
Samuel Kounev

Keynote Talk LTB 2023 and FastContinuum 2023
ICPE 2023, Coimbra, Portugal

April 16, 2023

Serverless Computing Revisited: Evolution,
State-of-the-Art, and Performance Challenges

2 S. Kounev

Roadmap
§ What is Serverless Computing?

§ Evolution and State-of-the-Art

§ Resource Sizing in FaaS

§ An Empirical Study on Container Start Times

3 S. Kounev

representing Sweden, US, Finland,
Germany, the Netherland, France,

Switzerland, UK, Poland, Greece, and
Spain, New Zealand, Equador, …https://www.dagstuhl.de/21201

Dagstuhl Seminar on Serverless

~ 29 European researchers from
21 academic affiliations,SME and big ITC industries

50 high-quality

researchers from

systems, software

and performance

engineering

communities

https://www.dagstuhl.de/21201

4 S. Kounev

Identified 10 Challenges in Serverless Design

C1 Capturing the multi-level architectural features and emerging architectural
patterns of this rapidly evolving serverless computing field.

C2 Predicting which architectural features and patterns will succeed,
and explaining why (and not others).

Related to the reference architecture:

C3 Agreeing on a serverless definition and making it operational.
C4 Understanding system-level, operational requirements.
C5 Programming model from a systems perspective.
C6 Workload and resource management for serverless,

and overall routing and scheduling.
C7 Practical needs in serverless orchestration.
C8 Manage ecosystem instability.
C9 Create the serverless toolchain.
C10 Support for patterns and anti-patterns, both functional and non-functional.

Related to full automation of operational concerns:

5 S. Kounev

Identified 10 Challenges in Serverless Design

C1 Capturing the multi-level architectural features and emerging architectural
patterns of this rapidly evolving serverless computing field.

C2 Predicting which architectural features and patterns will succeed,
and explaining why (and not others)

Related to the reference architecture:

C3 Agreeing on a serverless definition and making it operational.
C4 Understanding system-level, operational requirements.
C5 Programming model from a systems perspective.
C6 Workload and resource management for serverless,

and overall routing and scheduling.
C7 Practical needs in serverless orchestration.
C8 Manage ecosystem instability.
C9 Create the serverless toolchain.
C10 Support for patterns and anti-patterns, both functional and non-functional.

Related to full automation of operational concerns:

Serverless Platform Reference Architecture

E. Van Eyk, et al

The SPEC-RG Reference Architecture for FaaS:

From Microservices and Containers to Serverless Platforms.

IEEE Internet Comput. 23(6): 7-18 (2019)

6 S. Kounev

1. Baldini, et al., Serverless Computing: Current Trends and Open Problems (667 cit.), Springer, Dec 2017:

“Serverless computing is a term coined by industry to describe a programming model and architecture where small code snippets are executed in the cloud without
any control over the resources on which the code runs… the developer has control over the code they deploy into the Cloud, though that code has to be written in the
form of stateless functions. The developer does not worry about the operational aspects of deployment and maintenance of that code and expects it to be fault-
tolerant and auto-scaling. In particular, the code may be scaled to zero where no servers are actually running when the user’s function code is not used, and there is
no cost to the user… The version of serverless that explicitly uses functions as the deployment unit is also called Function-as-a-Service (FaaS).”

2. Varghese and Buyya, Next Generation Cloud Computing: New Trends and Research Directions (731 cit.), Elsevier FGCS, Feb 2018; also
Buyya et al., A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade (294 cit.), ACM CSUR, Nov 2018:

“Serverless…simply means that a server is not rented as a conventional cloud server and developers do not think of the server and the residency of applications on a
cloud. From a developers' perspective challenges such as the deployment of an application on a VM, over/under provisioning of resources for the application,
scalability and fault tolerance do not need to be dealt with… In this novel approach, functions (modules) of the application will be executed when necessary without
requiring the application to be running all the time. Sometimes this is also referred to as Function-as-a-Service or event-based programming.”

3. Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019:

“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the platform executes it on their behalf as
needed at any scale. Developers need not concern themselves with provisioning or operating servers, and they pay only for the compute resources used when their
code is invoked... Serverless is not only FaaS. It is FaaS supported by a “standard library”: the various multi-tenanted, autoscaling services provided by the vendor.
In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS (notification services), and more.”

Legend: 6x NoOps 6x Function-as-a-Service 5x pay-per-use 4x autoscaling/elasticity 3x Backend-as-a-Service 2x event-driven arch.

The Many Definitions of Serverless

7 S. Kounev

The Many Definitions of Serverless
4. van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and granularly billed applications, without having to address the
operational logic. Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions.”

5. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand automatically scaled and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” … The main differentiators of serverless
platforms is transparent autoscaling and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,…, Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...
They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 6x NoOps 6x Function-as-a-Service 5x pay-per-use 4x autoscaling/elasticity 3x Backend-as-a-Service 2x event-driven arch.

8 S. Kounev

1. Baldini, et al., Serverless Computing: Current Trends and Open Problems (667 cit.), Springer, Dec 2017:

“Serverless computing is a term coined by industry to describe a programming model and architecture where small code snippets are executed in the cloud without
any control over the resources on which the code runs… the developer has control over the code they deploy into the Cloud, though that code has to be written in the
form of stateless functions. The developer does not worry about the operational aspects of deployment and maintenance of that code and expects it to be fault-
tolerant and auto-scaling. In particular, the code may be scaled to zero where no servers are actually running when the user’s function code is not used, and there is
no cost to the user… The version of serverless that explicitly uses functions as the deployment unit is also called Function-as-a-Service (FaaS).”

2. Varghese and Buyya, Next Generation Cloud Computing: New Trends and Research Directions (731 cit.), Elsevier FGCS, Feb 2018; also
Buyya et al., A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade (294 cit.), ACM CSUR, Nov 2018:

“Serverless…simply means that a server is not rented as a conventional cloud server and developers do not think of the server and the residency of applications on a
cloud. From a developers' perspective challenges such as the deployment of an application on a VM, over/under provisioning of resources for the application,
scalability and fault tolerance do not need to be dealt with… In this novel approach, functions (modules) of the application will be executed when necessary without
requiring the application to be running all the time. Sometimes this is also referred to as Function-as-a-Service or event-based programming.”

3. Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019:

“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the platform executes it on their behalf as
needed at any scale. Developers need not concern themselves with provisioning or operating servers, and they pay only for the compute resources used when their
code is invoked... Serverless is not only FaaS. It is FaaS supported by a “standard library”: the various multi-tenanted, autoscaling services provided by the vendor.
In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS (notification services), and more.”

Legend: 6x NoOps 5x pay-per-use

NoOps and Pay-per-Use

9 S. Kounev

NoOps and Pay-per-Use
4. van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and granularly billed applications, without having to address the
operational logic. Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions.”

5. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand automatically scaled and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” … The main differentiators of serverless
platforms is transparent autoscaling and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,…, Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...
They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 6x NoOps 5x pay-per-use

10 S. Kounev

NoOps and Pay-per-Use
4. van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and granularly billed applications, without having to address the
operational logic. Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions.”

5. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand automatically scaled and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” … The main differentiators of serverless
platforms is transparent autoscaling and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,…, Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...
They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 6x NoOps 5x pay-per-use

Armbrust et al. „Above the Clouds: A Berkeley View of Cloud Computing. UC Berkeley (2009):
• “pay-as-you-go“ defined as “the ability to pay for use of computing resources on a short-term basis

as needed” also stating that “it involves metering usage and charging based on actual use”
• AWS mentioned as “a true pay-as-you-go service”

11 S. Kounev

1. Baldini, et al., Serverless Computing: Current Trends and Open Problems (667 cit.), Springer, Dec 2017:

“Serverless computing is a term coined by industry to describe a programming model and architecture where small code snippets are executed in the cloud without
any control over the resources on which the code runs… the developer has control over the code they deploy into the Cloud, though that code has to be written in the
form of stateless functions. The developer does not worry about the operational aspects of deployment and maintenance of that code and expects it to be fault-
tolerant and auto-scaling. In particular, the code may be scaled to zero where no servers are actually running when the user’s function code is not used, and there is
no cost to the user… The version of serverless that explicitly uses functions as the deployment unit is also called Function-as-a-Service (FaaS).”

2. Varghese and Buyya, Next Generation Cloud Computing: New Trends and Research Directions (731 cit.), Elsevier FGCS, Feb 2018; also
Buyya et al., A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade (294 cit.), ACM CSUR, Nov 2018:

“Serverless…simply means that a server is not rented as a conventional cloud server and developers do not think of the server and the residency of applications on a
cloud. From a developers' perspective challenges such as the deployment of an application on a VM, over/under provisioning of resources for the application,
scalability and fault tolerance do not need to be dealt with… In this novel approach, functions (modules) of the application will be executed when necessary without
requiring the application to be running all the time. Sometimes this is also referred to as Function-as-a-Service or event-based programming.”

3. Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019:

“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the platform executes it on their behalf as
needed at any scale. Developers need not concern themselves with provisioning or operating servers, and they pay only for the compute resources used when their
code is invoked... Serverless is not only FaaS. It is FaaS supported by a “standard library”: the various multi-tenanted, autoscaling services provided by the vendor.
In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS (notification services), and more.”

Legend: 6x Function-as-a-Service 3x Backend-as-a-Service

FaaS vs. BaaS

12 S. Kounev

FaaS vs. BaaS
4. van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and granularly billed applications, without having to address the
operational logic. Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions.”

5. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand automatically scaled and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” … The main differentiators of serverless
platforms is transparent autoscaling and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,…, Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...
They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 6x Function-as-a-Service 3x Backend-as-a-Service

13 S. Kounev

1. Baldini, et al., Serverless Computing: Current Trends and Open Problems (667 cit.), Springer, Dec 2017:

“Serverless computing is a term coined by industry to describe a programming model and architecture where small code snippets are executed in the cloud without
any control over the resources on which the code runs… the developer has control over the code they deploy into the Cloud, though that code has to be written in the
form of stateless functions. The developer does not worry about the operational aspects of deployment and maintenance of that code and expects it to be fault-
tolerant and auto-scaling. In particular, the code may be scaled to zero where no servers are actually running when the user’s function code is not used, and there is
no cost to the user… The version of serverless that explicitly uses functions as the deployment unit is also called Function-as-a-Service (FaaS).”

2. Varghese and Buyya, Next Generation Cloud Computing: New Trends and Research Directions (731 cit.), Elsevier FGCS, Feb 2018; also
Buyya et al., A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade (294 cit.), ACM CSUR, Nov 2018:

“Serverless…simply means that a server is not rented as a conventional cloud server and developers do not think of the server and the residency of applications on a
cloud. From a developers' perspective challenges such as the deployment of an application on a VM, over/under provisioning of resources for the application,
scalability and fault tolerance do not need to be dealt with… In this novel approach, functions (modules) of the application will be executed when necessary without
requiring the application to be running all the time. Sometimes this is also referred to as Function-as-a-Service or event-based programming.”

3. Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019:

“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the platform executes it on their behalf as
needed at any scale. Developers need not concern themselves with provisioning or operating servers, and they pay only for the compute resources used when their
code is invoked... Serverless is not only FaaS. It is FaaS supported by a “standard library”: the various multi-tenanted, autoscaling services provided by the vendor.
In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS (notification services), and more.”

Legend: 4x autoscaling/elasticity 2x event-driven arch.

Autoscaling/Elasticity, Event-driven Architecture

14 S. Kounev

Autoscaling/Elasticity, Event-driven Architecture
4. van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and granularly billed applications, without having to address the
operational logic. Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions.”

5. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand automatically scaled and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” … The main differentiators of serverless
platforms is transparent autoscaling and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,…, Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...
They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 4x autoscaling/elasticity 2x event-driven arch.

15 S. Kounev

Autoscaling/Elasticity, Event-driven Architecture
4. van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and granularly billed applications, without having to address the
operational logic. Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions.”

5. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand automatically scaled and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” … The main differentiators of serverless
platforms is transparent autoscaling and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,…, Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...
They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 4x autoscaling/elasticity 2x event-driven arch.

The NIST Definition of Cloud Computing, 2011: „...Rapid elasticity. Capabilities can be elastically
provisioned and released, in some cases automatically, to scale rapidly outward and inward
commensurate with demand. To the consumer, the capabilities available for provisioning often appear
to be unlimited and can be appropriated in any quantity at any time.“

16 S. Kounev

Autoscaling/Elasticity, Event-driven Architecture
4. van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and granularly billed applications, without having to address the
operational logic. Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions.”

5. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand automatically scaled and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” … The main differentiators of serverless
platforms is transparent autoscaling and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,…, Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...
They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 4x autoscaling/elasticity 2x event-driven arch.

The NIST Definition of Cloud Computing, 2011: „...Rapid elasticity. Capabilities can be elastically
provisioned and released, in some cases automatically, to scale rapidly outward and inward
commensurate with demand. To the consumer, the capabilities available for provisioning often appear
to be unlimited and can be appropriated in any quantity at any time.“

Def. (Elasticity): „The degree to which a system is able to adapt to workload changes by provisioning
and deprovisioning resources in an autonomic manner, such that at each point in time the available
resources match the current demand as closely as possible.“
Herbst, Kounev, at al. Elasticity in Cloud Computing: What it is, and What it is Not., ICAC 2013.

17 S. Kounev

FaaS vs. BaaS

§ Function-as-a-Service (FaaS)
§ Def: „A serverless computing platform where the unit of computation is a function that is

executed in response to triggers such as events or HTTP requests“ [1]
§ The most prominent example of serverless computing nowadays
§ Current focus on small, stateless, and event-driven functions

§ Backend-as-a-Service (BaaS)
§ Specialized cloud application components, such as object storage, databases, and

messaging [2]
§ Examples:

§ AWS’ Simple Storage Service (object storage)
§ DynamoDB (key-value database)
§ Google’ Cloud Firestore (NoSQL document database)
§ Cloud Pub/Sub (publish/subscribe messaging middleware)

[1] https://doi.org/10.1145/3368454
[2] http://arxiv.org/abs/1902.03383

18 S. Kounev

Differentiation from Platform-as-a-Service (PaaS)
§ PaaS realized in platforms such as Google App Engine, Cloud Foundry, and Heroku

§ Neither requires not forbids application developers having control over the deployment and
configuration of the hosting environment

§ Whether a PaaS can be considered as serverless depends on the specific abstractions and
automation that it provides to application developers
§ Classical PaaS like early versions of Microsoft Azure had serverless elements but did not completely abstract servers

and operational aspects

§ Others like Google App Engine, specialized for web applications, were close to the serverless to the serverless
paradigm from the beginning

NIST Definition of PaaS (2011): „The capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has control over the deployed applications and possibly
configuration settings for the application-hosting environment.“

19 S. Kounev

Container-as-a-Service (CaaS)

§ A cloud service model that allows users to deploy and manage containers in the cloud
§ Amazon Elastic Container Service (AWS ECS)

§ Google Kubernetes Engine (GKE)

§ Azure Container Instances (ACI)

§ CaaS Serverless?
§ Depends on the level of abstraction and automation a platform provides

§ Examples of serverless CaaS platforms:
§ Google Cloud Run

§ AWS Fargate

§ Azure Container Apps

20 S. Kounev

Community Definition of Serverless Computing

„Serverless Computing is …

… a cloud computing paradigm offering a high-level application
programming model that allows one to develop and deploy
cloud applications without allocating and managing
virtualized servers and resources or being concerned
about other operational aspects. […]

Providers apply utilization-based billing: they charge cloud
users with fine granularity, in proportion to the resources that
applications actually consume from the cloud infrastructure, such
as computing time, memory, and storage space.

S. Kounev et al., Toward a Definition for Serverless Computing, in Serverless Computing
(Dagstuhl Seminar 21201) (C. Abad, I. T. Foster, N. Herbst, and A. Iosup, eds.), vol. 11(5),
Chapter 5.1, Schloss Dagstuhl Leibniz-Zentrum für Informatik, Germany, 2021.

NoOps

Utilization-
based
Billing

21 S. Kounev

CACM Article under Publication

© S. Kounev et al., Serverless Computing: What It Is, and What It Is Not. Submission to the CACM, Jun 2022.

22 S. Kounev

Refined Community Definition
„Serverless Computing is a cloud computing paradigm …

... encompassing a class of cloud computing platforms that allow one to
develop, deploy, and run applications (or components thereof) in the cloud
without allocating and managing virtualized servers and resources or
being concerned about other operational aspects. The responsibility for
operational aspects, such as fault tolerance or the elastic scaling of
computing, storage, and communication resources to match varying
application demands, is offloaded to the cloud provider.

Providers apply utilization-based billing: they charge cloud users with fine
granularity, in proportion to the resources that applications actually consume
from the cloud infrastructure, such as computing time, memory, and storage
space.

S. Kounev, N. Herbst, C. Abad, A. Iosup, I. Foster, P. Shenoy, O. Rana, and A. Chien. 2023.
Serverless Computing: What It Is, and What It Is Not? In Communications of the ACM
(CACM). ACM, New York, NY, USA, 2023. Accepted for publication.

NoOps

Utilization-
based
Billing

23 S. Kounev

Serverless Computing by Analogy

© S. Kounev et al., Serverless Computing: What It Is, and What It Is Not? CACM, 2023.

24 S. Kounev

60
 y

ea
rs

 o
f t

ec
hn

ol
og

ic
al

 e
vo

lu
tio

n
to

w
ar

d
se

rv
er

le
ss

 c
om

pu
tin

g

© S. Kounev et al., Serverless Computing: What It Is, and What It Is Not? CACM, 2023.

25 S. Kounev

Architecture of a Serverless Cloud

Jonas et al. Cloud Programming Simplified:
A Berkeley View on Serverless Computing, 2019.

26 S. Kounev

Comparison: IaaS vs. Classical PaaS vs. FaaS vs. BaaS

Castro et al. 2019 The Rise of Serverless Computing

27 S. Kounev

AWS Serverless vs. AWS Surverful Cloud
Characteristics of serverless cloud functions vs. serverful cloud VMs divided into programming and system admin.
categories. Specifications and prices correspond to AWS Lambda and to on-demand AWS EC2 instances.

Jonas et al. Cloud
Programming Simplified:
A Berkeley View on
Serverless Computing, 2019.

28 S. Kounev

Serverless Computing Use Cases

Castro et al. 2019 The Rise of Serverless Computing

29 S. Kounev

Serverless Computing Use Cases

Castro et al. 2019 The Rise of Serverless Computing

31 S. Kounev

Serverless Computing Benefits
§ Serverless increases resource efficiency

§ Customers pay only for used resources
§ Providers can achieve better resource utilization

§ Serverless increases development speed
§ Developers need to handle less operations tasks
§ Use of BaaS reduces the required code

Schleier-Smith et al. 2021 What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing

32 S. Kounev

Roadmap
§ What is Serverless Computing?

§ Evolution and State-of-the-Art

§ Resource Sizing in FaaS

§ An Empirical Study on Container Start Times

33 S. Kounev

Resource Sizing in FaaS
§ Sizeless: Predicting the Optimal Size of Serverless Functions

S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev
Proceedings of the 22nd International MIDDLEWARE Conference (2021).
pp. 248–259.

§ Best Student Paper Award, ACM Artifacts Evaluated — Functional

Simon
Eismann

Long
Bui

Nikolas
Herbst

Samuel
Kounev

https://bit.ly/3C8s0Z8

Johannes
Grohmann

Cristina L.
Abad

ESPOL

34 S. Kounev

NoOps in Practice

1. Upload code 2. Setup events to
trigger code execution

3. On-demand execution
with continuous scaling

4. Pay for used time with
sub-second metering

“Developers no longer need to think about resource management tasks”

Developers are still in charge of resource sizing

35 S. Kounev

Resource Sizing
§ Selecting how much CPU,

memory, I/O bandwidth, etc. are
allocated to a worker instance

§ Usually implemented as a
memory size parameter where
other resources (I/O, CPU,
network) are scaled accordingly

§ Cost is calculated as:
!"!#$%&'(%&)! ∗)!)'+, -&.!

https://dev.to/aws/deep-dive-finding-the-optimal-resources-allocation-for-your-lambda-functions-35a6

Determining the optimal size of serverless
functions is important but challenging

https://dev.to/aws/deep-dive-finding-the-optimal-resources-allocation-for-your-lambda-functions-35a6

36 S. Kounev

Related Work

Measuring the impact of
different memory sizes

• Back et al., “Using a microbenchmark
to compare function as a service
solutions”, 2018

• Figiela et al., “Performance
evaluation of homogeneous cloud
functions”, 2018

• Scheuner et al., “Function-as-a-
service performance evaluation: A
multivocal literature review”, 2020

• Wang et al, “Peeking behind the
curtains of serverless platforms”,
2018

Cost optimization of
serverless functions

• Boza et al., “Reserved, on-demand,
or serverless: Model-based
simulations for cloud budget
planning”, 2017

• Eismann et al., “Predicting the Costs
of Serverless Workflows”, 2020

• Elgamal et al., “Costless: Optimizing
the cost of serverless computing
through function fusion and
placement”, 2018

• Gunasekaran et al., “Spock:
Exploiting serverless functions for slo
and cost aware resource
procurement in public clouds”, 2019

Size optimization of
serverless functions

• Caselboni et al., “AWS lambda
power tuning”, 2020

• Akhtar et al., “Cose: Configuring
serverless functions using statistical
learning”, 2020

• Ali et al., “Batch: machine learning
inference serving on serverless
platforms with adaptive batching”,
2020

All existing approaches require measuring multiple function sizes
à Time-intensive for developers & impossible for cloud providers

37 S. Kounev

Overview

• Serverless functions still require resource sizing
• All existing solutions require measuring multiple memory sizes

Problem

• Resource consumption should determine impact of memory size
• Predict the execution time of all other memory sizes based on

resource consumption of single memory size

Idea

• Find the optimal memory size using only passive monitoring data
• Enables cloud providers to handle resource sizing

Benefit

38 S. Kounev

Approach

39 S. Kounev

Synthetic Function Generator
§ Sixteen combinable function segments:

§ FloatingPointOperations
§ MatrixMultiplications
§ ImageCompress
§ ImageResize
§ ImageRotate
§ JSON2YAML
§ Compression
§ Decompression

§ Random combination of segments to generate functions
§ Up to 69 904 unique synthetic functions can be generated

• DynamoDBRead

• DynamoDBWrite

• FileRead

• FileWrite

• S3Read

• S3Write

• Sleep

40 S. Kounev

Approach

41 S. Kounev

Resource Consumption Monitoring
§ Implemented using a wrapper-style approach

§ Monitoring of 25 different resource consumption metrics

§ Covering CPU, file system, memory and network usage

§ Node.js-specific metrics using perf_hooks library

42 S. Kounev

Approach

43 S. Kounev

Dataset Generation
§ Randomly generated 2.000 synthetic functions

§ Determined required experiment runtime experimentally à 10 minutes

§ Benchmarked the 2.000 synthetic functions at 6 different memory sizes

§ à 12.000 performance experiments, 216.000.000 Lambda executions, ~ $2.000

44 S. Kounev

Approach

45 S. Kounev

Multi-target regression modeling
§ Problem formulation:

§ Iterative feature selection and engineering, hyperparameter tuning and basesize analysis

46 S. Kounev

Model Explainability

Partial dependence plots for the six most impactful features of our model for a base size of 128MB.

47 S. Kounev

Approach

48 S. Kounev

Memory Size Optimization

Standard multi-objective optimization problem, as we want to optimize for both performance and cost.
à Use a parameterizable tradeoff function that combines the objectives into a single score

49 S. Kounev

Evaluation Systems
Serverless Airline Booking Event Processing

Facial RecognitionHello Retail!

50 S. Kounev

Evaluation I
Can our model, trained on a synthetic dataset, accurately predict the execution

time of realistic serverless functions?

à average prediction error of 15.3% across 27 serverless functions

Example for the measured and predicted execution time for a serverless function of each serverless application

51 S. Kounev

Evaluation II
Are the execution time predictions provided by our approach sufficient to

determine the optimal memory size of serverless functions?

Our approach mostly selects the best (79.0%)
or the second-best memory size (12.3%).

52 S. Kounev

Evaluation III

How large are the benefits in terms of decreased cost
and execution time of our proposed approach?

In the balanced configuration (t=0.75), our approach saves on
average 2.6% costs and speeds up the functions by 39.7% of four

realistic serverless applications.

53

Limitations
Ø Model might become outdated

• New hardware/changes to software
• 9 months between collection of training data and last case study

Ø Multi-core applications
• Approach does not know if application supports multiple cores
• Would underestimate expected speedup

Ø Garbage collection
• Relationship between available memory and performance more complex
• Could additionally include garbage collection metrics

54

Replication package
Performance measurements

Wrapped in docker container for
platform independent execution

Requires only AWS access
keys as input

Fully automated performance
measurements

Data set and analysis

Measurement data of over 200
million function executions

Scripts to reproduce any analysis,
table or figure from the manuscript

1-click reproduction of the results
as a CodeOcean Capsule

Available online at:
https://github.com/Sizeless/ReplicationPackage

55

Summary

56 S. Kounev

Roadmap
§ What is Serverless Computing?

§ Evolution and State-of-the-Art

§ Resource Sizing in FaaS

§ An Empirical Study on Container Start Times

57 S. Kounev

An Empirical Study on Container Start Times

1 University of Würzburg, Germany 2 University of Chicago, USA

An Empirical Study of Container Image Configurations and Their Impact on Start Times
Martin Straesser1, André Bauer1,2, Robert Leppich1, Nikolas Herbst1,
Kyle Chard2, Ian Foster2, Samuel Kounev1

In 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid).

58 S. Kounev

Motivation
The fact that containers permit start times of a few seconds enabled the adoption of
serverless computing in particular FaaS

Start times remain active research field in serverless computing as they are critical
factors for desired rapid scale-ups

Start time as part of the container readiness process

59 S. Kounev

Motivation
The fact that containers permit start times of a few seconds enabled the broad
usage of serverless computing

Start times remain active research field in serverless computing are they are critical
factors for desired rapid scale-ups

Start time as part of the container readiness process

Limitation of existing work: Little is known about variations in start times between
different containers

Our contribution: Empirical study on start times of open-source Docker Hub images
and determination of influencing factors

60 S. Kounev

The Dataset
§ 200,986 open-source Docker Hub images queried in April 2022
§ 20 features per image extracted from the OCI image specification
§ File system and use case of the container treated as a black box
§ Includes popular, recent, and older images

61 S. Kounev

The Dataset
§ 200,986 open-source Docker Hub images queried in April 2022
§ 20 features per image extracted from the OCI image specification
§ File system and use case of the container treated as a black box
§ Includes popular, recent, and older images

These features are
available prior to the
container start
(enables prediction)

62 S. Kounev

Measurements
§ Sample of 1,008 images measured with 100 repetitions in Google Cloud (backed

by SSDs) and local testbed (backed by HDDs)
§ Overall statistics

§ Google Cloud
§ Minimum start time: 277ms
§ Mean: 1886ms
§ Maximum: 17605ms

§ Local testbed
§ Minimum start time: 1241ms
§ Mean: 8417ms
§ Maximum: 426687ms

Variations
are larger
than we
expected

63 S. Kounev

Key Takeaways
§ What is the start time variation for one image?

§ Coefficient of variation in average between 15.3% and 17.7%

§ How do image configuration parameters impact start time?
§ Number of file system layers and size of image seem to most important features
§ But: There is no single dominant feature that determines start time

(multivariate non-linear problem)

None of these
features alone

explain
measured
variability

64 S. Kounev

Key Takeaways
§ Can the results be confirmed in both test environments?

§ Yes, features extracted from the OCI image specification have similar influence on the start
time in both test environments

§ However: Hardware (especially disk type) significantly impacts start time

§ To what extent can we predict start times without knowledge about internals of
the containers file system and use case?
§ Best results with non-linear regression models

§ Promising future work:
Analyze influence of hardware parameters and include them in the prediction

65 S. Kounev

Summary: Serverless Computing
§ A high-level, broadly applicable paradigm, which can be applied at many levels,

including functions, containers, middleware, and backend services

§ Also refers to a specific technological evolution
§ the transition of cloud computing, as used and adopted by the market, to its second phase
§ shift of focus from the use of low-level VM-based interfaces to high-level application-oriented

interfaces, where servers are abstracted and managed by the provider

§ Serverless computing has a well-defined and unique place in computing history

§ Serverless computing supports diverse applications, from enterprise automation
to scientific computing

66 S. Kounev

Serverless Captures the Increasing Shift of Focus...
§ ...from low-level VM-based interfaces, such as AWS EC2, to high-level interfaces providing application-

level programming abstractions that hide the entire cloud execution environment with its hardware and
software stack (physical machines, VMs, and containers);

§ ...from explicit allocation of resources (e.g., VMs, containers) by cloud users to automatic resource
allocation, based for example on fine-grained autoscaling mechanisms;

§ ...from cloud users being responsible for configuring and managing operational aspects (like
component/instance deployment, instance lifecycle, elastic scaling, fault tolerance, monitoring, and logging)
to offloading such responsibilities to the cloud provider;

§ ...from coarse-grained to fine-grained multi-tenant multiplexing and resource sharing;

§ ...from reservation-based pay-as-you-go cost models to real pay-per-use models based on actual
resource utilization with no costs being charged for idle resources;

§ ...from coarse-grained (e.g., VM-hours) to fine-grained resource usage accounting and pricing (e.g.,
execution time in 0.1s units); and

§ ...from cloud users having more control of the execution environment to cloud users having less control.

© S. Kounev et al., Serverless Computing: What It Is, and What It Is Not. Submission to the CACM, Jun 2022.

67 S. Kounev

References
§ Above the Clouds: A Berkeley View of Cloud Computing, TechReport, UC Berkeley, 2009.

§ Cloud Programming Simplified: A Berkeley View on Serverless Computing,
TechReport, UC Berkeley, 2019.

§ What Serverless Computing Is and Should Become: The Next Phase of Cloud
Computing, Communications of the ACM, 2021.

§ The Rise of Serverless Computing, Communications of the ACM, 2019.

§ Serverless Computing: One Step Forward, Two Steps Back, CIDR 2019.

§ A Manifesto for Future Generation Cloud Computing: Research Directions for the Next
Decade, ACM Computing Surveys, Vol. 51, No. 5, Article 105, 2018.

§ Serverless is More: From PaaS to Present Cloud Computing, Internet Computing, 2018.

§ Serverless End Game: Disaggregation enabling Transparency, 2020.

68 S. Kounev

Related Work from our Chair
§ A case study on the stability of performance tests for serverless applications. Eismann, Simon; Costa, Diego; Liao, Lizhi; Bezemer, Cor-Paul; Shang, Weiyi; van Hoorn,

André; Kounev, Samuel; in Journal of Systems and Software (JSS) (2022)
§ The State of Serverless Applications: Collection, Characterization, and Community Consensus. Eismann, Simon; Scheuner, Joel; van Eyk, Erwin; Schwinger,

Maximilian; Grohmann, Johannes; Herbst, Nikolas; Abad, Cristina; Iosup, Alexandru; in Transactions on Software Engineering (2021)
§ Serverless Applications: Why, When, and How?. Eismann, Simon; Joel, Scheuner; van Eyk, Erwin; Schwinger, Maximilian; Grohmann, Johannes; Herbst, Nikolas; Abad,

Cristina; Iosup, Alexandru; in IEEE Software (2021). 38(1) 32–39.
§ The SPEC-RG Reference Architecture for FaaS: From Microservices and Containers to Serverless Platforms. van Eyk, Erwin; Grohmann, Johannes; Eismann, Simon;

Bauer, André; Versluis, Laurens; Toader, Lucian; Schmitt, Norbert; Herbst, Nikolas; Abad, Cristina L.; Iosup, Alexandru; in IEEE Internet Computing (2019). 23(6) 7–18. IEEE.
§ Why Is It Not Solved Yet? Challenges for Production-Ready Autoscaling. Straesser, Martin; Grohmann, Johannes; von Kistowski, Jóakim; Eismann, Simon; Bauer,

André; Kounev, Samuel; in Proceedings of the 2022 ACM/SPEC on International Conference on Performance Engineering (2022). 105–115. Association for Computing
Machinery, New York, NY, USA.

§ Sizeless: Predicting the Optimal Size of Serverless Functions. Eismann, Simon; Bui, Long; Grohmann, Johannes; Abad, Cristina; Herbst, Nikolas; Kounev, Samuel; in
Proceedings of the 22nd International MIDDLEWARE Conference (2021). 248–259.

§ Predicting the Costs of Serverless Workflows. Eismann, Simon; Grohmann, Johannes; van Eyk, Erwin; Herbst, Nikolas; Kounev, Samuel; in Proceedings of the 2020
ACM/SPEC International Conference on Performance Engineering (ICPE) (2020). 265–276. Association for Computing Machinery (ACM), New York, NY, USA.

§ An Experimental Performance Evaluation of Autoscalers for Complex Workflows. A. Ilyushkin; A. Ali-Eldin; N. Herbst; A. Bauer; A. V. Papadopoulos; D. Epema; A.
Iosup; in ACM Transactions on Modeling and Performance Evaluation of Computing Systems (ToMPECS) (2018). 3(2) 8:1–8:32.

§ Chamulteon: Coordinated Auto-Scaling of Micro-Services. A. Bauer; V. Lesch; L. Versluis; A. Ilyushkin; N. Herbst; S. Kounev; in Proceedings of the 39th IEEE
International Conference on Distributed Computing Systems (ICDCS) (2019).

§ Chameleon: A Hybrid, Proactive Auto-Scaling Mechanism on a Level-Playing Field. A. Bauer; N. Herbst; S. Spinner; A. Ali-Eldin; S. Kounev; in IEEE Transactions on
Parallel and Distributed Systems (2019). 30(4) 800–813.

§ Kaa: Evaluating Elasticity of Cloud-hosted DBMS. D. Seybold; S. Volpert; S. Wesner; A. Bauer; N. Herbst; J. Domaschka; in Proceedings of the 11th IEEE International
Conference on Cloud Computing (CloudCom) (2019).

§ The SPEC-RG Reference Architecture for FaaS: From Microservices and Containers to Serverless Platforms. E. van Eyk; J. Grohmann; S. Eismann; A. Bauer; L.
Versluis; L. Toader; N. Schmitt; N. Herbst; C. L. Abad; A. Iosup; in IEEE Internet Computing (2019). 23(6) 7–18.

§ Quantifying Cloud Performance and Dependability: Taxonomy, Metric Design, and Emerging Challenges. N. Herbst; A. Bauer; S. Kounev; G. Oikonomou; E. van Eyk;
G. Kousiouris; A. Evangelinou; R. Krebs; T. Brecht; C. L. Abad; A. Iosup; in ACM Transactions on Modeling and Performance Evaluation of Computing Systems (ToMPECS)
(2018). 3(4) 19:1–19:36.

69 S. Kounev

Further Reading

§ Triggerflow: Trigger-based orchestration of serverless workflows. Aitor Arjona, Pedro García López, Josep
Sampé, Aleksander Slominski, Lionel Villard. Future Gener. Comput. Syst. 124: 215-229 (2021)

§ Beyond Load Balancing: Package-Aware Scheduling for Serverless Platforms. Gabriel Aumala, Edwin F.
Boza, Luis Ortiz-Avilés, Gustavo Totoy, Cristina L. Abad. CCGRID 2019: 282-291

§ funcX: A Federated Function Serving Fabric for Science. Ryan Chard, Yadu N. Babuji, Zhuozhao Li, Tyler J.
Skluzacek, Anna Woodard, Ben Blaiszik, Ian T. Foster, Kyle Chard. HPDC 2020: 65-76

§ Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider.
Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry, Paul Batum, Jason Cooke, Eduardo
Laureano, Colby Tresness, Mark Russinovich, Ricardo Bianchini. USENIX Annual Technical Conference ATC 2020:
205-218

§ Serverless Computing-Where Are We Now, and Where Are We Heading? Davide Taibi, Josef Spillner, Konrad
Wawruch:
IEEE Softw. 38(1): 25-31 (2021)

§ Motivating High Performance Serverless Workloads. Hai Duc Nguyen, Zhifei Yang, Andrew A. Chien.
HiPS@HPDC 2021: 25-32

§ LaSS: Running Latency Sensitive Serverless Computations at the Edge. Bin Wang, Ahmed Ali-Eldin, Prashant
J. Shenoy. HPDC 2021: 239-251

70 S. Kounev

Thank You

Questions?

