Using eBPF for Database Workload Tracing: An Explorative Study

=, 1Y

- - - -
o ,, - T e 'j‘ S e e e
£ b TN -
k- 2 4 s .. Ny - -5 oy
- & T f

C . B =3 _— s NS el
-~ j 3 - R R

Using eBPF for Database Workload Tracing:
An Explorative Study

Georg Eisenhart

N
[BN <]
%8{-. b e n C h ANT Jorg Domaschka, Simon Volpert, Kevin Maier, Georg Eisenhart, Daniel Seybold

Motivation
DBMS Performance Engineering
Configuration Workload

Recorded

Synthetic Traces

Viable Solution?

DBMS specific eBPF

Research Questions
eBPF aims to enable low-overhead observability & tracing

> RQ1 Can DBMS be instrumented (using eBPF) in order to trace
occurring workload?

> RQ2 How big is the impact of such an (eBPF) instrumentation on the
overall performance?

» RQ3 How does the eBPF impact compare to native DBMS tracing?

eBPF Overview

(i) generate

verifier

Using eBPF for Database Workload Tracing: An Explorative Study

kprobes

uprobes

tracepoints

perf_events

(i)
BPF load
bytecode
(iii)
per-event | perfoutput
data
(iii)
async read
statistics [>
= VT
User

Kernel

According to https://www.brendangregg.com/ebpf.html

Linux Kernel

eBPF Example

DB Process

Function Call

eBPF

Output

Buffer

bpf.attach_uprobe(name=args.path,

sym="\\w+dispatch_command\\w+", fn_name="query_ start")

query_start(pt_regs *ctx) {
zero = 0;
temp_t *tmp = temp_data_buffer.lookup(&zero);
if ('tmp)
return 0;
tmp->timestamp = bpf_ktime_get ns();

#if defined
bpf_probe_read_user(&tmp->query, (tmp->query),
(*) PT_REGS_PARM3(ctx));

#tendif

ub4 pid = bpf_get current_pid tgid();
temp_data_buffer.update(&zero, tmp);
return 0;

Excerpt of
https://github.com/benchANT/dbms-tracing-overhead

n Using eBPF for Database Workload Tracing: An Explorative Study

Probe Selection

» User space tracing

» USDT and uprobes allow capturing
function invocations including static | dynamic userspace| kernelspace
parameters and execution time. - / X X F
tracepoint v/ X X v
> We focus on uprobes robe . X | 7 5 pl
uprobe X v v X
> Attach uprobe to the query start USDT s | x 7 X
» Attach uretprobe to query end

Using eBPF for Database Workload Tracing: An Explorative Study

Toolset

» Baseline tool
» Dbslower!
» On function call detection collect timestamp and arguments
» On end detection calculate execution time

» Tool Extensions
» Extended char array to hold full queries >
» Added support for PostgreSQL uprobes
» Tracing and logging af any query can be written to files
» Ability to replay later for production workload analysis
» Remove filters to be able to trace fast queries

ANTtrail

1) https://github.com/iovisor/bcc/blob/master/tools/dbslower.py

Using eBPF for Database Workload Tracing: An Explorative Study

Experiment Workflow

B D
Y ()
workload.conf trace.log
l (iii)
F trace \I
Workload o (ii) Data .
Generator workload e ANTtrail

0S Operating System

Evaluation Scenarios

Baseline DBMS Performance without any tracing in place
DBMS Native Native DBMS specific tracing capabilities enabled
eBPF Active Detect queries with ANTtrail, without processing
eBPF Process + Process queries with ANTtrail, but not persisting

eBPF Persist + Process and persist queries to file with ANTtrail

Evaluation Setup

| PostgresSQL ~ MySQL YCSB

read-heavy write-heavy

cloud
region
instance
storage type
0OS

version

mb.large

13.9

AWS EC2
eu-central-1
mb5.large c5.4xlarge
GP2
Ubuntu 20.04
8.0.30 0.17.0

YCSB instances
threads
inital data size
write proportion
read proportion
runtime

1
50
10 GB
0.1 0.9
0.9 0.1
30 minutes

Using eBPF for Database Workload Tracing: An Explorative Study

Results — Write-Heavy Workload

write-heavy MYSQL write-heavy POSTGRESQL

7,000+
2,500 _— scenario
@ Baseline
l 6,000 I () DBMS-Native
. | ala 1 T | @ EBrrAdive
20007 () EBPF-Process
|
5,000 I @ EBPF-Persist
a I @
Q. g o
o 1 : o " -
£ 1,500+ £ 4,000 P i
= -
2 5
a 2
® =
3 4 3,000+
e 1,000 o
= z ole
2,000 T
500
1,000
0- 0-
T T T T T T T T T 1
E : 2 i 3 B
] = s Q & -] - 9 Q
8 2 1 F ¢ g £ ¥ g 3
® ¢ & w i £ o a it o
ﬂzl] o @ g @ a o
[a] E w a) E w

Scenario Scenario

2]

Results — Read-Heavy Workload

8,000

7,000

6,000

-] u
=) =)
=] =]
S)
1 1

3,000 -

Throughput in op/s

2,000

1,000

e

read-heavy MYSQL

87
P11

Baseline -

DBMS-Native |
EBPF-Active -
EBPF-Process
EBPF-Persist -

Scenario

Throughput in op/s

12,000

10,000

8,000 -

6,000 -

4,000 -

2,000

ar

read-heavy POSTGRESQL

"

Using eBPF for Database Workload Tracing: An Explorative Study

s e wa»

s

T T T T T
(] (] (] V)] -~
k= 2 2 3 -2
> b= S o] 4
[} o 7}
g = <'(= a
T e [v
o) e v w
= & a
o o &
o w o w

(a] w

Scenario

scenario

@ Baseline

() DBMS-Native
() EBPF-Active

() EBPF-Process
() EBPF-Persist

Using eBPF for Database Workload Tracing: An Explorative Study

Result Evaluation

> RQ1 Instrumentation with eBPF using uprobes works.
No technical constraints to use with other DBMS.

> RQ2 Performance impact with eBPF-based workload tracing is not
stable across different workloads.
Overhead depends on DBMS technology under test.

» RQ3 eBPF-based approach competes with DBMS-native tracing or
outperforms it.

Summary

> eBPF has similar or lower impact on database performance than native
DBMS tracing

» Impact highly depends on applied workload

> Very specific to database implementation

» DBMS independent traces via eBPF possible

» Generation of real world database traces helps in operations
> Our approach provides a non-intrusive method

> May be usable in production for selected cases

Using eBPF for Database Workload Tracing: An Explorative Study

Outlook

> Add more DBMS
> Like MongoDB and Redis
> Improvements and optimizations of the eBPF program
» Take various probes into account e.g. kprobes
» Retrieve query on signal path
» Different benchmarks and workloads
> E.g. TPC

Using eBPF for Database Workload Tracing: An Explorative Study

Thank you for attention!

Questions?

Results
Table 4: Degradation for tracing a workload on MYSQL

type read-heavy | write-heavy |
- A% median median mean A% mean A% median median mean A% mean

throughput throughput throughput throughput throughput throughput throughput throughput
scenario
Baseline 0.0 6432.00 6384.03 0.0 0.0 2127.40 2102.87 0.0
DBMS-Native 14.2 5518.80 5456.49 14.5 8.6 1945.50 1999.43 4.9
EBPF-Persist 3.6 6200.65 6070.62 4.9 9.4 1928.00 1988.55 5.4
EBPF-Process 2.5 6268.65 6162.64 3.9 2.7 2070.45 2059.28 2.1
EBPF-Active 9.2 5839.10 5921.38 1.2 8.5 1946.15 1936.57 19

Results
Table 5: Degradation for tracing a workload on POSTGRESQL
type | read-heavy | write-heavy |
AT A% median median mean A% mean A% median median mean A% mean

throughput throughput throughput throughput throughput throughput throughput throughput

scenario

Baseline 0.0 11546.90 10076.10 0.0 0.0 6149.80 6109.23 0.0
DBMS-Native 21.6 9057.00 9080.74 99 63.5 2245.75 2180.93 64.3
EBPF-Persist 16.4 9656.45 9405.72 6.7 12.6 5374.05 5347.53 12:5
EBPF-Process 19.2 9331.80 9209.57 8.6 10.7 5490.00 5413.67 11.4

EBPF-Active 18.1 9460.30 9297.67 i 7.9 5666.45 5620.40 8.0

