	16,896	\$60,826	290	116	RT should be the same as on Prem
Subtotal	54,816	\$197,338	1,006	403	

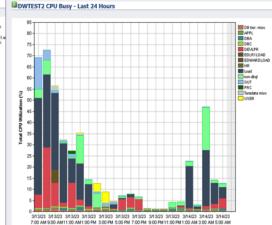
Value of BEZNext cloud migration decision optimization

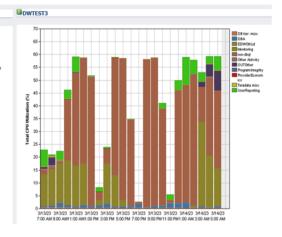
- Cloud migration decisions based on gut feelings have a high risk of performance and financial surprises
- Almost 80% of the cloud migration project do not finish on time and within the budget
- Modeling and optimization evaluates options to optimize migration decisions

Project 4. Dynamic Capacity Management

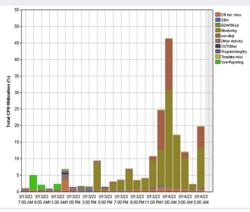

Objective


 Organize dynamic capacity management in a Hybrid Multi-Cloud environment to continuously meet SLGs for all growing and changing workloads during different times of the day and the next 12 months with the lowest cost

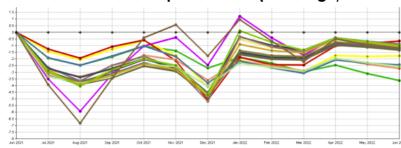

Major Functions

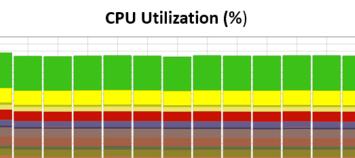

- Predict performance and budget required to continuously meet SLGs for all workloads and set realistic expectations
- Determine the performance and financial anomalies, root causes and seasonality
- Evaluate alternatives and develop recommendations with performance and financial expectations
- Verify results
- Organize the continuous feedback control

Daily CPU Utilization at on-prem Data Warehouses



Predicted results of tuning and resource allocation optimization


The example of the recommendations and expectations


- the type of AWS EC2 instance
- the number of instances for each month,

- the expected change in the average query response time and CPU utilization for each workload

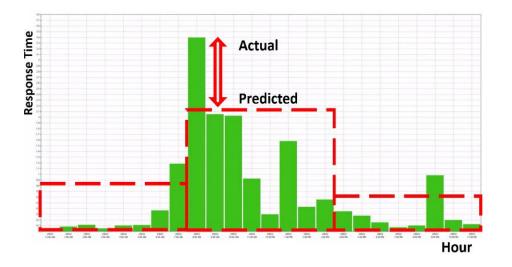
Months after	AWS Instance	#
migration	Туре	Instances
1	m5.12xlarge	86
2	m5.12xlarge	88
3	m5.12xlarge	89
4	m5.12xlarge	90
5	m5.12xlarge	92
6	m5.12xlarge	95
7	m5.12xlarge	95
8	m5.12xlarge	97
9	m5.12xlarge	99
10	m5.12xlarge	100
11	m5.12xlarge	102
12	m5.12xlarge	104

Relative Response Time (% change)

а да 2021 ма 2021 Анд 2021 Sep 2021 Ося 2021 Рес 2021 Вес 2021 Вес 2021 Мак 2022 Мак 2022 Мак 2022 Мак 2022 Мак 2022

Value of the Dynamic Capacity Management

- Automatic performance and financial anomalies, root cause and seasonality detection
- Performance and financial control for all business workloads on all platforms of the Hybrid Multi-Cloud environment
- Provide realistic performance and financial expectations enabling results verification
- Reduce risk of performance and financial surprises



Results verification and organizing of the closed-loop feedback control

Compare the actual performance and financial results with expected. If results are significantly different, use modeling and optimization to recommend corrective actions

Actual Response Time vs Predicted

Value of closed loop feedback control

- Performance and financial results verification
- Continuous process of performance and financial governance

Summary

Uniqueness

- BEZNext modeling and optimization technology compliment results of load testing, benchmark tests and results collected during the Observe and Inform phase
- Focus analysis and optimization on business workloads and their performance goals
- Apply modeling to optimization performance and financial decisions (FinOps) during journey to the cloud
- Modeling set realistic performance and financial expectations and enable results verification
- A semi-automatic, continuous, closed-loop performance and financial control for the Hybrid Multi-Cloud Environment

Value

- Reduces the risk of performance and financial surprises
- A vendor-neutral approach
- Enables better collaboration between business, IT, and financial leaders
- Our modeling and optimization technology complement other FinOps tools in building and automating enterprise-wide FinOps process

For more information:

1. Read our white papers:

- <u>https://www.beznext.com/wp-</u> <u>content/uploads/2022/02/BEZNext-White-Paper-Which-</u> <u>Platform-is-Best-for-your-Cloud-Data-Warehouse-2-17-</u> <u>2021-1.pdf</u>
- <u>https://www.beznext.com/wp-</u> content/uploads/2022/02/220225-BEZNext-White-Paper.pdf
- <u>https://www.beznext.com/wp-</u> content/uploads/2022/09/220919-Carbon-Emission-Evaluation.pdf
- 2. <u>Visit our websites:</u>
- www.beznext.com, www.beznextworkshop.com
- 3. Contract us:
- Inquiry@beznext.com

The Journey to the Cloud

Business-driven Hybrid multi-cloud performance and financial governance

Which Platform Is Best for Your Cloud Data Warehouse?

BORIS ZIBITSKER

BEZNext | bzibitsker@beznext.com | www.beznext.com | 2/11/2021

Predicting cloud data platforms carbon footprint

Boris Zibitsker, Alex Lupersolsky BEZNext www.beznext.com inquiry@beznext.com

August 2022

