
MO443

Lucas David, 188972

Assignment 4
Texture Descriptors

2021-06-21

lucas.david@ic.unicamp.br

1 Introduction

This assignment was submitted to the class of 2021/1 of course Introduction to Image Processing (MO443) at
Universidade Estadual de Campinas. Its goal is to apply texture-describing methods to extract descriptors from
image samples.

1.1 Dataset and Setup

(a)

(b)

Figure 1: Examples of images (a) containing simple
textures made available in class and (b) in the DTD
dataset.

I employed Scikit-Image [6] and Google Colabora-
tory [1] when developing this assignment. The note-
book produced is available for direct access1.
Two sets of images were utilized in this assignment,
and are illustrated in Fig. 1. First, four considerably
distinct texture images provided in class are used to
illustrate variations in the parameters of the texture
descriptor extraction algorithms. The second set used
is the Describable Textures Dataset (DTD)2, which
can be downloaded in the tf-records format using the
tensorflow-datasets library. This dataset represents a
multi-class (mono-label) texture classification prob-
lem, and comprises 5,640 images associated with one
of the 47 available textures. In order to simplify the
problem (for demonstration purposes of this assign-

ment), I opted to filter images of one of the following
labels: honeycombed, cracked, polka-dotted and wrin-
kled.

2 Local Binary Patterns

In this section, we describe the application details of
Local Binary Patterns in texture images.

Local Binary Patterns (LBP) is an effective texture
extraction method that demonstrated competitive re-
sults in texture analysis and facial recognition appli-
cations [5, 2]. Given a gray-scale image, this method
consists of defining a pixel neighborhood based on free
parameters radius and number of pixels, and threshold-
ing each pixel within a single neighborhood according
to its central pixel. Pixels with higher intensity than
the central one are assigned 1, while pixels with lower
intensity are assigned 0. Finally, the binary mask is
multiplied by its weight matrix. While LBP considers
in its original formulation the weight matrix defined by
a predetermined ordering scheme over the sequence
wn = [2n]N2−1, where N × N is the neighborhood
defined, strategies to learn said matrix have been pro-
posed [2].
As remarked by Song et al. [5], the correlation among
pixels decreases as the radius increases, which in turn
deteriorates the local texture information. Thus, con-
sidering the scope of this assignment, low radii values
were used in my experiments.

2.1 Impact of parameters over LBP

Proposed activity: present the Local Binary Patterns
for a few images used in the experiments.

1 from skimage import io , color , feature
2

3 gray = color.rgb2gray(image)
4 lbp = feature.local_binary_pattern(
5 gray ,
6 P=8,
7 R=3,
8 method=’default ’
9)

Listing 1: Applying the LBP method over an image.

Scikit-Image provides an implementation for the LBP
method. The code in Lst. 1 illustrates the expected
configuration in order to reproduce LBP’s original for-
mulation.

1Iterative report available at colab/mo-443-assignment-4
2DTD dataset is available at tensorflow.org/datasets/catalog/dtd

Universidade Estadual de Campinas 1

https://colab.research.google.com/drive/18u-xOblVhiqW7pke0J5GhkeHTPg6rq4e?usp=sharing
https://www.tensorflow.org/datasets/catalog/dtd

Figure 2: LBP of simple texture images.

Figure 3: Histogram of LBP of simple texture images.

Fig. 2 illustrates the results of the LBP method over
four simple texture images with a varying set of pa-
rameters radius and number of points. A black-red
color map is used to make the patterns easier to distin-
guish. A higher radius and number of points produces
stronger, more varying strokes in the output pattern
images. Conversely, a low number of points produces
more homogeneous patterns.

The histograms presented in Fig. 3 were extracted
from the gray-scale intensity patterns shown in Fig. 2.
As expected, configurations that generated more ho-
mogeneous patterns resulted in histograms with fewer
bins (16), while more varying patterns were summa-
rized in histograms with 256 bins.

Universidade Estadual de Campinas 2

2.2 Matching Textures based on LBP His-
tograms

Proposed activity: use a few texture images (other
than the ones provided in class) and compare them
with respect to their Local Binary Patterns histograms.

The remaining results for the LBP method presented
in this work were obtained considering R=3, P=8 and
method=’default’. Fig. 4 illustrates the application
of the LBP method over images in the DTD dataset
considering these same parameters.
In order to match images according to their tex-
ture, one must first compute the pairwise dissimilarity
among the samples in the set. This can be achieved
by leveraging the cdist function contained in the
python package scipy. Multiple distance functions

are available in this function, such as Euclidean and
Correlation. I used the Kullback–Leibler divergence
function in this step, which is commonly employed
when comparing two probability distributions. Lst. 2
describes the steps necessary for the construction of
the dissimilarity matrix between samples in the DTD
dataset, which is illustrated in Fig. 5a. We observe that
the subset of images associated with the label cracked
seems to form a dark triangle (a closely related cluster)
on the top-left corner of the matrix. The remaining
labels present a more varying set of distances, indi-
cating they would be more easily confused with each
other.
With the dissimilarity matrix in hand, one can find
the most similar texture matches by argument-sorting
each row in the matrix and retaining the k most similar
indices.

Figure 4: Examples of application of the LBP method over images in the DTD dataset.

1 from scipy.spatial.distance import cdist
2

3 lbps = [
4 feature.local_binary_pattern(
5 gray ,
6 P=8,
7 R=3,
8 method=’default ’)
9 for gray in images]

10 bins = [int(l.max()+1) for l in lbps]
11

12 hists = [
13 np.histogram(
14 l,
15 density=True ,
16 bins=b,
17 range=(0, b))[0]
18 for l, b in zip(lbps , bins)]
19

20 dst = cdist(
21 hists ,
22 hists ,
23 metric=kullback_leibler_divergence
24)

Listing 2: The construction of the dissimilarity matrix
between samples in the DTD dataset.

3 Gray Level Co-occurrence Ma-
trices

Similar to LBP, Gray level co-occurrence matrix
(GLCM) is a popular method used to extract tex-
ture statistics from images. It consists of creating
a G = [pij]l×l matrix, where l is the number of distinct
gray intensities in the original image and pij is the rel-
ative frequency in which two pixels occur with the in-
tensities i and j, respectively, given the predefined free
parameters distance and angle [3]. GLCM is frequently

followed by the extraction of conventional statistical
descriptors, such as angular second moment, inverse
difference moment, entropy, and correlation [3].

1 from skimage.feature import greycomatrix ,
greycoprops

2

3 distances = [1, 2, 3, 4]
4 angles = [0, np.pi/4, np.pi/2, 3*np.pi/4]
5 props = (’dissimilarity ’, ’correlation ’)
6

7 def to_uint8(x):
8 return (x*255).astype(’uint8 ’)
9

10 def glcm_features(x):
11 co = greycomatrix(
12 to_uint8(x),
13 distances=distances ,
14 angles=angles ,
15 levels =256,
16 symmetric=True ,
17 normed=True
18)
19

20 return np.asarray ([greycoprops(co , prop=p)
21 for p in props]).ravel()

Listing 3: The application of the GLCM method over
samples in the DTD dataset.

Lst. 3 describes the application of the GLCM over gray-
scale image samples using the Scikit-Image library. In
the scope of this work, the co-occurrence matrix was
built considering low distances (1, 2, 3 and 4) and
multiple angles (0°, 45°, 90° and 135°). Additionally,
a pairwise dissimilarity matrix can be built on top of
the features extracted by GLCM, similarly to what was
performed in Section 2.1. However, as features ex-
tracted here do not form a probability distribution, the
cosine distance function was selected to evaluate the
dissimilarity between pairs of texture samples. Fig. 5b

Universidade Estadual de Campinas 3

illustrates the cosine dissimilarity matrix between sam-
ples in the DTD dataset. The average absolute distance
measurement is considerably lower than the values
found in 5a, making it harder to distinguish. How-
ever, it is clear that many values in the diagonal line
immediately below the matrix’s main diagonal are
extremely close to 0, indicating these samples have
close associations with at least one other label-sharing
sample.

4 Evaluation

As the DTD dataset associates each image to a texture
label, metrics such as accuracy score and top-k accu-
racy score — commonly employed when validating
machine learning systems [4] — can be used to evalu-
ate the efficacy of the matching given by the two sets
of features described in Section 2 and Section 3.
In order to conduct a more statistically stable exper-
iment, we used all of the 160 samples in the DTD
dataset associated with the subset of labels considered
in Section 1.1.

Metric LBP GLCM

top-1 46.88% 44.38%

top-3 74.38% 76.25%

top-5 84.38% 85.00%

Table 1: Evaluation results for the two matchings pro-
duced from LBP and GLCM features.

Table 1 shows the evaluation results for both methods.
We observe that LBP performs slightly better when

retrieving the most similar match (top-1 score). On
the other hand, GLCM showed better accuracy when
considering the three and five most similar matches
(top-3 and top-5 scores).

References

[1] Tiago Carneiro et al. “Performance analysis of
google colaboratory as a tool for accelerating
deep learning applications”. In: IEEE Access 6
(2018), pp. 61677–61685.

[2] Felix Juefei-Xu and Marios Savvides. “Weight-
optimal local binary patterns”. In: European
Conference on Computer Vision. Springer. 2014,
pp. 148–159.

[3] P Mohanaiah, P Sathyanarayana, and L GuruKu-
mar. “Image texture feature extraction using
GLCM approach”. In: International journal of
scientific and research publications 3.5 (2013),
pp. 1–5.

[4] Marina Sokolova, Nathalie Japkowicz, and Stan
Szpakowicz. “Beyond Accuracy, F-Score and
ROC: A Family of Discriminant Measures for Per-
formance Evaluation”. In: AI 2006: Advances in
Artificial Intelligence. Ed. by Abdul Sattar and
Byeong-ho Kang. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, pp. 1015–1021.

[5] Ke-Chen Song et al. “Research and Perspective
on Local Binary Pattern”. In: Acta Automatica
Sinica 39 (June 2013), pp. 730–744.

[6] Stefan Van der Walt et al. “scikit-image: image
processing in Python”. In: PeerJ 2 (2014), e453.

(a) (b)

Figure 5: Pairwise dissimilarity matrix between (a) LBP histograms of samples in DTD dataset; (b) GLCM
features extracted from samples in the DTD dataset.

Universidade Estadual de Campinas 4

Figure 6: Most similar matches for 8 samples in the DTD dataset.

Universidade Estadual de Campinas 5

	Introduction
	Dataset and Setup

	Local Binary Patterns
	Impact of parameters over LBP
	Matching Textures based on LBP Histograms

	Gray Level Co-occurrence Matrices
	Evaluation

