
1

Weiyi Shang
http://users.encs.concordia.ca/~shang/

Advancing State-of-the-art
Log Analytics
Infrastructures

Software system failures are often due
to performance issues rather than

functional bugs

6

Loading

Software Engineering for Ultra-large-
scale Systems

Amazon’s massive AWS outage on
Feb. 28th 2017 took more than 4
hours to recover.

7

Logs are one of the only resources
of information during load testing

Operator Developer

8

“The Bone of the System”
[ICSE SEIP 2016]

9

start_task() {
try{
Task t=new Task();
…
t.start();
Log_statement(“Task “+t.getId()+” started”);
}
catch(Exception e){
Log_statement(“Error starting task “+t.getId());
}

}

Logs record valuable information
during system execution

Add
logging
statements

11

Release

Add
logging
statements

12

Release

Add
logging
statements

Produce during
load tests

13

grep “Error starting Task”

Operators develop Log Processing
Apps to understand load testing results

Time = 1000, Task A started
…
…

Time = 3000, Error starting
Task C
…

Log Processing
Apps

14

Release

Log Processing
Apps

Analyze

RegEx
[^…]

Add
logging
statements

Produce during
load tests

15

Release

Analyze

RegEx
[^…]

Make
logging
decisions

Load
related
issues

Log Processing
Apps

Produce during
load tests

16

Make
logging
decisions

Report

RegEx
[^…]

Release

Produce at run-time

How to
analyze
logs

Log Processing
Apps

Load
related
issues

Analyzing testing results using logs

17

Small sample data and pseudo cloud Big data and real-life cloud

BDA platform BDA platform

Execution
sequences

Execution
sequences

Execution
sequence
delta

Abstracting
logs

Linking
logs

Simplifying
sequences [ICSE 2013]

Logs are widely used in log tests

18

Software logs are crucial for a variety of downstream tasks in
practice of load tests

System
Comprehension

Load test
generation

Logs are widely used for various
downstream tasks of load tests

Failure
Diagnosis
[TSE 2021] [ASE 2019] [Locke et al. TSE 2021]

20

Make
logging
decisions

Log processing
appsSystem

issues

Report

RegEx
[^…]

Release

Produce at run-time

How to
make
logging
stateme
nts?

An example of a logging
statement and logging decisions

// source code

foo() {
…
if (fail) {

// a logging statement
logger.error(“We have a %s problem”, failure_type);

}
…

}

A location to insert
logging statement

Log (verbosity) level

Text content
Variables

//New code added

Do you need to update the
logging statement? 21

22

// source code

foo() {
…
if (fail) {

// a logging statement
logger.error(“We have a %s problem”,

failure_type);
}
…

}
//New code added

What to log?

Where to log?

Which level to log?

When to update log?

Heng Li

Zhenhao Li

Proactively suggesting the generation of logging statements

Detecting the anti-patterns/bugs in logging statements

Mehran Hassani

[EMSE 2017, 2018, 2019]

[EMSE 2018, ICSE 2019, TSE 2021]

[ASE 2020, ICSE 2021, SANER 2022]

Exception
catch block

Checker

Verbosity level checker

Verbosity level guard
checker

Typo checker

Inappropriate log
message 32%

Missing
logging
statement
20%Inappropriate

log level 17%

Log library
configuratio
n issues
13%

Runtime
issues 9%

Overwhelmi
ng log 6%

Log library
change 3%

23

Logging analytics
infrastructure

24

Make
logging
decisions

Log processing
appsSystem

issues

Report

RegEx
[^…]

Release

Produce at run-time

25

Make
logging
decisions

Log processing
appsSystem

issues

Report

RegEx
[^…]

Release

Produce at run-time

Compression Parsing

26

Make
logging
decisions

Log processing
appsSystem

issues

Report

RegEx
[^…]

Release

Produce at run-time

Compression Parsing

27

Leveraging general compressors
on log data

[EMSE 2020]

General
compressors

Cannot achieve
optimal performance!

28

Leveraging general compressors
on log data

[EMSE 2020]

General
compressors

Pre-processing
Focus of the

research
community

Logzip: Extracting Hidden
Structures via Iterative
Clustering for Log Compression

30

Workflow of Logzip

Ref: Liu, Jinyang, et al. "Logzip: Extracting Hidden Structures via Iterative Clustering for Log Compression." 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2019.

Optimized if logs are
in big sizes!

Logs are typically stored in small
blocks

Log File

Split

Log Blocks Compressed
Log Blocks

Compress Time/Size-based log rolling

16KB/60KB 128KB

256KB
384KB ~ 1024KB

64KB 64KB

Logzip does not perform well on
small log blocks.

The compression ratios of Logzip are 4% to 98% (by a
median of 63%) of the compression ratio without it.

• Do not have enough data to accurately extract
template
• Not enough repetitiveness
• Preprocessing largely impact speed (up to 42s to

compress a 128KB log block)
• Inter-file repetitiveness not used

Initial investigation on log data

• T1: Identical tokens: Tokens with the same information (e.g., Year
component).

We observe 4 types of repetitiveness from the
non-content part of our selected log data.

• T2: Similar numeric tokens: Long & numeric tokens (e.g., Timestamp).

• T3: Repetitive tokens: Few tokens repeating a lot. (e.g., Log level)

• T4: Tokens with common prefix string: Tokens start with the same information
(e.g., Module).

H1: Extract identical tokens: Extract the identical token and its number of occurrences.

H2: Delta encoding for numbers: Save the delta between the current token and its prior
token (first token preserved).

H3: Build dictionary for repetitive tokens: Build a dictionary for each identical token and
replace tokens with their indexes.

H4: Extract common prefix string: Save the prefix string and store the remaining part of
each token.

Design of our preprocessing
approach: LogBlock

We do not perform extra information reduction steps to log
content part for compression performance concern.

[TSE 2021]

An example of preprocessing heuristics

�SV!RUJ�DSDFKH�KDGRRS���SV!
LSF�&OLHQW__LSF�&OLHQW__KGIV�')6&OLHQW__
LSF�6HUYHU__KGIV�%ORFN5HDGHU__LSF�
6HUYHU__LSF�&OLHQW

+�

���
5HWU\LQJ�FRQQHFW�WR�VHUYHU��$OUHDG\�WULHG�����WLPHV�?Q� DW
RUJ�DSDFKH�KDGRRS�LSF�&OLHQW�FDOO�&OLHQW�MDYD������?Q� DW
RUJ�DSDFKH�KDGRRS�LSF�&OLHQW�FDOO�&OLHQW�MDYD������

+DQGOH�IDLOHG�ORJ�OLQHV

����
����
����
����
����
����
����

����������¬
����������
����������¬
����������¬
����������¬
����������¬
����������¬

����������__�
__�__�__�__�__�

+�

,1)2
,1)2
:$51
,1)2
:$51
,1)2

(5525

^,1)2���
:$51���
(5525��`
�__�__�__�__�

__�__�

+�

RUJ�DSDFKH�KDGRRS�LSF�&OLHQW
RUJ�DSDFKH�KDGRRS�LSF�&OLHQW
RUJ�DSDFKH�KDGRRS�KGIV�')6&OLHQW
RUJ�DSDFKH�KDGRRS�LSF�6HUYHU
RUJ�DSDFKH�KDGRRS�KGIV�%ORFN5HDGHU
RUJ�DSDFKH�KDGRRS�LSF�6HUYHU
RUJ�DSDFKH�KDGRRS�LSF�&OLHQW

3URJUHVV�RI�7DVN$WWHPSW¬
7DVN�VXFFHHGHG�ZLWK�DWWHPSW
(UURU�5HFRYHU\�IRU�EORFN��
0DS&RPSOHWLRQ(YHQWV�UHTXHVW�IURP�DWWHPSWB��
,�2�HUURU�FRQVWUXFWLQJ�UHPRWH�EORFN�UHDGHU
$XWK�VXFFHVVIXO�IRU�MRE��
5HWU\LQJ�FRQQHFW�WR�VHUYHU��$OUHDG\�WULHG�����WLPHV�
� DW�RUJ�DSDFKH�KDGRRS�LSF�&OLHQW�FDOO�&OLHQW�MDYD������
� DW�RUJ�DSDFKH�KDGRRS�LSF�&OLHQW�FDOO�&OLHQW�MDYD������

<HDU 7LPH6WDPS /RJ�OHYHO 0RGXOH /RJ�FRQWHQW

�
�
�
�
�
�
�
�
�

/LQH

�����!�

+�

LogBlock’s preprocessing example

Our approach improves the compression ratio by a median of 5%,
9%, 15% and 21% on 16KB, 32KB, 64KB, and 128KB blocks in

comparison to compression without any preprocessing.

LogBlock improves the
compression ratio on small log
blocks Our approach is 31.0 to 50.1 times

faster than Logzip in preprocessing
and compressing small-sized log

blocks.

37

Make
logging
decisions

Log processing
appsSystem

issues

Report

RegEx
[^…]

Release

Produce at run-time

Compression Parsing

Log Parsing

38

logInfo("Found block $blockId locally")

17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_20 locally

Timestamp: 17/06/09 20:11:11; Level: INFO
Logger: storage.BlockManager
Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

Generate

Contain

Automated log parsing suffers from low efficiency

39

Efficiency is an important concern for
log parsing

The main task of log parsing

40

Raw log
(Unstructured)

Found block rdd_42_20 locally
Found block rdd_42_22 locally
Found block rdd_42_23 locally
Found block rdd_42_24 locally

41

Raw log
(Unstructured)

Found block rdd_42_20 locally
Found block rdd_42_22 locally
Found block rdd_42_23 locally
Found block rdd_42_24 locally

static dynamic

The main task of log parsing

42

Each static token has a higher
number of appearance.
Token “Found” appears 4 times.

Each dynamic token has a lower number
of appearance.
Token “rdd_42_20” appears only once.

The main idea of Logram

[TSE 2020]

The goal of log parsing is to identify whether a
token is a static token or a dynamic token

Raw log
(Unstructured)

Found block rdd_42_20 locally
Found block rdd_42_22 locally
Found block rdd_42_23 locally
Found block rdd_42_24 locally

43

Each static token has a higher
number of appearance.
Token “Found” appears 4 times.

Each dynamic token has a lower number
of appearance.
Token “rdd_42_20” appears only once.

We use the number of appearances to
distinguish static and dynamic tokens.

[TSE 2020]

The main idea of Logram

Raw log
(Unstructured)

Found block rdd_42_20 locally
Found block rdd_42_22 locally
Found block rdd_42_23 locally
Found block rdd_42_24 locally

44

Raw log
(Unstructured)

Expecting attribute name [0x800f080d - CBS_E_MANIFEST_INVALID_ITEM]
Failed to get next element [0x800f080d - CBS_E_MANIFEST_INVALID_ITEM]

A dynamic token may also appear
frequently.

The main idea of Logram

If we consider 3-grams instead of individual token, each 3-
gram only appear once.

45

A dynamic token may also appear frequently.

Raw log
(Unstructured)

Expecting attribute name [0x800f080d - CBS_E_MANIFEST_INVALID_ITEM]
Failed to get next element [0x800f080d - CBS_E_MANIFEST_INVALID_ITEM]

The main idea of Logram

46

Step 1: Dictionary setup for n-grams

17/06/09 20:10:46 INFO rdd.HadoopRDD: Input split:
hdfs://hostname/2kSOSP.log:29168+7292
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_20 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_22 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_23 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_24 locally

17/06/09 20:10:46 INFO rdd.HadoopRDD: Input split:
hdfs://hostname/2kSOSP.log:29168+7292
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_20 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_22 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_23 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_24 locally

47

Header Content

Step 1: Dictionary setup for n-grams

Input split: hdfs://hostname/2kSOSP.log:29168+7292
Found block rdd_42_20 locally
Found block rdd_42_22 locally
Found block rdd_42_23 locally
Found block rdd_42_24 locally

48

Step 1: Dictionary setup for n-grams

Found block rdd_42_20 locally

49

Step 1: Dictionary setup for n-grams

Generate 2-gram

Found block

block rdd_42_20

Found block rdd_42_20 locally

rdd_42_20 locally

50

Found block rdd_42_20 locally

Generate 3-gram
Found block rdd_42_20

block rdd_42_20 locally

Step 1: Dictionary setup for n-grams

Generate 2-gram

Found block

block rdd_42_20

Found block rdd_42_20 locally

rdd_42_20 locally

51

3-grams #

Input split: hdfs://hostname/2kSOSP.log:21876+7292
split: hdfs://hostname/2kSOSP.log:21876+7292 Input
hdfs://hostname/2kSOSP.log:21876+7292 Input split:
…
split: hdfs://hostname/2kSOSP.log:29168+7292 Found
hdfs://hostname/2kSOSP.log:29168+7292 Found block
Found block rdd_42_20
block rdd_42_20 locally
rdd_42_20 locally Found
locally Found block
...

1
1
1

1
1
1
1
1
3

2-grams #

Input split:
split: hdfs://hostname/2kSOSP.log:21876+7292
hdfs://hostname/2kSOSP.log:21876+7292 Input
…
hdfs://hostname/2kSOSP.log:29168+7292 Found
Found block
block rdd_42_20
rdd_42_20 locally
locally Found
...

5
1
1

1
4
1
1
4

Step 1: Dictionary setup for n-grams

Input split: hdfs://hostname/2kSOSP.log:29168+7292
Found block rdd_42_20 locally
Found block rdd_42_22 locally

Parse this line

52

Step 2: Parsing logs with n-gram dictionaries

53

Found block rdd_42_20 locally

3-grams # appearance

split: hdfs://hostname/2kSOSP.log:29168+7292 Found
hdfs://hostname/2kSOSP.log:29168+7292 Found block
Found block rdd_42_20
block rdd_42_20 locally
rdd_42_20 locally Found
locally Found block

1
1
1
1
1
5

Look up

Found block rdd_42_20 block rdd_42_20 locally

Step 2: Parsing logs with n-gram dictionaries

3-grams # appearance

split: hdfs://hostname/2kSOSP.log:29168+7292 Found
hdfs://hostname/2kSOSP.log:29168+7292 Found block
Found block rdd_42_20
block rdd_42_20 locally
rdd_42_20 locally Found
locally Found block

1
1
1
1
1
5

These two 3-grams may contain dynamic
values since their appearances are only 1.

54

Step 2: Parsing logs with n-gram dictionaries

Found block rdd_42_20 locally

Look up

Found block rdd_42_20 block rdd_42_20 locally

3-grams # appearance

split: hdfs://hostname/2kSOSP.log:29168+7292 Found
hdfs://hostname/2kSOSP.log:29168+7292 Found block
Found block rdd_42_20
block rdd_42_20 locally
rdd_42_20 locally Found
locally Found block

1
1
1
1
1
5

55

2-grams # appearance

hdfs://hostname/2kSOSP.log:29168+7292 Found
Found block
block rdd_42_20
rdd_42_20 locally
locally Found

1
4
1
1
4

Look up

Step 2: Parsing logs with n-gram dictionaries

3-grams # appearance

split: hdfs://hostname/2kSOSP.log:29168+7292 Found
hdfs://hostname/2kSOSP.log:29168+7292 Found block
Found block rdd_42_20
block rdd_42_20 locally
rdd_42_20 locally Found
locally Found block

1
1
1
1
1
5

56
This 2-gram contains only static tokens.

Step 2: Parsing logs with n-gram dictionaries

Look up

2-grams # appearance

hdfs://hostname/2kSOSP.log:29168+7292 Found
Found block
block rdd_42_20
rdd_42_20 locally
locally Found

1
4
1
1
4

2-grams # appearance

hdfs://hostname/2kSOSP.log:29168+7292 Found
Found block
block rdd_42_20
rdd_42_20 locally
locally Found

1
4
1
1
4

57
These 2-grams may contain dynamic tokens.

Step 2: Parsing logs with n-gram dictionaries

Look up

3-grams # appearance

split: hdfs://hostname/2kSOSP.log:29168+7292 Found
hdfs://hostname/2kSOSP.log:29168+7292 Found block
Found block rdd_42_20
block rdd_42_20 locally
rdd_42_20 locally Found
locally Found block

1
1
1
1
1
5

block rdd_42_20
rdd_42_20 locally

Finding
overlapping token

58

Step 2: Parsing logs with n-gram dictionaries

2-grams # appearance

hdfs://hostname/2kSOSP.log:29168+7292 Found
Found block
block rdd_42_20
rdd_42_20 locally
locally Found

1
4
1
1
4

block rdd_42_20
rdd_42_20 locally

Finding
overlapping token

59

Step 2: Parsing logs with n-gram dictionaries

2-grams # appearance

hdfs://hostname/2kSOSP.log:29168+7292 Found
Found block
block rdd_42_20
rdd_42_20 locally
locally Found

1
4
1
1
4

Dynamic value

block rdd_42_20
rdd_42_20 locally

Finding
overlapping token

60

Step 2: Parsing logs with n-gram dictionaries

2-grams # appearance

hdfs://hostname/2kSOSP.log:29168+7292 Found
Found block
block rdd_42_20
rdd_42_20 locally
locally Found

1
4
1
1
4

Dynamic value

Found block $1 locally
$1=rdd_42_20Generating

template

Evaluation

61

Accuracy Efficiency Stabilisation Scalability

62

Average accuracy

Drain AEL Lenma Spell IPLoMpercent
age(%)

Logram

Logram achieves stable
parsing results using a
dictionary generated from a
small portion of log data

Logram achieves
near-linear
scalability without
sacrificing parsing
accuracy.

63

64

65

66

67

Analysis-aware (or
even load-test driven)
logging decision
support

68

Very successful
research area

Limited
generalized
toolsets in
practice

Focusing on the
ease of
practitioners'
adoption

69

Goal: Making log analytics
as easy/low-cost as possible

Log analytics
as services

Domain specific
language for
Log analytics

Accessible log
analytics during
development

70

Heng Li

Zhenhao Li

Mehran Hassani

Kundi Yao

Lizhi Liao

Jinfu Chen

Hetong Dai

71

72

73

74

75

76

COME and JOIN US

CS ranking on Software Engineering:
2nd in Canada, 6th in North America
and 9th in the world

We are hiring
Master’s and PhD with full scholarship

PostDoc with special title
and multiple faculties positions

77

http://users.encs.concordia.ca/~shang/Weiyi Shang

