
MO443

Lucas David, 188972

Assignment 2
Discrete Fourier Transform

2021-05-07

lucas.david@ic.unicamp.br

1 Introduction

This assignment was submitted to the class of 2021/1 of course Introduction to Image Processing (MO443)
at Universidade Estadual de Campinas. Its goal is to apply the Discrete Fourier Transform over images using
Python programming language and assess its results.

1.1 Dataset and Setup

Very much like in Assignment 1, I employed Tensor-
Flow and Google Colaboratory to develop this assign-
ment. The notebook produced is available for direct
access1. Additionally, 10 random images from the
TF-Flowers2 dataset were used to illustrate the results.

Figure 1: Examples in the TF-Flowers dataset.

2 Frequency Filtering

2.1 Identity Transform

Proposed activity: apply the Fast Fourier Transform to
an image and its inverse, detailing each step.
The application of the Fourier Transformation over im-
ages is straight forward: the function tf.signal.fft2d
can be used to represent a tensor of shape
(b0, b1, . . . bn, h, w) in the frequency domain, where the
two inner-most axes (namely, h and w) are assumed
to contain the information to be transformed and the
remaining are assumed to be batch dimensions. List-
ing 1 describes all steps involved in transforming a
signal and reconstructing it its original domain.

1 x = tf.image.rgb_to_grayscale(images)
2

3 y = tf.cast(x, tf.complex64)
4 y = tf.signal.fft2d(y[..., 0])
5

6 s = tf.signal.fftshift(y, axes=(1, 2))
7 z = tf.signal.ifftshift(s, axes=(1, 2))
8 w = tf.signal.ifft2d(z)

Listing 1: FFT and IFFT over 2D signals (images).

Figure 2: Illustration of the Fourier and Inverse Fourier
Transformations over 2D signals (images). From top
to bottom: (a) the original images; (b) the (log of)
spectrum of the Fourier transform; (c) the spectrum
shifted; (d) the un-shifted spectrum; and (e) the (real)
result of the Inverse Fourier Transform.

2.2 Low-pass Filter

Low-pass filters can be implemented as binary masks
that retain low frequencies of a signal while suppress-
ing high frequencies. A vectorized ideal circular filter
can be implemented as described in Listing 2. Two
vectors are used in this implementation (h and w).
They represent the distance between each pixel and
the signal center. The h vector is reshaped into a col-
umn vector and the radius input vector is reshaped
into (r, 1, 1), where r is the number of radii passed.
Finally, the operation h2 + w2 < radius2 will return a
tensor of shape (r, h, w), containing all filters built.

1 def circ_filter2d(
2 radius ,
3 shape ,
4 dtype=tf.float32
5):
6 H, W = shape [-2:]
7

8 h = tf.abs(tf.range(H) -H//2)
9 h = tf.reshape(h, (-1, 1))

10 w = tf.abs(tf.range(W) -W//2)
11

12 radius = as_absolute_length(radius , H, W)
13 radius = tf.reshape(radius , (-1, 1, 1))
14

15 return tf.cast(
16 h**2 + w**2 < radius **2,
17 dtype
18)

Listing 2: Ideal circular filter.

A Butterworth low-pass filter can be built in a simi-
lar fashion, replacing the circle equation by 1 / (1 +

(h**2 + w**2) / radius**(2*n)).
1Iterative report available at colab/mo-443-assignment-2
2TF-Flowers dataset is available at tensorflow.org/datasets/catalog/tf flowers

Universidade Estadual de Campinas 1

https://colab.research.google.com/drive/1i3aGKf5I9EkKyoxAtRP3D4p7hHUawZwC?usp=sharing
https://www.tensorflow.org/datasets/catalog/tf_flowers

Fig. 3 illustrates the steps in the low-pass filtering
procedure of a signal in the frequency domain, while
Fig. 4 and Fig. 5 illustrate the difference of the appli-
cation of the ideal low-pass and Butterworth low-pass
filters. A quality difference of the blur effect is clearly
perceptible, where the Butterworth filter generates
much better results for small radius arguments.

Figure 3: Illustration of steps involved in applying a
low-pass filter in the frequency domain using the Fast
Fourier Fourier Transformation over 2D signals (im-
ages). From top to bottom: (a) the original images;
(b) the (log of) spectrum of the Fourier transform;
(c) the spectrum shifted; (d) the (log of) spectrum
multiplied by the ideal circular low-pass filter; (e) the
un-shifted spectrum; and (f) the (real) result of the
Inverse Fourier Transform.

2.3 High-pass Filter

A ideal high-pass filter can be trivially obtained from
the circ filter2d function described in Lst. 2, by
simply subtracting its result from 1. This will effec-
tively switch every zero in the mask by one and vice
versa. Fig. 6 illustrates the application of multiple
ideal high-pass filters over images. We notice textural
information is removed and we are left with edge and
boundary information of the original images.

2.4 Band-pass Filter

I once again leverage the circ filter2d function to
create the ideal band-pass filter, consisting of the sub-
traction of two low-pass filters with different radii.
Fig. 7 illustrate the application of multiple ideal band-
pass filters over images. Results are considerably
harder to interpret, compared with the previous ones:
filters with small inner radii and small width seem to
capture very specific textural patterns; while filters
with larger inner radii and large width seem to behave
like high-pass filters.

Figure 4: Result of the circular ideal filter in the frequency domain, varying its radius. The following radii
values were adopted (top to bottom): 5, 10, 20, 40, 70 and 150.

Universidade Estadual de Campinas 2

Figure 5: Result of the Butterworth low-pass filter in the frequency domain, varying its radius. The following
radii values were adopted (top to bottom): 1 2%, 3%, 5%, 10% 50%.

Figure 6: Result of the ideal high-pass filter in the frequency domain, varying its radius. The following radii
values were adopted (top to bottom): 1, 2, 3, 10, 40 and 70.

Universidade Estadual de Campinas 3

Figure 7: Result of the ideal band-pass filter in the frequency domain, varying its radius. The following (inner,
outer) radii values were adopted (top to bottom): (1, 3), (5, 10), (10, 15), (10, 50), (30, 90), (40, 140), (70,
140), (30, 150) and (5, 150).

3 Image Compression Using The
FFT

Compression can be performed by nullifying coeffi-
cients, the magnitude of which does not reach a cer-
tain threshold. Lst. 3 describes a compression filter
based on a percentile value for the magnitude. As
TensorFlow does not provide statistical functions, we
are forced to recur to the tensorflow probability (tfp)
library.
1 def compression_filter2d(rate , s):
2 m = tf.abs(s)
3 t = tfp.stats.percentile(m, rate , axis

=(1, 2))
4

5 return tf.cast(
6 m > t,
7 tf.complex64
8)

Listing 3: Compression filter based on percentile.

(a) Original (b) Filter 1 (c) Compressed

Figure 8: From left to right: (a) the original image,
(b) the compression filter with rate 95%; and (c) the
compression result.

Fig. 9 illustrates the compression of the images using
multiple rates. I found the quality of images com-
pressed with a rate below 95% to be very similar of
the original copy, with visible quality deterioration
being most noticeable at 99.9%.

Universidade Estadual de Campinas 4

Figure 9: Result of the compression filter in the frequency domain, varying its rate. The following rate values
were adopted (top to bottom): 10%, 50%, 90%, 95%, 99%, and 99.9%.

4 Effect of Rotation in the Spec-
trum

Fig. 10 illustrates the effect observed in the spectrum
of the signal generated by the DFT of a rotated input

image. The spectrum is also rotated in the same angle
as the input image.

Figure 10: Effect of rotation in the spectrum of the Fourier Transformation of a signal.

Universidade Estadual de Campinas 5

	Introduction
	Dataset and Setup

	Frequency Filtering
	Identity Transform
	Low-pass Filter
	High-pass Filter
	Band-pass Filter

	Image Compression Using The FFT
	Effect of Rotation in the Spectrum

