Advancing State-of-the-art
Log Analytics
Infrastructures

Weiyi Shang

hitp://users.encs.concordia.ca/” shang/

UConcordia

Software system failures are often due
to performance issues rather than
functional bugs

Software Engineerfng for Ultra-large-
scale Systems

Amazon’s massive AWS outage on
Feb. 28th 2017 took more than 4

hours to recover.

Logs are one of the only resources

of information during load testing

D, s
ot O
o on
o
“:“;.:;MWN"W

Microsoft:

Operator .
“The Bone of the System”
[ICSE SEIP 2016]

Research

Logs record valuable information
during system execution
start_task() {

try{ |
Task t=new Task(); py 5

t.start();

}

catch(Exception e){

}

—~—— /

Add

loggin

statemgnts

vold
wiage (Char "sase)

peintf (usage:)
peintf (%s -a |
name) o
#ifdef LOST
otf CCl-9) (-€) *):
!

¢!

-
vers

printt ("[-p what) [-r)
[-u file [type))™);

#ifdet! Lot
primtf (° tove) [-w
ewaid] [-2 siae) ");

tendi

Yo',

Add

loggin
statemegnts

vold
wiage (Char "nase
(

peimtf (v
peintf ¢
name) ;
#ifdet LOFT
printf
rend

printf [
{-v file [t
#ifdet LoONL
primtf (*
eweid] [-2
rens

Releas

Tﬂ

11

Add
IoQgin

statemdnts

7~

vold
e (har = N
{ ane

peimt! Cusepe
printf C%s

.
T

Cl-) (€ *:
C[-p what)
[type
Tde! LOSL

ReleqS

L

Produce during
load tests

Ut

"
s

B
s
i fmas

1

o L g0

™

v

s
\NE

o1t e
g

o otd

Cpassort

e
e SoeTber O
o s

\O0G,

Operators develop Log Processing
Apps to understand load testing results

v/
s/ Log Processing
Apps
grep “Error starting Task”

Time = 1000, Task A started

Time = 3000, Error starting
Task C

7

LOg PrOCesSing

Apps
Add
loggin

statements

det LOFT

Cr9) (-6 7;

Cr

RegEx

L

AnC'I)’Ze

s By
o n I
e

o
P By vt
i A e
ot 842027 o
e
B e 3
o

gy
o n a0
i W2 5080 0 Syt .
e et o
P DT | i
S ekt e Tt
nost2r o B gl s i
;;liff:n’?':w“"w o
, ToerC ey (e iy
(’ e =
ol =
p—
i i
Srrae ™
d "

Tl
%:T%
Y

%‘n 5
Bii
i‘f’&}
%

load tests

o,
s
U assh
e
ol et o

¢ — I-Og Pro .
A Load Apps cessing

que relqi-ecr_

Iogging isSUes \4}/

Releas

)

ot el

" 0%
p TR ,
! o 53

T
]
L
S -
et s p
o u,mys«ww:m ,*\ﬁ“;;ﬁ‘,‘,mw.m
e S
e S e
- 0 T8 Ve mvm-ﬂawnwﬂ\u 3
Y e NWW%W%»
e e e
‘”:‘X:“ﬁ‘ﬁﬁiﬁ"‘“?’ ety el
M 'mzmwnnoﬁvt\m‘wiﬂﬁ‘v 5 ﬁﬁmi’@,ﬂ”
; wamm o i B el
g B Fo o0 eSO

Tl
5
H
%;s
EE
s
by
\e

load tests

“o

P
v”ﬂvﬂ\wﬂwc?”! e
e T oy

06 |

que
ogging

e(:iSiOnS

~

vold

ot (Char "mase)
(-

ottt o
;o Yo
nam);
e —

Cl -9

LOg

A

related

analyze

IOgs

Pfoduce at run-time

P}

PEYs

a0 b e eoa
¥ =
et o S
- e
e
T g
et
o’
e
) e LR

e
ot

PI'OCeSSing

Apps

b

e
ey R an I
i W 089 0 oot
T
'ﬁgn"nw;mmv -

gan1d o 3
s

2t
o 2
_— mv
3099 a1 e "nwﬁfm“ﬁ:ﬁ,\,
e S S 550
e
T
e e

ool w
gor ol
o 7ty we%’
%ﬂﬁﬁ% e
e uﬂm\fh‘m
e e
s ‘
s

T 807
A et

00807 P 9081
.’«f‘a‘iwmuw a

L5232

Taa%

et ot o .a.;shwwaﬂ“ﬂﬁ‘ﬂ
Py P, r e
o
: ot G
3
i
o
onos 26

Analyzing testing results using logs

Small sample data and pseudo cloud

~

Blg data and real-life cloud

_ J \§ J
ay ay N
A —/a/ala p A —/a/ala
BDA platform BDA platform
k k L‘ ;’(,,,,, L‘W;"WL(W\WL“;)
Execution "
Execution sequence Execution
sequences delta sequences
Linking . Simplifying
[ICSE 2013] logs sequences

17

Logs are widely used in log tests

Zhen Ming Jiang, Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)

Queen’s University
Kingston, ON, Canada
{zmjiang, ahmed} @cs.queensu.ca

Abstract

The goal of a load test is to uncover functional and per-
formance problems of a system under load. Performance
problems refer to the situations where a system suffers from
unexpectedly high response time or low throughput. It is
difficult to detect performance problems in a load test due
to the absence of formally-defined performance objectives
and the large amount of data that must be examined.

In this paper, we present an approach which automati-
cally analyzes the execution logs of a load test for perfor-

kimmcv problems. We first derive the system’s performance

Automated Performance Analysis of Load Tests

Gilbert Hamann and Parminder Flora
Performance Engineering
Research In Motion (RIM)

Waterloo, ON, Canada

tors which mimic clients sending thousands or millions of
concurrent requests to the application under test. During
the course of a load test, the application is monitored and
performance data along with execution logs are recorded.
Performance data store resource usage information such as
CPU utilization, memory, disk I/O and network traffic. Ex-
ecution logs store the run time behavior of the application
under test.

The goal of a load test is to uncover functional and per-
formance problems under load. Functional problems are

often bugs which do not surface during the functional test-

Automatic Identification of Load Testing Problems

Zhen Ming Jiang, Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)

Queen’s University
Kingston, ON, Canada
{zmjiang, ahmed} @cs.queensu.ca

Abstract

Many software applications must provide services to
hundreds or thousands of users concurrently. These appli-
cations must be load tested to ensure that they can function
correctly under high load. Problems in load testing are due
to problems in the load environment, the load generators,
and the application under test. It is important to identify
and address these problems to ensure that load testing re-
sults are correct and these problems are resolved. It is diffi-
cult to detect problems in a load test due to the large amount

Gilbert Hamann and Parminder Flora
Performance Engineering
Research In Motion (RIM)

Waterloo, ON, Canada

requires one or more load generators which mimic clients
sending thousands or millions of concurrent requests to the
application under test. During the course of a load test, the
application is monitored and performance data along with
execution logs are stored. Performance data record resource
usage information such as CPU utilization, memory. disk
1/O and network traffic. Execution logs record the run time
behavior of the application under test.

Load testing is an area of research that has not been ex-
plored much. Most work focuses on the automatic genera-
tion of load test suites [11, 12, 13, 14, 16, 20, 29]. However,

18

D
o W
.

Logs are widely used for various
downstream tasks of load tests

oD
oS s
o 2080 B Convet
.19‘\19‘!‘:%30“ ot
oot

oL
] e W D g
Dt =] ‘ aons OB et
W o8 S et 0N o W e Soovet
rert e Tamtl) e At e
T v 08 oD i 09898 £ g0l
s & 219 700 s
e Lt 2! G & as1d
ks ol T e tORT L W oo 40
B e A L oot X Tt
3 it O 0 tots WOLES ol
odh - e ™ wn B N et el
o s) s WO S om0) o N2 etz %
RN W s an Rt L e
L T T !
o 3"2 0
o o
-9 o
o
- A
o

Te oL

&x&&l

Failure

Diagnosis
[TSE 2021]

Load test
generation

System
[ASE 2019]

omprehension

[Locke et al. TSE 2021
oftware logs are crucial for a variety of downstream tasks in
ractice of load tests

LOQ prOCesSin
"}% : A System

apps

|A<')‘c HOW i.o

de kae
I°99ing
stateme
Re ni.s?

L

. P 08Y 0y

w.m ot 50 T

‘“’” St

Y

PEYs

> *‘;‘“‘M t
oduce at runtime

n‘aa_a

v
R e
,;u.;mm-(d m\‘ T

Thik
g‘i
i

An example of a logging

statement and loggin

decisions

/ﬁl\ location to insert
|

og_ging statement

// source code

fool) { /

/

Log (verbosity) level

['We have a %s problem[', failure_type);

if (fail) {
// a logaifiq statement
loggerlerror

}

N

_

N
| //New code added | Text co

"Vari

ables

nftent

logging statement?

} >/
T Do you need to update the

21

Proactively suggesting the generation of logging statements
// source code Where to |Og?
foo() {
eee What 1'0 Iogg \ POLYTECHNIQUE
if (fdil) { i\MDN‘I‘RE’AL
// alogging statement - B
logger.error(“We have a %s problem”, Which level to IOg2
failure_type);
}
When to update log?
//New code added
}
[EMSE 2017, 2018, 2019]
[ASE 2020, ICSE 2021, SANER 2022]
o |
Detecting the anti-patterns/bugs in logging statements Zhenhao Li
Log library R Verbosity level checker
change 3% (DEBUG | -
Overwhelmi nappropriate 1og (INFO) Verbosity level guard
ng log 6% message 32% checker
Runtime
fsues 7% Tyepo Duplicate Logging Statements:
Log lirary 5 Typo checker Two or more logging statements that
conliguratio Missing have identical static text messages. J:-
13% logging Exception
- statement I \
IInc:plprolpru:Le 20% < : : catch block . Rl
o level 7% Checker : .
Mehran Hassgni
[EMSE 2018, ICSE 2019, TSE 2021] 22

. How to

de make

logging

Log processing

apps |
System PP oy
ISSUes 7/
7
|
A

How to
analyze

Log processing
System apps

. -
ISsUues

* Smart Parsing
+ Advanced Indexing

'Cuacl

0

s
e
e
g :
T 0ot
R — s
S p—
‘)] T b T
[]
- I e

Log processing
§ystem apps)

D !
\ issues 7
N
i
Rawlog (1770609 20:11:11INFOstorage BiockManager:

;::::::::::::::_:__-_—_: -

(Unstructured) Found blockiirdd 42 20 !locally!

Timestamp: 17/06/09 20:11:11; Level: INFO
Parsed log Logger: storage. BlockManager
(Structured) Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

Compression Parsing

R ICUbCl

| Ptoduce at run-time

Log processing
apps 4¢U

__

Raw log 117/06/09 20:11: 11'-INFO"storage BlockManager: |

,‘:::::::::::::::_:__:—_: -

(Unstructured) Found blockiirdd 42 20 !locally!

Timestamp: 17/06/09 20:11:11; Level: INFO
Parsed log Logger: storage. BlockManager
(Structured) Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

Compression Parsing

R ICUbCl

I Ptoduce at run-time

erqg°
In
on log da?qge"eral comp
Irs

[t M‘”“”"bwﬂ e .vwwm
2897 e Oy gl .
F s W o
a3 -.:z“_;"m::“’:., s ;xammm
o6 et
s ,-»Aumw;.a-‘,mﬁ* Fe e .
g A ty v 3900 ot
e PR S o wou S
8 'w“"wm’w'm y ’pﬂ“m&ﬂnﬂﬂ‘h’“daﬂi
o e et oopos RIS ;ua«w‘
- o 908 oo s ol OBy, o
o s AL G\:M‘Mlmwﬁ\nwﬂ
~ p = P IETEN 738 9\@& -
8 s W et o) T
E > m’a« uy#“lb‘l! e oT®
S AL oo e s
-0 o o * - b
: et e 7 et ot
i Shawaret porire e o Sﬁf
et o 0a o
Wuﬂms b 0\13?&7 a0V g wﬂ M‘J
e sl b e a
o o poc L)

. -
- mpressors

o g =

Ca

n

opﬁmqlr‘Ot qchieve

[EMSE 2020] performance!
e

27

Leveraging general compressors
on log data

)
o
oW
e W
a1 1at

o
on

s W ,m\ w"

- 3 884 poonto

General
compressors

. Aw" e A,,,,,rw“
"'"w

M_QG

a0

Focus of the L
research
community

Pre-processing

[EMSE 2020]

Logzip: Extracting Hidden
Structures via lterative
Clustering for Log Compression

|m|zed if logs are}
in big sizes! e

Logs are typically stored in small

blocks

Ng
Split Compress
‘LOB

—> |1|:|_|3B_ — @

Log File
LEE] @

Compressed
Log Blocks

Log Blocks

Apache ‘
52 log4net
Time/Size-based log rolling

swk splunk >
Stack
16KB/60KB 128KB

@ |-|Um|Q

DATADOG ~
256KB 384KB ~ 1024KB

sumo logic G

NGiNX
64KB 64KB

Logzip does not perform well on
small log blocks.

— 100 1
3
=

* Do not have enough data to accurately extract
template

- Not enough repetitiveness

* Preprocessing largely impact speed (up to 42s to
compress a 128KB log block)

* Inter-file repetitiveness not used

T LA A L

Android Apache BGL Hadoop HDFS HeathApp HPC Linux Mac OpenSSH OpenStack Proxifier Spark Thunderbird Windows Zookeeper

The compression ratios of Logzip are 4% to 98% (by a

median of 63%) of the compression ratio without it.

Initial investigation on log data

We observe 4 types of repetitiveness from the
non-content part of our selected log data.

T1: Identical tokens: Tokens with the same information (e.g., Year

component).

H1: Extract identical tokens: Extract the identical token and its number of occurrences.

T2: Similar numeric tokens: Long & numeric tokens (e.g., Timestamp).

H2: Delta encoding for numbers: Save the delta between the current token and its prior
token (first token preserved).

T3: Repetitive tokens: Few tokens repeating a lot. (e.g., Log level)

H3: Build dictionary for repetitive tokens: Build a dictionary for each identical token and
replace tokens with their indexes.

T4: Tokens with common prefix string: Tokens start with the same information
(e.g., Module).

H4: Extract common prefix string: Save the prefix string and store the remaining part of
each token.

Design of our preprocessing
approach: LogBlock

Preprocessed
A log block log block
i A
Step1: Split log Step2: Step3: Apply log
lines into —» [ranspose log —>» preprocessing !
! columns table heuristics :

». LogBlock preprocessing steps

We do not perform extra information reduction steps to log
content part for compression performance concern.

[TSE 2021]

LogBlock’s preprocessing example

Line

O©CoOoO~NOOOPA~,OWN =

2(

Line| Year Log Log content
level
1 12015 [WARN [Send worker leaving thread
2 |2015| INFO |Received connection request 1
3 |2015 | WARN [Send worker leaving thread
o tod whil o Transpose
4 12015 | warn [Nterrupted while waiting
message
5 |12015| INFO [Received connection request 3
Line 1 2 3 4 5
Year 2015 2015 2015 2015 2015
Log level| WARN INFO WARN WARN INFO
Send Received [Send Interrupte .
. : Received
Log |worker [connecti |worker d while .
. . - connection
content |leaving [on leavi
thread request 1thread message

h:1472)
h:1399)

h at
n at

LogBlock improves the

compression ratio on small log
bIOC ks Our approach is 31.0 to 50.1 times

faster than Logzip in preprocessing

and compressing small-sized log

1-#MﬁM$m%% ﬂ

Andoid Apache BGL Hadoop HDFS HealthApp HPC Linu Mac OpenSSH OpenStack Proxifier Spark Thunderbird Windows Zookeeper

Our approach improves the compression ratio by a median of 5%,

9%, 15% and 21% on 16KB, 32KB, 64KB, and 128KB blocks in

Block Size

. 16KB

S| B e

B3 64kB
BS 128K8

comparison to compression without any preprocessing.

R

Log processing
apps 4¢U

Raw log
(Unstructured)

Parsed log
(Structured)

Compression

Timestamp: 17/06/09 20:11:11; Level: INFO
Logger: storage. BlockManager

Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

ICUbUl

I Ptoduce at run-time

Log Parsing

logInfo("Found block Sblockld locally")

‘ Generate

17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_20 locally

‘ Contain

Timestamp: 17/06/09 20:11:11; Level: INFO
Logger: storage.BlockManager

Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

Automated log parsing suffers from low efficiency

Spell: Streaming Parsing of System Event Logs

Min Du, Feifei Li
School of Computing, University of Utah
mind @cs.utah.edu, lifeifei@cs.utah.edu

Drain: An Online Log Parsing Approach with Fixed An autO{nated app.roach for
Depth Tree abstracting execution logs to

execution events

Pinjia He*, Jieming Zhu*, Zibin Zheng', and Michael R. Lyu*
*Computer Science and Engineering Department, The Chinese University of Hong Kong, China
{pjhe, jmzhu, lyu} @cse.cuhk.edu.hk : A 1. % 1 . 2
tKey Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University), Ministry of Education Zhen Mlng J 1ang — T; Ahmed E Hassan s Gllbert Hamann

School of Data and Computer Science, Sun Yat-sen University, China and Parminder FloraZ
zhzibin @mail.sysu.edu.cn

LogPAl
Log Analytics Powered by Al & \ Efficiency is an important concern for

69 http://www.logpai.com & info@logpai.com M I 0 g p CI I'Si n g

39

The main task of log parsing

Raw log
(Unstructured)

Found block rdd_42_20 locally
Found block rdd_42_22 locally
Found block rdd_42_23 locally
Found block rdd_42_24 locally

40

The main task of log parsing

Raw log
(Unstructured)

Found block!fdd_42_2Ztlocally
Found Jplockirdd_42_23locallys
Found blockirdd_42 24!locally!

static

S

dynamic

41

The main idea of Logram

Raw log
(Unstructured)

Found block!fdd_42_2Ztlocally
Found bblocks rdd_42_23ilocally
Found blockirdd_42_24}locally!

N\

Each static token has a higher
number of appearance.
Token “Found” appears 4 times.

of appearance.

Each dynamic token has a lower number

Token “rdd_42_20” appears only once.

The goal of log parsing is to identify whether a
token is a static token or a dynamic token

[TSE 2020]

42

The main idea of Logram

Raw log
(Unstructured)

Found block!fdd_42_2Ztlocally
Found bblocks rdd_42_23ilocally
Found blockirdd_42_24}locally!

N\

Each static token has a higher
number of appearance.
Token “Found” appears 4 times.

of appearance.

Each dynamic token has a lower number

Token “rdd_42_20” appears only once.

We use the number of appearances to
distinguish static and dynamic tokens.

[TSE 2020]

43

The main idea of Logram

Raw log

Expecting attribute name [0x800f080d - CBS_E_MANIFEST_INVALID_ITEM]

(Unstructured)| Failed to get next element [0x800f080d - CBS_E_MANIFEST_INVALID_ITEM]

A dynamic token may also appear
frequently.

44

The main idea of Logram

Raw log

Expecting attribute name [0x800f080d - CBS_E_MANIFEST_INVALID_ITEM]

(Unstructured)| Failed to get next element [0x800f080d - CBS_E_MANIFEST_INVALID_ITEM]

\

If we consider 3-grams instead of individual token, each 3-
gram only appear once.

A dynamic token may also appear frequently.

45

Step 1: Dictionary setup for n-grams

17/06/09 20:10:46 INFO rdd.HadoopRDD: Input split:
hdfs://hostname/2kSOSP.log:29168+7292

17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_20 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_22 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_23 locally
17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_24 locally

Step 1: Dictionary setup for n-grams

— - - - - _—— e - - - - .- T S N N N NN meme-m-rrTTErEEEEEEEEEEEEEEEEmEm—_-

:_17/06/09 20:11:11 INFO storage.BlockManager: Found block rdd_42_20 Iocallyi
117/06/09 20:11:11 INFO storage.BlockManagen: Found block rdd_42_22 locally:
117/06/09 20:11:11 INFO storage.BlockManager: Foung| block rdd_42_23 locally,
17/06/09 20:11 :U/\NFO storage.BlockManager; :Fou7/0\b|ock rdd_42_24 locadlly,

L VA

Header 1 Content

Input split: hdfs://hostname/2kSOSP.log:29168+7292
Found block rdd_42_20 locally
Found block rdd_42_22 locally
Found block rdd_42_23 locally
Found block rdd_42_24 locally

Step 1: Dictionary setup for n-grams

Found block rdd_42_20 locally

48

Step 1: Dictionary setup for n-grams

block =» rdd_42 20

A

[

|

Found block rdd_42_20 locally

|

\ J

|

Found = block

rdd_42_20= locally

Generate 2-gram

49

Step 1: Dictionary setup for n-grams

block =» rdd_42 20

A

[

|

Found block rdd_42_20 locally Generate 2-gram

|

\ J

|

Found = block

rdd_42_20= locally

block me=p rdd_42_20 == |ocally
A

[

|

Found block rdd_42_20 locally

\

)

1

Generate 3-gram

Found == block == rdd 42 20

Step 1: Dictionary setup for n-grams

i+

Input ® split: ® hdfs://hostname/2kSOSP.log:21876+7292
split: ® hdfs://hostname/2kSOSP.log:21876+7292% Input
hdfs://hostname/2kSOSP.log:21876+7292 m Input ® split:

i Input » split: I
spllt ®» hdfs://hostname/2kSOSP.log:21876+7292 |
|hdfs //hostname/2kSOSP.log:21876+7292 w Input :
.
'hdfs //hostname/2kSOSP.log:29168+7292 ® Found :
Found» block :
I
I
I
I

—_ e |

split: ® hdfs://hostname/2kSOSP.log:29168+7292% Found
hdfs://hostname/2kSOSP.log:29168+7292 ® Found ® block
Found ®block ®rdd_42_20

block ® rdd_42_20 # locally

rdd_42_20 ® locally® Found

locallyw Foundm block

|b|ock» rdd_42_20
irdd_42_20 » locally
ocally ® Found

(% I e e e
—— e o e e o e o -

———————————————

===
P o N

______________________________ |

Step 2: Parsing logs with n-gram dictionaries

Input split: hdfs://hostname/2kSOSP.log:29168+7292

—— e ——— — — — —— -

'Found block rdd_42_20 locally
Found block rdd_42_22 _IBEG_IT;:L\

Parse this line

52

Step 2: Parsing logs with n-gram dictionaries

Found block rdd_42_20 locally

Y 4 Ay

Found = block =»rdd_42 20 block » rdd_42_20 = locally
l Look up l
3-grams # appearance

split: m hdfs://hostname/2kSOSP.log:29168+7292 = Found
hdfs://hostname/2kSOSP.log:29168+7292 ™ Found ™ block
Found mblock mrdd_42 20

block= rdd_42_20= |ocally

rdd_42_20= locally= Found

locallys» Found mpblock

(@ , T R R R

53

Step 2: Parsing logs with n-gram dictionaries

Found block rdd_42_20 locally

4

Found = block »rdd_42 20

!

Look up

N

block » rdd_42_20 = locally

' 4

3-grams

appearance

split: m hdfs://hostname/2kSOSP.log:29168+7292 = Found
hdfs://hostname/2kSOSP.log:29168+7292 = Found = block

——

rdd_42_20= locally= Found
locallys» Found mpblock

|
I
I
I
|
I
I
I
|
I
I
I
|
I
I
I
|
I
r=="

| — —

[
Q~|—||_|_|
I

These two 3-grams may contain dynamic
values since their appearances are only 1.

54

Step 2: Parsing logs with n-gram dictionaries

3-grams

appearance

split: mp hdfs://hostname/2kSOSP.log:29168+7292 = Found
hdfs://hostname/2kSOSP.log:29168+7292 = Found = block__ _ __
'Found m block myrdd_42_20

block= rdd_42_20= locally

T o o o R e R e ___________________________

rdd_42_20= [ocally= Found 1
locally = Found mpblock 5
Look up
2-grams # appearance

hdfs://hostname/2kSOSP.log:29168+7292 = Found 1
Found =block 4
block mrdd_42 20 1
rdd_42_20=»locally 1

4

locally=»Found

55

Step 2: Parsing logs with n-gram dictionaries

3-grams

appearance

split: mp hdfs://hostname/2kSOSP.log:29168+7292 = Found
hdfs://hostname/2kSOSP.log:29168+7292 = Found =® block__ _ __

'Found m block mprdd_42_20 1,
block= rdd_42_20m locally _________________________ | ________ 1
rdd_42_20= [ocally= Found 1
locally= Found mpblock 5
Look up
2-grams # appearance
hdfs://hostname/2kSOSP.log:29168+7292=Found _ _ _ __ _____| ______________ L
Foundmblock 4,
block mrdd_42 20 1
rdd_42_20=»locally 1
locally=» Found 4

\

This 2-gram contains only static tokens.

56

Step 2: Parsing logs with n-gram dictionari

es

3-grams # appearance
split: mp hdfs://hostname/2kSOSP.log:29168+7292 = Found 1
hdfs://hostname/2kSOSP.Jog:29168+7292 = Found = hlock_ _ _ _ | ______________ 1
'Found m block mprdd_42_20 1
blockm rdd_42_20mlocally - .. ______ | 1
rdd_42_20= [ocally= Found 1
locally= Found mpblock 5
Look up
2-grams # appearance
hdfs://hostname/2kSOSP.log:29168+7292 = Found 1
Found=block A
IIolock mrdd_42_20 Ti
rdd_42_20=locally _______________________________ | ________1 |
4

locally=» Found N

These 2-grams may contain dynamic tokens.

57

Step 2: Parsing logs with n-gram dictionaries

locally=»Found

2-grams # appearance
hdfs://hostname/2kSOSP.log:29168+7292 = Found 1
Found=block | ___A
IIolock mrdd_42_20 1i
rdd_42_20=locally. - ______________ oo _______] :
4

Finding
overlapping token

blockesrdd_42 20 :
rdd_42"20=+locally

———————————

Step 2: Parsing logs with n-gram dictionaries

locally=»Found

2-grams # appearance
hdfs://hostname/2kSOSP.log:29168+7292 = Found 1
Found=block | ___A
IIolock mrdd_42_20 1i
rdd_42_20=locally. - ______________ oo _______] :
4

Finding
overlapping token

blockesrdd_42 20 :
rdd_42"20=+locally

———————————

Dynamic value

Step 2: Parsing logs with n-gram dictionaries

2-grams # appearance
hdfs://hostname/2kSOSP.log:29168+7292 = Found 1
Found=block | ___A
IIolock = rdd_42_20 1i
rdd_42_20=locally. _ _____________________________ | _______] :
locally=» Found 4

Finding
overlapping token

blockesrdd_42 20 :
rdd_42_20=blocally Generating

——————— K I'emp|CI|'e

Dynamic value

Found block $1 locally
$1=rdd_42_20

60

Evaluation

Accuracy

Efficiency

Stabilisation

Scalability

61

100

80

60

40

20

O

Average accuracy

Running Time (S)

“F&~ Logram—e— Drain

1000.0
|

5.0 50.0

0.5

IPLoM =¥ Lenma

Spell AEL

b 1o 100 1000 500.0
0-
perciﬁ/n; Drain AEL Lenma Spell IPLoM Logram Size (MB)
age(%
190 Logram achieves =
5 near-linear C_I R
. 0 ofe o
0.75 Logram achieves stable 33 SCG"?Fl?'!”)’ without
parsing results using a 8 | sacrificing parsing
- 8 | accuracy.
o dictionary generated from a 4
small portion of log data £26+05
s
0.25 O W 2
A £16405
0.00

05 1‘0 1520 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

12 16 20

Number of Cores

62

Log processing
' System appPs @y
Vi, s [!X issues Z
M L}
o HOW to Do
‘e make How to Togts
logging analyze =1
stateme logs Reporf
Re nts@
> \.01G
@ oduce at run-time =2
a Y

Logging analytics

infrastructure

58

3
E‘C‘ How to
° make
logging
stateme
Re nts

o

E,‘c‘ How to

° make

logging
stateme
Re nts

3

Logs are widely used for various
downstream tasks of load tests

06 0G

106G (0G

s = &)

Failure Load test System
Diagnosis generation Comprehension
[Locke et al. TSE 2021]

[TSE 2021] [ASE 2019]

Software logs are crucial for a variety of downstream tasks in
practice of load tests

o

M How to Analysis-aware (.or

de ke even load-test driven)
logging logging decision
stateme support

Re nts @

Logs are widely used for various
downstream tasks of load tests

L

Failure Load test System
Diagnosis generation Comprehension
[TSE 2021] [ASE 2019] [Locke et al. TSE 2021]

Software logs are crucial for a variety of downstream tasks in
practice of load tests

A Survey on Automated Log Analysis for Reliability
Engineering

SHILIN HE, Microsoft Research

PINJIA HE, Department of Computer Science, ETH Zurich

ZHUANGBIN CHEN, TIANYI YANG, YUXIN SU, and MICHAEL R. LYU, Department of
Computer Science and Engineering, The Chinese University of Hong Kong

Logs are semi-structured text generated by logging statements in software source code. In recent decades,
software logs have become imperative in the reliability assurance mechanism of many software systems because
they are often the only data available that record software runtime information. As modern software is evolving
into a large scale, the volume of logs has increased rapidly. To enable effective and efficient usage of modern
software logs in reliability engineering, a number of studies have been conducted on automated log analysis.
This survey presents a detailed overview of automated log analysis research, including how to automate
and assist the writing of logging statements, how to compress logs, how to parse logs into structured event
templates, and how to employ logs to detect anomalies, predict failures, and facilitate diagnosis. Additionally,
we survey work that releases open-source toolkits and datasets. Based on the discussion of the recent advances,
we present several promising future directions toward real-world and next-generation automated log analysis.
CCS Concepts: « Software and its engineering — Software maintenance tools; Software creation and
management.

@ Very successful

research area

Focusing on the
ease of
practitioners'
adoption

Log processing

System aPPPs @y

issues

How to
analyze
logs

' RegEx
N

Repor

v

oduce at run-time

Limited

generalize

toolsets in
. practice

Goal: Making log analytics
as easy/low-cost as possible

e :

Domain specific
language for

Accessible log

L lyti
09 enayies analytics during

as services

Log analytics development

Logging analytics
infrastructure

58

Log processing

' System PP @y
s m issues < =

"
\
) A

%

M(H
ow fo | £
Loes H u Lizhi Liao
g make ow to e
Y logging analyze)
stateme |Ogs Repor}
Re nts @
r = = Jinfu Chen
105106

' -

Logging analytics |

Kundi Yao

infrastructure

58

Log processing
: System 9PPs @y
ez . & issues :7;
How to T
[nlPer
e make How to “Rogéx
logging analyze -
stateme logs Repor|
Re nts@
@ oduce at runtime R ,
106,06 °

Logging analytics

infrastructure

58

Log processing

A System apps 75

issues 77
»
|
Rawlog 17006009 201111 rpr‘é‘--sza;a‘g;‘éfggkma;ga; ;

,—.::::::::::::::_::_—-‘: SEssSsEprrTccoccccadanw

Tlmestamp: 17/06/09 20:11:11; Level: INFO
Parsed log Logger: storage.BlockManager
(Structured) Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

Compression Parsing

ReTE'U'SEl

Ptoduce at run-time

Design of our preprocessing
approach: LogBlock

Preprocessed
A log block log block
Step1: Split log Step2: Step3: Apply log
lines into —» Transpose log —>» preprocessing !
! columns table heuristics

', LogBlock preprocessing steps

We do not perform extra information reduction steps to log
content part for compression performance concern.

The main idea of Logram

Raw log
(Unstructured)

———— - e - — — o — — — I ——

Found block'rdd_42_20! locally!
Found bblock!rdd_42 22'|occ|||y|
Found })Iocklrdd 42_23 llocall |

AL

Each static token has a higher
number of appearance.

Token “Found” appears 4 times.

Each dynamic token has a lower number
of appearance.
Token “rdd_42_20” appears only once.

We use the number of appearances to
distinguish static and dynamic tokens.

[TSE 2020]

38

Log processing

Log processing
/i] A 'System(_ apps WF
" Y\ issues 5
M i |
o, HOW to
e make How to —L
logging analyze
stateme logs Repor
Rents?
@ 2
Pfoduce at runtime = =
C T

Logging analytics
infrastructure

Design of our preprocessing

approach: LogBlock

A log block

Preprocessed
log block

e i N
B
'
'

System apps 9
AN\ e e— ¥/
.\ lissues]7{
Raw log h
(Unstructured) "
v X
Parsed log Logger: storage.BlockManager J
(Structured) Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20
. . r
Compression Parsing
RE-I3033l

{

PIoduce at run-time

L0606

The main idea of Logram

Raw log
(Unstructured)

————p - -——-—-—=— ===

Found blockifdd_42_20}locally,
Found |ock:rdd_42_22:|ocullyl
Found plocki rdd_42_23ilocally
Found blockirdd_42_24locally,

Step1: Split log Step2: Step3: Apply log
lines into » Transpose log » preprocessing
! columns table heuristics

. LogBlock preprocessing steps

//l \

- - // // \\

Each static token has a higher
number of appearance.
Token “Found” appears 4 times.

Each dynamic token has a lower number
of appearance.

Token “rdd_42_20” appears only once.

We do not perform extra information reduction steps to log
content part for compression performance concern.

%.2020]

We use the number of appearances to
distinguish static and dynamic tokens.

COME and JOIN US

b | CSRankings: Computer Science Rankings

jons. Click on a name 10 go 1o &
bar chart v |, Click on a Google
you g5 useul? Sponsor

(CSrankings on GitHub.
Rank nsttusons in [Canada ~] by publcations from 2072 v)io (2022 v
All Areas [off|on] # Institution Count Faculty
1 = University of Britsh Columbia il s 157 8
Al foft | on]
2 v Concordia University i+) i 154 7
u]
a Facutty 2Pubs Ad#
o Potor C. Rigby ¢ iy 13 46
o TeaHeun (Peter) Chon <= w51 M s 19
0 Weiyi Shang 8 22
Nikolaos Teantais 8 25
Systoms (oft | on,
Emad Shinab << & 7 18
’ =) Jngju Yang 0001 s 13
e = Joergen Riling @ 53 i 1 03
- o
e =]
s o 3 = University of Waterloo i+} i 97 1"
- o 4 = Queen's University I+l 7.7 5
= o 5 » University of Toronto 68 6
- o
® o 6 » Dalhousie Univer 59 3
- o 7 58 2
% o 8 = University of Victoria il i 49 4
-
9 = York University i+ i 3 2
Theory [off | on) 10 » Simon Fraser University il i 35 5
> Algorithms & . u] 11 » University of Calgary i+4 i 25 2
- y 0
& y ¢ 1 12 » University of Alberta i+ i 20 2
13 = University of Manitoba il i 18 2
Inter inary Areas [off | on]
14 > Carleton University i+l d 17 1
Q 14 = Poltechniaue Montreal i i tmie

CS ranking on Software Engineering:

27 in Canada, 6™ in North America
and 9" in the world

We are hirin

Master’s and PhD with ?U” scholarship
PostDoc with special title
and multiple faculties positions =

Log processing
; System apPs w
ez m issues < ?/
““How to :
‘e make How to %
logging analyze
stateme logs Repor
Rents?
@ -
Pfoduce at runtime = =
i WY

Logging analytics

Log processing
apps

‘ System /4
: e / ! \ issues 5
\.\/)

Raw log

(Unstructured)

Parsed log Logger: storage.BlockManager

(Structured) Static template: Found block <*> locally
Dynamic variable(s): rdd_42_20

=

Compression

Parsing

R!‘..Ieubel

Wel)ll Sha ng hitp://users.encs.concordia.ca/~ shang/

-vvlull - -

approach: LogBlock

rl vr'I N R la

A log block

Preprocessed
log block

Step1: Split log
lines into >
columns

Step2:
Transpose log
table

e i N
, \
! \
' \
H I

Step3: Apply log
preprocessing
heuristics

', LogBlock preprocessing steps

We do not perform extra information reduction steps to log
content part for compression performance concern.

Raw log
(Unstructured)

————p - -——-—-—=— ===

Found blockifdd_42_20}locally,
Found |ock:rdd_42_22:|occ||yl
Found plocki rdd_42_23ilocally
Found blockirdd_42_24locally,

— / N\

7\

\

Each static token has a higher
number of appearance.
Token “Found” appears 4 times.

Each dynamic token has a lower number
of appearance.

Token “rdd_42_20” appears only once.

We use the number of appearances to
distinguish static and dynamic tokens.

%.2020]

