
MO443

Lucas David, 188972

Assignment 1
Image Manipulation

2021-04-06

lucas.david@ic.unicamp.br

1 Introduction

This assignment was submitted to the class of 2021/1 of course Introduction to Image Processing (MO443)
at Universidade Estadual de Campinas. Its goal is to implement basic numeric operations over images using
Python programming language.

1.1 Dataset and Setup

In this work, I employed TensorFlow [1] as numeric
framework for most manipulation performed. Addi-
tionally, NumPy [4] is also used whenever it offered an
advantage in implementation simplicity. Google Colab-
oratory [2] was used as development platform, taking
into consideration its reasonable resources available
and bootstrap simplicity. The notebook produced is
available for direct access1.
To visualize the effect of the implemented filters be-
yond the few input images provided in class, we uti-
lize 10 random images from the TF-Flowers2 dataset,
which can be downloaded in the tf-records format
using the tensorflow-datasets library.
This dataset represents a multi-class (mono-label) im-
age classification problem, and comprises 3,670 pho-
tographs of flowers associated with one of the fol-
lowing labels: dandelion, daisy, tulips, sunflowers and
roses.
Images are represented by tensors of rank 3, of shape
(H,W, 3). They are first loaded into memory as n-
dimensional arrays of type uint8. As many of the
following operations are floating point precision, we
opted to cast them imediately to float32. This is the de-
fault dtype for most operations in TensorFlow graphs.

Image may have different sizes, which prevents them
from being directly stacked into a 4-rank tensor
(BATCH, HEIGHT, WIDTH, 3). We circumvented this
problem using the following procedure:

1. Let S? := (300, 300, 3) be a desired output shape
and SI := (HI ,WI , 3) be the actual shape of
any given image I. I is resized so it’s smallest
component (HI or WI) matches the smallest
component of S? (namely, 300).

2. The largest component in the shape of I is now
greater or equal to 300. We extract the central
crop of size (300, 300) from I, resulting in an
image of shape (300, 300, 3).

Figure 1: Examples in the TF-Flowers dataset.

2 Colored Images

In this section, we describe the implementation details for the operations applied when the program receives
colored images.

2.1 Sepia Filter

Proposed activity: implement the Sepia filter for im-
ages containing color information, represented by the
linear system describe in Eq. 1.
A naive way to implement this transformation is to
separate the image tensor I of shape (B,H,W, 3) by its
last axis, forming three tensors of shape (B,H,W, 1).
We multiply each and every component according to
the rule in Eq. 1 and concatenate the result, as de-
scribed in Lst. 1.

R′G′
B′

 =

0.393R+ 0.769G+ 0.189B
0.349R+ 0.686G+ 0.168B
0.272R+ 0.534G+ 0.131B

 (1)

1 @tf.function
2 def sepia(x):
3 x = tf.cast(x, tf.float32)
4 r, g, b = tf.split(x, 3, axis=-1)
5

6 y = tf.concat(
7 (0.393*r + 0.769*g + 0.189*b,
8 0.349*r + 0.686*g + 0.168*b,
9 0.272*r + 0.534*g + 0.131*b),

10 axis=-1)
11

12 return tf.clip_by_value(y, 0, 255)

Listing 1: Naive implementation of the Sepia filter.

1Iterative report available at colab/mo-443-assignment-1
2TF-Flowers dataset is available at tensorflow.org/datasets/catalog/tf flowers

Universidade Estadual de Campinas 1

https://colab.research.google.com/drive/1vDInG1wSu4lgv_z1LssdE6N9M4Cha8Zj
https://www.tensorflow.org/datasets/catalog/tf_flowers

A more elegant solution is to remember that every lin-
ear system (including (R′, G′, B′)ᵀ, described above)
can be interpreted as a multiplication between the
input matrix and a coefficient matrix:

I · S =

∑k i0,ksk,0 ...
∑

k i0,ksk,m
...∑

k in,ksk,0 ...
∑

k in,ksk,m

 (2)

In our case, I has rank 4 (not a matrix), but the same
equivalence applies, as the matrix multiplication is a
specific case of the tensor dot product. There are mul-
tiple ways to perform this operation in TensorFlow:

1. y = tf.matmul(x, s): inner-product over the
inner-most indices in the input tensors (last
axis of x and antepenultimate axis of s).
This assumes the other axes represent batch-
like information, and generalizes the matrix-
multiplication operation for all cases (the input
is a matrix, batch of matrix or batch of sequence
of matrix, ...).

2. y = x @ s: override of tf.matmul, same result-
ing operation

3. y = tf.tensorproduct(x, s, 1): the tensor
dot product over one rank (the last in x and first
in sepia weights)

4. y = tf.einsum(’bhwc,ck->bhwk’, x, s):
Einstein’s summation over the rank c (last in x

and first in s)

1 sepia_weights = tf.constant(
2 [[0.393 , 0.349, 0.272] ,
3 [0.769 , 0.686, 0.534] ,
4 [0.189 , 0.168, 0.131]]
5)
6

7 @tf.function
8 def sepia(x):
9 y = x @ sepia_weights

10 return tf.clip_by_value(y, 0, 255)

Listing 2: Most efficient implementation of the Sepia
filter.

Fig. 2.1 illustrates the results of the application of the
function described in Lst. 2 onto the 10 samples from
the TF-Flowers dataset.

Figure 2: Sepia filter applied over the image samples.

2.2 Gray-Scale Transform

Proposed activity: given a colored image I in the RGB
format, alter the image s.t. it contains only one color
band, defined by the following equation:

I = 0.2989R+ 0.5870G+ 0.1140B

The solution is very similar to what was done in Sub-
section 2.1, except that the coefficient tensor is no
longer a matrix, which preclude the usage of @. I
used tf.tensordot to compute the inner product be-
tween the last axis of x and first (and only) axis of
gray weights (Lst. 3).
An acceptable alternative form would be
tf.einsum(‘bhwc,c->bhw’, x, gray weights).
1 gray_weights = tf.constant(
2 [0.2989 , 0.5870 , 0.1140]
3)
4

5 @tf.function
6 def grayscale(x):
7 y = tf.tensordot(x, gray_weights , 1)
8 return tf.clip_by_value(y, 0, 255)

Listing 3: RGB to gray-scale transformation.

Figure 3: The result of the gray-scale transformation
applied over the image samples.

3 Monochromatic Images

In this section, we describe the implementation details for the operations applied when the program receives
one or more monochromatic images. The proposed activity is to apply distinct constant kernels — 7 kernels of
shape (3, 3) and 2 of shape (5, 5) — to the aforementioned images.

3.1 Convolution and Cross-correlation
Operators

The convolution of a 1-D input sinal f and a 1-D kernel
g is defined as the integration of the product between
the two signals, when evaluated over the temporal
component:

(f ∗ g)(t) =
∫
f(τ)g(t− τ)dτ

We observe from the equation above that one of the
signals is reflected. This is essential so both functions
are evaluated over the same time interval, resulting in
the effect of “zipping” the two functions together. This
effect is illustrated in the first column of Fig. 4.

Universidade Estadual de Campinas 2

Figure 4: Comparison between convolution, cross-
correlation and auto-correlation. Wikipedia. Available
at: wikipedia.org/Cross-correlation.

On the other hand, Cross-correlation is a similar oper-
ation in which g slides over f without the aforemen-
tioned reflection:

(f ∗ g)(t) =
∫
f(τ)g(t+ τ)dτ

The signals are associated in an inverted fashion,
which is illustrated in the second column of Fig. 4.
Finally, we can imagine that a 2-D signal (such as im-
ages) is reflected when both (x, y) axes are reflected.
This is equivalent of rotating the image in 180◦.

Notwithstanding its name, the tf.nn.conv2d(f, g)

function implements the cross-correlation function,
and the convolution operation is supposedly per-
formed by assuming the kernel g is already reflected.
In the example below, we observe the output signal is
obtained by the Cross-correlation eq.:
1 s = tf.constant(
2 [[1., 2., 3.],
3 [4., 5., 6.],
4 [7., 8., 9.]]
5)
6 k = tf.constant(
7 [[1., 1.],
8 [0., 0.]]
9)

10 c = tf.nn.conv2d(
11 tf.reshape(s, (1, 3, 3, 1)),
12 tf.reshape(k, (2, 2, 1, 1)),
13 strides=1,
14 padding=’VALID ’
15)
16

17 signal:
18 [[1. 2. 3.]
19 [4. 5. 6.]
20 [7. 8. 9.]]
21 kernel:
22 [[1. 1.]
23 [0. 0.]]
24 s*k:
25 [[3. 5.]
26 [9. 11.]]

Listing 4: Illustration of the cross-correlation
operation being executed when tf.nn.conv2d

function is invoked.

This is a design decision which takes performance into
account, as the rotation operations can be omitted
during the feed-forward process. During training, ker-
nels are correctly learnt through back-propagation by

minimizing a given loss function (e.g. cross-entropy,
N-pairs, focal loss). Interestingly enough, the differen-
tial of the real-valued cross-correlation with respect
to its kernel (which is used to update the kernels) is
the cross-correlation itself, rotated 180◦ (e.g. convolu-
tion).
In this particular case, in which the kernels are fixed,
they supposedly represent regular filters. I therefore
chose to implement the convolution as the correlation
between an input signal I and the kernel k rotated
180◦.
Assuming the kernels are stored in the variables h17
and h89 of shape (7, 3, 3) and (2, 5, 5) respectively, this
assignment can be trivially solved:
1 def rot180(k):
2 k = tf.expand_dims(k, -1)
3 k = tf.image.rot90(k, 2)
4 k = tf.transpose(k, (1, 2, 3, 0))
5 return k
6

7 y17 = tf.nn.conv2d(x, rot180(h17), 1, ’SAME ’)
8 y89 = tf.nn.conv2d(x, rot180(h89), 1, ’SAME ’)
9

10 yr1c2 = tf.sqrt(
11 tf.nn.conv2d(
12 x, rot180(h17 [0]), 1, ’SAME ’)**2
13 + tf.nn.conv2d(
14 x, rot180(h17 [1]), 1, ’SAME ’)**2
15)
16

17 y = tf.concat ((y17 , y89 , yr1c2), axis=-1)
18 y = tf.clip_by_value(y, 0, 255)

Listing 5: Implementation of the convolution
operation using TensorFlow functions.

3.2 Implementation

In this subsection, I present my implementation (and
derivation thereof) of the 2-dimensional convolution
function. For simplicity, it is implemented as the corre-
lation between an input signal I and the reflection of
an input kernel k.

3.2.1 Study of a Use Case

I decided to start by considering a simple use case. For
analytical convenience, I imagined this case to have
the following characteristics:

1. Only one image and one kernel is involved in
this operation.

2. No padding is performed in the input signal (i.e.
padding valid).

3. I and k have different height and width values
— namely, (HI ,WI) and (Hk,Wk) —, and they
are prime numbers. This is interesting when
flattening a matrix into a vector, as prime num-
bers have distinct products and will result in
dimensions that are easier to understand.

4. The kernel is not symmetric. Hence the convo-
lution and cross-correlation functions will result
in different signals.

I considered the following signals in my use-case:

Universidade Estadual de Campinas 3

https://en.wikipedia.org/wiki/Cross-correlation

I =

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25
26 27 28 29 30
31 32 33 34 35

(3)

k =

[
0 2 1
0 1 0

]
(4)

I simulated the effect of a 2-D kernel k sliding across
the spatial dimensions of I by “extracting” multiple
non-mutually disjointed subsections of the image into
a sequence of flattened patches, which could then
be broadcast-multiplied by the flattened kernel and
reduced with the sum operation. To make this “extrac-
tion” more efficient, an index-based mask was built
and applied over the image. This approach requires
the construction of two integer matrices R and C —
each of shape ((HI −Hk + 1)(WI −Wk + 1), HkWI)
—, but does not replicate the values contained within
the input signal I. Rather, index-based masks create
merely views of the n-dimensional arrays over which
they are applied.
The indexing procedure can be described by the fol-
lowing steps.

1. The window starts at the first valid position
in matrix I, and references the sub-matrix
I[0 : 2, 0 : 2] with the flatten index vec-
tor [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)] or, for
briefness,

[
00 01 02 10 11 12

]
.

2. k slides horizontally until the last valid index of
I, yielding WI −Wk + 1 index vectors in total.

3. The window resets at the column of I, but posi-
tioned at the next following row.

4. The three steps above are repeated for each valid
vertical index (HI −Hk + 1 times), effectively
covering all sections of the matrix I.

The use-case represented by Eq. 3 can therefore be
indexed as:

MI =

00 01 02 10 11 12
01 02 03 11 12 13
02 03 04 12 13 14

10 11 12 20 21 22
11 12 13 21 22 23
12 13 14 22 23 24
. . .
50 51 52 60 61 62
51 52 53 61 62 63
52 53 54 62 63 64

(5)

By observing the index matrix described in Eq. 5, we
can identify multiple patterns.

Firstly, onto the vertical indexing (i.e., the index r
in the index pair rc, for MI = [rc]R×C). In the first

column, r is arranged from 0 to HI − Hk + 1, and
each number repeats WI −Wk + 1 times. This can be
expressed in numpy notation as:
1 B, H, W = s.shape
2 KH, KW , KC = k.shape
3

4 r0 = np.arange(H-KH+1)
5 r0 = np.repeat(r0 , W-KW+1)
6 r0 = r0.reshape(-1, 1)

Across the rows, r repeats itself Wk times, and then it
assumes the value r + 1 and repeats itself Wk times
once again. These two outer-most repetitions are due
to the fact that the kernel has 2 rows. In a general
case, we would observe Hk repetitions:
1 r1 = np.arange(KH).reshape(1, KH)
2 r = np.repeat(r0 + r1 , KW, axis =1)

Notice that the addition between a column vector r0
and a row vector r1 will construct a matrix through
broadcasting. The matrix R now contains the first
index in MI .

As for the horizontal indexing c, we observe the num-
bers are sequentially arranged in the first row from 0
to Wk, and that this sequence repeats Hk times:
1 c0 = np.arange(KW)
2 c0 = np.tile(c0, KH).reshape(1, -1)

Furthermore, c increases by 1 each row (as our convo-
lution slides by exactly 1 step), going up to the number
of horizontal slide steps of k onto I (WI −Wk + 1).
Adding this row vector to c0 (a column vector) pro-
duces the index matrix for all horizontal slides of the
kernel. Finally, we vertically tile (outer repeat) this
matrix by the number of valid horizontal slide steps
(HI −Hk + 1):

1 c1 = np.arange(W-KW+1).reshape(-1, 1)
2 c = np.tile(c0 + c1, [H-KH+1, 1])

Hence, MI = [R,C].

3.3 Additional Considerations

Batching As MI was constructed taking the width
and height of the signals into consideration, it does
not depend on the number of images, nor the num-
ber of kernels. Let I be redefined as a signal of
shape (B1, B2, . . . , Bn, HI ,WI) (a batch of batches
of . . . batches of images), and k a signal of shape
(Hk,Wk, C) This solution can be easily extended to
a multi-image, multi-kernel scenario by broadcasting
the index-mask selection of I to all batch-like dimen-
sions and dotting it with the flatten kernels:
1 y = s[..., r, c] @ k.reshape(-1, C)

Padding As kernels of sizes greater than 0 slide
across the spatial dimensions of an input signal I, they
will occupy at most (HI −Hk +1)× (WI −Wk +1) <
HIWI positions, resulting in an output signal smaller
than the input signal. More specifically, of shape
(B1, B2, . . . , Bn, HI −Hk + 1,WI −Wk + 1, C). One
can imagine many cases in which the maintenance of
the signal size is desirable, such as maintaining local-
ity between multiple applications of the convolution;
or maintaining visualization consistency.

Universidade Estadual de Campinas 4

In order to maintain a consistent signal shape, I imple-
mented the flag padding=’SAME’, what is sometimes
referred to as zero-padding. I employed here a strategy
similar to what is done in the NumPy and TensorFlow
libraries: (Hk−1,Wk−1) zeros are added to the input
signal’s height and width respectively. During the con-
volution, the spatial dimensions of the input signal be-
come ((HI+Hk−1)−Hk+1, (WI+Wk−1)−Wk+1) =
(HI ,WI).
For kernels with an odd numbered width and height,
this operation becomes trivial: we add bHk/2c rows
to both top and bottom extremities of the signal, and
bWk/2c columns to its left and right extremities.
A particular case must be handled when one of the
sizes of the kernel is even: adding bHk/2c will result
in an output signal larger than the input signal by ex-
actly 1 pixel. I handled this case in the same manner
NumPy seemly does, by adding more padding to the
bottom/right than to the top/left.

3.4 Complete Implementation, Usage
Conditions and Limitations

Lst. 6 presents the fundamental parts of my implemen-
tation of the 2-D cross-correlation and convolution
functions.
1 def correlate2d(s, k, padding=’VALID ’):
2 B, H, W = s.shape
3 KH, KW , KC = k.shape
4

5 if padding == ’SAME ’:
6 pt, pb = floor ((KH -1)/2), ceil((KH -1) /2)
7 pl, pr = floor ((KW -1)/2), ceil((KW -1) /2)
8 p = ((0 ,0), (pt, pb), (pl, pr))
9 s = np.pad(s, p)

10 B, H, W = s.shape
11

12 r0 = np.arange(H-KH+1)
13 r0 = np.repeat(r0 , W-KW+1)
14 r0 = r0.reshape(-1, 1)
15 r1 = np.arange(KH).reshape(1, KH)
16 r = np.repeat(r0 + r1 , KW, axis =1)
17

18 c0 = np.arange(KW)
19 c0 = np.tile(c0, KH).reshape(1, -1)
20 c1 = np.arange(W-KW+1).reshape(-1, 1)
21 c = np.tile(c0 + c1, [H-KH+1, 1])
22

23 y = s[..., r, c] @ k.reshape(-1, KC)
24 y = y.reshape(B, H-KH+1, W-KW+1, KC)
25

26 return y.clip(0., 255.)
27

28 def convolve2d(s, k, padding=’VALID ’):
29 k = np.rot90(k, k=2)
30 return correlate2d(s, k, padding)

Listing 6: Naive implementation of the Sepia filter.

The input signal (images) must be in the shape of
(B1, B2, . . . , Bn, HI ,WI) and kernels must be in the
shape of (Hk,Wk, C). I also remark the following
important limitations of this implementation:

1. This function is limited to the two dimensional
spatial case, and will not work correctly for 3-
D, 4-D and, more generally, n-D spatial signals,
where n > 3.

2. Stride is always 1, making this function unsuit-
able for Atrous Convolution [3].

3.5 Validation

Sepia and gray-scale functions implemented here were
validated against their naive counterparts. The convo-
lution and cross-correlation results are compared with
the ones obtained from scipy.signal.convolve2d

and scipy.signal.correlate2d functions. The test
consists of obtaining the exact same result in both
implementations for a random input, up to the 6th
decimal precision. These tests can be reproduced by
executing the unit test component in the project with
the command pytest.

3.6 Results and Discussions

Fig. 5 illustrates the result of the convolution of multi-
ple input images with each kernel. A brief description
of each result is provided below.

H1 highlights regions containing vertical lines, in
which the left side represents areas with higher
activation intensity, while the ones in the right
are dark regions.

H2 is similar to H1, but activates strongly over hori-
zontal lines in which the top is brighter than the
bottom.

H3 responds strongly to bright regions that are sur-
rounded by dark regions in the input. It seems to
extract fine edges regardless of their orientation.

H4 is the uniform blur filter. It runs across the image
macro-averaging the pixel activation intensities,
reducing their differences.

H5 detects diagonal (bottom-left to top-right) lines
— this kernel is symmetric, hence the convolu-
tion results in the same signal as the correlation.

H6 similar to H5, but detects diagonal (top-left to
bottom-right) lines.

H7 responds to regions with bright top-right cor-
ners and dark bottom-right corners, without tak-
ing into consideration the information in the
in-between section (most of which is multiplied
by 0).

H8 is an edge-detector like H3, but seemly results
in more detailed edges for these highly-detailed
input images.

H9 is the Gaussian blur filter. It weight-averages the
differences between the intensities of the pixels
giving the central region more importance.

H10 combines H1 and H2 into one signal that seems
to respond to both vertical and horizontal lines
in the same intensity.

Universidade Estadual de Campinas 5

Figure 5: Input images (first column), kernels (first row) and output signal of the convolution between each
image and kernel.

References

[1] Martıén Abadi et al. “Tensorflow: A system
for large-scale machine learning”. In: 12th
{USENIX} symposium on operating systems design
and implementation ({OSDI} 16). 2016, pp. 265–
283.

[2] Tiago Carneiro et al. “Performance analysis of
google colaboratory as a tool for accelerating

deep learning applications”. In: IEEE Access 6
(2018), pp. 61677–61685.

[3] Liang-Chieh Chen et al. “Rethinking atrous con-
volution for semantic image segmentation”. In:
arXiv preprint arXiv:1706.05587 (2017).

[4] Stefan Van Der Walt, S Chris Colbert, and Gael
Varoquaux. “The NumPy array: a structure for
efficient numerical computation”. In: Computing
in science & engineering 13.2 (2011), pp. 22–30.

Universidade Estadual de Campinas 6

	Introduction
	Dataset and Setup

	Colored Images
	Sepia Filter
	Gray-Scale Transform

	Monochromatic Images
	Convolution and Cross-correlation Operators
	Implementation
	Study of a Use Case

	Additional Considerations
	Complete Implementation, Usage Conditions and Limitations
	Validation
	Results and Discussions

