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m Identified 10 Challenges in Serverless Design

C1
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C9
C10

Capturing the multi-level architectural features and emerging architectural
patterns of this rapidly evolving serverless computing field.

Predicting which architectural features and patterns will succeed,
and explaining why (and not others).

Agreeing on a serverless definition and making it operational.
Understanding system-level, operational requirements.

Programming model from a systems perspective.

Workload and resource management for serverless,

and overall routing and scheduling.

Practical needs in serverless orchestration.

Manage ecosystem instability.

Create the serverless toolchain.

Support for patterns and anti-patterns, both functional and non-functional.

)
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wi The Many Definitions of Serverless 1

1. Baldini, et al., Serverless Computing: Current Trends and Open Problems (667 cit.), Springer, Dec 2017:

“Serverless computing is a term coined by industry to describe a programming model and architecture where small code snippets are executed in the cloud without
any control over the resources on which the code runs... the developer has control over the code they deploy into the Cloud, though that
form of stateless functionsflilz}developer does not worry about the operational aspects of deployment and maintenancefeis1Reels LE-1ale RV LI NI R N LR IVI S
1)l ETalelauto-scalingMhiloE=liliEIMthe code may be scaled to zerofTElzdno servers are actually running when the user’s function code is not used, and there is
pleisesinenERIEET. .. The version of serverless that explicitly uses functions as the deployment unit is also called gl BN (RER) .

2. Varghese and Buyya, Next Generation Cloud Computing: New Trends and Research Directions (731 cit.), Elsevier FGCS, Feb 2018; also
Buyya et al., A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade (294 cit.), ACM CSUR, Nov 2018:

“Serverless...simply means that a server is not rented as a conventional cloud server and [o[\/=le]of=1¢Ne o Nalo] M1 qlla] o) Mg NET=1AVE = Talo R EH=E (o [T (03] = To) o) [[or= 11 0] SN0 -]
@[el¥ls. From a developers' perspective challenges such as the [s]elle)pal=lgiNeli=1a =] o] o] [{oz=11le]g Mol W= MVAY AT /AN o [ST o] o) ET (o) g Ig e oI R RNV [{o=E| for the application,

Szl Elel A e RET] IR o) CTE ef=No oM gl Mg (=T R oW o SRe CENIRYIMY . . . In this novel approach, |[Sal«ailela B R{nlels IRy of the application will be executed when necessary without
requiring the application to be running all the time. Sometimes this is also referred to as [FUQI IR R RISINS OF Sl E T Rt e

3. Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019:

“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the platform [ CleFIEER RelaRig =M o[=1g I FEES
needed at any scalefIBEYE ool Ineed not concern themselves with provisioning or operating serversEElllsRtsz\pay only for the compute resources used when their
ofolo CHERTIN/1 1l ... SEIWEHEERERCIENIVARES. IEREERE oGl RS e EIL Rl =1g4: the various multi-tenanted, ElEICEE=Tgle W= provided by the vendor.

In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS (notification services), and more.”

Legend: 6x 6x 5x rautoscaling/elasticityfe¥dBackend-as-a-Servicelp2s

S. Kounev



wi The Many Definitions of Serverless g

4. van Eyk et al., Serverless is More: From Paa$S to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run EYEINGNER and (e]e=laEl =RV Aol ETe ReTolol (o= ilelg k!, (WitalolNi Mg EE\ilalo Mo R=To o [(=EEN g l=)
operational logicliFunction-as-a-Service (FaaS) is a form of serverless computinghiaeig=3the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functionsis

D. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that E e BTl TNeos - Xela e e Bautomatically scaledEWshbilled only for the time the code is
. This definition captures the two key features of serverless computing: (a) (065 o1 [=1s Kol BA e A o= i g ale Lo E) A el e o). serverless essentially
supports [Ele=lllilsReI=1{sk and avoids the need to pay for idle servers. (b) [HEE(VE=e=1lgTeNigelig A=l (e R el 11ilglid"4 ... The main differentiators of serverless
JEu{eiEEtransparent autoscalingglileffine-grained resource charging only when code is runninglF unction-as-a-ServiceSERENCIER R plolllilalefol 1 {e] i MUY o [511C!

the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
ENEIElrLTIBackend as-a-Service (BaaS) bears a close resemblance to serverless computing

6. Jonas,..., Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...

They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,

a group of services offerings known collectively as Backend-as-a-Service (BaaS)fIManaged cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = [REER + [FBEER. Three essential qualities of serverless computing are: 1. Providing an abstraction that [gilsEER1:
servers and the complexity of programming and operating themiZeiENillskBpay-as-you-go cost model instead of a reservation-based modelEIsRi I CREN 6]

(ol g o [N (o]l [o | L IV (- MM A LItOMatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infiniteld

Legend: 6x 6x 5x ¥autoscaling/elasticityfeXdBackend-as-a-Service|2d
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E NoOps and Pay-per-Use N

1. Baldini, et al., Serverless Computing: Current Trends and Open Problems (667 cit.), Springer, Dec 2017:

“Serverless computing is a term coined by industry to describe a programming model and architecture where small code snippets are executed in the cloud without
any control over the resources on which the code runs... the developer has control over the code they deploy into the Cloud, though that code has to be written in the
form of stateless functions. The [sE\zl{eJel=] e eIt N lol R el o A= oJo Vi Rigl=Nelol=] = i [e] g E1REE o= Toi s Wo) e [T o) [)Ina Ta I = Ta e g ETRIETRETlef=! Of that code and expects it to be fault-
tolerant and auto-scaling. In particular, the code may be scaled to zero where [glel=EE el =P ENA T gl A R g EREEE g R F] Lo lolg Relolo (SRR (ol =T = (gl g (=] (= S
SR ERIENTEE]. .. The version of serverless that explicitly uses functions as the deployment unit is also called Function-as-a-Service (FaaS).”

2. Varghese and Buyya, Next Generation Cloud Computing: New Trends and Research Directions (731 cit.), Elsevier FGCS, Feb 2018; also
Buyya et al., A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade (294 cit.), ACM CSUR, Nov 2018:

“Serverless...simply means that a server is not rented as a conventional cloud server and [o[\/=le]of=1¢Ne o Nalo] M1 qlla] o) Mg NET=1AVE = Talo R EH=E (o [T (03] = To) o) [[or= 11 0] SN0 -]
@[el¥lsl. From a developers' perspective challenges such as the [s]elle)pal=lgiNeli=1a =] o o) fez=11Te] Wl W= MVAV LTV [ le ET R ol (o) T [ g g e eI R RNV [{o=E| for the application,

Sl 1 EToII A e BTV (o) T g (o= Ne [oR gLl Mg (ST=Te Mo N o=We [EE1IRWINY - . . In this novel approach, functions (modules) of the application will be executed when necessary without
requiring the application to be running all the time. Sometimes this is also referred to as Function-as-a-Service or event-based programming.”

3. Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019:

“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the platform executes it on their behalf as
N O VAo RV iineed not concern themselves with provisioning or operating serversBER RGN
Serverless is not only Faa$S. It is FaaS supported by a “standard library”: the various multi-tenanted, autoscaling services provided by the vendor.
In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS (notification services), and more.”

Legend: 6x 5x
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E NoOps and Pay-per-Use O

4. van Eyk et al., Serverless is More: From Paa$S to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and [e[=1alF1EL VA eIl R ool l[o=iTelg s, (WiidalolNiMaF A\ Talo Mo R=To [o[{=EER g [
operational logicl R alele] =R Re g (=X (- ER RS R (o iR IECEIWCH RS E el nlo[U il s A S1(=Rthe cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions}

D. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that and runs code on-demand automatically scaled and [l Re A A N e Ao e
I This definition captures the two key features of serverless computing: (a) B el e Kol A A e N e A R el R e))....; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” ... The main differentiators of serverless
platforms is transparent autoscaling and |{lg(=5e| = Rl fol=Rw g Elfe [lgle Mol WAL=l Neele SRERFplpllgle]. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,..., Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...

They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,

a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that m
. Mol - E-pay-as-you-go cost model instead of a reservation-based mode RO CANe
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 6x 5x
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@ NoOps and Pay-per-Use \

Armbrust et al. ,Above the Clouds: A Berkeley View of Cloud Computing. UC Berkeley (2009):
“pay-as-you-go“ defined as “the ability to pay for use of computing resources on a short-term basis

as needed” also stating that “it involves metering usage and charging based on actual use”

AWS mentioned as “a true pay-as-you-go service”
Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that and runs code on-demand automatically scaled and [ Re A A N e Al ee e
. This definition captures the two key features of serverless computing: (a) B el e Kol R AC e N e A R el R e))...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” ... The main differentiators of serverless
platforms is transparent autoscaling and |{lg(=5e| = Rl fol=Rw g Elfe [lgle Mol WAL=l Neele SRERFplpllgle]. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

Jonas,..., Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...

They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,

a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that m
. Mol -ihE-pay-as-you-go cost model instead of a reservation-based mode R RO CANe
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 6x 5x
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w FaaS vs. BaaS U

1. Baldini, et al., Serverless Computing: Current Trends and Open Problems (667 cit.), Springer, Dec 2017:

“Serverless computing is a term coined by industry to describe a programming model and architecture where small code snippets are executed in the cloud without
. the developer has control over the code they deploy into the Cloud, though that [eele[zJaE-ER e} Lo gi1 T WIg R1a[=!

any control over the resources on which the code runs..
iR EICIEEERVg@ie]gs. The developer does not worry about the operational aspects of deployment and maintenance of that code and expects it to be fault-
tolerant and auto-scaling. In particular, the code may be scaled to zero where no servers are actually running when the user’s function code is not used, and there is

no cost to the user... The version of serverless that explicitly uses functions as the deployment unit is also called [gilglafelf-ER-Re iR (R=ES) .~

2. Varghese and Buyya, Next Generation Cloud Computing: New Trends and Research Directions (731 cit.), Elsevier FGCS, Feb 2018; also
Buyya et al., A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade (294 cit.), ACM CSUR, Nov 2018:

“Serverless...simply means that a server is not rented as a conventional cloud server and developers do not think of the server and the residency of applications on a
cloud. From a developers' perspective challenges such as the deployment of an application on a VM, over/under provisioning of resources for the application,

scalability and fault tolerance do not need to be dealt with... In this novel approach, |SgletelaER{aglele B[Ry of the application will be executed when necessary without
requiring the application to be running all the time. Sometimes this is also referred to as [gilglale]gfEEREESIEVlos Oor event-based programming.”

3. Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019:

“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the platform executes it on their behalf as

needed at any scale. Developers need not concern themselves with provisioning or operating servers, and they pay only for the compute resources used when their
code is invoked... SEIWEHEESIRICENIVARES. IEREERE oGl RS c e EI Rl =1g%4: the various multi-tenanted, autoscaling services provided by the vendor.
In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS (notification services), and more.”

Legend: 6x KY4Backend-as-a-Service
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w FaaS vs. BaaS O

van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run event-driven and granularly billed applications, without having to address the
operational logic. |gilglee] =t R Wil Y (= ES) ISR iR EIWEI CE el lellitgle] where the cloud provider manages the resources, lifecycle, and event-driven
execution of user-provided functions.”

Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand automatically scaled and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports “scaling to zero” and avoids the need to pay for idle servers. (b) Elasticity—scaling from zero to “infinity.” ... The main differentiators of serverless
platforms is transparent autoscaling and fine-grained resource charging only when code is running. is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
ENEIElrLTIBackend as-a-Service (BaaS) bears a close resemblance to serverless computing

Jonas,..., Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...

They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,

a group of services offerings known collectively as Backend-as-a-Service (BaaS)H
and collectively Serverless Cloud Computing today = [gEBN] + BEER]. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the

servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no
charge for idle resources. 3. Automatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinite.”

Legend: 6x KY4Backend-as-a-Service
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w Autoscaling/Elasticity, Event-driven Architecture )

1. Baldini, et al., Serverless Computing: Current Trends and Open Problems (667 cit.), Springer, Dec 2017:

“Serverless computing is a term coined by industry to describe a programming model and architecture where small code snippets are executed in the cloud without

any control over the resources on which the code runs... the developer has control over the code they deploy into the Cloud, though that code has to be written in the
about the operational aspects of deployment and maintenance of that code and expects it to be fault-

form of stateless functions. The developer does not wor
tolerant and El[eactecllate - In particular, [jNeee e Ao her e kieldsite where no servers are actually running when the user’s function code is not used, and there is
no cost to the user... The version of serverless that explicitly uses functions as the deployment unit is also called Function-as-a-Service (FaaS).”

2. Varghese and Buyya, Next Generation Cloud Computing: New Trends and Research Directions (731 cit.), Elsevier FGCS, Feb 2018; also
Buyya et al., A Manifesto for Future Generation Cloud Computing: Research Directions for the Next Decade (294 cit.), ACM CSUR, Nov 2018:

“Serverless...simply means that a server is not rented as a conventional cloud server and developers do not think of the server and the residency of applications on a
cloud. From a developers' perspective challenges such as the deployment of an application on a VM, over/under provisioning of resources for the application,
scalability and fault tolerance do not need to be dealt with... In this novel approach, functions (modules) of the application will be executed when necessary without
requiring the application to be running all the time. Sometimes this is also referred to as Function-as-a-Service or S\l EETe Relfele=Taplanlgle].”

3. Hellerstein et al., Serverless Computing: One Step Forward, Two Steps Back (360 cit.). CIDR, Jan 2019:
“Serverless computing offers the attractive notion of a platform in the cloud where developers simply upload their code, and the platform [ Cle N HelgRigl=lIF o= EIREE

pEEl IR ACeElS. Developers need not concern themselves with provisioning or operating servers, and they pay only for the compute resources used when their
code is invoked... Serverless is not only Faa$S. It is FaaS supported by a “standard library”: the various multi-tenanted, provided by the vendor.

In the case of AWS, this includes S3 (large object storage), DynamoDB (key-value storage), SQS (queuing services), SNS (notification services), and more.”

WY IN R gautoscaling/elasticity

13 S. Kounev



@ Autoscaling/Elasticity, Event-driven Architecture

4.

van Eyk et al., Serverless is More: From PaaS to Present Cloud Computing (135 cit.), IEEE IC, May 2018:

“Serverless Computing is a form of cloud computing which allows users to run and granularly billed applications, without having to address the
operational logic. Function-as-a-Service (FaaS) is a form of serverless computing where the cloud provider manages the resources, lifecycle, and
m of user-provided functions.”

Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports [Ele=lllilsReI=1{sk and avoids the need to pay for idle servers. (b) [FEE (o EsseE e Nife A= (e R M 1ilglid ... The main differentiators of serverless
platforms is [l eElEIRE Rk e llgle] and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

Jonas,..., Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...

They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,

a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no

(ol g o [N (o]l [o | L IV (- MM A LItOMatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infiniteld

Legend: 4x e Tl E e 2X
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@ Autoscaling/Elasticity, Event-driven Architecture

The NIST Definition of Cloud Computing, 2011: ,,...Rapid elasticity. Capabilities can be elastically
provisioned and released, in some cases automatically, to scale rapidly outward and inward

commensurate with demand. To the consumer, the capabilities available for provisioning often appear
to be unlimited and can be appropriated in any quantity at any time.*

D. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports [Ele=lllilsReI=1{sk and avoids the need to pay for idle servers. (b) [FEE (o EsseE e Nife A= (e R M 1ilglid ... The main differentiators of serverless
platforms is [(EliEeElE IR Bk o= [lile| and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more
generalized Backend as-a-Service (BaaS) bears a close resemblance to serverless computing.”

6. Jonas,..., Patterson et al., Cloud Programming Simplified: A Berkeley View on Serverless Computing (485 cit.), arXiv, Feb 2019, refined in
What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing (75 cit.), CACM, May 2021

“In serverless computing, programmers create applications using high level abstractions offered by the cloud provider...

They may also use serverless object storage, message queues, key-value store databases, mobile client data sync, and so on,
a group of services offerings known collectively as Backend-as-a-Service (BaaS). Managed cloud function services are also called Function-as-a-Service (FaaS)
and collectively Serverless Cloud Computing today = FaaS + BaaS. Three essential qualities of serverless computing are: 1. Providing an abstraction that hides the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no

(ol o 0o [W (o]l [o | - oIV [ (e - MM A LItOMatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infinitef

Legend: 4x e Tl E e 2X
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@ Autoscaling/Elasticity, Event-driven Architecture (-

The NIST Definition of Cloud Computing, 2011: ,,...Rapid elasticity. Capabilities can be elastically
provisioned and released, in some cases automatically, to scale rapidly outward and inward

commensurate with demand. To the consumer, the capabilities available for provisioning often appear
to be unlimited and can be appropriated in any quantity at any time.*

D. Castro et al., The Rise of Serverless Computing (196 cit.), CACM, Dec 2019:

“Serverless computing is a platform that hides server usage from developers and runs code on-demand and billed only for the time the code is
running. This definition captures the two key features of serverless computing: (a) Cost—billed only for what is running (pay-as-you-go)...; serverless essentially
supports [Ele=lllilsReI=1{sk and avoids the need to pay for idle servers. (b) [FEE (o EsseE e Nife A= (e R M 1ilglid ... The main differentiators of serverless
platforms is [(EliEeElE IR Bk o= [lile| and fine-grained resource charging only when code is running. Function-as-a-Service is a serverless computing platform where
the unit of computation is a function that is executed in response to triggers such as events or HTTP requests. Mobile Backend as-a-Service (MBaaS) or more

Def. (Elasticity): ,The degree to which a system is able to adapt to workload changes by provisioning
and deprovisioning resources in an autonomic manner, such that at each point in time the available
resources match the current demand as closely as possible.”

Herbst, Kouney, at al. Elasticity in Cloud Computing: What it is, and What it is Not., ICAC 2013.

d group O ervices olrerings KNow olleClively d badCKkelndad- -d-oelViCe (bad Vianaged Ooud Tur ONn Services are O Called ur Ol vViCce

and collectively Serverless Cloud Computing today = FaaS + BaaS Three essential qualities of serverless computing are: 1. Providing an abstractlon that hldes the
servers and the complexity of programming and operating them. 2. Offering a pay-as-you-go cost model instead of a reservation-based model, so there is no

(ol g o [N (o]l [o | L IV (- MM A LItOMatic, rapid, and unlimited scaling resources up and down to match demand closely, from zero to practically infiniteld

Legend: 4x e Tl E e 2X

16 S. Kounev



uw FaaS vs. BaaS \BZ

* Function-as-a-Service (FaaS)

Def: ,A serverless computing platform where the unit of computation is a function that is
executed in response to triggers such as events or HT TP requests” [1]

The most prominent example of serverless computing nowadays
= Current focus on small, stateless, and event-driven functions

» Backend-as-a-Service (BaaS)

Specialized cloud application components, such as object storage, databases, and
messaging [2]

= Examples:
=  AWS’ Simple Storage Service (object storage)
= DynamoDB (key-value database)
» Google’ Cloud Firestore (NoSQL document database)
» Cloud Pub/Sub (publish/subscribe messaging middleware)

[1] https://doi.org/10.1145/3368454
[2] http://arxiv.org/abs/1902.03383
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w Differentiation from Platform-as-a-Service (Paa$S)

» PaaS realized in platforms such as Google App Engine, Cloud Foundry, and Heroku

= Neither requires not forbids application developers having control over the deployment and

configuration of the hosting environment

= Whether a PaaS can be considered as serverless depends on the specific abstractions and

automation that it provides to application developers

» Classical PaaS like early versions of Microsoft Azure had serverless elements but did not completely abstract servers

and operational aspects

N

= Others like Google App Engine, specialized for web applications, were close to the serverless to the serverless

paradigm from the beginning

(NIST Definition of PaaS (2011): ,, The capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages, libraries, services, and tools
supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has control over the deployed applications and possibly

\configuration settings for the application-hosting environment.”

~
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ws Container-as-a-Service (CaaS) )

= A cloud service model that allows users to deploy and manage containers in the cloud
» Amazon Elastic Container Service (AWS ECS)
» Google Kubernetes Engine (GKE)
= Azure Container Instances (ACI)

» (CaaS Serverless?
= Depends on the level of abstraction and automation a platform provides

= Examples of serverless CaaS platforms:

» Google Cloud Run
=  AWS Fargate
= Azure Container Apps

19 S. Kounev



E Community Definition of Serverless Computing T J

20

NoOps

Utilization-
based
Billing

S. Kounev

,oerverless Computing is ...

... a cloud computing paradigm offering a high-level application
programming model that allows one to develop and deploy
cloud applications without allocating and managing
virtualized servers and resources or being concerned

about other operational aspects. [...]

Providers apply utilization-based billing: they charge cloud
users with fine granularity, in proportion to the resources that
applications actually consume from the cloud infrastructure, such
as computing time, memory, and storage space.

S. Kounev et al., Toward a Definition for Serverless Computing, in Serverless Computing
(Dagstuhl Seminar 21201) (C. Abad, I. T. Foster, N. Herbst, and A. losup, eds.), vol. 11(5),
Chapter 5.1, Schloss Dagstuhl Leibniz-Zentrum fur Informatik, Germany, 2021.
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Serverless Computing: What It Is, and What It Is Not?
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1. ABSTRACT AND INTRODUCTION

Full automation of IT infrastructure and the delivery of efficient IT
operations as billed services have been long-standing goals of the
computing industry since at least the 1960s. A newcomer, serverless
computing, emerged in the late 2010s with characteristics claimed
to be different from those of established IT services, including
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS) clouds. Even though serverless com-
puting has gained significant attention in industry and academia
over the past five years, there is still no consensus about its unique
distinguishing characteristics and precise understanding of how
these characteristics differ from classical cloud computing.
What is serverless computing, and what are its implications?

Highlights:

1. Serverless computing means full automation and fine-
grained utilization-based billing.

2. Serverless computing has a well-defined and unique place
in computing history.

3. Serverless computing supports diverse applications, from

enterprise automation to scientific computing.

49] and a projected market value of 36.8 billion USD [49] by that
time. Early adopters are attracted by expected cost reductions (47%),
reduced operation effort (34%), and scalability (34%) [17]. In re-
search, the number of peer-reviewed publications connected to
serverless computing has risen steadily since 2017 [46]. In industry,
the term is heavily used in cloud provider advertisements and even
in the naming of specific products or services.

Yet despite this enthusiasm, there exists no common and precise
understanding of what is serverless (and of what it is not). Indeed,
existing definitions of serverless computing are largely inconsistent
and unspecific, which leads to confusion in the use of not only
this term but also related terms such as cloud computing, cloud-
native, Container-as-a-Service (CaaS), Platform-as-a-Service (PaaS),
Function-as-a-Service (FaaS), and Backend-as-a-Service (BaaS) [12].
As an extended discussion during a 2021 Dagstuhl Seminar [2]
and our analysis of existing definitions of serverless computing
reveal (Sec. 2), current definitions focus on a variety of aspects, from
abstractions to practical concerns, from computational to financial,
from separation of concerns to how concerns should be enacted, etc.
These definitions do not provide consensus, and they are omissive
in essential points or even diverge. For example, they do not agree
on whether serverless is solely a set of requirements from the

21
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E Refined Community Definition O
yoerverless Computing is a cloud computing paradigm ...

... encompassing a class of cloud computing platforms that allow one to
develop, deploy, and run applications (or components thereof) in the cloud
without allocating and managing virtualized servers and resources or
NoO being concerned about other operational aspects. The responsibility for

ouUps operational aspects, such as fault tolerance or the elastic scaling of
computing, storage, and communication resources to match varying
application demands, is offloaded to the cloud provider.

Utilizati Providers apply utilization-based billing: they charge cloud users with fine
lHization- granularity, in proportion to the resources that applications actually consume
based from the cloud infrastructure, such as computing time, memory, and storage

Billing Space.

S. Kouneyv, N. Herbst, C. Abad, A. losup, |. Foster, P. Shenoy, O. Rana, and A. Chien. 2023.
Serverless Computing: What It Is, and What It Is Not? In Communications of the ACM
(CACM). ACM, New York, NY, USA, 2023. Accepted for publication.
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w Serverless Computing by Analogy N

Legal Financial Personnel
- e ‘
A R B &
Modern movers All objects Any route All decisions All covered Fine-grained Small team

Utilization-based

= A &
= ;é’éiﬁm e 2 B

5

Traditional movers Limited Major roads Basic Basic Coarse- | arge team
support grained
L1852 & - . .
.Movm-g it yourgelf Yourself Yourself Yourself Yourself Yourself Yourself
(with family and friends)
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UNI

60 years of technological evolution
toward serverless computing

Key Aspects

NoOps

Utilization-based billing

fine-granular

Elasticity

Pay-as-you-go

reservation-based, coarse-grained

On-Demand
Resource Provisioning

Scalability
Workload Management

Resource Federation

Resource Sharing
Facility Management

Multi-Tenancy

ije—shared
Business Services

* Positions indicate start

Incarnations
Function-as-a-Service FaaS

Backend-as-a-Service BaaS
Container-as-a-Service CaaS

Software-as-a-Service SaaS
Platform-as-a-Service PaaS

Infrastructure-as-a-Service laaS

Web Services / Hosting

Federated Production Facilities
CERN WLCG, TeraGrid, Globus Toolkit,

Geo-Distributed Platforms

Enterprise Platforms

Electronic Data Systems

Mainframe Rooms

Concept evolution / focus
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w Architecture of a Serverless Cloud \gi

Lo EventData | | . . o . . . .
Applications : Applicat 1
PP Web APls Processing | Future Serverless Applications .
Cloud Object Key-Value Mobile Backend
Functions Storage Database Database
- Serverless
o , ,
= Big Data Big Data Messadin ' Future Serverless
g Query Transform 9ing +  Cloud Services
g 2z 02 | R S St
<
o Base Cloud VM VPC Block IAM Billing Monitoring
2 Platform Storage
)
Q
Hardware Server Network Storage Accelerator

Jonas et al. Cloud Programming Simplified:
A Berkeley View on Serverless Computing, 2019.
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E Comparison: laaS vs. Classical PaaS vs. Faa$S vs. BaaS \

laaS 1st Gen Paa$S Faa$S BaaS/SaaS
Expertise required High Medium Low Low
Developer Control/Customization allowed High Medium Low Very low

Scaling/Cost

Requires high-level

of expertise to build
auto-scaling rules and
tune them

Requires high-level
of expertise to build
auto-scaling rules
and tune them

Auto-scaling to work
load requested (function
calls), and only paying
for when running (scale
to zero)

Hidden from users,
limits set based on
pricing and QoS

Unit of work deployed

Low-level infrastructure
building blocks (VMs,
network, storage)

Packaged code that
is deployed and running
as a service

One function execution

App-specific extensions

Granularity of billing

Medium to large
granularity:

minutes to hours per
resource to years for
discount pricing

Medium to large
granularity:

minutes to hours per
resource to years for
discount pricing

Very low granularity:
hundreds of
milliseconds of function
execution time

Large: typically,
subscription available
based on maximum
number of users

and billed in months

Castro et al. 2019 The Rise of Serverless Computing
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w AWS Serverless vs. AWS Surverful Cloud

N %

Characteristics of serverless cloud functions vs. serverful cloud VMs divided into programming and system admin.
categories. Specifications and prices correspond to AWS Lambda and to on-demand AWS EC2 instances.

Characteristic AWS Serverless Cloud AWS Serverful Cloud
When the program is run On event selected by Cloud user Continuously until explicitly stopped
= | Programming Language JavaScript, Python, Java, Go, C#, etcl*|| Any
E Program State Kept in storage (stateless) Anywhere (stateful or stateless)
f: Maximum Memory Size 0.125 - 3 GiB (Cloud user selects) 0.5 - 1952 GiB (Cloud user selects)
% Maximum Local Storage 0.5 GiB 0 - 3600 GiB (Cloud user selects)
% Maximum Run Time 900 seconds None
A~ | Minimum Accounting Unit 0.1 seconds 60 seconds
Price per Accounting Unit $0.0000002 (assuming 0.125 GiB) $0.0000867 - $0.4080000
Operating System & Libraries | Cloud provider selects” Cloud user selects
Server Instance Cloud provider selects Cloud user selects
Z | Scaling® Cloud provider responsible Cloud user responsible
% Deployment Cloud provider responsible Cloud user responsible
;ﬂ) Fault Tolerance Cloud provider responsible Cloud user responsible Jonas et al. Cloud
5; Monitoring Cloud provider responsible Cloud user responsible Programming Simplified:
Logging Cloud provider responsible Cloud user responsible ABerkeley View on
Serverless Computing, 2019.
27 S. Kounev



@ Serverless Computing Use Cases \93

Where is serverless
used?

What do they use serverless computing for?

Aegex

Xamarin application that customers can use to monitor real-time sensor
data from IoT devices.®

Abilisense

Manages an IoT messaging platform for people with hearing difficulties.
They estimated they could handle all the monthly load for less than
$15 a month.®

A Cloud Guru

Uses functions to perform protected actions such as payment processing
and triggering group emails. In 2017 they had around 200K users and
estimated $0.14 to deliver video course to a user.®

Coca-Cola

Serverless Framework is a core component of The Coca-Cola Company's
initiative to reduce IT operational costs and deploy services faster.? One
particular use case is the use of serverless in their vending machine and
loyalty program, which managed to have 65% cost savings at 30 million hits
per month.®

Expedia

Expedia did "over 2.3 billion Lambda calls per month" back in December
2016. That number jumped 4.5 times year-over-year in 2017 (to 6.2 billion
requests) and continues to rise in 2018." Example applications include
integration of events for their CI/CD platforms, infrastructure governance
and autoscaling.?

28
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@ Serverless Computing Use Cases

Glucon Serverless mobile backend to reduce client app code size and avoid

disruptions.h

Heavywater Inc Runs Website and training courses using serverless (majority of cost per
user is not serverless but storage of video). Serverless reduced their costs
by 70%.

iRobot Backend for iRobot products.

Postlight Mercury Web Parser is a new API from Postlight Labs that extracts

meaningful content from Web pages. Serving 39 million requests for
$370/month, or: How We Reduced Our Hosting Costs by Two Orders of

Magnitude.
PyWren Map-reduce style framework for highly parallel analytics workloads.!
WeatherGods A mobile weather app that uses serverless as backend.™
Santander Bank Electronic check processing. Less than $2 to process all paper checks

within a year."

Financial Engines Mathematical calculations for evaluation and optimization of investment
portfolios. 94% savings on cost approximately 110K annually.°

29 S. Kounev
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@ Serverless Computing Benefits \93

» Serverless increases resource efficiency

= Customers pay only for used resources
= Providers can achieve better resource utilization

= Serverless increases development speed

= Developers need to handle less operations tasks

= Use of BaaS reduces the required code
A

Q On-premise servers

] .
! i Serverful (charged by reservation)

- Serverless (no charge for idle)

% WL
7 % 7

Resource Quantity
Allocated and Charged

Time

Schleier-Smith et al. 2021 What Serverless Computing Is and Should Become: The Next Phase of Cloud Computing
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@ Roadmap U
» What is Serverless Computing?
= Evolution and State-of-the-Art

* Resource Sizing in FaaS

= An Empirical Study on Container Start Times

32 S. Kounev




@ Resource Sizing in FaaS \9?

» Sizeless: Predicting the Optimal Size of Serverless Functions
S. Eismann, L. Bui, J. Grohmann, C. Abad, N. Herbst, and S. Kounev

Proceedings of the 22nd International MIDDLEWARE Conference (2021).
pp. 248-259.

= Best Student Paper Award, ACM Artifacts Evaluated — Functional

s ,
» A
- o T
e
/:'\\ l‘ ‘

Simon Johannes Cristina L. Nikolas Samuel
Eismann Grohmann Abad Herbst Kounev
ESPOL

https.//bit.ly/3C8s0Z8
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@ NoOps in Practice o

1. Upload code 2. Setup events to 3. On-demand execution 4. Pay for used time with
- 2P trigger code execution with continuous scaling sub-second metering
P DA~ V/A\ S
. ™
|| | [.-__] -
— J = =
AWS HTTP
SERVICES ENDPOINTS
MOBILE APPS

“Developers no longer need to think about resource management tasks”

, Developers are still in charge of resource sizing

34 S. Kounev



UNI

Resource Sizing

Selecting how much CPU,
memory, |/O bandwidth, etc. are
allocated to a worker instance

Usually implemented as a
memory size parameter where

other resources (I/O, CPU,
network) are scaled accordingly

Cost is calculated as:
execution time * memory Ssize

InvertMatrix

PrimeNumbers

-
pu

0.0030 40000 0.012
—@— Execution time Execution cost —8— Execution time Execution cost
10000 0.0025 35000 0.010
A = '@30000 =
E 8000 S E g
= \ - 0.0020 % 25000 0.008
£ s E S
‘é 6000 0.0015 ¢ ‘ézoooo 0.006 g
% 4000 0.0010 § %15000 0.004 §
o X 9 X
X & X10000 o
2000 \'\.\. 0.0005 5000 0.002
o | o
0 an
Determining the optimal size of serverless
00— functions is important but challenging
90 0.0005 = > 1000
2300 = m m -
% 0.0004 E £ 600 0.0025 E
250 7] o 7]
.g S g 0.0020 S
ézoo 0.0003 § £ 40¢ o001s §
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50 \k—o\.\. 0.0001 0.0005
0128 256 512 1024 1536 3008 20000 1128 256 512 1024 1536 3008 20090

Memory size [MB]

Memory size [MB]

https://dev.to/aws/deep-dive-finding-the-optimal-resources-allocation-for-your-lambda-functions-35a6
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w Related Work

Measuring the impact of Cost optimization of Size optimization of
different memaory siZes serverless functions serverless functions
» Back et al., “Using a microbenchmark * Boza et al., “Reserved, on-demand,  Caselboni et al., “AWS lambda
to compare function as a service or serverless: Model-based power tuning”, 2020
solutions”, 2018 simulations for cloud budget -
planning”, 2017 » Akhtar et al., “Cose: Configuring
* Figiela et al., “Performance serverless functions using statistical
evaluation of homogeneous cloud » Eismann et al., “Predicting the Costs learning”, 2020
functions”, 2018 of Serverless Workflows”, 2020
» Ali et al., “Batch: machine learning
» Scheuner et al., “Function-as-a- » Elgamal et al., “Costless: Optimizing inference serving on serverless
service performance evaluation: A the cost of serverless computing platforms with adaptive batching”,
multivocal literature review”, 2020 through function fusion and 2020

_ _ placement”, 2018
» Wang et al, “Peeking behind the

c2:L01r1tgins of serverless platforms”, - Gunasekaran et al., “Spock:

Exploiting serverless functions for slo
and cost aware resource
procurement in public clouds”, 2019

All existing approaches require measuring multiple function sizes
- Time-intensive for developers & impossible for cloud providers
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w Overview

e Problem

« Serverless functions still require resource sizing
« All existing solutions require measuring multiple memory sizes

« Resource consumption should determine impact of memory size

 Predict the execution time of all other memory sizes based on
resource consumption of single memory size

e Benefit

* Find the optimal memory size using only passive monitoring data
« Enables cloud providers to handle resource sizing

37
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@ Synthetic Function Generator \

» Sixteen combinable function segments:

= FloatingPointOperations
=  MatrixMultiplications

= |mageCompress

= ImageResize * FileRead
» |mageRotate

Dyna m 0 D B Read Funct\ons:pggig:;emplate

*  DynamoDBWrite

 FileWrite
=  JSON2YAML
=  Compression * S3Read
= Decompression « S3Write
« Sleep

» Random combination of segments to generate functions
= Up to 69 904 unique synthetic functions can be generated
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w Resource Consumption Monitoring

= Implemented using a wrapper-style approach
= Monitoring of 25 different resource consumption metrics
= Covering CPU, file system, memory and network usage

= Node.js-specific metrics using perf _hooks library

Metric Name

Metric Source

Execution time

User CPU time
System CPU time
Vol Context Switches
Invol Context Switches
File system reads
File system writes
Resident set size
Max resident set size
Total heap

Heap used

Physical heap
Available heap

Heap limit

Allocated memory
External memory
Bytecode metadata
Bytes received

Bytes transmitted
Packages received
Packages transmitted
Min event loop lag
Max event loop lag
Mean event loop lag
Std event loop lag

process.hrtime()
process.cpuUsage()
process.cpuUsage()
process.resourceUsage()
process.resourceUsage()
process.resourceUsage()
process.resourceUsage()
process.memory Usage()
process.resourceUsage()
process.memory Usage()
process.memory Usage()
v8.getHeapStatistics()
v8.getHeapStatistics()
v8.getHeapStatistics()
v8.getHeapStatistics()
process.memory Usage()
v8.getHeapCodeStatistics()
/proc/net/dev/
/proc/net/dev/
/proc/net/dev/
/proc/net/dev/
perf_hooks

perf_hooks

perf_hooks

perf_hooks
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w Dataset Generation \93

» Randomly generated 2.000 synthetic functions
= Determined required experiment runtime experimentally - 10 minutes

—— mallocMem
—— heapExecutable
—— bytecodeMetadata

ctions

Unstable for X fun

o B N W » U1 O N

100 200 300 400 500 600 700 800 900
Experiment duration [s]

= Benchmarked the 2.000 synthetic functions at 6 different memory sizes
= > 12.000 performance experiments, 216.000.000 Lambda executions, ~ $2.000
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UNI

Multi-target regression modeling

Problem formulation:

‘ Features Targets
Function Measured Measured Execution Execution Execution Execution Execution Execution
nam memory  execution M1 M25 time time time time time time
e . . ,
size time 128MB 256 MB 512MB 1024MB 2048MB 3008MB

F1 128 3.2 11 9.7 3.2 2.8 2.0 1.7 1.7 1.7

F1 256 2.8 10 9.6 3.2 2.8 2.0 1.7 1.7 1.7

F1 512 2.0 11 9.8 3.2 2.8 2.0 1.7 1.7 1.7
F2000 3008 6.1 2 304 193.6 96.8 48 4 24.2 12.1 6.1

lterative feature selection and engineering, hyperparameter tuning and basesize analysis

0.030 77
{ \ —— Feature Selection Round 1
5 0.0257 | "«‘_\ Feature Selection Round 2
ut) \ “‘-\. —+— Feature Selection Round 3
- 0:0207 | \ x  Selected Number of Metrics
E .‘“‘: .‘."" /
©0.01571 |\ N
c— "* ™ '/
) \ o/
c0.010{ \ \*-«».,‘ e
] h\
= 0.005 IS o O
0.000 5 10 15 20 25
Number of used metrics

30

Parameter Parameter range Selected
Optimizer SGD, Adam, Adagrad Adam
Loss MSE, MAE, MAPE MAPE
Epochs 200, 500, 1000 500
Neurons 64, 128, 256 256

L2 0,0.0001, 0.001, 0.01  0.0001
Layers 2,3,4,5 5

Basesize 128 256 512 1024 2048 3008
MSE 0.003 0.001 0.006 0.007 0.008 0.006
MAPE 0.028 0.022 0.022 0.022 0.023 0.024
R"2 0991 0985 0.962 0972 0.9732 0.978
ExpVar 0991 0986 0962 0973 0975 0.981
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UNI

Model Explainability

o 1l5 o 15 o 15
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Partial dependence plots for the six most impactful features of our model for a base size of 128MB.
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@ Memory Size Optimization

executionTime(m,)

cost(my) S perf (my) =

S(*()S-{ (I’I X ) — , . . . / \
- Miny,,, ey cost(m;) MINYy,,, cp execution T'ime(m;)

Sf()m/ (”'l.\') =1 S(‘osr ("7.\') + ( 1 — T) : S/)crf(’n.\‘)

OptSize = arg min Storar (My)
Vm,€{128.256,512,1024,2048,3008 }

Standard multi-objective optimization problem, as we want to optimize for both performance and cost.
- Use a parameterizable tradeoff function that combines the objectives into a single score
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[l Evaluation Systems

Serverless Airline Booking

AppSync
|

List Bookings

API Gateway

Lambda Lambda

API| Gateway DynamoDB

Get Loyalty

API Gateway
v

Event Sources

Event Processing

F2: Format
Pub-Sub | Normalizer #1
Channel

F3: Format
Normalizer #2

F1: Insert Event

Messaging
Service

Messaging
Service

F4: Format

AP| Gateway Normalizer #3
Point-to-Point
—
ReadData |il]  Store Event Data f‘\ Channel
F6: Access DB F5: Persist
RDBMS

Facial Recognition

Facial detection,
validation and

AWS Step

indexing Start

Amazon Rekognition

Generate image |
@ thumbnail \

Functions

Amazon S3 PhotoDoesNotMeetRequirement — —

Persist metadata | —
7 -

Amazon DynamoDB
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wi Evaluation | g

Can our model, trained on a synthetic dataset, accurately predict the execution
time of realistic serverless functions?

Airline Booking - CreateCharge Facial Recognition - PersistMetadata Hello Retail - ProductCatalogApi
_500] F—_ — 20 128MB 2048MB 100 . 128MB 2048MB
2400 $1‘ —F—1 ] £ K 256MB 3008MB £ gol ¥\ 256MB 3008MB
v : X X : 030 512MB —}— Measured v \*\ 512MB —}— Measured
£300 E 1024MB E 60 J 1024MB
5 128MB 2048MB S : 5
0 0220 \ o
5200 256MB 3008MB 5 LN 5 40 -
0 512MB —}— Measured %10 o ‘ .
% 100 > G x 20 B
- 1024MB w T . “

0 128 256 512 1024 2048 3008 0 128 256 512 1024 2048 3008 128 256 512 1024 2048 3008
Memory size [MB] Memory size [MB] Memory size [MB]

Example for the measured and predicted execution time for a serverless function of each serverless application

—> average prediction error of 15.3% across 27 serverless functions
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wi Evaluation ll

Are the execution time predictions provided by our approach sufficient to
determine the optimal memory size of serverless functions?

" t=0.75 " t=0.5 " t=0.25
-5 20 Il Airline Booking ,5 20 Bl Airline Booking ,5 20 Bl Airline Booking
e W Facial Recognition b W Facial Recognition g W Facial Recognition
E B Event Processing E B Event Processing E B Event Processing
210 mE Hello Retail ° 10 EEE Hello Retail 210 mEE Hello Retail
3 3 3
S £ £
= = >
Z0 Z 0 Z 0

Best 2nd 3rd 4th 5th 6th Best 2nd 3rd 4th 5th 6th Best 2nd 3rd 4th 5th 6th

best best best best best best best best best Dbest best best best best best
Selected memory size Selected memory size Selected memory size

Our approach mostly selects the best (79.0%)
or the second-best memory size (12.3%).
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Evaluation lll

How large are the benefits in terms of decreased cost
and execution time of our proposed approach?

Apolication t=0.75 t=0.5 t=0.25

PP Cost savings  Speedup | Cost savings Speedup | Cost savings Speedup
Airline Booking 15.6% 28.5% 4.5% 31.9% -12.3% 34.1%
Facial Recognition -2.9% 67.5% -2.9% 67.5% -17.4% 70.6%
Event Processing 2.8% 31.2% -17.0% 47.8% -30.5% 57.5%
Hello Retail -8.4% 41.1% -32.4% 47.7% -63.8% 55.7%
All Applications 2.6% 39.7% -12.0% 46.7% -31.3% 52.5%

In the balanced configuration (t=0.75), our approach saves on
average 2.6% costs and speeds up the functions by 39.7% of four
realistic serverless applications.
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w Limitations

» Model might become outdated
* New hardware/changes to software
* 9 months between collection of training data and last case study

» Multi-core applications
» Approach does not know if application supports multiple cores
» Would underestimate expected speedup

» Garbage collection
» Relationship between available memory and performance more complex
« Could additionally include garbage collection metrics
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@ Replication package

Performance measurements

Measurement data of over 200
million function executions

Fully automated performance
measurements

. Scripts to reproduce any analysis,

Requires only AWS access table or figure from the manuscript

keys as input

Wrapped in docker container for Co 1-click reproduction of the results
platform independent execution as a CodeOcean Capsule

CODE OCEAN

docker

Available online at:
https://github.com/Sizeless/ReplicationPackage
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E Summary
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@ Roadmap U
» What is Serverless Computing?
= Evolution and State-of-the-Art

» Resource Sizing in FaaS

= An Empirical Study on Container Start Times
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E An Empirical Study on Container Start Times

An Empirical Study of Container Image Configurations and Their Impact on Start Times
Martin Straesser!, André Bauer'-2, Robert Leppich’, Nikolas Herbst?,
Kyle Chard?, lan Foster?, Samuel Kounev'

In 2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid).

GRID

STER t Jl[
INTER JFU C

T University of Wiirzburg, Germany 2 University of Chicago, USA
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Motivation 1

E The fact that containers permit start times of a few seconds enabled the adoption of
= serverless computing in particular FaaS

>  Start times remain active research field in serverless computing as they are critical
I I factors for desired rapid scale-ups

Start time as part of the container readiness process

- —
Start container x :

| '

|

I

Pu// time | Start time Setup t/me

Readiness Time
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w Motivation

The fact that containers permit start times of a few seconds enabled the broad
usage of serverless computing

Start times remain active research field in serverless computing are they are critical
factors for desired rapid scale-ups

Start time as part of the container readiness process

Limitation of existing work: Little is known about variations in start times between
different containers

Our contribution: Empirical study on start times of open-source Docker Hub images
and determination of influencing factors
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w The Dataset

= 200,986 open-source Docker Hub images queried in April 2022

= 20 features per image extracted from the OCI| image specification
* File system and use case of the container treated as a black box
* Includes popular, recent, and older images

c

llllll

111111

Version (M/Y) # Images Version (M/Y) | # Images | = *© 1 0 | e L | 1
20.10 (12/2020) 19,647 1.7.x (06/2015) 78

19.03 (07/2019) 42,479 1.6.x (04/2015) 158 ool || e 1| e -
18.x (01/2018) 53,697 1.5.x (02/2015) 51

17.x (03/2017) 34,886 1.4.x (12/2014) 18 B o attach sin fo_attach_stdout fo_attach_stderr
1.13.x (01/2017) 4821 1.3.x (10/2014) 31 E  ANEEEE] oo pmmmm——
1.12.x (07/2016) 14,089 1.2.x (08/2014) 11 ;

1.11.x (04/2016) 3440 1.1.x (07/2014) oy

1.10.x (02/2016) 1196 1.0.x (06/2014) 9 B I | S '
1.9.x (11/2015) 340 0.x (03/2013) 7

1.8.x (08/2015) 205 N/A 25,803 1 [ty e '

' '
eeeeeeeeeeeeeee

io_tty net_ports (log)
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w The Dataset
= 200,986 open-source Docker Hub images queried in April 2022

c

D

» 20 features per image extracted from the OCIl image sp

* File system and use case of the container treated as a black box
* Includes popular, recent, and older images

These features are
available prior to the
container start
(enables prediction)

Version (M/Y) # Images Version (M/Y) | # Images | == || | == || | ™™
20.10 (12/2020) 19,647 1.7.x (06/2015) 78
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w Measurements \g

Sample of 1,008 images measured with 100 repetitions in Google Cloud (backed
by SSDs) and local testbed (backed by HDDs)

= (Qverall statistics
= Google Cloud
=  Minimum start time: 277ms

Variations
are larger

» Mean: 1886ms than we
- expected
= Maximum: 17605ms ‘
= Local testbed O

= Minimum start time: 1241ms
= Mean: 8417ms

=  Maximum: 426687ms
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Key Takeaways

What is the start time variation for one image?
= Coefficient of variation in average between 15.3% and 17.7%

How do image configuration parameters impact start time?
= Number of file system layers and size of image seem to most important features

= But: There is no single dominant feature that determines start time
(multivariate non-linear problem)

None of these
features alone
explain
measured
variability

Start Time [ms] (log)

0e+00 1e+10 2e+10 3e+10

63

S. Kounev




@ Key Takeaways

Can the results be confirmed in both test environments?

D

» Yes, features extracted from the OCIl image specification have similar influence on the start
time in both test environments

» However: Hardware (especially disk type) significantly impacts start time

To what extent can we predict start times without knowledge about internals of
the containers file system and use case?

= Best results with non-linear regression models

Model Google Cloud Self-hosted
MAE [ms] MAPE MAE [ms] MAPE
Baseline 806 0.607 4513 0.748
Univariate LinReg > 777 > 0.565 > 3751 > 0.569
Multivariate LinReg 772 0.559 3661 0.541
Random Forest 327 0.215 1816 0.205

= Promising future work:

Analyze influence of hardware parameters and include them in the prediction
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Summary: Serverless Computing \Bﬁ

A high-level, broadly applicable paradigm, which can be applied at many levels,
including functions, containers, middleware, and backend services

Also refers to a specific technological evolution

» the transition of cloud computing, as used and adopted by the market, to its second phase

= shift of focus from the use of low-level VM-based interfaces to high-level application-oriented
interfaces, where servers are abstracted and managed by the provider

Serverless computing has a well-defined and unique place in computing history

Serverless computing supports diverse applications, from enterprise automation
to scientific computing

LR
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w Serverless Captures the Increasing Shift of Focus... \9@

= _.from low-level VM-based interfaces, such as AWS EC2, to high-level interfaces providing application-
level programming abstractions that hide the entire cloud execution environment with its hardware and
software stack (physical machines, VMs, and containers);

= _..from explicit allocation of resources (e.g., VMs, containers) by cloud users to automatic resource
allocation, based for example on fine-grained autoscaling mechanisms;

= _..from cloud users being responsible for configuring and managing operational aspects (like
component/instance deployment, instance lifecycle, elastic scaling, fault tolerance, monitoring, and logging)
to offloading such responsibilities to the cloud provider;

» _..from coarse-grained to fine-grained multi-tenant multiplexing and resource sharing;

= _.from reservation-based pay-as-you-go cost models to real pay-per-use models based on actual
resource utilization with no costs being charged for idle resources;

= _.from coarse-grained (e.g., VM-hours) to fine-grained resource usage accounting and pricing (e.g.,
execution time in 0.1s units); and

...from cloud users having more control of the execution environment to cloud users having less control.
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w Thank You

Questions?




