
Using eBPF for Database Workload Tracing: An Explorative Study

Using eBPF for Database Workload Tracing:
An Explorative Study

Georg Eisenhart
Jörg Domaschka, Simon Volpert, Kevin Maier, Georg Eisenhart, Daniel Seybold

Using eBPF for Database Workload Tracing: An Explorative Study

Motivation

2

DBMS Performance Engineering

Configuration Workload

Recorded
TracesSynthetic

DBMS specific eBPF

…

?

Viable Solution?

Using eBPF for Database Workload Tracing: An Explorative Study

Research Questions

▸ RQ1 Can DBMS be instrumented (using eBPF) in order to trace
occurring workload?

▸ RQ2 How big is the impact of such an (eBPF) instrumentation on the
overall performance?

▸ RQ3 How does the eBPF impact compare to native DBMS tracing?

3

eBPF aims to enable low-overhead observability & tracing

Using eBPF for Database Workload Tracing: An Explorative Study

eBPF Overview

4

According to https://www.brendangregg.com/ebpf.html

Using eBPF for Database Workload Tracing: An Explorative Study

eBPF Example

int query_start(struct pt_regs *ctx) {
 int zero = 0;
 struct temp_t *tmp = temp_data_buffer.lookup(&zero);
 if (!tmp)
 return 0;
 tmp->timestamp = bpf_ktime_get_ns();

#if defined(MYSQL56)
 bpf_probe_read_user(&tmp->query, sizeof(tmp->query),
(void*) PT_REGS_PARM3(ctx));
. . .
#endif

 u64 pid = bpf_get_current_pid_tgid();
 temp_data_buffer.update(&zero, tmp);
 return 0;
}

5

Excerpt of
https://github.com/benchANT/dbms-tracing-overhead

DB Process

Function Call

Li
nu

x
Ke

rn
el

eBPF

Output

Buffer

bpf.attach_uprobe(name=args.path,

sym="\\w+dispatch_command\\w+", fn_name="query_start")

Using eBPF for Database Workload Tracing: An Explorative Study

Probe Selection

▸ User space tracing

▸ USDT and uprobes allow capturing
function invocations including
parameters and execution time.

▸ We focus on uprobes

▸ Attach uprobe to the query start

▸ Attach uretprobe to query end

6

Using eBPF for Database Workload Tracing: An Explorative Study

Toolset

▸ Baseline tool
▸ Dbslower1

▸ On function call detection collect timestamp and arguments
▸ On end detection calculate execution time

▸ Tool Extensions
▸ Extended char array to hold full queries
▸ Added support for PostgreSQL uprobes
▸ Tracing and logging af any query can be written to files
▸ Ability to replay later for production workload analysis
▸ Remove filters to be able to trace fast queries

7

1) https://github.com/iovisor/bcc/blob/master/tools/dbslower.py

 A
N

Tt
ra

il

Using eBPF for Database Workload Tracing: An Explorative Study

Experiment Workflow

8

ANTtrailData
base

Operating System

Node b

Workload
Generator

OS

Node a

(i)
workload.conf

(iv)
trace.log

(iii)
trace

(ii)
workload

Using eBPF for Database Workload Tracing: An Explorative Study

Evaluation Scenarios

9

1. Baseline

2. DBMS Native

3. eBPF Active

4. eBPF Process

5. eBPF Persist

Detect queries with ANTtrail, without processing

Process queries with ANTtrail, but not persisting

Process and persist queries to file with ANTtrail

DBMS Performance without any tracing in place

Native DBMS specific tracing capabilities enabled

+

+

Using eBPF for Database Workload Tracing: An Explorative Study

Evaluation Setup

10

Using eBPF for Database Workload Tracing: An Explorative Study

Results – Write-Heavy Workload

11

Using eBPF for Database Workload Tracing: An Explorative Study

Results – Read-Heavy Workload

12

Using eBPF for Database Workload Tracing: An Explorative Study

Result Evaluation

▸ RQ1 Instrumentation with eBPF using uprobes works.
No technical constraints to use with other DBMS.

▸ RQ2 Performance impact with eBPF-based workload tracing is not
stable across different workloads.
Overhead depends on DBMS technology under test.

▸ RQ3 eBPF-based approach competes with DBMS-native tracing or
outperforms it.

13

Using eBPF for Database Workload Tracing: An Explorative Study

Summary

▸ eBPF has similar or lower impact on database performance than native
DBMS tracing

▸ Impact highly depends on applied workload

▸ Very specific to database implementation

▸ DBMS independent traces via eBPF possible

▸ Generation of real world database traces helps in operations

▸ Our approach provides a non-intrusive method

▸ May be usable in production for selected cases

14

Using eBPF for Database Workload Tracing: An Explorative Study

Outlook

▸ Add more DBMS
▸ Like MongoDB and Redis

▸ Improvements and optimizations of the eBPF program
▸ Take various probes into account e.g. kprobes

▸ Retrieve query on signal path
▸ Different benchmarks and workloads

▸ E.g. TPC

15

Using eBPF for Database Workload Tracing: An Explorative Study

Thank you for attention!

Questions?

16

Source code and data available at:
https://github.com/benchANT/dbms-tracing-overhead

Using eBPF for Database Workload Tracing: An Explorative Study

Results

17

Using eBPF for Database Workload Tracing: An Explorative Study

Results

18

