{ "cells": [ { "cell_type": "markdown", "id": "9de771ea", "metadata": {}, "source": [ "# SageMath" ] }, { "cell_type": "markdown", "id": "51e35939", "metadata": {}, "source": [ "É um sistema de computação algébrica implementado em Python. Tá, mas o que usar entre SymPy e Sage? Leia isso: https://stackoverflow.com/questions/17847902/what-is-the-difference-between-sympy-and-sage" ] }, { "cell_type": "code", "execution_count": 2, "id": "24a5471d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "6" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Ele opera normalmente\n", "2+2*2/1" ] }, { "cell_type": "code", "execution_count": 3, "id": "ba90f708", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2^3 * 17" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Ele fatora\n", "factor(136)" ] }, { "cell_type": "code", "execution_count": 4, "id": "ae3999a3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[ 0 1 2 3]\n", "[ 4 5 6 7]\n", "[ 8 9 10 11]\n", "[12 13 14 15]" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Ele lida com matriz\n", "A = matrix(4,4, range(16)); A" ] }, { "cell_type": "code", "execution_count": 8, "id": "b8031a22", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(x^2 - 30*x - 80)*x^2" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Ele fatora polinômios\n", "factor(x^4 - 30*x^3 - 80*x^2)" ] }, { "cell_type": "code", "execution_count": 9, "id": "252cd573", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\\frac{36}{20 \\, \\sqrt{73} + 36 i \\, \\sqrt{3} + 27}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Ele lida com latex\n", "k = 1/(sqrt(3)*I + 3/4 + sqrt(73)*5/9); k\n", "latex(k)" ] }, { "cell_type": "code", "execution_count": 12, "id": "e75f4782", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Você pode definir funções\n", "def is_divisible_by(number, divisor=2):\n", " return number%divisor == 0\n", "\n", "is_divisible_by(4378219, 3)" ] }, { "cell_type": "code", "execution_count": 14, "id": "cfd26450", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAGECAYAAAD3Oh1/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA3CUlEQVR4nO3deXxU9b3/8deEJYCQILKEKCKgbC6AiDRoWYSKQlFvq3XBBapQEX9XChWk96pF27rUrdq41FbRihWvRUWlqGVxRdBACgUEQRYREgQkYV+S8/vjkw1IQhJmzvecmffz8ZgHEiZzPonJec93j3ieh4iISE0kuS5ARETCSyEiIiI1phAREZEaU4iIiEiNKURERKTGFCIiIlJjChEREakxhYhIFURMSiQSibiuRSRIasfgNbV6UeJOXl4eqamp5OXluS5FJFZq9AZJLREREakxhYiIiNSYQkRERGpMISKh8+GHHzJkyBDS09OJRCK88cYbR/2cuXPncvbZZ5OcnMypp57K5MmTY16nSCJQiEjo7Nq1iy5dupCZmVml569Zs4bBgwfTr18/srOzGTNmDDfddBPvvvtujCsViX+xmJ0lElMXX3wxF198cZWf//TTT9OmTRsefvhhADp16kB29ixefvn3DByYDuwAdhb9aY+DB7+noGA3UFj02MP990Ny8m+A+tj7rySgHtAIaFj0Z9lHQyAFaIzer0m8UohInNkFrAY2ABuBTWRkvMi11zYAehZ9LIe//OVg0fPPKuc1ktm/P4lt2/ZQUACFhfb46U+hTp3Xi55TCBQAe7Hg2V9JTXWANKAlkH7Yny2Bk4BTgQY1/qpFXFGISAgdBNYCKxgzBrp0eRp4AliJhUexCNCc9u23k5ycApwJXAikk5W1gQkTfs/bb8+lXr2mHNqaqEOtWvtISdlX8kr5+fm0atWKvLx/k5KSUk5N+yltzZT9Mw/IBTZRHGrwadGfmw97jVZAe6BD0Z/Fj9boV1WCKhKDkw212FCiaA/wb+ALIKvosRwLEtizB/bvP4XU1HM49MZ7MtAcqEP79u0ZPnw4EydOLHnVGTNmMHjwYHbv3k39+vWPWkV+fn7JYsPyQ6QmDmABsw74CgvBlcCKor8Xh1gdoDPQvcyjC9aVJhI1NVpsqLc3EiAHgIXA55QGxjKs26gO1pL4AfALit+tH3dca6ZNe5TLLruswldNS0sjNzf3kI/l5uaSkpJSpQCJnTpYV9ZJwHmH/Vsh8A2loZKNfT9exAK0FnAGpaHSA+iGfqXFb/qJE4cOYjfGOcBc4GNsTKNsYIwGzsFumMlHvEJVGtIZGRnMmDHjkI+9//77ZGRkHEPtsZaEdWO1Bn5U5uN7gSWUhuwXlAZLQ+CHQD+gLwoV8YN+wsRHBVhLozg0PsLGDY7Dbn53Yje/rpQXGMV27tzJqlWrSv6+Zs0asrOzadKkCSeffDITJ07k22+/5cUXXwTg5ptv5k9/+hPjx4/n5z//ObNnz+bVV1/lnXfeicHXGGv1sFZHjzIf24t9Xz/Avre/AXZjM8N+iH1P+2GholliEl0aE5EY2wm8B0wH3gG2YLOQzqf05tYda31Uzdy5c+nXr98RH7/hhhuYPHkyw4YNY+3atcydO/eQz/nlL3/JsmXLOOmkk7jzzjsZNmxYla8ZmzGRWNmPdQnOxULlU2xsqTnwY+ASYAAW3iIlajQmohCRGNgAvFX0mIXd1E4HhgCDgXOBus6qq4lwhcjh9gHzsRCfDnyJtWgGYP9PfoxNOZYEpxARl9YALwPTsK6VWkAf7CY1BGjnrrQoCHeIHG4lpSH/ETaI3wP4CXANNrNNEpBCRPy2FXgVmAJ8gnWPDMG6Sy4CjndXWpTFV4iUtRX4J9ZCeRvr9uoNXAtcTjz9P5SjUoiIH/Zg72CnYDefQmAgMBS4lHjtZ4/fEClrB/AG8BLwL2zezWAsUAZT2WQHiQsKEYmlhcBTwFTsZnMudnO5EhuwjW+JESJlbQJewd4sZGH7f10JjMIWOkocUohItO3FuquexAZmWwHDsfA4zWFd/ku8EClrOdY6mYxt3XIecAvwU9Q6iSs6Hlei5WtgPLaS+gYgFevm+BqYRKIFiHQCfoftV/YaFhxDsTcVv8a2bZFEpRCRIh42xjEI21H2WSxAVgLvYuMdWpua2OpgrY9Z2HY0VwOZQFvs5+N91BGReBQiCe8g1vfdDQuQzcBfgW+Bh1GrQ8rXCfgj9nPyNNYauRCbKvwatjuBJAKFSMLaCzwDdMTeUbbAVjd/jo176GwLqYqGwAhgEdYSSQWuwBaXPkfl56xIPFCIJJwdwB+wLohRWAvkC6zLqi81HFuThBfBVsDPAj7DWio3YotMH8M21pR4pBBJGDuBe7HVyP8DXIzNuvk/bO8qKU9mZiadO3emR48eR3+yFOkJvA4sBS4AfoXtRnw/tjGkxBNN8Y17+7Fuq3uxU/ZuBm7HZl5JVSX2FN9jtQ54EJus0RS4C2ulVH3TTfGFpvhKWYXYQrGOwBhsxfFX2GCoAkT81BqbxfUl1jK5BRszeRX7OZUwU4jEHQ+YgY11XAucBSwGnkcb64lbbbFFi4uwWX9XYjsfvO+yKDlGCpG4sggbHB+MzZL5BFskeLq7kkSO0AXblv4D7EiAC7FB+SUui5IaUojEhe8pPUZ2C6W/oL1cFiVyFL2xNzpvYmfQdAN+iY3dSVgoREKtEFsY2B74GzZ1NxtbNKipuhIGEezogMXY1irPAh2wn2fN0QkDhUhoZWEtjZuwrdhXAGPRjBcJp7rABGzwvQ9wPdZS+bfLoqQKFCKhsw1bJNgDm3P/ATZY2dJlUSJRchJ23MC/sAOzzgb+G3VxBZdCJFTeBDpjx9A+ip3x0dtpRSKx0R/rmr0f2z7ldGyDUAkahUgobMW23r4MmxK5HLgN7aor8a0utjB2OXAGNtb3c2C7w5rkcAqRwHsTexc2A3ix6O/pTisS8VcrrBXyF+AfWKCoVRIUCpHAOrz1sQy4Ds26ksQUwbZK+Q9qlQSLQiSQ3uLI1ocGzkXKb5XMdFpRolOIBMo+bCbKJdjsK7U+RI5UtlVyOrYj9e3o7BI3FCKB8RW27uMZ4E/AdNT6EKlMcavkIezMkh8Ca1wWlJAUIoHwMjYfPh870Gc0an2IVEUSMA74GDvauRvWzSV+UYg4tRtbcT4UuBRb99HNaUVyKB1KFRY9sQ1IfwRcjr0R2+u0okShQ6mcWQr8DGt+ZwLDUOsjuHQoVVh4wNPYRo4dsdXvHZxWFCI6lCo8pmHvnCLY+ebDUYCIREME2xZoPrAHm6DyjtOK4p1CxFeFwD3AT7F57vOxbUxEJLq6AJ9j5+sMwY7nVSdJLChEfLML6766GzvvfCpwnNOKROJbCnYo26+xHYKvw1onEk3afMkX67CB81VYV9Z/uS1HJGEkAb/FFiX+HDsy4Q3gRIc1xRe1RGLuI6xfNh+YhwJExIWrsGnAOdjv43y35cQRhUhMTca2tD4dWACc6bQakcR2NjaRpQ128NXf3ZYTJxQiMeEB92GzroYB7wFNXRYkIgC0AGYDVwLXYCvd5VhoTCTqCrE56o8DvwHuQtN3RYIkGeslaIn9ruZgb/r0e1oTCpGo2oe1PF4FngJudlqNiFQkgp2amIYFSS7wZ6COy6JCSSESNTuAnwAfAv9X9N8iEmxjgObADcB32BvABi4LCh2NiURFLraoaQE2/qEAEQmPa7BV7XOxiTBbnVYTNgqRY7YeOB/YiLVC+rgtR0Rq4EJgDraW64fAJrflhIhC5JisxULjIPApttWCiIRTD+ATrGu6L/Ct02rCQiFSY19jAVIL+ACbey4i4dYe+33ei/1+f+O2nBBQiNTIauwHLBnrRz3ZaTUiEk1tsSApwH7P17stJ+AUItW2FrgAqI8FyEkuixGRmDgFCxKw3/cN7koJOIVItawH+mFzyecA6W7LkZjTyYaJ7GRsdfsBLEg2ui0noHSyYZVtxGZteNg7lFZuyxFf6WTDRFY8/nkcNgOzudtyYkcnG8bOduAiYD/WAlGAiCSOttjvfR52mNwOt+UEjELkqPYAl2DT/d4DWrstR0QcOBX4J/AVdjLpfrflBIhCpFIFwFBs++i3gU5uyxERh7oCb2Ld2cOwzVZFIVIhD7gFmI7tp5PhthwRCYC+wBTgFWAscTsEXA0KkQpNwnb1/AvwY8e1iEhwXA5kAn8EHnRci3vaxbdcT2Ehcj/WbBURKWsUdg7JHdhBV8OcVuOSQuQIM4DRwG3AeMe1iEhw/QYLkpuwNSUXOK3GFXVnHeJL4Gqs++oRdNKZiFQsgnVrXQBcga0nSTwKkRLfY1N5TwJeQt8aETm62sBUoAl2/0i8NSS6UwK2lfuVwBZsNpZWJItIVR2P3TfWA9eSaFN/FSKAjX3Mxo61bee4FhEJn07A34G3gLsc1+IvhQjPA48WPfo7rkVEwmswcB/wO6yLKzEk+OysecDN2OyKWx3XIiLhNx5YDAwHTgPOdluODxJ4F9+t2DYGJ2Obq9V1Wo0Em3bxlarbg+34vQ1YBKS6LafqtItv1XnY4qA9WLNTASIi0VIf2yppKzCS0LyvrqEEDZHHsA0VJ6OTCUUk+tpiWya9im2fFL8SMEQ+ByZgm6dpTyypnE42lJq7AhtzHYONk8SnBBsTyQO6AU2Bj1E3llSVxkSkZvYAP8DOH/kCOx0xsDQmUjkP65/cim3jrAARkVirj427rideZ4AmUIg8i/VP/gXrrxQR8UNH4ElsDPZvbkuJgQQJkdXAL7GWyBWOaxGRxHMDtiXKrcA3jmuJrgQIkULg59ie/w87rkVEEtcTQCNgBIEeOq6mBAiRTOBD4K9AQ8e1iEjiaoxN930XeM5tKVEU5yGyGjt57Bagn+NaREQGYQudxxIv3VpxHCJlu7EecFyLiEixR4mnbq04DpEnUTeWiARPY+KpWytOQ2Q1tipd3VgiEkTx060VhyHiAaOA5qgbS0SC61GslyTcixDjMESmAe8Df0LdWCISXI2xzWCnAzOcVnIs4mzvrF3YMZVdsf8xItGhvbMkNjzgR8Ba4D9APZfFaO8sO5ZyM5buEu8yMzM55ZRTqFevHj179mTBggUVPnfy5MlEIpFDHvXqOf2FFcHu208A64A/OK6lZuIoRFYCD2HrQrQ3VrybOnUqY8eO5e6772bhwoV06dKFgQMHsnnz5go/JyUlhU2bNpU81q1b52PFIhXphG3L9HusRRIucRIiHvDf2AFTExzXIn545JFHGDFiBMOHD6dz5848/fTTNGjQgOeeq3jKZCQSIS0treTRokWLCp+7b98+8vPzD3mIxM6dQBMsTMIlTkLkDWzO9R+xrZclnu3fv5+srCwGDBhQ8rGkpCQGDBjAvHnzKvy8nTt30rp1a1q1asWll17K0qVLK3zufffdR2pqasmjVatWUf0aRA7VCHgEu5fNdFtKNcVBiOzF0nswMMRxLeKHLVu2UFBQcERLokWLFuTk5JT7OR06dOC5557jzTff5KWXXqKwsJBevXqxYcOGcp8/ceJE8vLySh7ffBPuufwSBj8DLsB6VfY7rqXqarsu4NhlAhuA91wXIgGWkZFBRkZGyd979epFp06deOaZZ7j33nuPeH5ycjLJycl+ligJL4JNCuqCnXt0i9NqqirkLZE8bDBqBNDecS3il6ZNm1KrVi1yc3MP+Xhubi5paWlVeo06derQrVs3Vq1aFYsSRWroTOA64B5syULwhTxE/oCdYXyn60LER3Xr1qV79+7MmjWr5GOFhYXMmjXrkNZGZQoKCliyZAktW7aMVZkiNTQJ+J6wLFUIcYhswrYNGAOkuy1FfDd27FieffZZXnjhBZYvX86oUaPYtWsXw4cPB+D6669n4sSJJc+/5557eO+99/j6669ZuHAh1157LevWreOmm25y9SWIVOAUbOumB4GtbkupghCPidwLJAPjXRciDlx55ZV899133HXXXeTk5NC1a1dmzpxZMti+fv16kpJK3yN9//33jBgxgpycHI4//ni6d+/Op59+SufOnV19CSKV+DW2A/l92Pq34ArptiersAU6vwduj/3lJOFp2xPx3yQsRFYCJ/txwUTa9uRO7LCpcO9+KSJSsbFAChYmwRXCEPkP8ApwN1pYKCLxqxHwv8BkrPclmEIYIg8ArYAbXBciIhJjI4CmBHlzxpCFyBrg78CvgLqOaxERibX62I4ck4GNbkupQMhC5CHgeEDTMkUkUYzCzhl51HUh5QpRiORih9rfBjRwXIuIiF9SgdHA09gixGAJUYg8hi1rGe24DhERv40BDmLHfgdLSEIkD3gSa9Yd77gWERG/NQduxI67CNaeWiEJkSeBfYTxwBYRkej4FbAd2+E3OEIQIgewM4ivB7RZnogkqlOAq7DWSIHbUsoIQYi8iW22qNXp4r/MzEw6d+5Mjx49XJciAvw/bKnDu64LKRGCvbMuwFojH0X3ZUWqQXtnSTB4wDlYr8zb0X7xeNw7azkwh7Cc8CUiElsR7H44A2uRuBfwEHkKm5XwE9eFiIgExNXYxozPuC4ECHSI7ARewFan66xrERHTABiOnTey13EtgQ6Rl7EgGem6EBGRgLkZ2AK85rqQoIaIh60N+THQ2nEtIiJB0wEYAGS6LiSoIbIQ+DfwC9eFiIgE1M3AZ9gEJHcCGiJTsAH1C10XIiISUD8GGmP3S3cCGCIHsTNDrsY2XBQRkSMlA1dgIVLorIoAhshsIAcY6roQEZGAuxZYC3zqrIIAhsgUoD22KlNERCp2PnAyLru0AhYiu4BpWLrWaAW+iEgCSQKuAaYC+51VECDTsbUh17guREQkJK7FTjz8p5OrByxEpgAZQDvXhYiIhMTpQFdcdWkFKES2Y9sbqxUiIlI91wBvAbt9v3KAQmQmNr33UteFiIiEzGXYPlr/8v3KAQqR6UA3oJXrQkREQuY0oCN2H/VXQELkALY//iWuCxE5hE42lPC4BOvS8nfhYUBONpwN9AeygLOjXI7IsdPJhhJ8HwM/BOYBP6jJC4T5ZMPpwIlYd5aIiFRfBnACfndpBSBEPOyLHoIWGIqI1FQtbFPGhAuRZdhZwRoPERE5NkOApcDXvl0xACHyNnbcYz/XhYiIhNyFQF3gHd+uGIAQmQP0Buq5LkREJOQaYYPqc3y7ouMQOYDNKOjrtgwRkbjRD/gAv6b6Og6RL7Cde9WVJSISHX2BbcASX67mOETmAg3R2hARkWj5AXbqoT9dWo5DZA62OEbH4IqIREc9bM3IXF+u5jBE9gOfoK4sEZFo64uNixTE/EoOQ+QLbNvivu5KEBGJS/2w4zUWx/xKDkNkLjYdTVudiIhEV0+sWyv24yIOQ+QzbABI4yEiItGVDJwDzI/5lRyGSBb2RYqISPSdg91nY8tRiGwCNgLd3VxeRCTudQdWA9/H9CqOQqQ4HRUiEmw6lErCq/j+ujCmV3F0KNUk4HFgC9r+XcJAh1JJ+BQAqcBdwPiqfEKYDqUqHg9RgIiIxEYtbPZrbMdFHIaIurJERGKrO3EYIjloUF1ExA/Fg+vbY3YFByGSXfSnNl0UEYmt4vtsdsyu4CBEVmArKVv7f2kRkYRyGnabXxmzKzgIkZWUfmEiIhI7dYE2xFmIrADa+39ZEZGE1J44C5GVKERERPwSVyGyG/gG6ODvZUVEElYHbIbWgZi8us8h8lXRn2qJiIj4oz1wEFgbk1f3OUSKm1QKERERfxTfb2PTpeUgRJoAJ/h7WRGRhHUiUB+b1BR9PofIWmy6mYiI+CMJu++ui9mr+2gTkO7vJUVEEl5L7P4bfQ5CpKW/lxQRSXjpxEmIbEQtERERv7XE7r/R52OIHAQ2o5aIhIlONpT4UNwSifohhH6ebLgRmyXwFvDjaF9TJKZ0sqGE26vAldh5640relLQTzYs7o9TS0RExF/FwwjRHxdRiIiIxL3i+27oQyQCNPfvkiIiQmmIRH9w3ccQ2Q6kALX9u6SIiAANsLNF8qL+yj6GyE6goX+XExGRMhpi9+Ho8jFEdgCN/LuciIiU0Qi7D0eXQkREJCE0JOQhshOFiIiIK3HREtGYiIiIG6EPEbVERETc0cC6iIjUWOhbIruA4/y7nIiIlHEcIW+JFKCFhiIirtQGCqP+qj6GSKG/lxMRkTKSCHmIFPh7ORERKSM2IRLV/qVIJBLJyyt/b5aGDQs4cGA/+/blR/OSIjGxb98+9u3bV/L3HTtsQDI/Xz+/Ek7JyQeoXfsAu3aV/zOcmpqaAuzwqnnIVFQPpYpEIilUsMPX2rXw4otw111Ru5yIiFTRQw/BoEHQuXOlT0v1PK9a75SiPdK9o6KWSIMGZ5CU9A3ffPPNMZ0M16NHDz7//PMaf34QXycar5Gfn0+rVq2O+fsbrXqC9P2tyesc3hLZtGkT5557LsuWLePEE0/0tZZYvk6QaonWz3CQvqZovU40XiMSGcv69X+t8PubmpqaSg3mAEc1RCprBhUW1iIpCVJSUo7pB6RWrVpROZ40SK8TrVrg2L+/0aonSN/faL5Oo0aN4up7E6RaiukeEZvX2LevDoWFFX9/q9sCKebbSLfnWYgcq9GjRx/7iwTsdaJVS7QE6WsK2utEQ5C+piDVEi1B+5qC8v8pEimkMPrj6tEdEylS7gsWFHTi8ce/5MYb86L2jkVK5efnk5qaSl6evr+xsGHDhpKulpNOOsl1OXFJP8OxtX//cJYsmcxpp1X4/Y3U5HV9a4lEIo3o3bsbycnJfl0yoSQnJ3P33Xfr+xsjxd9XfX9jRz/DsVWr1h5OOKF11L+/vrVEYADQFHgl2tcTiTm9S5bwuwS7Pb9V0ROC3RKJ1YEoIiJSFbHZBNfHEInNDpIiIlIVsTmOQyEiIpIQYnMwoM/dWdHfhlhERKoiZC2R3/3ud/Tq1YsGDRrQuHFjqtIS8TyPu+66i5YtW1K/fn0GDBjAV199FasSQ2/btm0MHTqUlJQUGjduzI033sjOnZUHdd++fYlEIoc8br75Zp8qlkSXmZnJKaecQr169ejZsycLFiyo8LmTJ08+4me1Xr16PlYbLh9++CFDhgwhPT2dSCTCG2+8cdgzjhwTmTt3LmeffTbJyclEIpFVkUhkWHWvG7MQ2b9/P1dccQWjRo0q+sjRQ+TBBx/k8ccf5+mnn2b+/Pkcd9xxDBw4kL1798aqzFAbOnQoS5cu5f333+ftt9/mww8/ZOTIkUf9vBEjRrBp06aSx4MPPuhDtZLopk6dytixY7n77rtZuHAhXbp0YeDAgWzevLnCz0lJSTnkZ3XdunU+Vhwuu3btokuXLmRmZpbzrx6Ht0TWrFnD4MGD6devH9nZ2QCPAX+JRCIDq3Vhz/Oi/TjE888/76Wmpnqe92LRP+8+/Cme53leYWGhl5aW5v3hD38o+dj27du95ORk7+9//3u5n5PIli1b5gHe559/XvKxf/7zn14kEvG+/fbbCj+vT58+3m233eZDhfElLy/PA7y8vDzXpYTWueee640ePbrk7wUFBV56erp33333lfv80nuHVBfgvf7662U+stWz++//lXxk/Pjx3umnn37Yp/EKMNOrxj3fxzGRlkV/bir3X9esWUNOTg4DBgwo+Vhqaio9e/Zk3rx5PtQXLvPmzaNx48acc845JR8bMGAASUlJzJ8/v9LPnTJlCk2bNuWMM85g4sSJ7N69O9blSoLbv38/WVlZh/x+JyUlMWDAgEp/v3fu3Enr1q1p1aoVl156KUuXLvWj3Di0sejP9JKPzJs375D/H0XeBTKq88o+nldbXPxGoO0R/5qTkwNAixYtDvl4ixYtSv5NSuXk5NC8efNDPla7dm2aNGlS6ffrmmuuoXXr1qSnp7N48WImTJjAihUrmDZtWqxLlgS2ZcsWCgoKyv39/vLLL8v9nA4dOvDcc89x1llnkZeXx0MPPUSvXr1YunSptp6ptuI376UhkpOTc8T/DyAXSIlEIvU9z9tTlVeuVohEIpH7gQmVPWf58uV07NixnH+pvCUi5o477uCBBx6o9DnLly+v8euXHTM588wzadmyJf3792f16tW0a9euxq8rEm0ZGRlkZJS+Ke7VqxedOnXimWee4d5773VYWRgVt0TSov7K1W2JPAxMruwJbdu2reAO1xhIpvSLOVRamn1xubm5tGzZsuTjubm5dO3atZplhte4ceMYNmxYpc9p27YtaWlpRwxIHjx4kG3btpV8L6uiZ8+eAKxatUohUo7MzEwyMzMpKChwXUqoNW3alFq1apGbm3vIx3Nzc6v881qnTh26devGqlWrYlFinNsEHA+Uzm5LS0s74v8H0ALIr2orBKoZIp7nfQd8V53PKRXBmlLlt0TatGlDWloas2bNKgmN/Px85s+fX2aGV/xr1qwZzZo1O+rzMjIy2L59O1lZWXTv3h2A2bNnU1hYWBIMVVE0K+OQ4JZSo0ePZvTo0SV7Z0nN1K1bl+7duzNr1iwuu+wyAAoLC5k1axa33nprlV6joKCAJUuWMGjQoBhWGq82UrYrC+weMmPGjMOf+COgeoPQ1RmFr+LD8zzPW7dunbdo0SJv0qRJXsOGDb1FixZ5O3Z08fbvv7pkKkCHDh28adOmlfz9/vvv9xo3buy9+eab3uLFi71LL73Ua9Omjbdnz55qzk1IDBdddJHXrVs3b/78+d7HH3/snXbaad7VV5d+fzds2OB16NDBmz9/vud5nrdq1Srvnnvu8b744gtvzZo13ptvvum1bdvW6927t6svITQ0O+vYvfLKK15ycrI3efJkb9myZd7IkSO9xo0bezk5OZ7ned51113n3XHHHSXPnzRpkvfuu+96q1ev9rKysryrrrrKq1evnrd06VJXX0Kg7dixw1u0aJG3aNEiD/AeeeQRb9GiRd66des8z7vcW7nyFO+6664ref7XX3/tNWjQwLv99tu95cuXe8AtwEFgoFeNe37MQuSGG27wsMnJJY9XX8XburV7yRcBeM8//3zJ3wsLC70777zTa9GihZecnOz179/fW7FiRXS+w3Fo69at3tVXX+01bNjQS0lJ8YYPH+7t2LGj5N/XrFnjAd6cOXM8z/O89evXe7179/aaNGniJScne6eeeqp3++2368ZYBQqR6HjiiSe8k08+2atbt6537rnnep999lnJv/Xp08e74YYbSv4+ZsyYkue2aNHCGzRokLdw4UIHVYfDnDlzjrjnAkXf0/O8jz5q5/Xp0+eIz+natatXt25dD1gNDPOqec/3cSt4gNuA94Fl0b6mSExpK3gJtzbAlcD9lT0p6FvBA7QDvgY0SCki4o99wHrg1Ji8us8h0h77gr7x97IiIglrNVCI3X+jz0GIAKz097IiIgmr+H4bFyHSGqiLQkRExC8rsY0Xj1idHhU+h0gtrF9uhb+XFRFJWCuwVkiNxs2PyucQAfti1BIREfHHSqBDzF7dQYh0QCEiIuKXlcRqPASctUTWATpoSkQktrYDm4mzEOmErUfUgkMRkdgqPn+lvJ3Vo8NBiHQpumyW/5cWEUkoWdiM2NNjdgUHIdIAa40oREREYisLOAsLkthwECIA56AQERGJtS+w+23sOAqR7sBiYL+by4uIxL1dwJfY/TZ2HIbIfkoHfUSCKTMzk86dO9OjRw/XpYhUUza2Z1ZsQ8TnreCL7caW4T8NjIj29UWiTlvBS/g8DtwO7KCKYyJh2Aq+mAbXRURiK/aD6uAsRMAGez53d3kRkbj2BbHuygKnIXI+1meX764EEZG49B22oPuHMb+SwxDpiw36fOSuBBGRuPRB0Z99Yn4lhyHSDjgRmOuuBBGRuDQHO3bjpJhfyWGIRLDWyFx3JYiIxKW5QD9fruQwRMC+yIVAntsyRETixmZsPKSvL1dzHCJ90biIiEg0zS36s68vV3McIm2xPru5bssQEYkbc7HzQ9J9uZrjEIlgXVpz3JYhIhI35uBXKwSchwhAf2ARkOO6EBGRkFuLbbo4wLcrBiBEBmEtkndcFyIiEnJvAXWAgb5dMQAh0gzoBUx3XYiISMhNx4YI/NskNAAhAnAJ8D62u6+IiFRfHrZS/RJfrxqgENkDzHJdiIhISL0LHACG+HrVgIRIB+A0rD9PRESqbzrQBTjZ16sGJETAWiNvYYsPRYJBJxtKOBwEZuB3VxY4O9mwPB9iO07OB86NYjkix04nG0qwfYCtDfkcO6upRsJ0smF5egEnAK+5LkREJGRew3ZFP9v3KwcoRGoDVwIvoy4tEZGqOgBMBa7GxS09QCECMBT4ltIDVUREpHLvYycZDnVy9YCFSAbQBpjiuhARkZB4CTgdm5nlv4CFSAS4Fvg/YK/jWkREgm4H8AZ236zRuPgxC1iIgDXJ8oG3XRciIhJwb2ALta92VkEAQ6QDNkVNXVoiIpV7CegNtHZWQQBDBKxp9g6wzXUhIiIBtQn4F3a/dCegIXIVNs33ZdeFiIgE1EvY0ojLnVYR0BBpAVwGPEWNF8CLiMStQuz+eCVwvNNKAhoiALcAy7DtUEREpNS7wBrsPulWgEOkHzbI/qTrQkREAuZJoBvQ03UhQQ6RCJay07ABJBERsXPU38Huj27WhpQV4BABuB6oC/zFdSEiIgHxDHb8rbu1IWUFPEQaY4sPn8H2yxcRSWT7sDfVw4Dj3JZSJOAhAtZk+xadeigu6FAqCZbXgC3AKNeFlAjQoVSVOQ+ohWZqiSs6lErc87AD+xpjO/dGXdgPparM7cBHwKeuCxERcWQW8AV2PwyOkLRECoEzgbaoW0tcUEtE3OsPbMeCJCazsuK5JZIETMB29l3iuBYREb8tAGYDEwnCtN6yQhIiYNPZWgP3uy5ERMRn9wHtgf9yXcgRQhQidYBfAa8AXzuuRUTEL8uwc0MmYBOMgiVEIQLwc+AE4A+uCxER8ckDwEm43vK9IiELkQbAGOB5tBWKiMS/ddiRGOOw3TuCJ2QhArb4sB7we9eFiIjE2D3YupARjuuoWAhDpDHWN/gMGhsRkfi1HJgM/C9B2eKkPCEMEYDbgKbAXa4LERGJkf8BWgE3uy6kUiENkQbA3Vhf4b8d1yIiEm2fAa9j3VnJjmupXEhWrJfnAHA6cBq2t75I7GjFuvjHww7l2wpk4+O03nhesV6eOsBvgRloY0YRiR/vAh9gCwyDty7kcCEOEYDLge7AHfjWABLntm3bxtChQ0lJSaFx48bceOON7Ny5s9LP6du3L5FI5JDHzTcHu69ZElEhtrXJecBgx7VUTW3XBRybJGwblB9h/Yc/cVuO+GLo0KFs2rSJ999/nwMHDjB8+HBGjhzJyy+/XOnnjRgxgnvuuafk7w0aNIh1qSLV9HesC+tjgrZHVkVCHiIAA4BBwFjgImzQXeLV8uXLmTlzJp9//jnnnHMOAE888QSDBg3ioYceIj09vcLPbdCgAWlpaVW6zr59+9i3b1/J3/Pz84+tcJGjyse2ef8J1hIJh5B3ZxX7I7aCXZszxrt58+bRuHHjkgABGDBgAElJScyfP7/Sz50yZQpNmzbljDPOYOLEiezevbvC5953332kpqaWPFq1ahW1r0GkfPdgW70/6riO6omDlgjAqcB44EHgBqCd23IkZnJycmjevPkhH6tduzZNmjQhJyenws+75ppraN26Nenp6SxevJgJEyawYsUKpk2bVu7zJ06cyNixY0v+np+fryCRGFqGvRmeBJzsuJbqiZMQARuM+hu2EPFtx7VIdd1xxx088MADlT5n+fLlNX79kSNHlvz3mWeeScuWLenfvz+rV6+mXbsj33QkJyeTnBzs+fkSLzzgVqANtkdWuMRRiDTAmoE/wU4/HOK2HKmWcePGMWzYsEqf07ZtW9LS0ti8efMhHz948CDbtm2r8ngHQM+ePQFYtWpVuSEi4p9XgTnAPwn6wsLyxFGIAFwGDMRaIwOA+k6rkapr1qwZzZo1O+rzMjIy2L59O1lZWXTv3h2A2bNnU1hYWBIMVZGdnQ1Ay5Yta1SvSHTswCYFXYZNDAqfOBlYLxYBHgc2YHvwS7zp1KkTF110ESNGjGDBggV88skn3HrrrVx11VUlM7O+/fZbOnbsyIIFCwBYvXo19957L1lZWaxdu5bp06dz/fXX07t3b8466yyXX44kvHuBbYRtML2sOAsRsCMkx2OrPf/juBaJhSlTptCxY0f69+/PoEGDOP/88/nzn/9c8u8HDhxgxYoVJbOv6taty7/+9S8uvPBCOnbsyLhx4/jpT3/KW2+95epLEAGygEewjRZPcVvKMQjx3lmV2YutZG8AzCPueu3Ed9o7S6JrH3AOdm9agG3j5Fyi7Z1VmXrY6YcL0VG6IhI8vwW+xM4LCUSA1FichgjAuVi31m9Qt5aIBEcW1t1+J9DFcS3HLk67s4qpW0uiQ91ZEh2B7MYqpu6sI6lbS0SCJH66sYrFeYiAurVEJBjiqxurWJx3ZxUr7taqDczHWigiVafuLDk2u7BurPrYPSiQrRB1Z1WsHrZP/wrCuDeNiITdrcB64GUCGiA1liAhAnAW8BjwJPAPt6WISAL5GzYG8hTQ0W0pMZBAIQLwC+xI3RuBNY5rEZH4twIYBVxf9Ig/CRYiEeBZ4HjgKmC/23JEJI7tBX4GnARkOq4ldhIsRAAaA1Oxab//47YUCbzMzEw6d+5Mjx49XJcioTMOa4lMBRo6riV2EmR2VnkeBn6FHWA12HEtEnSanSXV8w+s6/xJrDsrFDQ7q3p+iYXHdcAqx7WISPxYBgzHQuRmx7XEXgKHSBI2a6IpcCmQ77YcEYkD27D7ycnAc9TwzX2oJHCIgA2wT8cOsRoKFLgtR0RC7CBwJRYk04FGbsvxSYKHCNi87VeAd7DtCEREauJX2FnprwFtHdfiH4UIABdjx+neh61sFxGpjueAPxY9+jmuxV/aG73Er4DFwM+xI3a7uy1HRELiE2wAfSRwi+Na/KeWSInihYhnYQNjm9yWIyIhsB74CfAD4AkSYSD9cAqRQ9QDXi/674uBPIe1iEiwbQUuwg69ew2o67YcRxQiR0gH3gXWAZdhWxeIiJS1C/gx8B12v2juthyHFCLlOh1byf4ZcC2a+isipQ5gU3mXADOwMdTEpRCp0HnYnjevA/+P0OzmIiIx5AEjsNbHNEB7qilEKnUJ8GfsHIDfOq5FRNz7NfBC0eNCx7UEg6b4HtWNQC62428LbBqfiCSex4D7gUeAa9yWEiAKkSqZCORgu3GmYGeRiEjimIxt2jq+6E8pphCpkgj2LiQfG2ivBVzhsiAR8c3fsEXII7GWiJSlEKmyJOCv2CZrV2NB8hOnFUnsZWZmkpmZSUGBZuglppeBYViIPEUiLiY8mgQ+lKqmDmKtkX8ArwL/5bYc8YUOpUpEr2C7e1+PvYGM+3lIOpTKH7WBl7BWyM+wlaoiEl9ewgLkWuAv6FZZMX1naqQ2MAUbF7kKW08iIvHhBaz1MQzbnbeW02qCTmMiNVYbG3CrjU3324P90IlIeD2N7cQ7AhsD0fvso1GIHJNawPNAfexM5c3A7WjwTSRsPOAe4DfAbdhaEAVIVShEjlkt7N1LGjAB20L+YfQDKBIWBcBo4BnsYLoJ6I1g1SlEoiICTMKCZDTWInmeRN0aWiQ89mID6G9i4x/D3ZYTQgqRqBoFNMN+KLdgM7caOa1IRCqyHTvuYQHwBra1u1SX+lyi7nJgJraN/AVYq0REgmUj0Ac7EvtfKEBqTiESE/2AD4BvgF7AMrfliEgZ/wYygG3Ax9jvqNSUQiRmugLzsJlbP8AOuRIRt/6BhcYJwKdAZ7flxAGFSEy1wX5QL8DOJnmAuN8VRiSQCrHpu5djXVcfA61cFhQ3FCIx1wg7Ae1/gDuwbRT2OK1IJLHsxHaXmAT8DtsTq4HTiuKJZmf5Igm4FzgTW9W+ApsNcpK7kkQSwlrgUuBr7HfuUpfFxCW1RHz1M+ATbMZWj6L/FpHYmIv9nu3AxicVILGgEPFdN+Bz4FRsiuEDWH+tiERHAdZ11R84C/t9O8NpRfFMIeJEC2A2ts/WHcAgtJ5EJBo2Aj/CQuRO4D1sJpbEikLEmTrYPj0zgYVAF2CO04rkSJmZmXTu3JkePXq4LkWO6l1sav2XwCxsNpa2cY81nWwYCJuwWVtzsHdPd6Ef/mDRyYZBdgD7vXkAuAg7D6S504pCSicbhldLrNl9D/BbbF3JBqcViYTDWmxs8WHgQeAdFCD+UogERi3gf7HWyGpsIPAF1LATKY8H/BkbOP8W+BAbY9QtzW/6jgdOb2AJNh1xGDAE+yUREbMOuBD4BXAltolihtOKEplCJJCOx1oh07FB99NRq0SkuPVxJjZ4PhN4Fkh1WVTCU4gE2hBgKWqViBze+vgPMNBpRWIUIoFXXqvkObRAURJDAXb8tFofQaUQCY2yrZIbgfOBRU4rEomtBdgxCqNQ6yO4FCKhUtwqmQPkA+dgZ7p/77IokSjbAozAAuQgtsecWh9BpRAJpb5YK+Qh4G9Ae9TFJeFX3HXVHngNeAL4Ap08GGwKkdCqA/wS21b+IqyLqxeQ5bIokRqaD/TEuq7+C/u5Ho12bgg+hUjotcRaIx8Cu7Gtr6/HVvKKBN0q4Bqs68rDtmz/K1p1Hh4KkbjxQ2z2VibwPtYlcBvwncuiRCqQg7U0OmFvgJ6ldCBdwkQhEldqY90Bq7AdTCcDbbFtsXc4q0qkVB62vU874O/A74GvgJtQ11U4KUTi0nHAr7EjQX+BbTnfDngc2OewLklce7FNEtsCjwD/jf183g7Ud1iXHCuFSFw7AZvBtRJbZ/JL4DQsTHY7rEsSx04sNNoBE4ArsJbyfUBjd2VJ1ChEEsLJ2GDlf7ANHscCrbFt57XGRGJhK9al2hoLjwuBZdgU3nR3ZUnUKUQSSifgJawP+gosRFoD47GDseRwOtmwujZQ+iblQeywtdXA89hkD4k3OtkwoeUAjwFPAvuxTR7HYV1eUpZONjya5diYx4vYmNyt2LhHM5dFSfXoZEOprjTgfmA9cDcwDXu3OBB4E9tyQqQiB4B/AP2Bztipgr/Ddty9FwVIYlCICDbAORELkxexaZiXYTNpfgfkuipMAmkjNm38FOByrBU7BVvgejuglloiUYhIGfWA64DPsD2LLsRCpBVwNfAR6q1MVB628ecV2ESNP2Az/rKxn4trgGRXxYlDGhORo/ge2zn4SWxAvj02WDoUa6kkhsQdE/kKa2W8hA2QdwJuwd5saFfdOFOjMRGFiFRRITAb6+6aBuzCzrW+FvgZ0NRdaT5IrBDZDLyChccCoBHWbXU90Ica3msk+BQi4pdd2EmLLwHvYj97F2GBMgRo4K60GIn/ENmFTaZ4CXgP+386CGtxDkGryhOCQkRc2Ay8it185mM3mwHAJcCPsRlg4RefIbIReAt7QzAL2xLnPCw4riDeW5dyBIWIuLYKeB27KX2KdYH1xALlEux8+HB2hcRHiHjAYuz/z3Rs8kQt7KjlSyidkScJSiEiQbIFmIHdrGZi3SWnYK2Tfljf+gmuiqu28IbId8AH2HjWO9g07kbAxVhwXAw0cVadBIpCRIJqLzAX6zr5J7Cm6ONnYYHSF9vTK7g3s/CEyBYsNOYWPf5T9PF2lAZHH6Cug9ok4BQiEhbrOPRGtwb7+e2C3eB6AudgN75gLGUKZogUYlNws7C1PXOBJUX/1g4L5+LHSX4XJ+GjEJGwWktpqHxAaUslBTgb6F70cBcs7kOkbGB8UfTnIkoPG2uHBXDfokcr3yuU0FOISLzYgh31m0XpTXNd0b+lsH798WRn72H+/G2sXVuXKVO+wAaEK14x7Xked999N88++yzbt2/nvPPO46mnnuK006q22aR/IbIPm6CwssxjBTYgXhwYbbBALQ7XswlyV6CEhkJE4llpsCxe/DItWmwnNXUz9ertL/r3JGzgvn3RoxV2bkVLIJ1HH32FSZMe4YUXXqRNmzbceeedLFmyhGXLllGvXr2jXj06IeIB+di2+xuL/tyEDXYXB8ZaSn+FUoAO2K7KZ6HAkBhTiEhimTz5eX7/+9tYufJt7N162Xfv33L4ufIHDtShTp3WQEsOHGjClClvkZFxIR06dMdmLJV9NMTWvCQBSezcuZs+fS7ggw9m07BhA6x7qRDYU3SdHdgpfjsO+3s+tuV+cXDsOeyraISNVxSHX4cy/92csE6JllCq0Q9b7WhXIeKfCJs3J2Ezu3qX8+87gU1s3PgFY8dew8MP/zcnnhgBNlGnTi49ehxHSsoC7MS94ht/+dvfN2wIWVkAF1RSTx1KA6hsGJ2CbRFjraJD/zyuWl+xSNAoRCSONQROY+3a75g6FR59dBx24zaTJv2MSCTC1KlTiz7iYdua7+Cxx+7lmWceJymJQx4fffQxDRumUNxCsdZKcVhoF1tJPMGYPykJ74477iASiVT6+PLLL2NcRQQLgqaMGvUg8+fnMW9eHp98ksc773xDdjYUFp4JnImtvu+EtTJOQAEiiUotEQmEcePGMWzYsEqf07ZtzbbkSEuz/btyc3Np2bK0JZKbm0vXrl3L/Zzk5GSSkxUMIkejEJFAaNasGc2axeY41TZt2pCWlsasWbNKQiM/P5/58+czatSomFxTJFGoO0tCZ/369WRnZ7N+/XoKCgrIzs4mOzubnTt3ljynY8eOvP766wBEIhHGjBnDb3/7W6ZPn86SJUu4/vrrSU9P57LLLnP0VYjEB7VEJHTuuusuXnjhhZK/d+vWDYA5c+bQt29fAFasWEFeXl7Jc8aPH8+uXbsYOXIk27dv5/zzz2fmzJlVWiMiIhXTOhGRKnC/7YlIzAVmsaFI3IlEIilAHpDqeV6+63pEgkIhIlIFkUgkgi0I2eHpl0akhEJERERqTLOzRESkxhQiIiJSYwoRERGpMYWIiIjUmEJERERqTCEiIiI1phAREZEaU4iIiEiN/X+Me6VMWmt6xQAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plotting\n", "c = circle((0,0), 1, rgbcolor=(1,1,0))\n", "c.show()\n", "#c.save('filename.png')" ] }, { "cell_type": "code", "execution_count": 15, "id": "82a70ee4", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGECAYAAADAwq+6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKsUlEQVR4nO3deXhU5fn/8fewhjWC7IiIK8YNhSgoIgqC7GEHUSgiVgtWqn5V+u3XtnaxVas/talbRZRdgUzYRBAVrAIqiGVXBGWRfZkAQgLJ/P64GwTKMiEz85wz83ldVy4vcDLnEzJn5j7P85z7CYTDYURERETk9Eq4DiAiIiLiFyqcRERERCKkwklEREQkQiqcRERERCKkwklEREQkQiqcRERERCKkwklEREQkQiqcRMRzAqZyIBAIuM4iInK0UkV4rDplikhchEIhUlNTCYVCrqOISPKI6EJNI04iIiIiEVLhJCIiIhIhFU4iIiIiEVLhJCKnNG/ePDp16kSdOnUIBAIEg8HTfs9HH33ENddcQ9myZbnwwgsZOXJkzHOKiMSDCicROaX9+/dz1VVXkZmZGdHj161bR4cOHbj55ptZsmQJw4YN4+677+a9996LcVIRkdgLhMMR3yynu+pEklwgECArK4uMjIyTPubRRx9l+vTpLFu27Mjf9enThz179jBz5swTfs/+/bksW3aI5ctLsHVrCbZv38tzz9Xg6adDNGhQmYsvhrQ0KFky2j+RiMgREd1VV5R2BCIipzV//nxat259zN+1bduWYcOGHfN3ubnw3nswaRK8/XYBBw9W/M//2QvsBGD4cDh82P42NRVuvRV69YLOnaFs2dj+HCIiJ6KpOhGJqi1btlCzZs1j/q5mzZrk5ORw4MAB9u+HZ5+FBg2gSxf44gsYNqw006fv57vvcgiFwmzYYEXUjh329dFH8PDDsHatFU7168Mf/wg5OQ5+QBFJaiqcRCROSvDqqyU57zx49FFo2xaWLYPly+HJJ0vRvn0F6tevTOXK9gUQCMDZZ8NNN8FvfgOLFsGKFdC1qxVOF14IL78MBQVufzIRSR4qnEQkqmrVqsXWrVuP+bt///sAJUsuYNiwMnTqBGvWwBtvwGWXFf35L70UXnoJvvkGOnSA++6DVq1g3boo/QAiIqegwklEoqpZs2bMmTPnyJ9HjoT/+78OlC1bh3/9C0aMsKm24qpXz4qvOXOsaLriCjuWiEgsqXASkVPat28fS5YsYcmSJYC1G1iyZAnr168HYPjw4fTv3//I4++9917Wrl3Lww8/xh137GbgQMjPH8eYMSu54Ybo57vlFli61NY+DRwIQ4fCoUPRP46ICOiuOhE5jS+++IKbb775yJ8ffPBBAAYMGMDIkSPZvHnzkSIKoEGDBrzzzkz69CnF3r0VqVbtNzz99IVkZLT+r+eOlkqVbCSraVMrnL79Ft55BypWPP33iogUhfo4iUhU7dwJ7dvDqlUQDMJRNVfEcnJySE1NJRQKHVkoHqn337fF45deCu++a4vLRUQiEFEfJ03ViUjU7NplC7XXroUPPzyzoqm4WreGuXNt3VObNrBnT/wziEjiUuEkIlGRkwO33QYbN1rfpWuucZflmmts5GndOsukfk8iEi0qnESk2HJzrZv311/D7Nln1mYg2q66yrKsWmWNNvPyXCcSkUSgwklEiiUchrvuggULYPp0uPpq14l+0rgxTJsGn34Kd99tWUVEikOFk4gUy+9+B2PHwltvEZN2A8XVvLn1dxo1Cp54wnUaEfE7tSMQkTOWnW3FyJ//bH2UvKpvX1uw/pvfQKNGNnUnInIm1I5ARM7ImjU2Fda6NUycaPvKRUtx2hGcTDhsbQrmzoUvv4TzzovK04pI4ojoXUyFk4gU2Y8/QrNmcOAAfPEFRKm2OSIWhRPA7t22BqtWLZg3D8qUidpTi4j/qY+TiMTG/ffbiNPkydEvmmKpShV4+21YvBgee8x1GhHxIxVOIlIk2dm2vcmLL8Lll7tOU3TXXgtPPQXPPWc/i4hIUWiqTkQitn27FUtNm9p2KtFc1wSQmZlJZmYm+fn5fP3111Gfqit09HqnZcugbt2oH0JE/EdrnEQkesJh6N4dPv7Yio2aNWN3rFitcTrarl3WqPOaa6zXU7SLQBHxHa1xEpHoGT0asrLg5ZdjWzTFS9Wq8MorMGMGvPmm6zQi4hcacRKR09q0yUZnOnWyRpKxFo8Rp0J33glTp8Ly5ZqyE0lyGnESkeh44AFISYEXXnCdJPqef95+tmHDXCcRET9Q4SQipzR9OkyaZHehVaniOk30Va0Kzz5rTTxnznSdRkS8TlN1InJS+/fbFN3FF8N778VvAXU8p+rAFr7feiusW2cL38uVi/khRcR7NFUnIsXzpz/Bli3wj38k9l1ngQBkZsLGjfDkk67TiIiXqXASkRNatw7+9jd49FG48ELXaWLvkkvgkUfgr3+1rugiIieiqToROaGePWH+fFi9GipUiO+x4z1VV+jAASugrr3W1jyJSFLRVJ2InJmPP7bC4ckn4180uVSunE1PTpoEn3ziOo2IeJFGnETkGAUFNuJSogQsWGD/jTdXI05gP3+TJlC2LHz6aWKv7RKRY2jESUSKbtQoWLTI2g+4KJpcK1ECnnnGikZN14nI8TTiJCJH7N8PF10EN94IEya4y+FyxKlQx46wciWsWGGjTyKS8DTiJCJF8/e/w44d8Je/uE7i3lNPwXffWSsGEZFCKpxEBIBQyG7FHzwYGjRwnca9tDT7t/jDH2DXLtdpRMQrVDiJCGA9mw4cgP/9X9dJvOP3v4e8PBt9EhEBFU4iAmzfbovBhw6FOnXc5cjMzCQtLY309HR3IY5Ssybcf79NYW7f7jqNiHiBFoeLCA8/DK++CmvXQrVqrtN4Y3F4oZ074bzz4L77NPIkkuC0OFxETu+HH2yftgcf9EbR5DVnnw0PPGCjTlu3uk4jIq6pcBJJck8/DSkp8KtfuU7iXQ8+CKVLa8RJRFQ4iSS1HTtsiu7++yE11XUa76paFYYNs9YEmze7TiMiLqlwEkliL75o//3lL93m8INf/coaYT7zjOskIuKSCieRJLV3rxVOgwdrbVMkzjrL7jp85RX1dRJJZiqcRJLUq6/Cvn3w0EOuk/jHL38J+fm2mF5EkpMKJ5EklJsLzz4Ld9wB9eq5TuMfNWrAoEHw/PO2r5+IJB8VTiJJ6K23bJHzo4+6TuI/Dz0Ee/bAiBGuk4iIC2qAKZJk8vOhYUO46iqYONF1mhPzUgPME7njDvj4Y1izxtoUiEhCUANMEflvEyfaB/7w4a6T+Nejj8L69TB+vOskIhJvGnESSSLhMFx9ta3VmTXLdZqT8/qIE0DHjrBuHSxdCiV0CSqSCDTiJCLHmjkTvvoKfv1r10n879FHYcUKbxegIhJ9GnESSSKtW1v/pgULIBDRtZUbfhhxCoehSROoXt0KUhHxPY04ichPli6FOXOsA7aXiya/CARsG5b33oOVK12nEZF4UeEkkiSefx7q1oXu3V0nSRy9ekHNmvDCC66TiEi8qHASSQLbt8Po0TBkiG6fj6ayZeEXv7C+WNqGRSQ5qHASSQKvvmpTS/fc4zrJqWVmZpKWlkZ6errrKBH7+c/h8GH45z9dJxGReNDicJEEl5cHDRpAhw5WQPmBHxaHH23gQFs/tnYtlCrlOo2InCEtDhcRa3j5ww+2Qa3ExgMPwIYNkJXlOomIxJpGnEQSXNOmULEivP++6ySR89uIE0DLlnDoEHzyieskInKGNOIkkuy+/BIWLrRF4RJbDzwAn34Kixa5TiIisaTCSSSBvfSStSDo1Ml1ksTXqROccw688orrJCISSyqcRBJUKARjxtiddFqwHHulSsHdd8PYsZCT4zqNiMSKCieRBPXWW5Cbax/mEh+DBsGBA1awikhi0uJwkQQUDsNll0Famt1V5zd+XBxeqEsX+P57W1+mrW1EfEWLw0WS1bx5tn/affe5TpJ87r0XvvoKPvvMdRIRiQUVTiIJ6KWX4OKL4ZZbXCdJPm3aQP36WiQukqhUOIkkmK1bYfJkG23SVFH8lSwJgwfD+PGwZ4/rNCISbSqcRBLM66/bHV4DBrhOkrzuusuaYY4e7TqJiESbCieRBFJQYIVTz55QpYrrNMmrdm3o3Nmm6yK//0ZE/ECFk0gCmTfPNpodNMh1Evn5z2HZMpg/33USEYkmFU4iCWTECLjwQrjxRtdJpHVrOP98LRIXSTQqnEQSRChkPZvuukuLwr2gRAlbJP7227B7t+s0IhItKpxEEsT48dYpvH9/10mk0MCBkJ9vXdxFJDGocBJJEK+/Du3a2aa+fpWZmUlaWhrp6emuo0RFzZqQkWG/Gy0SF0kM2nJFJAEsXQpXXgmTJkG3bq7TFJ+ft1w53owZ0KEDLF4MV1/tOo2InIK2XBFJFiNGQPXq0LGj6yRyvDZtoFYtGDnSdRIRiQYVTiI+l5cHo0bBnXdCmTKu08jxSpWCO+6AsWPtdyUi/qbCScTnpkyBnTvVu8nLBgyAHTts2k5E/E2Fk4jPjRgBTZtCWprrJHIyl18OjRvDm2+6TiIixaXCScTHNm6E996z3k3ibQMGwLRpsH276yQiUhwqnER87M03ISUFevd2nUROp29fa0w6bpzrJCJSHCqcRHwqHLY7tXr0AJ/fsZ8UqlWzux51d52Iv6lwEvGpBQtgzRqbAhJ/GDAAvvwS/v1v10lE5EypcBLxqTffhHr1oGVL10kkUu3bW78tLRIX8S8VTiI+dPAgTJhgvZtK6Cz2jdKl4fbbYfRoOHTIdRoRORN6yxXxoWnTYM8eK5zEX372M9i2ze6GFBH/UeEk4kOjR0N6OjRs6DqJFFWjRravoBaJi/iTCicRn9m92zpQ33FH/I6ZmZnJeeedR0pKCtdddx2fffbZSR87cuRIAoHAMV8pKSnxC+sDP/sZTJ1qHd9FxF9UOIn4zKRJkJ8PvXrF53gTJkzgwQcf5Le//S2LFy/mqquuom3btmzbtu2k31O5cmU2b9585Ov777+PT1if6NfPfocTJrhOIiJFpcJJxGfGjoVWraBWrfgc79lnn2Xw4MEMHDiQtLQ0Xn75ZcqXL8+IESNO+j2BQIBatWod+apZs+Ypj5Gbm0tOTs4xX4msRg1o2xbGjHGdRESKSoWTiI9s2gQffWR3ZsVDXl4eixYtonXr1kf+rkSJErRu3Zr58+ef9Pv27dtH/fr1qVevHl26dGH58uWnPM6TTz5Jamrqka969epF7Wfwqttvh08/hXXrXCcRkaJQ4STiIxMmQJky0LVrfI63Y8cO8vPz/2vEqGbNmmzZsuWE33PJJZcwYsQIsrOzGT16NAUFBVx//fVs3LjxpMcZPnw4oVDoyNeGDRui+nN4UZcuUL48jB/vOomIFIUKJxEfGTvWtu1ITXWd5OSaNWtG//79adSoETfddBOTJ0+mevXqvPLKKyf9nrJly1K5cuVjvhJdxYpWPI0ZY9vniIg/qHAS8YnVq2HRovhN0wFUq1aNkiVLsnXr1mP+fuvWrdSKcJFV6dKlufrqq1mzZk0sIvra7bfD8uWwdKnrJCISKRVOIj4xbpxt5tu+ffyOWaZMGRo3bsycOXOO/F1BQQFz5syhWbNmET1Hfn4+S5cupXbt2rGK6Vtt2kDVqjaSKCL+oMJJxAfCYftw7dYN4t0S6cEHH+S1117jzTffZOXKldx3333s37+fgQMHAtC/f3+GDx9+5PFPPPEEs2bNYu3atSxevJg77riD77//nrvvvju+wX2gTBlrKzFuHBQUuE4jIpEo5TqAiJzeokXwzTeQmRn/Y/fu3Zvt27fz+OOPs2XLFho1asTMmTOPLBhfv349JY7aMG/37t0MHjyYLVu2UKVKFRo3bsynn35KWlpa/MP7wO23w8svwyefwI03uk4jIqcTCEe+KlHLF0UcefBBG3HauBFKJcHlTk5ODqmpqYRCoYRfKF5QAA0a2BTsSy+5TiOS1AKRPEhTdSIel59vt6z37p0cRVOyKVEC+vaFt9+GvDzXaUTkdFQ4iXjc3LmweXN876aT+Lr9dti1C2bNcp1ERE5HhZOIx40dC+efD9de6zqJxMqVV8Lll2sLFhE/UOEk4mG5uTBxoo1IBCKafRe/6tsXpkyBH390nURETkWFk4iHvfsuhEKapksGvXpZ0TR9uuskInIqKpxEPGzsWGjUCC691HUSibULL4RrrrFF4iLiXSqcRDwqJwemTtVoUzLp3dtGnPbtc51ERE5GhZOIRwWDcPCgfZhKcujZEw4cgGnTXCcRkZNR4STiURMmQPPmcO65rpNIvDRoYHdPTpjgOomInIwKJxEP2r0bZs+2BcOSXHr1spsCcnJcJxGRE1HhJOJB2dlw+DB07+46SXxlZmaSlpZGenq66yjO9OxpbSimTHGdRERORHvViXhQhw6wdy/Mm+c6iRvJtFfdiVx/PVSrpuJJJM60V52IHxVO0/Xs6TqJuNKrF8ycCXv2uE4iIsdT4STiMck6TSc/6dkTDh2y14KIeIsKJxGPeecdu5uuTh3XScSVunXtNaC760S8R4WTiIdomk4K9e5tr4Vdu1wnEZGjqXAS8RBN00mh7t0hPx+yslwnEZGjqXAS8RBN00mh2rXhppu0d52I16hwEvEITdPJ8Xr1gjlzYMcO10lEpJAKJxGP0DSdHK9bNygo0N11Il6iwknEIzRNJ8erWRNuvBEmTXKdREQKqXAS8QDtTScn060bvP8+hEKuk4gIqHAS8QRN08nJdOtmzTCnTXOdRERAhZOIJxRO09Wu7TqJeE29enDttTB5suskIgIqnESc27NHd9PJqXXrBu++C/v3u04iIiqcRBybNs2mYrp1c51EvKpbNzhwwDb+FRG3VDiJODZpEjRtavuTiZzIRRfBFVdouk7EC1Q4iTi0f7+NImhRuJxO9+42Opmb6zqJSHJT4STi0LvvwsGDmqYrlJmZSVpaGunp6a6jeE737pCTY53ERcSdQDgcjvSxET0wHLar6IoVzzyUSLK4/XZYuRK+/NJ1Em/JyckhNTWVUChE5cqVXcfxhHAYLrnEGmK+/rrrNCLet28fVKgAgUDE3xLRI6M+4tSuHQwdGu1nFUk8ubk29aJpOolEIGCvlcKeXyJyakOHQvv20X/eqBdOjRvD1Kk6sUVO5/33Ye9eTdNJ5Lp1g507Yd4810lEvO3QIZgyBZo0if5zR71w6tYNdu3SiS1yOpMmQcOGkJbmOon4RZMmcO652rtO5HTmzrWtrGJxYRr1wumaa+zE1m2zIid36JBNuWi0SYoiELDXTFYWFBS4TiPiXZMnw3nnQaNG0X/uqBdOgQB07QrBoE5skZOZN89GZrW+SYqqWzfYvBkWLHCdRMSbCgrs4qJbtyItDI9YTNoRdO0KmzbB55/H4tlF/G/SJLsauvpq10nEb66/HmrW1Ki+yMnMnw9btsRuRD8mhVPz5lC9ulV8InKsWF8NSWIrWRIyMqz4jrybjEjymDwZatWCZs1i8/wxKZxKloTOnS28TmyRYxVeDWmaTs5U9+7w3Xfq/yVyvHDYao+uXaFEjFp8x6xzeLdu8M03sGJFrI4g4k+TJ0Pt2rY/nciZaNkSqlTRdJ3I8ZYssYuKWN54E7PCqVUrqFRJJ7bI0cJhm2KJ5dWQJL7SpW1UX20JRI41ebJdVNx0U+yOEbO37rJloUMHrXMSOdqXX8L336sNgRRf9+6wapVt2SMiZvJku6goXTp2x4jpNW/XrvZBsW5dLI8i4h+TJ0PVqrG9GpLkcOuttieoRp1EzOrVtjyoa9fYHiemhVO7djbyFAzG8igi/hEMQqdOUKqU6yTidykpNqqv5RAiJjsbypeHNm1ie5yYFk6VKtlVkU5sEbtZYvlyu5VcJBq6d7dR/bVrXScRcS8YtKKpXLnYHifmy1O7dYNPPoGtW2N9JBFvy862EzrWV0OSPNq1s5EnXZxKsivsph+PC9OYF06dOlmTv+zsWB9JxNuCQWjb1oaS5cQyMzNJS0sjPT3ddRRfqFjRXlMqnCTZTZ1qtUbHjrE/ViAceYfKM25lefPNdlX07rtn+gwi/rZ1q/VueuMNGDDAdRrvy8nJITU1lVAoROXKlV3H8bS33rLX1MaNULeu6zQibrRvDwcOwIcfFutpItrLIS6dZLp1gzlzIBSKx9FEvCeeV0OSXApvNlDrF0lWOTlWY8Rr/WhcCqeMDDh0CKZPj8fRRLwnGIQWLeDss10nkURTpYqN6ms5hCSrmTMhLw+6dInP8eJSONWrB+npmoeX5LR3L7z/vu6mk9jJyICPPoLdu10nEYm/7Gxo1AjOOy8+x4vbpg9du9oapwMH4nVEEW947z3IzY3f1ZAkn86d4fBhmDHDdRKR+MrLs9mseF6Yxq1w6tYNfvwRZs2K1xFFvCEYjO/VkCSfc86xUX01G5ZkM3eurZ9OyMLpkkvg0ku1gFGSS14eTJumaTqJvYwMG9U/eNB1EpH4CQbtovTKK+N3zLjuz961q91ddPhwPI8q4o6LqyFJThkZsH+/3V0kkgwKCmx9U0aG3bUcL3EvnHbtgo8/judRRdxxcTUkyenSS+Gii3R3nSSPRYtg06b4X5jGtXBq3Njm4jUPL8nA1dWQJKdAwF5r2dmQn+86jUjsBYPW4uWGG+J73LgWToUndjAIkTcsF/EnV1dDkrwyMmDbNli40HUSkdgLBn9qABtPcS2cwE7s9ettR2+RRObqakiS13XXQc2aGtWXxPf117BihZs2L3EvnFq0sE63urtOEp2rqyFJXiVL2msuK0uj+pLYsrOhXDlo0yb+x4574VS6tO3XpSsiSWSFV0OappN4y8iANWtg5UrXSURiJxi0oql8+fgfO+6FE9iJvWyZndwiiajwaujWW10nkWTTqhVUqKCLU0lcW7bA/PnuLkydFE5t20JKik5sSVzBoL3OXVwNSXJLSYF27fT+Kolr6lS72axjRzfHd1I4VahgQ2xa5ySJyPXVkEhGBnz+OWzc6DqJSPQFg3DjjVCtmpvjOymcwJphzp9vHzIiicT11ZCfZWZmkpaWRnp6uusovta+vd2UMGWK6yQi0bV3L7z/vtsL00A48lsvonqPxo4ddtvsyy/D4MHRfGYRtzp0sA2tP/zQdRL/ysnJITU1lVAoROXKlV3H8aVbb7UCXhurSyKZOBF69oS1a6FBg6g/fUStip2NOFWrZq0JNF0nicQLV0MiYK/BDz+EPXtcJxGJnmAQrroqJkVTxJwVTmAn9pw5kJPjMoVI9MycCXl5bpqyiRytc2fbUP3dd10nEYmOQ4dg2jT3F6bOC6e8PJ3YkjiCQbj6atvYV8SlevWgSRPdXSeJY+5cCIWSvHCqX98+ZHRiSyLIy4Pp092f1CKFMjJgxgzIzXWdRKT4gkGrG666ym0Op4UT2N1106frxBb/++gjb1wNiRTKyIB9++CDD1wnESmecNgKp4wMu+nBJeeFU0aGLajVHUjid8GgLVi84grXSURMWhpceKFG9cX/Fi2CTZu8cWHqvHC6/HI4/3zdXSf+VlBg26x44WpIpFAgYK/J7Gx7jYr4VTAIVatC8+auk3igcAoEbLpOJ7b42RdfwA8/eONqSORoXbrA1q2wcKHrJCJnLhi0psKlSrlO4oHCCezDZutWWLDAdRKRMxMMWm+y6693nUTkWM2aQfXqmq4T//rmG1i+3DsXpp4onJo1gxo1dGKLfwWD0KmTN66GRI5WsqT1dNL7q/hVdrZtXt2mjeskxhOFU+GJnZVlK+dF/GT1ali50jtXQyLHy8iAr7+GVatcJxEpumDQiqYKFVwnMZ4onMDWOa1ZAytWuE4iUjTZ2VC+vO0NJuJFrVrZh45GncRvtm6FTz/11oWpZwqnW26BihV1Yov/BIPQti2UK+c6iciJlSsHt92m91fxn6lT7Sayjh1dJ/mJZwqnlBRo315tCcRfNm+2mxq8dDUkciIZGXZn3Q8/uE4iErnsbGtBUL266yQ/8UzhBHZiL1oEGza4TiISmalToUQJ6NDBdRKRU+vQwdaTTpniOolIZPbtg9mzvXdhGtE9QIFAIBAKhWKdhebN7a6kcePg3ntjfjiRYnvnHWtBULo05OS4TuNfubm55B6179LevXsByNE/atSULGnvsRMnwu23u04jcnrZ2bYd2y23xOf9NTU1tTKwNxw+9W1qgdP8f3tQIFAZiH3lJCIiIuJOajgcPmWZFmnhFAiFQhH39U5PT+fzzz+P9OHHeP11ePhh+PZba68ey2MVVU5ODvXq1WPDhg1Urlw55seL588W7+PF61ix/J1NngwDB8LSpXDuuT/9fSL+O8b6eMePOG3evJlrr72WFStWULdu3agf73iJ8u94umNt3AiXXWbvsz16RP9YifwemaivkXj/ziCyn+3QIbjgApt9+vWvY3usQqmpqalEMOIU0VTd6Z7keCVLljzjX0CfPvDggzBvHvTvH9tjnanKlSvH5Zjx/tniebx4/2yx+J3NmgWNGtl+i0dL5H/HeB+vUqVKOteieKy0NGjc2F67d90Vu2Mm4ntkIr9GIH6/M4jsZ5szB0Ih6N0bihOrKP+OpxtpKhSTxeFDhgw54++tXRuaNo387rriHMvr4v2zxfN4fv+95eXB9OnWf+x4ifzv6Pff28kk8r/j8cfKyIAZM2ztiN/pXPOnSH62YNBG8hs1iv2xiiqiqbr/iFtP76eegt/9DnbssMaCXpGTk0NqaiqhUCjuo1xyZmL1O3vvPeuL89VXcOWVUXta+Y+NGzcemT4455xzXMdJKMuWwRVXWPHUrl10n1vvkf7jxd9ZOGxFU7du8PzzcT10IJIHeaodQaGMDDhwwIaTvaRs2bL89re/pWzZsq6jSIRi9TsLBuH88+0DSKKv8Pelcy36LrvM1o7Eohmm3iP9x4u/s8WLbT1ely6uk5yYJ0ecwE7u9HQYOTKeRxU5vYICOOcc6NsX/vY312kSkxevghPJww/D6NHWDLOEJy+fJZn93/9BZqZtt1K6dFwP7d8RJ7BRp6lT4fBh10lEjvX559Yx3GtN2UQilZFhH0oLF7pOIvLfgkHbYiXORVPEPFs4de0Ku3bBxx+7TiJyrGAQqlWzxpciftSsmW1hob3rxGvWrLF1eF6+MPVs4dS4sU2H6MQWr8nKgs6drROziB+VLGmv4awsW4gr4hXZ2bZ3bdu2rpOcnGcLp0DAKs5gUCe2eMeqVbB6tbevhkQi0bUrfPONvaZFvCIYhFtvhQoVXCc5Oc8WTmAfTuvXw5dfuk5ycrm5uTRq1IhAIMCSJUtcx5FT+O677xg0aBANGjSgXLlyXHDBBfz2t78lLy8v4ucIBu2Ebt06djlF4qFVK3stF3dU/8knnyQ9PZ1KlSpRo0YNMjIyWL16dVQySvz85S9/IRAIMGzYMGcZtm2DTz7x/oWppwunFi2gSpXIm2G68Mgjj1CnTh3XMSQCq1atoqCggFdeeYXly5fz3HPP8fLLL/PrIvTzDwatf1O5crHLKRIPKSnWx6m4hdPcuXMZMmQICxYsYPbs2Rw6dIg2bdqwf//+qOSU2Pv888955ZVXuNJxU7pp02y2qVMnpzFOLxwOR/rlxJ13hsOXX+7q6Kc2Y8aMcMOGDcPLly8PA+Evv/zSdSQpoqeeeircoEGDiB67aVM4DOHwqFExDiXhUCgUBsKhUMh1lIQ2erS9pjdujN5zbtu2LQyE586dG70nlZjZu3dv+KKLLgrPnj07fNNNN4UfeOABZ1k6dQqHb7zR2eHD4QjrIU+POIEN2S1bZivtvWTr1q0MHjyYUaNGUd5L7c2lSEKhEFUj2U0amDLFFtV26BDjUCJx0r49lCplr+1oCYVCABGfV+LWkCFD6NChA60drz/Yt8+aXnt9mg48PlUHtrI+JcVbd9eFw2F+9rOfce+999KkSRPXceQMrVmzhhdffJGf//znET0+GISWLW36WCQRVKlir+lovb8WFBQwbNgwbrjhBi4/fvdr8Zzx48ezePFinnzySddRmDXL9k/0arfwo3m+cKpQAdq0ic86p8cee4xAIHDKr1WrVvHiiy+yd+9ehg8fHvtQclqR/t6OtmnTJm677TZ69uzJ4MGDT3uMUAg++MAfV0MiRZGRYa/tPXuK/1xDhgxh2bJljB8/vvhPJjG1YcMGHnjgAcaMGUNKSorrOASDtoXVBRe4TnJ6nt1y5WgjR8Jdd9n2ALVqxe4427dvZ+fOnad8zPnnn0+vXr2YOnUqgcBP3dnz8/MpWbIk/fr1480334xdSPkvkf7eypQpA8APP/xAy5Ytadq0KSNHjqREBHtOjBsHt99ud3nWqxeV2HICmZmZZGZmkp+fz9dff60tV+JgwwbbUHXsWNtG6EwNHTqU7Oxs5s2bR4MGDaIXUGIiGAzStWtXSh7VkC4/P59AIECJEiXIzc095v/F0qFDULMmDB0KTzwRl0OeTERbrviicNqxw/5RX3oJ7rnHVYqfrF+/npycnCN//uGHH2jbti0TJ07kuuuu027uHrZp0yZuvvlmGjduzOjRoyN+Y+jdG779Fr74IsYBBdBedfGWnm6bVk+YUPTvDYfD3H///WRlZfHRRx9x0UUXRT+gRN3evXv5/vvvj/m7gQMH0rBhQx599NG4TrV+8IG1x1i0CK65Jm6HPZGICqdSsU4RDdWqWWuCYNAbhdO55557zJ8rVqwIwAUXXKCiycM2bdpEy5YtqV+/Ps888wzbt28/8v9qnWIoMzcXZsyARx+NR0qR+MvIgL/8xV7rZcsW7XuHDBnC2LFjyc7OplKlSmzZsgWA1NRUyqlvh2dVqlTpv4qjChUqcPbZZ8d9fVowaCP5V18d18OeMc+vcSqUkQFz5sBRAz0iRTJ79mzWrFnDnDlzOOecc6hdu/aRr1P54AO746Nr1zgFFYmzjAx7jc+ZU/TvfemllwiFQrRs2fKYc2rCmQxfSdIJh20Nc0aG9XDyA19M1QF89x00aADjx9u0iUi8/PznVjx9/bV/Tmy/01RdfIXDcPHFcPPN8OqrrtNIMvn8c7j2WnuPvflm12kim6rzzYjTeefZMJ6X2hJI4svPt00n/XQ1JFJUhXuDZmfba14kXrKy4Oyz4cYbXSeJnG8KJ7ATe/p0m4cXiYeFC2HrVrUhkMSXkWF7hS1c6DqJJJOsLNtipZQvVlwbXxVOXbvC3r3w4Yeuk0iyCAahRg1o2tR1EpHYatrUXusa1Zd4WbXKvvy2ftRXhdPll9sts17e9FcSR+Gixc6dbasVkURWsqS91rOy7LUvEmtZWdbk+tZbXScpGl8VToGAVabZ2VBQ4DqNJLqVK22PRE3TSbLIyLDX/MqVrpNIMsjKgttuA791rfBV4QR2Ym/dCgsWuE4iiS4YhIoVrTGbSDJo1cpGADRdJ7G2YYPdUee3aTrwYeHUrJnm4SU+gkFo1842mRZJBikp9prX+6vEWjBoC8I7dHCdpOh8VzhpHl7iYeNGuxrSNJ0km4wMe+1v3Og6iSSyrCwb4TzrLNdJis53hRPY0N6aNbBiheskkqiys+1qqH1710lE4qt9e3vtT5niOokkqp07Yd48f07TgU8Lp1tusbUnurtOYiUYtC62frwaEimOKlWgZUtN10nsTJ1qN3h16eI6yZnxZeGkeXiJpd274aOPNE0nyatrV+uXt2eP6ySSiLKybL3yKfZW9zRfFk5gJ/aiRbYyXySaZsyAw4f9ezUkUlydO9s5MGOG6ySSaPbvh1mz/DtNBz4unNq3h9KlNeok0RcM2qaTdeu6TiLixjnnQHq63l8l+mbOhIMHVTg5kZpqa510Yks0HTgA776raTpXMjMzSUtLIz093XWUpJeRYefCwYOuk0giycqCK66ACy5wneTM+bZwAjux5861Ffoi0TBnjg0lq3ByY8iQIaxYsYLPP//cdZSkl5EB+/bZOSESDXl5MG2av0ebwOeFU5cukJ8P06e7TiKJIhiEiy+Ghg1dJxFx69JL4aKLNKov0fPhhxAKqXByqnZt29FbbQkkGvLzrXdNRobtiyiSzAIBOxemTLFzQ6S4srKgQQO46irXSYrH14UTWOX63nvw44+uk4jfffopbN+uu+lECmVkwLZtMH++6yTidwUF1li4a1f/X5j6vnDKyLAFvbNmuU4ifjd58k+jmCJi50Lt2nZuiBTHggWwZYv/p+kgAQqniy+GtDTNw0vxhMP24dC1K5Tw/VkhEh0lStg5MXmy9gaV4snKgho1rPGl3yXER0RGhrVwP3zYdRLxqy++gPXroXt310lEvKVbN/j+e1i82HUS8atw2AqnLl2gZEnXaYovYQqnXbvg449dJxG/mjQJzj4bWrRwnUTEW1q0gKpVNV0nZ27pUvj228SYpoMEKZyaNLEuz7q7Ts5EOGyFU0aG7QovIj8pXdq2YJk0SdN1cmaysqBSJWtanQgSonAqvG02GNSJLUW3dCmsWaNpOpGT6d4dVq+GlStdJxE/ysqCDh2gbFnXSaIjIQonsCHADRvgyy9dJxG/mTTJtvBp1cp1EhFvat0aKlbUdJ0U3bp18NVXiTNNBwlUOLVoAVWqaLpOim7SJOjUCcqUcZ1ExJtSUmzEYNIk10nEb7KybKSpXTvXSaInYQqn0qWhY0e1JZCiWb0ali/XNJ3I6XTvDkuWwNq1rpOIn2Rlwa232hqnRJEwhRPYOqdly2y9ikgkJk2CChWgbVvXSUS8rV07GznQqL5EautW+OSTxJqmgwQrnNq2tSFljTpJpCZNgvbtoVw510lEvK1iRXuP1XSdRGryZGui2rmz6yTRlVCFU4UK0KaNrogkMuvWWVM/TdOJRKZ7d9u37ocfXCcRP5g4EW6+GapVc50kuhKqcAIbEpw/3/bEETmVyZNt6qF9e9dJRPyhY0frdaaLUzmdbdvgo4+gZ0/XSaIv4Qqnjh2tr9OUKa6TiNdNmmRTD4m0aNHvMjMzSUtLIz093XUUOYGqVa2Joabr5HQKl8wk2vomgEA48o6Rvmkt2bIllC8PM2a4TiJetWkTnHMOvPkm9O/vOo0cLycnh9TUVEKhEJUrV3YdR47y2mtw772webNt2ipyIrfeCgUFMGeO6yRFEojkQQk34gRW4c6ZA6GQ6yTiVVlZNuXQqZPrJCL+0rWrjepruk5OZscO+PDDxJymgwQtnLp1g7w8mDrVdRLxqkmTrFN4lSquk4j4S7VqNqr/zjuuk4hXFW5/lojTdJCghVO9etC0qU5sObHt22HePN1NJ3Kmeva0hb/bt7tOIl70zju2m0fNmq6TxEZCFk5gJ/Z770FOjusk4jWFixYzMlymEPGvrl1tREE98+R4O3faUplEnaaDBC6cevSA3FxN18l/mzTJroaqV3edRMSfatSAm26yPj0iR8vOtkXh3bq5ThI7CVs4nXsuXHedpuvkWLt329WQpulEiqdHDzuXdu50nUS8ZOJEuPFGqFXLdZLYSdjCCWyocOZM2LvXdRLxiuxsyM9P3EWLIvHSrZuNLGRnu04iXrF7N7z/vhXViSyhC6fC6bpp01wnEa+YMAGaN4e6dV0nEfG3WrVsZEHTdVIoOxsOH078Ef2ELpzq14drr9V0nZidO+1qqHdv10lEEkPPnnZO7d7tOol4wcSJcMMNUKeO6ySxldCFE9iJ/e67sG+f6yTiWlaWTS0k+tWQSLx062YjDNriSvbsgVmzEn+aDpKgcOrRAw4e1HSd2DTdTTcl9qJFkXiqU8dGGDSqL1OnwqFDyXFhmvCF03nnQXq6Tuxkt307fPCBpulEoq1HDxtp2LPHdRJx6Z13oFkz2wM00SV84QQ2XTdjhqbrktmkSba/ViL3FhFxoUcPm67T3XXJKyfHGk4nctPLoyVF4VQ4XTd9uusk4srbb8Mtt6jppUi01a1rd9eNG+c6ibgydartD5sM03SQJIVTgwbQpIl9eEry2bIF5s7VNJ1IrPTta3fXae+65DRxojWcPvdc10niIykKJ4A+fWzESXvXJZ+JE6FECTW99IPMzEzS0tJIT093HUWKoHCkQT2dkk9Ojt25ngx30xUKhMPhSB8b8QO9aMMGq4bfegvuvNN1GomnFi2gYkVb5yb+kJOTQ2pqKqFQiMqVK7uOIxFo1w5+/NFGdyV5vPUWDBgA33+fECNOgUgelDQjTvXqaR4+GW3aBP/6l6bpRGKtTx/4+GPYuNF1EomnceNsN4YEKJoiljSFE9iJPXs27NjhOonEyzvvQOnS0KWL6yQiiS0jA8qU0VrSZLJjh32m9u3rOkl8JVXh1KOHdY6ePNl1EomXt9+Gtm3hrLNcJxFJbKmp0L69RvWTSeGatmRpQ1AoqQqnGjWgVSud2Mli/XqYP1/TdCLx0rcvfPEFrFnjOonEw7hx0Lp18rV5SarCCezEnjsXfvjBdRKJtbffhrJloVMn10lEkkOHDnYjxvjxrpNIrG3caGvakm2aDpKwcOraFUqV0hYsyeDtt23qQDdlicRH+fK2nlCFU+KbMMHWtCVjm5ekK5zOOstum9V0XWJbuxY+/1zTdCLx1qcPLF8OS5e6TiKxNG6cjTAm44Vp0hVOYCf2woWwbp3rJBIrEybY1W+HDq6TiCSXNm2gShWNOiWyb76BRYuSc5oOkrRw6tzZPlQnTHCdRGIhHIYxY2zKoGJF12lEkkuZMtZJfPx4Oxcl8YwbZ++tyXphmpSFU4UKtmBY03WJaelSmyq4/XbXSUSSU9++P02XS2IJh+2zMyMDypVzncaNpCycwKbr/v1vWLHCdRKJtrFj4eyzrX+TiMTfTTdBrVq6OE1EX30Fq1Yl7zQdJHHhdNtttqhN03WJpaDACqeePa1juIjEX8mS0KuXvb/m57tOI9E0bpxdmN56q+sk7iRt4ZSSAt262Yes5uETxyef2IbOmqYTcatPH9i82Xr9SGIoKLC1az16JPeFadIWTgD9+lmH288+c51EomXMGNts8oYbXCdJDLt27aJfv35UrlyZs846i0GDBrFv375Tfk/Lli0JBALHfN17771xSixe0bQp1K+vu+sSyfz5tiNDMk/TQZIXTjffDLVrw+jRrpNINOTlWWPTvn2hRFK/sqOnX79+LF++nNmzZzNt2jTmzZvHPffcc9rvGzx4MJs3bz7y9dRTT8UhrXhJIGCjThMnwqFDrtNINIwbB3Xrwo03uk7iVlJ/vJQsaVM6EyboxE4Es2bBrl2apouWlStXMnPmTP75z39y3XXX0bx5c1588UXGjx/PD6fZs6h8+fLUqlXryFfl03TJy83NJScn55gv8b++fWHnTjs3xd8OHbIL0969dWGa5D8+3HEHbN8Os2e7TiLFNWYMXHYZXHml6ySJYf78+Zx11lk0adLkyN+1bt2aEiVKsHDhwlN+75gxY6hWrRqXX345w4cP58cffzzl45988klSU1OPfNWrVy8qP4O4deWVcPnlMGqU6yRSXLNmwbZt9pmZ7JK+cLrqKvuw1XSdv4VCEAzCnXe6TpI4tmzZQo0aNY75u1KlSlG1alW2bNly0u+7/fbbGT16NB9++CHDhw9n1KhR3HGad9vhw4cTCoWOfG3YsCEqP4O4FQjYOZmdbeeo+NeoUVYEN2rkOol7SV84BQJWQQeDsHev6zRypiZNgtxcW/Avp/bYY4/91+Lt479WrVp1xs9/zz330LZtW6644gr69evHW2+9RVZWFt9+++1Jv6ds2bJUrlz5mC9JDP362bk5caLrJHKm9uyxz8j+/e0zM9klfeEEtibmwAHIynKdRM7UW29Bq1Zwzjmuk3jfQw89xMqVK0/5df7551OrVi22bdt2zPcePnyYXbt2UatWrYiPd9111wGwZs2aqP4c4g9160Lr1pqu87OJE+3mG60fNaVcB/CCc8+FFi3sxO7f33UaKarvvoO5c+HNN10n8Yfq1atTvXr10z6uWbNm7Nmzh0WLFtG4cWMAPvjgAwoKCo4UQ5FYsmQJALVr1z6jvOJ/d95p763ffQfnnec6jRTVqFFW/Nat6zqJN2jE6T/694c5c6x5ovjLmDG2aXO3bq6TJJZLL72U2267jcGDB/PZZ5/xySefMHToUPr06UOdOnUA2LRpEw0bNuSz/zRD+/bbb/nDH/7AokWL+O6775gyZQr9+/enRYsWXKlV+0mra1fbI1RrSf3nu+9g3jwNKhxNhdN/9Oxp3cR1YvtLOGzTdN27227dEl1jxoyhYcOGtGrVivbt29O8eXNeffXVI///0KFDrF69+shdc2XKlOH999+nTZs2NGzYkIceeoju3bszdepUVz+CeEDFinaOjhqlnRr8ZvRoK3q7dnWdxDsC4chfxQn/cr/jDvjiC1i5Ugvg/GLhQutQPGtWcu+dlGhycnJITU0lFAppoXiCeP99O0cXLIAizPSKQ+EwXHIJNGuWNEshIvrk14jTUQYMgNWrtQWLn4waBXXqwC23uE4iIqdy8822Ruatt1wnkUgtXAjffKNpuuOpcDrKLbfYXVkjR7pOIpHIy7MtAO64w7rAi4h3lSxp5+r48XbuiveNGmXFbsuWrpN4iwqno5QsaXd/jB8PBw+6TiOnM326bbGippci/nDnnXbOTp/uOomcTm6ufRbqwvS/qXA6zoAB1uxLa1m97/XXIT3dutmKiPdddhk0bgxvvOE6iZxOdrYVuQMGuE7iPSqcjnPJJbZwMUkWwvnWpk3w7rswaJDrJCJSFIMGwYwZsHmz6yRyKiNG2KLwSy91ncR7VDidwM9+BjNnwim24xLH3noLypaFPn1cJxGRoujbF0qX1sWpl61fb3cq68L0xFQ4nUDv3lCqlO7+8Kpw2K6GevSA1FTXaUSkKM46y87dESPU08mrRo60psK9erlO4k0qnE6gShU7sf/5T53YXjRvHqxZo6shEb8aNMhuc//4Y9dJ5HgFBbYGrVcvqFTJdRpvUuF0EoMH24k9d67rJHK8ESPgwgttf0ER8Z+bboILLrAbPMRbPvzQtlnRhenJqXA6iRYt4OKL4bXXXCeRo4VC8M47MHCguruL+FUgAHfdZedyKOQ6jRxtxAi7Ser6610n8S4VTicRCMDdd8PEibBzp+s0Umj8eOsvoltkE1NmZiZpaWmkp6e7jiIxNmDAT72CxBt274ZJk6yo1YXpyWmvulPYts06iT/1FAwb5jqNgLWKqF4dpk1znURiSXvVJYeOHe19VttceUNmJjzwAGzcCLVquU7jhPaqK64aNaBLF5uu0yJx95YtszfYu+5ynUREomHQIPj8c1i61HUSAZum69AhaYumiKlwOo3Bg2HFCpg/33USef11G23q2NF1EhGJho4d7QJVi8TdW7IEFi/WovBIqHA6jdat4bzztEjctYMHbcPJO++EMmVcpxGRaChdGvr3t3M7N9d1muT22ms20tS+vesk3qfC6TRKlLAKfMIE3f3hUuEi/XvucZ1ERKJp0CDbE23yZNdJkte+fVa83n23NX+WU1PhFIGBA+1qaOxY10mS1z/+Aa1a2W2yIpI4Gja0vk4vveQ6SfIaOxb277elKXJ6KpwiULeuLZjTdJ0bS5bYGrNf/MJ1EhGJhSFDrIu4FonHXzgML79sn3Hnnus6jT+ocIrQ4MHw5ZewaJHrJMnnpZegTh3o3Nl1EhGJhYwMW1/zj3+4TpJ8Pv/cPtvuvdd1Ev9Q4RShdu2sp5OGk+MrFILRo21tk+beRRJT6dJ2jo8aBTk5rtMkl5degvr1oW1b10n8Q4VThEqVsop8zBh1Eo+nwrttNPcuktjuueenu2clPnbvts7tP/85lCzpOo1/qHAqgsGDbedo9RyJj3DYhu4zMmyqTkQSV926dq5nZqrhcLy89RYcPqymwkWlwqkIatSAPn3swzw/33WaxDd3LqxcqUXhIsliyBA75+fOdZ0k8RUU2GdZt25Qs6brNP6iwqmI7r8fvv8epk51nSTx/eMf1n7g5ptdJxGReGjZ0toTZGa6TpL4Zs+Gr7+2zzQpGhVORdSkCTRtCi++6DpJYtu8GbKy4L77tEu3SLIIBGyEOSsLfvjBdZrE9sILcPXVcMMNrpP4jwqnM/DLX8IHH8Dy5a6TJK7XXrM7bQYMcJ1EROKpf39ISVHfvFj65huYMcNGm3RhWnQqnM5A9+7Wc0SjTrGRm2vTdHfeCWed5TqNiMRTairccQe88grk5blOk5gyM6FaNejb13USf1LhdAbKlLHWBKNG2e2cEl0TJsDWrTBsmOskEm+ZmZmkpaWRnp7uOoo4dP/9Nl3/9tuukySevXvhjTfsLvGUFNdp/CkQjvy+T90gepQtW6w9/V/+Ag8+6DpN4giH4ZprbETv3XddpxFXcnJySE1NJRQKUblyZddxxIG2bWHHDvjiC00nRdOLL8KvfgXr1kG9eq7TeE5ErzSNOJ2hWrWgZ08b8lRrguiZN8/2ptNok0hy+9WvYPFi+Ne/XCdJHIcPw3PPQa9eKpqKQ4VTMfzyl7B2LUyb5jpJ4njuOUhLgzZtXCcREZfatoVLL7X3BImOyZNtpOl//sd1En/TVF0x3XADlChhO3tL8Xz7LVx0kS0K1RYryU1TdQLw6qu2nnTNGjj/fNdp/C0chmuvtcX377/vOo1naaouHv7nf2woecEC10n877nnoGpVu6NGROTOO+09QaNOxTd3rq0Xe/hh10n8T4VTMXXuDBdfDE8/7TqJv23fDiNG2N005cq5TiMiXlCunL0nvP66vUfImXv6abjiCpsCleJR4VRMJUrAQw9Zp9s1a1yn8a+//93unBk61HUSEfGSoUPtveHvf3edxL+WL7eGlw8/rDsUo0GFUxT07w/Vq8Ozz7pO4k/799ub4t13w9lnu04jIl5y9tn23vD3v9t7hRTdM89A3bq2Sb0UnwqnKEhJsTvs3njD+jtJ0bz+OoRC6oclIif24IP2HvHPf7pO4j+bNsGYMdbipUwZ12kSgwqnKBkyxF6UGnUqmrw8+Nvf7Eqofn3XaUTEi+rXt+1Bnn0WDh1yncZfXnjB1ordc4/rJIlDhVOUnHWWzcX/4x+wc6frNP4xciRs2ADDh7tOIiJe9sgjsH49jB7tOol/7Nxpn0n33Qfq6hE9KpyiaNgw65Xx/POuk/hDbi788Y/QuzdcdpnrNCLiZVdcARkZ8Oc/WwdsOb1nn4WCAruBSaJHhVMUVa9uzdpeeMHm4+XUXn/d5t9/+1vXSUTEDx5/3O5eHj/edRLv27nTPouGDrXPJokeFU5R9tBDcPCgbp09nYMH7cqxb19o2NB1GhHxg6uvhk6dbKRae4Se2nPP2WiTGl5GnwqnKKtTBwYNsiHSnBzXabzrtddg82a7ghQRidTjj8Pq1fD2266TeJdGm2JLhVMMDB9u/Ub+3/9zncSbDhyw0aY777Su6yIikWrSBNq3hz/8QaNOJ/Pcc/Zvo9Gm2FDhFAPnnAO/+IU1HdMddv/tlVds+4T/+z/XSUTEj37/e1i5EkaNcp3Ee3btstGmIUM02hQrKpxiZPhwu8Pur391ncRb9u+HJ5+EAQPgggtcpxGvyczMJC0tjfT0dNdRxMOaNIGePW3a7uBB12m8RaNNsRcIh8ORPjbiB4p5/HHbWPHbb23tk9go3PDh8PXX0KCB6zTiVTk5OaSmphIKhaisBjRyAl9/DWlpdnGq2+3Nli1w4YU22qSL9jMS0U5+GnGKoYceso6tf/qT6yTesG8fPPUUDByooklEiufii20Puz//We1fCv3+97aDxWOPuU6S2FQ4xVBqKjz6KLz6Kqxd6zqNey+8AHv2wP/+r+skIpIIHn/cbjZ56inXSdxbvdruVv71r6FKFddpEpum6mLsxx9t6LRFi+Ru2rZlC1x0kV0hPvec6zTidZqqk0j9+td2B/O330Lt2q7TuNO9O3zxhRVQKSmu0/iWpuq8oHx5m6qbMAE+/dR1Gnd+8xsbQlbfJhGJpkcesSURv/+96yTufPopTJ5sjUFVNMWeRpzioKDA7gIpXRrmz4cSSVaufvklNG4ML75oixZFTkcjTlIUf/ubLYtYtiz5diIoKIDmzW12Y/Hi5Pt8ibKIRpxUOMXJRx/BzTfDmDFw++2u08RPOGw/97Zt8O9/Q6lSrhOJH6hwkqI4eNA2Cr/wQpg5EwIRffwlhjfegLvugg8/hJYtXafxPU3VeUnLlraz96OPWi+jZJGVBXPn2hY0KppEJBZSUuw9ZtYsmDrVdZr42b3bpipvv11FUzxpxCmO1q61viO/+pU1gUx0hVeBl1wCM2a4TiN+ohEnKapwGG67DdasgeXLk2Otzy9+AaNH24LwZF4YH0UacfKa88+3O0Ceeca2C0h0f/4zbNhg6w9ERGIpELC769avh7/8xXWa2Fu0CF5+GZ54QkVTvGnEKc4OHoTLL4dzz4U5cxJ3Ln7FCmjUyBqxPfGE6zTiNxpxkjP1m99YX6clS2yEPxEVFECzZtbDavFiLYOIIi0O96qZM6FdO3jzTejf33Wa6CsosL5V27fDV18lx5C5RJcKJzlTBw/CVVdBtWrw8ceJeZfZa6/BPffYz9e8ues0CUVTdV512222mG/YMGsMmWheew0++cQ6pqtoEpF4Skmx96BPP7WprESzbZuN5A8YoKLJFY04ObJjhw0jt2gBEye6ThM9mzfDpZdaF9vXX3edRvxKI05SXD//OYwbZwvF69VznSY6wmF7b/34Y/u5atRwnSjhaMTJy6pVs4aQkybB22+7ThMd4bBtqZKSAk8/7TqNiCSzv/4VKlaE++6z96ZEMH68tXj5xz9UNLmkwsmhXr3s6uHee+3uM7977TVrO/D661C1qus0IpLMzjoLXnoJpk+Hf/7TdZri27IFhg6F3r2hZ0/XaZKbpuoc27ULrrzSOt7OmQMlS7pOdGbWrLEFmf362domkeLQVJ1Ey+DBMHasbf108cWu05yZggK7oeirr2xbmWrVXCdKWJqq84OqVa2B2bx5NrTsRz/+aCNndepY916RM5WZmUlaWhrp6emuo0iCeO45e2/q1w/y8lynOTPPPGNd0UeNUtHkBRpx8oj//V8rnP71L2ja1HWayIXDcMcdEAzCggVwxRWuE0ki0IiTRNPnn8MNN9h6p+efd52maBYutLvnHnooORp7OqY+Tn5y6BDceCP88AN88YV/Fv698AI88IDdvdKnj+s0kihUOEm0/f3vcP/9tsC6d2/XaSKzbRs0bgznnGOzEqVLu06U8DRV5yelS1tbgtxcWzR+6JDrRKc3b55dBT34oIomEfG2IUOgb18YNMjWCXndoUO2CPzQIftsUNHkHSqcPOScc+Cdd6x55IMPevsW2k2brMBr3ty/a7NEJHkEAnbjygUXQMeOsHWr60QnFw7bZvCffmqfCXXruk4kR1Ph5DEtWlh/p7//3RY1etHBg9Cjh10BTZigfZJExB8qVoRp02xkv0sX2+vNi558EjIz7XPgxhtdp5HjqXDyoHvvhUcftWmwd95xneZYhw7Z+oCvvrLmnX5ZiyUiAtZFfOpU+Pe/7U67w4ddJzrWq6/azUK/+511PxfvUeHkUX/+s+1n16+fXSF5QUGBrQ+YMQMmT4Zrr3WdSESk6Jo0sdHyKVPsPa2gwHUiM3GiXTgPHQqPP+46jZyMCiePKlECRo60ufju3WHmTLd58vOtkdzo0dZL5Lbb3OYRESmOTp3svWzUKCtW8vPd5pk50y6U+/SxlgmBiO7vEhdUOHlY6dJ262zbtjYfP26cmxyHDlmvpjffhLfe0h10IpIY+vaFN96wbaL693d3N/PEidC5s73XjxxpF87iXfr1eFyZMnZS9eljU3d//Wt877bbswc6dLD1TBMmWAElIpIoBgyw97Z33rH3ut2743fscNgWgBfuPzdpkr3ni7fpfigfKFPGrkLq14fHHoN162wot2zZ2B539Wob6dq2zYaRb7kltscTEXGhRw/b/qpHD9u5YerU2O9rl5cHv/wlvPKKtR545hmNNPmFfk0+EQjAE0/YkPIbb9j2AV9/HZtjFRRYS4Srr7Y/L1yooklEEtstt8Bnn1nxcs01VtDEanR/5Uor0EaMsPf0Z59V0eQn+lX5zF13WVO0PXvgqqts6i6a8/LffQetW9uV0KBBsGgRXHRR9J5fRMSrLrzQiqd+/WzBePv2sHFj9J4/Lw+eesq2UTlwwC5K77ores8v8aHCyYcaN7Y+SkOHwq9/bRvrTphQvFtqN2+2vlFpafDttzBnjo06VagQvdziP3/605+4/vrrKV++PGeddVZE3xMOh3n88cepXbs25cqVo3Xr1nzzzTexDSoSJZUq2WjTjBn2PnvxxfCb38CuXWf+nPn5tlb1iivsPfuee+yitHBUX/xFhZNPVagATz9tJ9/559vi8bQ0G/LdsiWy5ygogH/9C37xC3uO11+H//kfWLpUU3Ni8vLy6NmzJ/fdd1/E3/PUU0/xwgsv8PLLL7Nw4UIqVKhA27ZtOXjwYAyTikRXu3Y2pfarX8Hf/mbbngwcaCNSkU7hbdoE/+//waWX2uLv+vVhyRL7u/LlYxheYioQjnwS18M7p8mnn9oI0aRJNnXXsKFt35KeDlWqQOXKUK4c7NgB339vBdecOfDDD1C7tg1L//KXEOGggiSZkSNHMmzYMPbs2XPKx4XDYerUqcNDDz3Eww8/DEAoFKJmzZqMHDmSPhH2ssjJySE1NZVQKETlypWLG1+kWLZts/VIL79s75/Vqtk+nTfcYBedZ58NKSmQkwMrVtjF55IlsHixtZXp3BkeecTej8XTIuqepcIpwezYAbNnw7x5MHeuXTEdr0wZWx91ww3WXPP667UwUU4t0sJp7dq1XHDBBXz55Zc0atToyN/fdNNNNGrUiOeff/6E35ebm0tubu6RP+fk5FCvXj0VTuIp+fnw0Uf2/vrxx7BgwX/vd1e2rI3+X3GFjdx36aILUh+JqHBSO4IEU62aNXXr29f+fPgw7N1rV0I//mj//+yzVShJbGz5zzxxzZo1j/n7mjVrHvl/J/Lkk0/y+9//PqbZRIqrZElo1cq+wAqpPXtg504roCpVgnPP1cbniU4fnwmuVCmbqqtf3+bZq1dX0ZTsHnvsMQKBwCm/Vq1aFddMw4cPJxQKHfnasGFDXI8vciZKlrQL0YsvtlH8889X0ZQM9CsWSTIPPfQQP/vZz075mPPPP/+MnrtWrVoAbN26ldq1ax/5+61btx4zdXe8smXLUjbWHV1FRKJAhZNIkqlevTrVq1ePyXM3aNCAWrVqMWfOnCOFUk5ODgsXLizSnXkiIl6lSRsROan169ezZMkS1q9fT35+PkuWLGHJkiXs27fvyGMaNmxIVlYWAIFAgGHDhvHHP/6RKVOmsHTpUvr370+dOnXIyMhw9FOIiESPRpxE5KQef/xx3nzzzSN/vvo/Hfs+/PBDWrZsCcDq1asJhUJHHvPII4+wf/9+7rnnHvbs2UPz5s2ZOXMmKSkpcc0uIhILakcgIp6jPk4i4kDU+ziJiMRFIBCoDISA1HA4nOM6j4hIIRVOIuI5gUAgAFQC9ob1JiUiHqLCSURERCRCuqtOREREJEIqnEREREQipMJJREREJEIqnEREREQipMJJREREJEIqnEREREQipMJJREREJEIqnEREREQi9P8B/R3ICNkcuFEAAAAASUVORK5CYII=\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plot(cos, (-5,5))" ] }, { "cell_type": "code", "execution_count": 16, "id": "1f242ed1", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAGFCAYAAAACddxlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIwUlEQVR4nO3dfXzN9f/H8ceHMcSGykaWfCksobQyXUiR+sqX+n4lXfAtpYRISatfV7qYvlKUg5BWSrpE5SqRizLlslAuipjYdMGGGLbz++M9a5PN2XbOeZ+L5/12Ozd29jnn8zqfnYvXeb9fn9fbcbvdiIiIiMjflbMdgIiIiEigUqIkIiIiUgQlSiIiIiJFUKIkIiIiUgQlSiIiIiJFUKIkIiIiUgQlSiIiIiJFUKIkIiIiUgQlSiISkBwjynEcx3YsIhK+IrxwH2rtLSJel5mZSXR0NJmZmbZDEZHQ5NGXMI0oiYiIiBRBiZKIlMiwYcNwHIeBAwcWu937779P48aNqVSpEueddx6zZs3yT4AiIl6kRElEPLZ8+XJeffVVmjVrVux2S5cupXv37vTq1YvVq1fTpUsXunTpwrp16/wUqYiIdyhREhGP7N+/n1tuuYUJEyZQo0aNYrcdNWoU11xzDYMHD6ZJkyY8/fTTXHDBBYwePdpP0YqIeIffEqW9e2HfPn/tTUS8rW/fvnTs2JF27dqddNvU1NS/bdehQwdSU1N9FZ6IhLmsLPDFuR9+SZQOHoT69WH8eH/sTUS8berUqaxatYrk5GSPtk9PTycmJqbQdTExMaSnpxd5m+zsbLKysgpdREQ8NWYMNGgA2dnevV+/JEqVK8O115pEya1mAiJBJS0tjQEDBvD2229TqVIln+0nOTmZ6Ojo/EtcXJzP9iUioSU3FyZMgI4dITLSu/ftt6m3u++GTZtg4UJ/7VFEvGHlypXs3r2bCy64gIiICCIiIli0aBEvv/wyERER5OTk/O02sbGxZGRkFLouIyOD2NjYIveTlJREZmZm/iUtLc3rj0VEQtP8+bBli8k1vM1xl32Ix6M7cLshPh6aN4epU8u6SxHxl3379rFt27ZC191+++00btyYIUOG0LRp07/dplu3bvz555988skn+de1bt2aZs2aMW7cOI/2m5WVld9wMioqqmwPQkRCWteu8MMPsHYtlKCXv0dbeqMzt0ccB3r3hiFDYPduqFXLX3sWkbKoVq3a35KhU045hVNPPTX/+h49enDGGWfk1zANGDCANm3aMGLECDp27MjUqVNZsWIF41WoKCJelpEB06fDiBElSpI85tf2AD17QrlykJLiz72KiK9t376dXbt25f/cunVrpkyZwvjx42nevDkffPAB06dPP+Hok4hIWbz+OkREwG23+eb+/Tb1dsxtt0FqqqlXKqcuTiJSBE29icjJ5ObC2WfDpZfCG2+U+OaBudbb3XfDTz/BggX+3rOIiIiEkgULTBF3796+24ffE6VLLjFF3a++6u89i4iISCgZN87kFK1b+24ffk+UHMeMKk2fDsX0nhORMOVyuYiPjychIcF2KCISwHbuNLnEPff4poj7GL/XKAHs2QN16sDjj0NSUll3LyKhSDVKIlKcZ56B5GSTMEVHl+ouArNGCaBGDejWzXTRzM21EYGIiIgEq5wcs9pH9+6lTpI8Zu28s7vvhq1bYd48WxGIiIhIMJo1C9LSzLSbr1mZegPTqbt5c2jYED76qKwhiEio0dSbiBSlY0fTvHr58jLdTeBOvcFfRd0ff2zmF0VERERO5uefYfZs/4wmgcVECeDWW80qv5Mm2YxCREREgsX48RAVBTfd5J/9WU2UoqPNAx0/3hRmiYiIiBTl8GF47TXo0QNOOcU/+7S+iMjdd5uCrNmzbUciIiIigWz6dFObdPfd/tuntWLu/Bu7ISEBYmJg5syyhiIiwc7lcuFyucjJyWHTpk0q5haRfFdeCUePwuLFXrk7j4q5rSdKYGqU7rwTfvwR/vGPst6biIQCnfUmIgVt2ABNmsCUKaZ/khcE9llvBd10E1SvrvXfRERE5MRefRVOOw1uuMG/+w2IRKlKFbj9dlOgdeiQ7WhEREQkkBw8CCkpcMcd5mx5fwqIRAlMP4Tff4f33rMdiYiIiASSd9+FvXv9W8R9TEDUKB3ToQNkZsKyZd66RxEJVqpREpFjWrUyJTpz5nj1boOnRumYe++Fr7+GlSttRyIiIiKBYPVqkxv4qxP38QIqUerYEeLiYOxY25GIiIhIIBg7Fs44A667zs7+AypRiogwGeOUKbBnj+1oRMQGl8tFfHw8CQkJtkMREcv27oW33za1SRERdmIIqBolgIwMM6r0/PNw//3evGcRCSaqURKRkSPhoYdg+3aIjfX63QdfjRKYDt3/+Y8ZasvNtR2NiIiI2JCbCy6XyQl8kCR5LOASJTBF3Zs3w/z5tiMRERERG+bNMyt29OtnN46Am3oDs/5bixZmOZNp07x97yISDDT1JhLeOnWCHTtg1SpwPJokK7HgnHoDc0DuvRc+/hjS0mxHIyIiIv60dSvMnGlGk3yUJHksIBMlgFtugVNO0fpvIiIi4WbsWNNg0kuL35ZJwCZKVatCz54wYQIcPmw7GhEREfGHgwfN2q+3327WgrUtYBMlgD59YPdu+Ogj25GIiL+oj5JIeJs61fRS7NPHdiRGQBZzF3TllXD0KCxe7Mu9iEigUTG3SPhxuyEhAWrVglmzfL674C3mLujee2HJEli71nYkIiIi4kvffGPWe7XdEqCggE+UOneG2rVhzBjbkYiIiIgvjR5tWgNdc43tSP4S8IlShQrQuzdMngxZWbajEREREV/YvRvee8/UJpULoOwkgEIpWu/ekJ0NKSm2IxEJP2PHjqVZs2ZERUURFRVFYmIis2fPLnL7lJQUHMcpdKlUqZIfIxaRYDRxokmQ7rjDdiSFBUWiVKeOWetl9Git/ybib3Xr1mXYsGGsXLmSFStWcOWVV9K5c2fWr19f5G2ioqLYtWtX/mXbtm1+jFhEgs3RozBuHNx8M9SsaTuawiJsB+Cp/v3hkktg7ly49lrb0YiEj06dOhX6+dlnn2Xs2LEsW7aMc88994S3cRyHWJurWIpIUPnkE7MSR9++tiP5u6AYUQJITIQLLoBXXrEdiUj4ysnJYerUqRw4cIDExMQit9u/fz/16tUjLi7upKNPx2RnZ5OVlVXoIiLhweX663M+0ARNouQ4cN99MHs2bNpkOxqR8LJ27VqqVq1KZGQk99xzD9OmTSM+Pv6E2zZq1IhJkyYxY8YM3nrrLXJzc2ndujU7duwodh/JyclER0fnX+Li4nzxUEQkwPzwA8yfH1gtAQoK+IaTBR06BHFxZg5z1Ch/7VVEDh8+zPbt28nMzOSDDz5g4sSJLFq0qMhkqaAjR47QpEkTunfvztNPP13kdtnZ2WRnZ+f/nJWVRVxcnBpOioS4/v3N2W7bt0NkpF937VHDyaBKlAD+7//g5Zfhl1+gWjV/7llEjmnXrh0NGjTgVQ9Xre7atSsRERG88847Hu9DnblFQl9mJtStCwMHQjHfo3wlNDpzH++ee+DPP+GNN2xHIhK+cnNzC43+FCcnJ4e1a9dSu3ZtH0clIsHm9dfNbFGgrOt2IkGXKNWtC//+tynqVqsAEd9LSkpi8eLF/Pzzz6xdu5akpCQWLlzILbfcAkCPHj1ISkrK337o0KF89tlnbNmyhVWrVnHrrbeybds27rzzTlsPQUQCUE6O+Szv2tW0AQpUQdMeoKD+/eGyy2DePOjQwXY0IqFt9+7d9OjRg127dhEdHU2zZs2YO3cu7du3B2D79u2UK9BGd8+ePdx1112kp6dTo0YNWrZsydKlSz2qZxKR8DFrFmzZAlOm2I6keEFXowRmdeGWLc0acDNn+nvvIuIPqlESCW3t2sH+/bBsmbUQQrNGCUyrgP79TTa6ebPtaERERKQk1q0zLQEGDLAdyckFZaIEcNNNcOqppkmViIQOl8tFfHw8CQkJtkMRER95+WUzK/Tvf9uO5OSCcurtmEceMYnSjh1qFSASajT1JhKafv/dnJj16KOm5Y9FoTv1dkyfPnDgALz5pu1IRERExBMTJpha47vvth2JZ4I6UYqLgxtuMF261SpAREQksB09amaCbr4ZTj/ddjSeCepECUw3z82bzRpwIiIiErimTTPlMvfdZzsSzwV1jRKY4btWrUyN0uef24xERLxJNUoioefSS6F8eVi0yHYkQDjUKIFpFXD//eY0w+++sx2NiIiInMjKlfDVV8HREqCgoE+UwJxeWLcujBxpOxIRERE5kVGjoF496NzZdiQlExKJUoUK0K8fvP02ZGTYjkZEREQKSk+HqVPNZ3X58rajKZmQSJQAeveGiAgYN852JCJSFmo4KRJ6Xn3VDGr06mU7kpIL+mLugvr2hQ8+gG3boFIl29GISFmomFskNGRnmym366+HsWNtR1NIeBRzFzRgAOzeDe+8YzsSERERATPllpERXC0BCgqpESWATp3MiNK335oz4kQkOGlESST4ud3QvLlpED1zpu1o/ib8RpTAtApYuxYWLLAdiYiISHj7/HPzmfzAA7YjKb2QG1Fyu6FFCzjzTPjkE9vRiEhpaURJJPhdey3s2gWrVwfkLE94jig5jlnW5NNPYdMm29GIiIiEp/XrYc4cM5oUgEmSx0IuUQLo3h1q1TLNrURERMT/XnwR6tSBbt1sR1I2IZkoVaoE994LKSnwxx+2oxGRklAfJZHgl5EBb70F/ftDxYq2oymbkKtROmb3blOn9NRTMGSI7WhEpKRUoyQSvB5/3IwopaVBjRq2oylSeNYoHVOrFtxyC4weDUeO2I5GREQkPPz5J4wZA3fcEdBJksdCNlECU9S9Ywd8+KHtSERERMLD5Mmm7GXAANuReEfITr0d064d7NsHy5YFd9W9SLjR1JtI8MnNhSZNoGnToBikCO+pt2MGDYJvvoGvvrIdiYiISGibOdO05gnmBpPHC/kRpdxcOO88aNgQZsywHY2IeEojSiLBp21bOHgQUlODYhZHI0oA5cqZzPbjj2HjRtvRiIiIhKZVq2DhwuBvMHm8kE+UwJz9Vrs2jBhhOxIREZHQNGIEnHUWXH+97Ui8KywSpchIuO8+ePNN0wRLRAKXGk6KBJ+0NHjvPXOmW0SE7Wi8K+RrlI7Zuxfi4swf8ZlnbEcjIiejGiWR4PHQQzB+vEmYqlWzHY3HVKNUUPXqcOedpgnW/v22oxEREQkN+/aZJKl376BKkjwWNokSmAaUWVnw+uu2IxEREQkNkybBgQNmXbdQFFaJUr16ZhXjF1+Eo0dtRyMSHMaOHUuzZs2IiooiKiqKxMREZs+eXext3n//fRo3bkylSpU477zzmDVrlp+iFRF/OnoURo6EG2805S2hKKwSJYAHH4Sffw6KjqEiAaFu3boMGzaMlStXsmLFCq688ko6d+7M+vXrT7j90qVL6d69O7169WL16tV06dKFLl26sG7dOj9HLiK+Nm2a+UwdNMh2JL4TNsXcBbVrZ4q7ly8PrV4PIv5Ss2ZNhg8fTq9evf72u27dunHgwAE+/fTT/OtatWpFixYtGDdunMf7UDG3SGBzuyEhAaKjYf5829GUioq5izJ4MKxcCYsW2Y5EJLjk5OQwdepUDhw4QGJi4gm3SU1NpV27doWu69ChA6mpqcXed3Z2NllZWYUuIhK4Fiwwn6VDhtiOxLfCMlG6+mqzrMnw4bYjEQkOa9eupWrVqkRGRnLPPfcwbdo04uPjT7hteno6MTExha6LiYkhPT292H0kJycTHR2df4kL1YIHkRDx/PPQogW0b287Et8Ky0TJcUyt0qxZUESZhYgU0KhRI9asWcPXX39Nnz596NmzJ99//71X95GUlERmZmb+JS0tzav3LyLes2oVzJtn+ieFeglLWCZKADfdBGecAS+8YDsSkcBXsWJFGjZsSMuWLUlOTqZ58+aMGjXqhNvGxsaScVwL/IyMDGJjY4vdR2RkZP6ZdccuIhKYhg+H+vWha1fbkfhe2CZKFSuaLt1vvw07d9qORiS45Obmkp2dfcLfJSYmMv+4ys558+YVWdMkIsFlyxazXMkDD4TeciUnEraJEpguopUqwcsv245EJHAlJSWxePFifv75Z9auXUtSUhILFy7klltuAaBHjx4kJSXlbz9gwADmzJnDiBEj2LBhA08++SQrVqygX79+th6CiHjRiBFQsybcfrvtSPwjrBOl6Gi4+24YOxYyM21HIxKYdu/eTY8ePWjUqBFXXXUVy5cvZ+7cubTPq+Dcvn07u3btyt++devWTJkyhfHjx9O8eXM++OADpk+fTtOmTW09BBHxkt27TSfu++6DKlVsR+MfYdlHqaCdO80869ChoX+Ko0gwUR8lkcDz2GPw0kuwfbsZVQpy6qPkiTp1oGdP84c/eNB2NCIiIoFp/35wueCuu0IiSfJY2CdKYBpQ/vorpKTYjkRERCQwTZwI+/bB/ffbjsS/lCgBZ58N//mPOd1Ri+WK2OVyuYiPjychIcF2KCKS58gRs6B89+5w5pm2o/GvsK9ROmb1arjgAtMu4OabbUcjIqpREgkcb75pylTWroUQOi/DoxolJUoFXHst/PILfPtt6HcaFQl0SpREAkNuLjRrBmedBQXWug4FKuYuqaQkky3PmmU7EhERkcAwe7ZZ7itczwzXiFIBbjdccgmUKwdffmk7GpHwphElkcBw+eWmfverr0JutkUjSiXlOGZU6auvYMkS29GIiIjY9eWX5vNwyJCQS5I8phGl4+TmQvPmpqp/5kzb0YiEL40oidh37bWwY4ep3S0XekMrGlEqjXLl4OGHTZ3St9/ajkZERMSOlSthzhx45JGQTJI8FsYPvWjdupnq/mHDbEciEn7UR0kkMDz3HDRsCDfeaDsSuzT1VoQxY6B/f9i0CRo0sB2NSPjR1JuIPevXm35Jr70Gd9xhOxqf0dRbWdx+O5x2munWLSIiEk6SkyEuDm691XYk9ilRKkLlymY9m9dfh127bEcjIiLiHz/+CO+8Y850q1jRdjT2KVEqRp8+UKkSvPSS7UhERET84/nn4fTTQ3rKrUSUKBUjOhr69TP1Sr//bjsaERER30pLgzfegAceMDMrokTppAYONB27R460HYmIiIhvDR8O1arBPffYjiRwKFE6idNPN1NwL78Me/fajkZERMQ3MjJgwgQYMMAkS2IoUfLAAw9AdjaMHm07EhEREd946SWoUMG0xpG/KFHyQO3acNdd5km0f7/taERCmxpOivjfH3+AywV9+0KNGrajCSxqOOmhtDTTePLZZ2HwYNvRiIQ+NZwU8Z+nnjJnu/38M9SqZTsav1HDSW+Ki4P//hdeeAEOHrQdjYiIiHfs2wejRpmZkzBKkjymRKkEHn7YtAmYMMF2JCIiIt4xdqwpK9FsyYkpUSqBf/wDbrkF/vc/U9wtIiISzA4ehBEjzIxJ3bq2owlMSpRKKCkJdu6ElBTbkYiIiJTNxInw229muRI5MRVzl0K3bvDNN7BpkzmVUkS8T8XcIr51+DA0bAht2sDkybajsULF3L7y6KPmzIC33rIdiYiISOmkpMCOHWamRIqmEaVSuv56WLsWNmyAiAjb0YiEDpfLhcvlIicnh02bNmlEScQHDh+Gs8+G1q3hnXdsR2ONRyNKSpRKac0aOP98eP11UwQnIt6lqTcR3xk/3qzntm4dxMfbjsYaJUq+dsMN8O23ZlRJtUoi3qVEScQ3NJqUTzVKvvbEE7BlS9gWwYmISBBKSTGrTTz2mO1IgoMSpTJo3tyMKj3zDBw5YjsaEd9ITk4mISGBatWqUatWLbp06cLGjRuLvU1KSgqO4xS6VKpUyU8Ri0hRDh82S3F16xbWU24lokSpjJ54ArZuhTfftB2JiG8sWrSIvn37smzZMubNm8eRI0e4+uqrOXDgQLG3i4qKYteuXfmXbdu2+SliESmKRpNKTjVKXtC1K6xYARs3QsWKtqMR8a1ff/2VWrVqsWjRIi6//PITbpOSksLAgQPZu3dvqfejGiUR71Jt0t+oRslfnnjC9FV64w3bkYj4XmZmJgA1a9Ysdrv9+/dTr1494uLi6Ny5M+vXr/dHeCJSBI0mlY5GlLzkxhv/6tatUSUJVbm5ufzrX/9i7969fPnll0Vul5qayubNm2nWrBmZmZm88MILLF68mPXr11O3iAWlsrOzyS6wiGJWVhZxcXEaURLxAo0mnZDaA/jT+vVw3nkwbhz07m07GhHf6NOnD7Nnz+bLL78sMuE5kSNHjtCkSRO6d+/O008/fcJtnnzySZ566qm/Xa9ESaTs1DfphJQo+dtNN0FqKmzerFElCT39+vVjxowZLF68mPr165f49l27diUiIoJ3ivg6qxElEd/QaFKRVKPkb48/buZ/J02yHYmI97jdbvr168e0adNYsGBBqZKknJwc1q5dS+3atYvcJjIykqioqEIXESk71SaVjUaUvOzmm+HLL82oUmSk7WhEyu7ee+9lypQpzJgxg0aNGuVfHx0dTeXKlQHo0aMHZ5xxBsnJyQAMHTqUVq1a0bBhQ/bu3cvw4cOZPn06K1euJN7DcX+d9SZSdhpNKpZGlGx47DGzGrNGlSRUjB07lszMTK644gpq166df3n33Xfzt9m+fTu7du3K/3nPnj3cddddNGnShH/+859kZWWxdOlSj5MkEfGO117TaFJZaUTJB265BRYvhh9/1KiSSGlpREmkbA4ehIYN4cortdRWETSiZMvjj8POnTBxou1IREQkXI0dCxkZpteflJ5GlHzktttgwQL46SfQElciJacRJZHS278f6teH6683rQHkhDSiZNNjj0F6Orz6qu1IRIKLy+UiPj6ehIQE26GIBK1RoyArC/7v/2xHEvw0ouRDvXrBJ5/Ali1QtartaESCi0aUREpnzx4zmtSjB7z8su1oAppGlGx7/HHIzDSZvYiIiD+MGGHaAjzyiO1IQoMSJR+qV8+0jB8+3GT4IiIivvTrrzByJPTvD7GxtqMJDUqUfOyRR+DIEZMsiYiI+NKwYVCuHDz0kO1IQocSJR+LiYGBA830W3q67WhERCRU/fILjBkDgwbBqafajiZ0KFHygwcfNIvkPvec7UhERCRUPfssVKkC999vO5LQokTJD2rUMMOg48bBtm22oxERkVCzdatpcvzQQxAdbTua0KJEyU/uu88kTE89ZTsSEREJNUOHQs2a0K+f7UhCjxIlPznlFHj0UXjjDdiwwXY0IoFLDSdFSmbjRnjzTXPy0Cmn2I4m9KjhpB9lZ8PZZ0OrVvDee7ajEQlsajgp4pkbb4TUVNi8WUtmlZAaTgaayEh48kl4/31Ytcp2NCIiEuyWLzefKUOHKknyFY0o+dnRo3DuudCgAcyaZTsakcClESWR4rndcNVVsHs3fPstlC9vO6KgoxGlQBQRAU8/DbNnw5df2o5GRESC1WefwRdfmNYzSpJ8RyNKFuTmQsuWZqHcxYvB8SinFQkvGlESKdqxz5FTToElS/Q5UkoaUQpU5cpBcrIZUfr0U9vRiIhIsHn3XVizBp5/XkmSr2lEyZJjc8sZGfDddxo2FTmeRpRETuzwYWjSBJo2hRkzbEcT1DSiFMgcx3wT+P570/9CRAz1URIp3vjx8PPPWhbLXzSiZFm3brB0KWzaBJUr245GJHBoREnk7/btM2dNX3cdTJpkO5qgpxGlYPDss5CeDq+8YjsSEREJdC++CFlZWg7Ln5QoWdawIdx9tynu/uMP29GIiEig2r0bXnjBrOcWF2c7mvChRCkAPPaYaUSZnGw7EhERCVTPPGNO/ElKsh1JeFGiFABiYuDBB8302/bttqMREZFAs2ULjBsHQ4bAqafajia8qJg7QOzbZ6bhrr0WUlJsRyNin4q5Rf5yyy2mC/ePP0KVKrajCRkq5g4m1arB44+bVgFr19qORkREAsXq1TBlillUXUmS/2lEKYAcOQLx8XD22VowV8KXy+XC5XKRk5PDpk2bNKIkYc3thnbtYOdO8yU6IsJ2RCHFoxElJUoB5oMPoGtXmDfPvDhEwpWm3kRg5kzTM+mTT8y/4lVKlIKR2w2XXWZqllat0tImEr6UKEm4O3oUmjWD2FiYP19ruvmAapSCkePAiBFm/bc33rAdjYiI2DJxImzYYD4TlCTZoxGlANW9OyxaZJY2qVrVdjQi/qcRJQlnWVmmXvWaa/Sl2Yc0ohTMjnXqfuEF25FIuEtOTiYhIYFq1apRq1YtunTpwsaNG096u/fff5/GjRtTqVIlzjvvPGbpDAURjz3/vEmWnnnGdiSiRClAnXUWDBgAw4ebsx1EbFm0aBF9+/Zl2bJlzJs3jyNHjnD11Vdz4MCBIm+zdOlSunfvTq9evVi9ejVdunShS5curFu3zo+RiwSntDSzptsDD2ipkkCgqbcAlplpmlB26qRVoiVw/Prrr9SqVYtFixZx+eWXn3Cbbt26ceDAAT799NP861q1akWLFi0YN26cR/vR1JuEq549Yc4c01yyWjXb0YQ0Tb0Fu+ho02AsJQXWrLEcjEiezMxMAGrWrFnkNqmpqbQ7rr9Fhw4dSE1NLfI22dnZZGVlFbqIhJtVq0zj4aeeUpIUKJQoBbjeveGcc8xacGUf/BMpm9zcXAYOHMgll1xC06ZNi9wuPT2dmJiYQtfFxMSQnp5e5G2Sk5OJjo7Ov8RpzkHCjNttptuaNIE777QdjRyjRCnAVahg6pTmz1e3brGvb9++rFu3jqlTp3r9vpOSksjMzMy/pKWleX0fIoHsk09g4UL43//UgTuQ6E8RBK67Dtq2hcGDoUMHvYDEjn79+vHpp5+yePFi6tatW+y2sbGxZGRkFLouIyOD2NjYIm8TGRlJZGSkV2IVCTbZ2WY0qX176NjRdjRSkEaUgsCxJpQbNsD48bajkXDjdrvp168f06ZNY8GCBdSvX/+kt0lMTGT+/PmFrps3bx6JiYm+ClMkqL3yCmzdCi+9pOaSgUZnvQWRO+6AGTNg82Yopo5WxKvuvfdepkyZwowZM2jUqFH+9dHR0VSuXBmAHj16cMYZZ5CcnAyY9gBt2rRh2LBhdOzYkalTp/Lcc8+xatWqYmubCtJZbxIudu82zSVvuw1Gj7YdTVjRWW+h5rnn4MgRcyaciL+MHTuWzMxMrrjiCmrXrp1/effdd/O32b59O7t27cr/uXXr1kyZMoXx48fTvHlzPvjgA6ZPn+5xkiQSTv7v/6BcOXOmmwQejSgFmeHDISkJvv0Wzj3XdjQivqMRJQkHa9bABReYKbcBA2xHE3Y8GlFSohRksrOhaVOoXx/mztVctoQuJUoS6txuc6JORoZZCL1CBdsRhR1NvYWiyEjT2n7ePPj4Y9vRiHify+UiPj6ehIQE26GI+NS0aWbx8xdfVJIUyDSiFITcbrOi9I8/wvffm+RJJNRoRElC2aFDEB8PjRurR55FGlEKVY4DI0fCtm3mXxERCS4jR/61+K0ENiVKQapJE+jXD555BgqcbCQiIgFu50549lno29eMKElgU6IUxJ54wky7JSXZjkRERDw1eDBUrqxWL8FCiVIQq1HDjCi98QZ8843taERE5GQWL4YpU2DYMKhe3XY04gkVcwe5nBzTg6NyZVi61DQtEwkFKuaWUHP0qHm/rlJF79cBQsXc4aB8eRg1Cr7+Gt5803Y0IiJSlDFjYN06cLmUJAUTjSiFiO7dYf582LRJw7kSGjSiJKEkIwPOOce8V48bZzsayaMRpXDywgtw8CA89pjtSETKRg0nJRQ9/DBERJiz3SS4aEQphIwYAQ89BCtXQosWtqMRKRuNKEmoSE2F1q3h1Vehd2/b0UgBWust3Bw5YhKk6tVhyRLNgUtwU6IkoSAnBxISzPvx11+bulIJGJp6CzcVKpgiwaVLVdgtIhIIxo+H1avNe7OSpOCkEaUQdPPN8PnnsHGj6bUkEow0oiTB7rffTAH39dfDa6/ZjkZOQCNK4epYYffjj9uOREQkfD3yiFnEfNgw25FIWShRCkF16sBTT5meHatX245GRCT8LF8OEyea1RNOP912NFIWmnoLUUeOwPnnQ1QUfPmlCrsl+GjqTYJVbi60agWHD8OKFaYtgAQkTb2Fs2OF3ampZi04kWChPkoS7F57zYwouVxKkkKBRpRC3K23wty5prC7Zk3b0Yh4TiNKEox274bGjaFzZ3j9ddvRyEloRElMYfeRIzBkiO1IRERC34MPmlKH4cNtRyLeokQpxMXGQnKyKSr88kvb0YiIhK4FC2DyZJMknXaa7WjEWzT1FgZyc037/P37YdUqqFjRdkQiJ6epNwkm2dnQrBnExMCiReB4NKkjlmnqTYxy5cwaQxs2wIsv2o5GRCT0PP88bN0K48YpSQo1SpTCRPPmMHAgDB0KW7bYjkZEJHRs3gzPPQeDB0N8vO1oxNs09RZG9u+Hc881L+RZs/StRwKbpt4kGLjd0L69+QK6bh1UqWI7IikBTb1JYVWrwujRMGcOvP++7WhERILflCkwf75ZCUFJUmjSiFIYuuEG04jyhx+genXb0YgU5nK5cLlc5OTksGnTJo0oScD6/Xdo0gTatoV337UdjZSCRyNKSpTC0I4dZvrtpptg/Hjb0YicmKbeJND17AmffALff29asUjQ0dSbnFjduvC//8GECfDFF7ajEREJPnPnwptvwogRSpJCnUaUwlRurhku/uUX+O47za1L4NGIkgSq/fuhaVNo2BDmzdOJMUFMI0pStHLlzIjSjh3w5JO2o5FAt3jxYjp16kSdOnVwHIfp06cXu/3ChQtxHOdvl/T0dP8ELOJDjz1m1nQbP15JUjhQohTGzjkHnnjCDB2vXGk7GglkBw4coHnz5rhcrhLdbuPGjezatSv/UqtWLR9FKOIfX38No0bB00/DP/5hOxrxB029hbkjR+Cii0wvkOXLoUIF2xFJoHMch2nTptGlS5cit1m4cCFt27Zlz549VC/lqZWaepNAc/gwtGwJkZGwbBlERNiOSMpIU29ychUqmAVz166FF16wHY2EmhYtWlC7dm3at2/PV199Vey22dnZZGVlFbqIBJLnnzdtVV57TUlSOFGiJLRsCQ88AE89BRs32o5GQkHt2rUZN24cH374IR9++CFxcXFcccUVrFq1qsjbJCcnEx0dnX+Ji4vzY8QixfvhB3jmGXjoIbMklIQPTb0JAH/+aVa+rlMHFi40xd4iJ+LJ1NuJtGnThjPPPJPJkyef8PfZ2dlkZ2fn/5yVlUVcXJym3sS63Fy4/HL49Vf49luoVMl2ROIlmnoTz1WpYs6CW7JETSjFNy666CJ+/PHHIn8fGRlJVFRUoYtIIBg7Fr76yrxHKkkKP0qUJF/btnDnnWZoeccO29FIqFmzZg21a9e2HYZIiWzdCkOGwN13m1ElCT8qR5NChg+HWbOgd2+YOVM9QsTYv39/odGgrVu3smbNGmrWrMmZZ55JUlISv/zyC2+++SYAI0eOpH79+px77rkcOnSIiRMnsmDBAj777DNbD0GkxHJzoVcvOO00894o4UmJkhRSvbqZervuOnj9dbjjDtsRSSBYsWIFbdu2zf950KBBAPTs2ZOUlBR27drF9u3b839/+PBhHnjgAX755ReqVKlCs2bN+Pzzzwvdh0igGzfOLPP0+edQrZrtaMQWFXPLCd1xB3z4oWkbcOaZtqORcKQ+SmLTli1w3nlm4dsxY2xHIz7i0ZyJEiU5ob17zZtEkyZm8UdNwYm/KVESW3Jz4corYds282WxalXbEYmP6Kw3Kb3q1U0jynnzzL8iIuFizBhYtAgmTVKSJEqUpBgdOpiz4AYNMt+sRPzB5XIRHx9PQkKC7VAkDP30kznLrW9fcyawiKbepFhZWdC0KZx9thldUiNK8RdNvYm/5eaa5CgtDb77TqNJYUBTb1J2UVFmXaMFC+DVV21HIyLiO6NHw+LF5oxfJUlyjBIlOan27U2ztcGDoZjGyiIiQWvDBnj4YejfH9q0sR2NBBJNvYlH9u2DFi2gVi2zzIlWzhZf09Sb+MuRI9C6tXmfW7XKLOkkYUFTb+I91arBW2/BN99AcrLtaEREvGfoUFizxrzHKUmS4ylREo8lJsIjj8BTT8Hy5bajEREpu9RUeO45eOIJuPBC29FIINLUm5TIsSHqrCwzRH3KKbYjklClqTfxtf37TUnB6aerpCBMaepNvK9CBTM8nZYGDz5oOxoJReqjJP5y//2Qng6TJytJkqJpRElKZcwY05Dt00+hY0fb0Ugo0oiS+NLHH0PnzmYR8Lvush2NWKK13sR33G6TIK1aZdZCOv102xFJqFGiJL6SkWHWsmzVCmbM0FqWYUxTb+I7jmPWQcrJMd/Gyp5vi4j4ntttlmYCmDBBSZKcnBIlKbXYWPNGM2OGSZpERALdhAmmZGDiRIiJsR2NBANNvUmZ9eoF775r+pA0bGg7GgkVmnoTb/vhB2jZEm691dQmSdhTjZL4x759cP75UKMGfPUVVKxoOyIJBUqUxJsOHYKLLzYtTlasUGNJAVSjJP5SrRpMnQrffmsaUoqIBJrBg2HjRvNepSRJSkKJknjFhReapU1GjIDZs21HIyLyl48/htGjzftTs2a2o5Fgo6k38ZrcXLjuOjOs/e23ULu27YgkGLlcLlwuFzk5OWzatElTb1Imv/xikqNLL4Xp03WWmxSiGiXxv927oXlzOPdc+OwzKKcxSykl1ShJWeXkQLt2sHmz+fJ26qm2I5IAoxol8b9atcwSJwsWwPPP245GRMLZsGGwaJF5T1KSJKWlREm87qqrICkJHnvMrMwtIuJvS5fCE0/Ao4/CFVfYjkaCmabexCeOHIE2bWDnTtNfqXp12xFJsNHUm5TWb7+ZliVnnmlGlLTgrRRBU29iT4UK8M47kJkJd9yhJU5ExD9yc6FHDzh40LQCUJIkZaVESXymXj1ISYFp0+DFF21HIyLhYNgwmDPH1CXFxdmORkKBEiXxqc6d4aGHYMgQWLLEdjQiEsoWLjS1kY8+CtdcYzsaCRWqURKfO3rUnKK7aROsWmUW0xUpivooSWmkp5u6pCZNYN48KF/edkQSBNRHSQLHsTexxo3Nm5jqBuRkVMwtnsrJgfbtzaK3q1fry5h4TMXcEjhiY01h5ZIlZmhcRMRbnnzSnN32zjtKksT7lCiJ37RpA889Z4otP/7YdjQiEgrmzoVnn4Wnn1a/JPENJUriV4MHmwLvHj1gyxbb0YinFi9eTKdOnahTpw6O4zB9+vST3mbhwoVccMEFREZG0rBhQ1JSUnwep4SXLVuge3dTuP3ww7ajkVClREn8ynFMy4DTToP//AcOHbIdkXjiwIEDNG/eHJfL5dH2W7dupWPHjrRt25Y1a9YwcOBA7rzzTubOnevjSCVc/Pkn3HAD1KgBb7+tdSXFd1TMLVasWQOJiXDrrTBhgu1opCQcx2HatGl06dKlyG2GDBnCzJkzWbduXf51N910E3v37mXOnDke7UfF3FIUt9u8d0yfDsuWwXnn2Y5IgpSKuSVwtWgBLhdMnAivv247GvG21NRU2rVrV+i6Dh06kKrF/8QLRo6EKVNg0iQlSeJ7OklbrLnjDrNwZZ8+EB8PF19sOyLxlvT0dGJiYgpdFxMTQ1ZWFgcPHqRy5cp/u012djbZ2dn5P2dlZfk8Tgk+X3xhah0HD4Zu3WxHI+FAI0pilcsFF1wA119vFtCV8JWcnEx0dHT+JU7rT8hxtm+HG280Z7c995ztaCRcKFESqyIj4cMPTSHmDTeouDtUxMbGkpGRUei6jIwMoqKiTjiaBJCUlERmZmb+JS0tzR+hSpA4eNC8R5xyiha7Ff9SoiTW1a5tFs5dswbuuccUakpwS0xMZP78+YWumzdvHomJiUXeJjIykqioqEIXETDvCX36wPr15r3itNNsRyThRImSBISEBHjtNXjjDRg1ynY0crz9+/ezZs0a1qxZA5jT/9esWcP27dsBMxrUo0eP/O3vuecetmzZwkMPPcSGDRsYM2YM7733Hvfff7+N8CXIuVzmvWH8eLMUkog/afBSAsYtt8C338IDD8C555q1myQwrFixgrZt2+b/PGjQIAB69uxJSkoKu3btyk+aAOrXr8/MmTO5//77GTVqFHXr1mXixIl06NDB77FLcPv8cxg4EAYMgNtusx2NhCP1UZKAkpMD110HX38N33wDDRvajkhsUR8l2bgRWrUyZ8R++qnqksTrPOqjpERJAs7eveaNMSICUlNBn5HhSYlSePvjD5MkHXsfiI62HZGEIDWclOBUvTrMmAE7dpjuuzk5tiMSEX86cgS6doXff4dPPlGSJHYpUZKA1LgxvPMOzJypxS7DjcvlIj4+noSEBNuhiAVuN/TvD0uWwEcfQYMGtiOScKepNwlor7wC991nzna56y7b0Yg/aeotPL38sincnjgRevWyHY2EOI+m3lQaJwGtf39T0HnvvVC/Phy3fJiIhJA5c+D++82Zr0qSJFBoREkC3tGj0KmTKehcutSsCyehTyNK4eXbb+Gyy6BNG5g+HcqXtx2RhAGd9SahIysLLr0UMjNNwlSnju2IxNeUKIWPHTvMGW4xMbBoEVStajsiCRM6601CR1QUzJoFubnwz3+axElEgl9mpnlNR0SYXklKkiTQKFGSoFG3LsyeDT//bBbHPHzYdkQiUhaHD8O//w1paeaLUO3atiMS+TslShJUmjY1PZaWLIE77jAjTCISfNxucybrkiWmJkm1hxKolChJ0GnTBiZPhrffhkcesR2NiJTGk0/Cm29CSop5TYsEKrUHkKB0443wyy8waJCZkuvXz3ZE4i0ulwuXy0WOWrKHrAkTYOhQGDYMune3HY1I8XTWmwS1Bx6Al16CDz4wdUsSOnTWW2j64APo1g369DENZR2PzjsS8Qmd9Sahb/hwM7p0883w5Ze2oxGR4sybZ16rN91kOnArSZJgoERJglq5cvDGG5CYCP/6F6xbZzsiETmRZcvg+uuhfXtTl1ROnz4SJPRUlaAXGQnTpkFcnHkT/vFH2xGJSEHr1pleSeefD++/DxUq2I5IxHNKlCQkVK8On31mGlO2a2f6soiIfVu3wtVXw5lnwiefQJUqtiMSKRklShIyYmLg88/N/9u1g9277cYjEu7S080ob5UqZsHb6tVtRyRSckqUJKTExZlkKSvLfIvds8d2RCLhae9euOYaOHjQFHHHxtqOSKR0lChJyGnY0Lwxp6WZuoh9+2xHJCXhcrmIj48nISHBdihSSvv2QceOsH07zJ0L9evbjkik9NRHSULWihVw5ZVw4YVmHalKlWxHJCWhPkrBaf9+8wVlzRrzheXii21HJFIk9VGS8HbhhTBzpjktuWtXLaIr4msHDsB115kkae5cJUkSGpQoSUi77DLTOmDePPjPf5QsifjKn39Cp06wcqUp3E5MtB2RiHcoUZKQ16GDWZ38s8+ULIn4wsGDpuHrN9/A7NnQurXtiES8R4mShIVrrlGyJOILBw9C586QmmpqAS+91HZEIt6lREnChpIlEe86dMgsS/Lll6Ye8PLLbUck4n1KlCSsKFkS8Y5Dh+Df/4ZFi+DTT+GKK2xHJOIbSpQk7BRMlrp0MUWoEjjURynwHThgapIWLDDLklx5pe2IRHxHfZQkbM2bZxKlli3NN2K16gks6qMUmLKyTDPJNWvM66ZNG9sRiZSa+iiJFKd9e5MsffcdXHUV/Pab7YhEAtsff5jXyrp15rWjJEnCgRIlCWutW8PChbBtm3nT37nTdkQigSkjw9Qh/fwzfPEFtGplOyIR/1CiJGGvRQtYssRMKVx6KWzZYjsikcDy88/mjLbffoPFi81rRiRcKFESARo1Mqc4ly9vunl//73tiAKPy+XirLPOolKlSlx88cV88803RW6bkpKC4ziFLpW02F5Q+u47M/J69Kj5QtGkie2IRPxLiZJInnr1zAfBqaeab8/Ll9uOKHC8++67DBo0iCeeeIJVq1bRvHlzOnTowO7du4u8TVRUFLt27cq/bNu2zY8RizcsWWJeC7GxsHQpNGhgOyIR/1OiJFJAbKypWTrnHFOPMXOm7YgCw4svvshdd93F7bffTnx8POPGjaNKlSpMmjSpyNs4jkNsbGz+JSYmxo8RS1lNn25OeGjZ0rwm9OeTcKVESeQ4NWvC55/D1VebXjHjx9uOyK7Dhw+zcuVK2rVrl39duXLlaNeuHampqUXebv/+/dSrV4+4uDg6d+7M+vXri91PdnY2WVlZhS5ix4QJpplkp05mWRJ1Z5BwpkRJ5ASqVIEPPoA+feDuu+Gxx6DsLceC02+//UZOTs7fRoRiYmJIT08/4W0aNWrEpEmTmDFjBm+99Ra5ubm0bt2aHTt2FLmf5ORkoqOj8y9xcXFefRxycm63ea737g333ANTp0JkpO2oROxSoiRShPLl4ZVX4H//g2eegf/+V0ueeCoxMZEePXrQokUL2rRpw0cffcTpp5/Oq6++WuRtkpKSyMzMzL+kpaX5MWLJzoZbbzXP9eefh9GjzWtAJNxF2A5AJJA5DgweDHXrQs+eps/S++9D9eq2I/Of0047jfLly5ORkVHo+oyMDGJjYz26jwoVKnD++efz448/FrlNZGQkkRq+sOKPP8zitl9/De++CzfeaDsikcChESURD3TvbtaGW7nSNNrbtMl2RP5TsWJFWrZsyfz58/Ovy83NZf78+SQmJnp0Hzk5Oaxdu5batWv7KkwppU2bzOn/69fD/PlKkkSOp0RJxENXXGG+cTsOXHyxWcIhXAwaNIgJEybwxhtv8MMPP9CnTx8OHDjA7bffDkCPHj1ISkrK337o0KF89tlnbNmyhVWrVnHrrbeybds27rzzTlsPQU5gzhy46CLz/9RUuOQSu/GIBCJNvYmUwNlnw7JlcNNNcO21MHIk9O1rkqdQ1q1bN3799Vcef/xx0tPTadGiBXPmzMkv8N6+fTvlyv31vWvPnj3cddddpKenU6NGDVq2bMnSpUuJj4+39RCkALcbXnwRHnoIrrkGpkyB6GjbUYkEJsdd9lN5wvRcIAlnOTnmQ+bFF80ZQq+8AhUr2o4qtGRlZREdHU1mZiZROj/daw4dMs/ZyZNhyBB49lkVbUvY8ugrrkaUREqhfHkYMQLOPdecRr1xI7z3HtSqZTsykaLt3GmKtr/7Dt5+G26+2XZEIoFPNUoiZXDHHbBgAfzwA1xwAXz1le2Igp/L5SI+Pp6EhATboYSUZcvgwgtNsvTll0qSRDylqTcRL9i5E7p1Mx9G//sfDBwY+nVLvqapN+9wu2HUKDNVnJAAH35oluoREc+m3jSiJOIFdeqYkaWBA2HQIOjaFbQCh9i2d69ZiuT++6F/f/jiCyVJIiWlREnESypUgOHD4aOPTOuACy80tSAiNqxYYaaDv/jCLHA7YoROOBApDSVKIl52/fWmMWWVKqbfUkpK+K4TJ/7ndoPLZXoinXYarFoFnTvbjkokeClREvGBhg1NA7+bb4bbbzf/7t1rOyoJdXv3mlq5fv3MYs5LlkD9+rajEgluSpREfKRyZXjtNXjnHZg9G5o3h8WLbUcloeqLL6BZM5g716xH+PLLoKXzRMpOiZKIj910k6lVOussswzKI4/A4cO2o5JQcegQPPggXHUVNGgAa9fCf/5jOyqR0KFEScQPzjzTnBX37LOm4Lt1a9iwwXZUEuy++86s1fbKK6Ytxfz55rkmIt6jREnET8qXh6QkU7u0bx+0aGE+3I4etR1ZYFHDyZM7etQk3McO0fLlZlSpnN7RRbxODSdFLPjzT3j8cXjpJWjZEiZNgqZNbUcVWNRw8sS++w569TJnVg4aBM88A5Uq2Y5KJCip4aRIoKpSBV54wSx5sm+f6XfzzDNw5IjtyCRQZWfDY4+ZxPrPP2HpUvMcUpIk4ltKlEQsatUKVq+GBx6AJ580UynLltmOSgLN0qVw/vnw/PPw6KOmN1KrVrajEgkPSpRELKtUCZKT4euvISLCFHrffTf88YftyMS233+H3r3h0kuhWjWTID35pE77F/EnJUoiAaJlS5MsvfwyTJ0KjRvDG29Abq7tyMTfcnNhwgQ45xx47z3znFi6VHVsIjYoURIJIOXLm67KGzZAu3bw3/+aEaalS21HJv6SmgqJiWYkqVMn2LjRPCfKl7cdmUh4UqIkEoBq14YpU2DhQtOc8pJLTOPKbdtsRya+smUL3HijSYwPHzZd3FNSICbGdmQi4U2JkkgAa9PGrAL/+uvmg7NRI9PZOyvLdmS+E259lPbsMT2QmjQxI4cpKebU/8susx2ZiID6KIkEjf37TYPKF14whb0PPwz33GPWlAtFod5H6eBBePVVePppc+r/kCHm7McqVWxHJhI21EdJJJRUrQpDh5qalU6dYPBg+Mc/TKHvoUO2oxNPHTpklhxp0MAkRjfcAJs3mx5JSpJEAo8SJZEgExcHEyeahOmaa+D++6FhQxgzxoxMSGDKzgaXy/ytBg6E9u1N0f6ECaYmTUQCkxIlkSDVoIGpXfrhB2jbFvr3h7PPhrFjzbSOBIYDB/5KkO67z/ytfvjBtH44+2zb0YnIyShREgly55wDkyfD+vXm7Li+fc0K8k88Abt3244ufO3caQrv4+JMgnT55eZvNHmy+ZuJSHBQMbdIiPnpJxg50iy0m5MDt91mFk9t0sR2ZCUTrMXcq1ebxY6nTjVd1++6y4z2nXWW7chE5DgeFXMrURIJUX/8AePHm2LvXbvgqqvM0iidO0PFirajO7lgSpSys+Hjj8205xdfQL16MGAA9OoFAR66SDjTWW8i4axmTdNC4Oef4a23zIf5jTeaablHHjEjT1I2339vzlyrW9cc2+xss+TIjz+aInslSSLBTyNKImFk3TrTu2fyZMjMNEtl3Hab+ZA/9VTb0RkulwuXy0VOTg6bNm0KuBGl3bvho4/MMVy61By3nj3N6FF8vO3oRKQENPUmIif2559mqmjyZJg7F8qVg3/+E7p2hY4doXp12xEG1tTb77/DtGnw7ruwYAE4jlmLr1cv+Ne/IDLSangiUjpKlETk5HbvNoXHb78N33wDERFw5ZXQpYupZ6pTx05cthOltDSYPdskSJ9/Drm5cMUV0K0bXH89nH6630MSEe9SoiQiJZOWBjNmwPTpZkHenBw4/3yTOF11lVl/rGpV/8Ti70QpO9tMpc2eDbNmmVP5y5WDSy81U5P//jfExvo8DBHxHyVKIlJ6f/wBM2fCvHkwf77pCxQRARdfbJKmtm0hIQFOOcU3+/d1opSZCampsGSJuXzzjUmWYmLg2mvNpX17qFHD67sWkcCgRElEvMPthk2bTMI0f745BX7PHjPi0qSJSZgSEuDCC01BszdGnbyZKGVlwXffwZo15rJypfk5N9dMoV12mRk5atMGWrQwj0tEQp4SJRHxjZwccwbd8uXmsmKFSTyOHjW/r1cPzj3XdKCuV880Wzz2b/Xqphj6ZEqSKLndZgRs507YscOcnr95s7ls3Ahbt5rtKlSApk1NMnTJJSZBOvtsz+IRkZDj+0TJcRwnMzMzt9R3ICIh49Ah01dowwazltkPP5geTtu3F16st2pVM4pTs6aZ1jr2b8WKRylfPocKFdxUrAi5uftITm7II4+kUb58FEeOwJEjsG+fmTbLyjJno6Wnm4aaR478tY8KFaB+fbMeXoMGJjk67zyTuAVDs00R8b3o6OhoYJ/7JIlQWROlKCCz1HcgIiIiYk+02+3OKm4Dv40oZWVlERcXR1paWonqDRISEli+fHmJYyvN7fy1r9Iei9Lsy5+3Kc3tguFY+HNf4fw6yc7OJrvA0NOuXbu46KKL+P777znjjDOsx2dzX3qdFBaqrxMdi7LdrqTHwtMRpQiPIziBk935iURFRZXoj1m+fPlSFXKW5nb+3BeU/FiUdl86FmW7jb/3BXqdFFStWjUdizx6nRQWaq8THQvv3M7TY3GykaRjAv7cjr59+/rtdv7cV2n563HpWNjbV2kEw+Py1/HQsSj7voLhGJZGoD8uHQvv3M7b/HbWm+0uu4FEx+IvOhaF6Xj8ZceOHfnD6HXr1rUdjlV6XhSm4/EXHYu/lOJYeHTWm99GlCIjI3niiSeI1KJIOhYF6FgUpuPxl2PHQMdCz4vj6Xj8RcfiL746FuqjJCIBSd+URcTH/NZwUkTE6wq0Hznp6bsiIr6iRElEApLjOA5QDQ9O3xUR8RUlSiIiIiJFCPj2ACIiIiK2+CRRchznLMdxXnMcZ6vjOAcdx/nJcZynHMcpdpUlx3EqOY7jchznd8dx9juO86HjODG+iNHfHMd51HGcpY7j/Ok4zl4Pb5PiOI77uMscH4fqc6U8Fo7jOEMdx9mV95z63HGcs30cqs85jlPTcZy3HcfJchxnb97rpupJbrPwBM+Lcf6KWXzDcZy+juP87DjOIcdxvnYc56Jitv3vCZ4Dh/wZr684jnO54zifOI6zM+9xdfHgNlc4jrPKcZxsx3F+dBznv76P1PdKeizyjsPxzwu34zixfgrZZxzHSXIcZ7njOPscx9ntOM50x3EaeXC7ro7jbMh7Xa11HOefJd23r0aUGufd993AucD9wD3Acye53UtAJ6Ar0AaoA3zkoxj9rSLwPjC2hLebA9QucOnu5bhsKM2xeAi4D/M8uhg4AMx1HKeS98Pzq7cxr5H2wHXA5cB4D243gcLPi4d8FaD4nuM43YAXgaeAC4BvMc/vWsXcLIvCz4F6vo7TT07BPH6Pug06jlMfmAl8AbQARgITHcfp4KP4/KlEx6KARhR+buz2clw2tAFcQCvM+2UF4DPHcU4p6gaO47QG3gFeA84HpgPTHcdpWqI9u91uv1yAwcCWYn4fDRwG/lPgusaY9gOt/BWnH47Df4G9Hm6bAky3HbPtY4E5hXMX8OBxz5dDwE22H0cZHn+TvOf3hQWuuwbIBeoUc7uFwEjb8evi1efC18DoAj+XA34BHi5ie4/fR4L5kvf66HKSbZ4H1h133VRgju34LRyLK/K2q247Xj8cj9PzHuvlxWzzLvDpcdctA8aVZF/+rFGKBv4o5vctMRni58eucLvdG4DtQKJvQwtoV+QNM250HGes4zin2g7IgvpALIWfG5mYD5dgfm4kYj7sVhS47nNMonTxSW57i+M4vzmOs85xnGTHcar4LErxqbyShJYUfn7n5v1c3PO7quM42xzHSXMcZ4bjOOf6ONRAlUiBY5dnLsH93lBWa/LKFOY5jnOJ7WB8JDrv3+LyCq88N8q0KK6nHMdpCPQHHixms1jgsNvt3nvc9Rl5vwtHczBTj1uBBpipy9mO4yS63e4cq5H517G/f8Zx1wf7cyOW44bE3W73Ucdx/qD4xzUF2AbsBJphvlE3Am7wUZziW6cB5Tnx87txEbfZCNwBfIf5wHgQWOo4zrlut3uHrwINULGc+NhFOY5T2e12H7QQky27MOUJK4BI4E5goeM4F7vd7lVWI/Mix3HKYaZYv3K73euK2bSo50aJPjdKlCg5jjMMGHKSzZrkjQQdu80ZmA/8991u94SS7C/QleZ4lITb7Z5a4Me1juN8B/yEGV6dX5r79BVfH4tg4umxKO39u93ugjVMax3H2QXMdxyngdvt/qm09yvBw+12pwKpx352HGcp8AOmLvQxW3GJXW63eyMmiT5mqeM4DTB1wrfZiconXEBT4FJ/7KykI0ojMHUzxdly7D+O49TBFNgtBXqf5HbpQEXHcaofN6oUk/e7QFSi41FWbrd7i+M4vwENCbBECd8ei2N//xjMNyYK/LymlPfpS54ei3SgULGu4zgRQE1K9pz/Ou/fhphEWoLLb0AO5vlckMfvfW63+4jjOKsxz4Fwk86Jj11WmI0mFeUb/JRQ+IPjOKPJO/HFg9HTop4bJcopSpQoud3uX4FfPdk2byTpC2AlcHvenHtxVgJHgKuAD/PuoxFwJgW+OQWSkhwPb3Acpy5wKoWThYDg42OxFfPEvoq8xMgxy1tcTMnPIvQ5T4+F4zipQHXHcVq63e6VeVdfiSnk/broW/5Ni7x/A+55ISfndrsPO46zEvP8ng75UwtXAaM9uQ/HccoD5wGzfBRmIEsFjj/luz0B+rlhQQtC4L3BcRwHeAW4HrjC7XZv9eBmqZjX0cgC15X8ueGjavQzgM2YIqozMPOBsUDscdtsAC4qcN1YTO1FW0xx41Jgqe3qei8dkzMxT9jHgX15/28BVC2wzQbg+rz/VwWGY06FPCvvj70S2ARE2n48/jwWeT8PAfYA/8J8IEzHjMpUsv14yngsZgOrgIuAS/L+vlMK/L7Q6wRTq/ZY3uvjrLzj8ROwyPZj0aVMz4NumLM4e2KmZV/Ne77H5P3+TSC5wPaPA1cD/8C0E3gHOAjE234sXjgWVQu8J7gx00YtgDPzfp8MvFlg+/qYdiH/w9R03QscBTrYfiwWjsVAoDNmZLEpJkHIAa6y/Vi8cCzGAHsxbQJiC1wqF9jm+NdJa8wAzAN5z40nMWfXNy3Rvn30gP6b90f926XANmflXXdFgesqYeYe/8h74n9EgeQqmC+YqZgTHZOCj98N/Dfv/5Ux1fm78/6wP2P668TYfiz+PhZ5PzvAUMzI0iFMEn6O7cfihWNRE1OcvQ+zAOwkCieMhV4nQBywCPg97zhsxnxARNl+LLqU+bnQD/NFMRszonhxgd8tBFIK/PxSgW3TMX2Ezrf9GLx0HK4o4v0hJe/3KcDCE9xmdd7x+Knge0cwX0p6LDD91H7EJM2/Y2Z12tp+HF46FifMKY77nCj0Osm7riumbisbWAf8s6T71lpvIiIiIkXQWm8iIiIiRVCiJCIiIlIEJUoiIiIiRVCiJCIiIlIEJUoiIiIiRVCiJCIiIlIEJUoiIiIiRVCiJCIiIlIEJUoiIiIiRVCiJCIiIlIEJUoiIiIiRVCiJCIiIlKE/wfYFlF/32jDtwAAAABJRU5ErkJggg==\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "def f(t):\n", " return t^2\n", "\n", "plot(f, (-2,2))" ] }, { "cell_type": "code", "execution_count": 18, "id": "940fccc6", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAGECAYAAAD3Oh1/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABA6UlEQVR4nO3dd3hTZR/G8W9aaJktINCyZCpDkD1lShFEEbfsIYIo+iogCA4UFVFERbFuEAcoIjJVkCmgWGYB2aNMaQGBll1oz/vHo1WUlrYkOSfJ/bmuXNA05+TXdNx5zrNclmUhIiKSHUF2FyAiIr5LISIiItmmEBERkWxTiIiISLYpREREJNsUIiIikm0KERERyTaFiEgmuYwwl8vlsrsWEafI4YFzavai+KXExETCw8NJTEy0uxQRT8jWmyO1REREJNsUIiIikm0KEfE5S5YsoV27dhQvXhyXy8X06dMve8zixYupVasWoaGhVKhQgQkTJni8TpFAoBARn3Pq1CmqV69OdHR0ph4fFxfHLbfcQosWLYiNjeXxxx/ngQceYO7cuR6uVMT/uTywiq861sVrXC4X06ZN4/bbb0/3MU8++STfffcdv/32W9p9HTp04Pjx48yZMyfTz5WUlJTWsR4WFnYlZYs4kTrWRS5l+fLlREVFXXRf69atWb58eYbHnTt3jqSkJJKSkjh2PImx8854skwRn6QQEb8XHx9PRETERfdFRESQlJTEmTPpB8PIkSMJDw8nPDycQtU788zs3J4uVcTnKERE0jF06FASExNJTExk3GeT7S5HxJE8MdlQxFEiIyNJSEi46L6EhATCwsLInTv91kVoaCihoaEABIcAJHmwShHfpJaI+L2GDRuyYMGCi+6bN28eDRs2zPQ5jpx0d1Ui/kEhIj7n5MmTxMbGEhsbC5ghvLGxsezduxcwl6G6deuW9vi+ffuya9cuBg8ezJYtW3j33Xf5+uuv6d+/f6afc/cRt34JIn5DISI+Z9WqVdSsWZOaNWsCMGDAAGrWrMmwYcMAOHjwYFqgAJQtW5bvvvuOefPmUb16dV5//XU+/vhjWrdunenn3H7IvV+DiL/QPBGRTCj/NOz6PQkmhHP8eCLh4ZonIn5H80REPCHpDOw6ArdWMx8nqH9dJI1CROQy1u4z/95T2/y7TZe2RNIoREQuY9UeyJ0Tbq5qPl6/z956RJxEISJyGav2QM2rITSn+XitQkQkjUJE5DJW74E6pf/+eI1CRCSNQkQkA8dPm+G9ta/++75dh+EPTT4UARQiIhla8+d0k3+2RACW7vB+LSJOpBARycDibVAwD1SM/Pu+0lfB4q321STiJAoRkQzM3wwtK0HwP35TGleARdvsq0nESRQiIulIPAMrdkOryhff3/QaWL9f/SIioBARSdeirZCSCq2qXHz/DeXNvz+pNSKiEBFJz7xNUL4IfD85mipVqlC3bl0AShWCcoVhofpFRBQiIumZt9lcyurXrx+bNm1i5cqVaZ9rfR388Bu4f/1SEd+iEBG5hD1/mPkh/+4P+UvbqmZRxm0Jl/68SKBQiIhcwtyNEOSCFhUv/fkWFSE0B8ze4N26RJxGISJyCdPXmVFYBfNe+vN5Q+GmKjB1jXfrEnEahYjIvySdgQVb4PYaGT/untqwfBfsO+qVskQcSSEi8i8//AbJFy4fIrdVh5Acao1IYFOIiPzLN2ug1tVmeZOMhOeG1lXg69XeqUvEiRQiIv+QdAZmrYeOdTP3eF3SkkCnEBH5h2mxkJwCHTIZIn9d0vpGl7QkQClERP7hyxXQpAKULJi5x/91SWuKLmlJgFKIiPwpIQnmb4FO9bJ23L26pCUBTCEi8qcpq8EF3F0ra8fdVh1y54QvYjxSloijKURE/jThF2hzHVyVL2vHheWGu2rB+F+0lpYEHoWICBC7D1bvhQcaZ+/4XjfAjkOwdLt76xJxOoWICDBuGUSGQdtq2Tu+6TVmefjxv7i3LhGnU4hIwDuTDF+sgB6NIGdw9s4RFAT332D6VZLOuLc+ESdTiEjA+3YtHD8N9ze69Oejoy/elCo93RvC2fMweZUHihRxKJfl/p5AdS2KT2k2GlwuWDww48clJSURHh5OYmIiYWFhl3zMre/A78dh9dPmnCI+JFs/sWqJSEBbvx+WbId+zd1zvv/dCGv3qYNdAodCRALa2EVQosDlV+zNrFaVoXIxGLPAPecTcTqFiASso6dgYgw81Cz7Her/5nLB4zeaTa3ijrjnnCJOphCRgDVuGaRY0Dubc0PS06UBFMwD7yxy73lFnEghIgHpQgpE/wQd6kDRS/eRZ1ueEOjTBD5eBifOuvfcIk6jEJGANHUN7PkDHmvpmfP3aw6nks1SKiL+TCEiAcey4NW5EFXZ7GDoCSULmg2r3l4EqameeQ4RJ1CISMCZv9kMw32ytWef57EbzXpa323w7POI2EkhIgHn1bmmBdKykmefp0E5aFAWXvvRs88jYieFiASU1XtgwRbTCvHGjPKhN8PSHZp8KP5LISIB5dW5UL6I2f/DG26tBlWLw8s/eOf5RLxNISIBY8MB+GaNaYUEe+knPygInroZ5myEVbu985wi3qQQkYAxfDaUucos+e5N99SGSpHw7EzvPq+INyhEJCCs22fmhjzb1n1LnGRWjmB44TbTGlmyzbvPLeJpChEJCM/PNn0hXRvY8/x31YSapeDpGdqHXfyLQkT83uo9MD0WnrvVtArsEBQEI26HZTtMi0TEXyhExO89PwuujYCOGW9MmK7M7mx4OW2ug8YV4OnpmsUu/kM7G4pfi4mDBq/AxF7Qqd6VnSszOxteztLt0HQ0TOkDd9e+snpE3Ew7G4r8k2XBoG+gWgm4r47d1RhNrjEtkmdnmpWERXydQkT81ox1Zrb46Lu9Ny8kM15qD1vi4YsYuysRuXIO+tUScZ/zKTB4KtxUxdycpHZpM2P++dlw7rzd1YhcGYWI+KUPlsCOw/DaXXZXcmkvtIN9R+GDpXZXInJlFCLidxLPmBFZPRvB9SXtrubSqhSHXjfAc7PgyEm7qxHJPoWI+J2RP8CZ8+bdvpONuN10/j87w+5KRLJPISJ+Zc8fMGYBPNEKShS0u5qMFckPz98KHy41y7KI+CKFiPiVQVOhYB4YdJPdlWROvxZQMRL+N1nLoYhvUoiI35i/GaasNp3p+XLZXU3m5AyGMffCku2mdhFfoxARv5B8AR79CppUgM717a4ma26qArdVhye+gdPJdlcjkjUKEfELby2A7YfgnY7e2fbW3d64BxJOwKi5dlcikjUKEfF5+4/B8O+gX3PnDum9nPJFYGCU2b5312G7qxHJPIWI+LwBUyBvCAx3+JDey3nqZiiaHx6epE528R0KEfFpM2JNh/Qb90CBPHZXc2Xy5YJ3O8HcTfDVSrurEckchYj4rOOn4eEv4ZZqV77Mu1PcUs3syf7413D0lN3ViFyeQkR81uCpcOIsvNfJNzvT0/PWfXDugvn6RJxOISI+aeEW+GgZjLoTShXy7HO5a2fDzCoWDq/cAeN+hiXbvPKUItmmnQ3F55xOhmrDoWRBWDTA7F/uDe7Y2TCzUlOhyWizOGPsM5A7xKNPJwLa2VACxbCZ8HsifNzVewHibUFB5uvb84fZBVHEqfz0V1D81Yo4eHO+WaH3mgi7q/GsysXMLohvzIdfdtpdjcilKUTEZyRfgPs/g5qloH+U3dV4R/8oaFAWekzQkijiTAoR8Rkv/wBb42FcN8gRbHc13hEcBJ90h33H4Onpdlcj8l8KEfEJMXHw0vdmVnf1UnZX410VI+Hl2+GthbB0u93ViFxMISKOd+IsdB4HdUrDM7fYXY09/ncj3FDeXNY6cdbuakT+phARx3tsMiQkwcReZv+NQBQcBJ/2gEMn4H9f2V2NyN8UIuJoU1bDJ7/A2A5mpdtAVq6IWep+wnJtYCXOoRARx9p3FPp8YdaS6t7Q7mqcoVsDuLe2eV32HbW7GhGFiDhUSip0/QTyhcL7nf1rbawr4XKZ1yNfKHT7xLxOInZSiIgjjf7R7Dv+WU8olNfuapylYF74vCf8tB1GfG93NRLoFCLiOKt2wzMzYPBN0KKi3dU4U/OK8Pyt8PxsmL/Z7mokkClExFGOn4b7PoLqJeGF2zJ+bHR0NGXKlCFXrlzUr1+fFStWpPvYCRMm4HK5LrrlypXLzdV71zNtoVVl6DQOfj9udzUSqBQi4hiWBd0nwNHTMOVBCMmR/mMnT57MgAEDeO6551izZg3Vq1endevWHDp0KN1jwsLCOHjwYNptz5497v8ivCgoCL64H0KCocNHcCHF7ookEClExDFe+xFmroPPekDZwhk/9o033qB379707NmTKlWq8P7775MnTx7Gjx+f7jEul4vIyMi0W0RExis4njt3jqSkpItuTlMkP0zuDb/s0rIoYg+FiDjCT9vgqekwpA20q57xY5OTk1m9ejVRUX+vwhgUFERUVBTLly9P97iTJ09SunRpSpUqRfv27dm4cWOGzzNy5EjCw8PTbqVKOXO9lRsqwKt3wqg/Q1jEmxQiYruDieZyTNNr4MXL9IMAHDlyhJSUlP+0JCIiIoiPj7/kMRUrVmT8+PHMmDGDL774gtTUVBo1asT+/fvTfZ6hQ4eSmJiYdtu3b1+Wvi5vGhAF7auby4G7j9hdjQQShYjY6kIKdPzYzH+Y1Mtzq/M2bNiQbt26UaNGDZo1a8a3335LkSJF+OCDD9I9JjQ0lLCwsItuTuVywYQeUDAP3PMhnDtvd0USKBQiYqunp8OyHea6fmR45o4pXLgwwcHBJCQkXHR/QkICkZGRmTpHzpw5qVmzJjt27Mhixc5VIA9M6QPrD0D/KXZXI4FCISK2+XKFuY4/6k5ock3mjwsJCaF27dosWLAg7b7U1FQWLFhAw4aZWx8lJSWFDRs2UKxYsayW7Wi1S8PY++C9n+CjpXZXI4Egg0GUIp6zZq/ZpbBL/eztUjhgwAC6d+9OnTp1qFevHmPGjOHUqVP07NkTgG7dulGiRAlGjhwJwAsvvECDBg2oUKECx48f57XXXmPPnj088MAD7vyyHKFPU1i3H/p9CZUisxbQIlmlEBGvO5QEt78LVYvDh12yty7Wfffdx+HDhxk2bBjx8fHUqFGDOXPmpHW27927l6Cgvxvax44do3fv3sTHx1OwYEFq167NL7/8QpUqVdz1ZTnKmPtg00G46wNYORRKX2V3ReKvXJZlufucbj+h+I/kCxD1Jmw7BKuegpIF7a4o85KSkggPDycxMdHRnex/OXIS6r5s+kqWDYK8oXZXJA6XrWVO1SciXmNZ0HcixOyGqQ/6VoD4osL5YMbDsP0Q9PzUvP4i7qYQEa957UezwdS4rmaCnHje9SXNCgBTVsMLs+2uRvyRQkS8YtpaGDLNLBrYpYHd1QSWO2vBiPZmxd/P0p/QL5It6lgXj1uzF7qMh3tqwfB2dlcTmIbeDLuOwAOfQ6lCWmJf3EctEfGouCNwy1ioVsLMqA7ST5wtXC54rzM0vxbueA82/W53ReIv9CstHvPHSbj5bciXC2Y+DLlD7K4osOUMNkvsX10I2r4D8Yl2VyT+QCEiHnEmGdpFm71B5vwPijp/RGxACM8N3z1ihlq3i4ZT5+yuSHydQkTcLiXV7La3br/5g1W+iN0VyT+VKmS+L5vjzWKN57WZlVwBhYi4lWXB/76CWevh6z5Qt4zdFcml1LwapvU1+7P3nACpqXZXJL5KISJu9eJ38O5P8F4nuKWa3dVIRlpVMdvrTloJA6ZoMqJkj4b4itu8tQCemwUv3w69m9hdjftER0cTHR1NSor/Xfe5tw78cQoenmS22n26rd0Via/R2lniFp8uhx4TYNBNZqvW7Cyq6HS+tnZWVrz4HQybCe93hgeb2l2N2CRbv7VqicgVm7YW7v8Uejf23wDxd8+0hcMn4KFJUCA33FfX7orEVyhE5IrM3wwdPoa7a5nJbAoQ3+RywZh74dhp6DweQnLAHTXtrkp8gTrWJdt+2gbt34WWleDz+yFYP00+LSgIPukOd9aE+z6C2evtrkh8gX7tJVt+2gZtx0Kj8vDNg+adq/i+HMEwsZcZWXfXB/DjJrsrEqdTiEiWLfkzQBqWM/tV5NFyJn4lZzBM7g2tKpuW5qKtdlckTqYQkSxZss2su9SgLMzspwDxVyE5TAuz6TVw6zuwbIfdFYlTKUQk05ZuNwFSvwzMekQB4u9y5YRpD0H9smYhzSXb7K5InEghIpmydDvcPFYBEmjyhMCsflCvDLR524zGE/knhYhc1rIdJkDqlVGABKK8oTD7EWhe0Vza0qgt+SeFiGRo4RbzDrRuafOOVAESmHKHmAUb21aFO9+HqWvsrkicQiEi6Zq93ozCalwevnvUvCOVwBWaEyb3gbtqmXkkE2PsrkicQKP75ZImrzT7ot9WHSb1Mn9ARHIGm5V/c+WArp/A2fPQq7HdVYmdFCLyHx8thQcnQpf6ML6bmYAm8pfgIBjXzVzieuBzSDoL/aPsrkrsohCRNJYFw2ebW7/m8PZ9ZikMkX8LCoLojpA/1OxFkpAEI+/Q2mmBSCEigNkite9EGP+z+WPwZGv9QZCMuVzw6l0QEQYDv4FDJ+DDLmq5BhqFiHDyLNz7EczbBJ/1hK4N7K5IfMmAVlA0P/T81CwnP7mPRvEFEl2sCHCHkqDFG2Yy4fePKkAuJTo6mipVqlC3rjbZSE+XBmYI+MKt0GoMHD1ld0XiLdrZMIBtTzBzQE4nww//gxql7K7I2fx5Z0N3iYmDW8aarXa/fxTKFra7IsmCbF3AVkskQMXEQaNRZqG95U8qQMQ96peFX540fWwNXoEVcXZXJJ6mEAlAs9dDi9ehYgT8PBjK6N2iuNG1EeaNSYWi0Px1s32y+C+FSIB57yezR0Sb62De41Aor90ViT8qkh8W9IdbrzebW7021wwhF/+jEAkQ51Pg4Unm9kgLmPKgmSwm4im5csJXD8DQNjD4W+j2CZxJtrsqcTcN8Q0Af5yEez40q/F+2AV6N7G7IgkUQUEw4naoVgLu/xS2JpiFHEsUtLsycRe1RPzcxt+h7kjYcMBcXlCAiB061IVlg+FgItR5GX7dZXdF4i4KET82a50ZIZM/F6wcCk2usbsiCWS1roZVT0G5ItDsdfh0ud0ViTsoRPxQSiq8MBvavwetKsPPgzQCS5whIgwW9oeu9aHHBBjwNVxIsbsquRLqE/Ezh0+YJdznbYbnb4Vn2moRRXGW0JzwUVeoXhL6T4HffoevemukoK/SjHU/smwHdPgIklPMHiBRle2uyL9oxrr7Ldhs1m3LFwqTe0ODcnZXFNA0Yz1QWRaM/tFM7CpbGNY+rQAR39CyMqx9BkoUgCavwZvzNZ/E1yhEfNyxU3D7ezBoKjzRChYN0PBJ8S1XF4KfnoDHWpq9Se583/xci2/Q5Swftmq3mf+ReAY+7QHtqttdkX/T5SzPmxELPT6FArlhSh+oU8buigKKLmcFCsuCdxfDDa+Z5SXWPK0AEf/Qvob5eS6S3/x8v7NIl7ecTiHiY06chU7joN+X8GATWPqEhu+KfylbGJYNgr5N4dGvTGtb+5M4ly5n+ZCfd0DXT8ww3nHd4N46dlcUGKKjo4mOjiYlJYVt27bpcpYXTV0DD3wOeUPMJduWGjDiSdm6nKUQ8QHJF2D4bHhljhkC+XlPM+tXvEt9IvbYfwy6f2J2TezfEl6+wyzuKG6nEPFHmw+ayYPr98Pz7eDJ1pAj2O6qApNCxD6pqTBmAQydDtcWhYm94PqSdlfld9Sx7k9SU2HsQqg1wmxf++sQeLqtAkQCU1AQDGhl1oADs6jo6/PMEj9iL7VEHGj3Eej9BczfDI+2gFfuhDza+8N2aok4w9nz8NQ0eHMBNCxn+gcrF7O7Kr+gloiv+6v1UfUF2BoPc/4Hb3dQgIj8U66c8Ma9sOQJOHISarwEL39vNl4T71NLxCG2xkOvz+DnnfBwM9P6yJ/L7qrkn9QScZ4zyfD8LBg9zyzoOL471Chld1U+Sy0RX3QhxYy6qv4iJJyAxQMhupMCRCQzcofAq3dBzBC4kAp1X4ZnpptLXuIdaonYaPUeePALWLsPBkTB8Nt06crJ1BJxtuQL5g3ZS99D+SIwvhs0LG93VT5FLRFfcewU9JtkRpgkp5iRV6/drQARuRIhOWDYrWbZlLBcZtmUvhM1293T1BLxIsuCz3+FJ6aa5vYL7eCRFhq26yvUEvEdKanw3k/w9HQTLq/dBd0aaIO2y9BkQyfbcMC0PpbugA514fW7oXgBu6uSrFCI+J6DifDENzBpBTSuAO90gOrqeE+PLmc50fHTMHAK1HwJDp+E+Y/Dlw8oQES8oVi4md2+oL8ZDlxzBPT+HOIT7a7Mf6gl4iHnU+CDJWb44Znz8OwtpvM8RLva+yy1RHzb+RRziev5Web/Q9tA/ygzwksAXc5yBsuC2evNToPbDkHPRvDibWp5+AOFiH84egpe+g7GLjItlVfuhI51wZWtP6F+RSFit7V7YeA3sGgrtKwEo+/WxCd/ohDxL9sTYPC3MD0W6peFN+8J+CHBChG77D4Cz8+Gz36FihEmPNpW1Tsbf6MQ8U+Lt5q93dfug/vqwIjbzTyTAKQQ8bb9x2DE9zDuZyiYB567FXo3gZwasuuXFCL+KyXVDL9/egYkJMH9jUw/ZqlCdlfmVQoRb4lPhJFzTMd5vlAY3Br6NYe8oXZXJp6gnQ0Dx+lk0/n+yhxIOmu26B3aBiLD7a7MKxQinnb4BIyaC9GLzSirJ1rB/26EsNx2VybeoJZI4DhxFt5eCK/9aJZTeaQFDGwFEf79bVeIeMrBRHhrAbyzGIJc8HhLM1y3QB67KxNvUogEnmOnzOZXby00Czw+cAMMag1X++dlLoWIu20+aJaY/iIGQnOYJdoH3QRX5bO7MrGDQiRwHTtlhgS/tRCSzkDXBjCkDVwbYXdlbqUQcQfLgmU7TDN21nozv+OxG+HBphCuy1YBTSEiJ8/Ch0vNm8v4JLi7lrkq0aCc3ZW5hULkSqSkmvHir/0IMXFQpZjp8+hUD0Jz2l2dOIFCRP5y9jx8utyEyY5D0KCsucx9Vy2fXlBVIZIdR0/BhF/gvSXmh6HZteaS1c3XacVPuZhCRP4tNRW+2wBjFsDCrVCqIDzaAno1hkJ57a4uyxQimWVZsGK3Gco3eZVphdxVC/q3hHpl7a5OnEohIhlZt8+EyaSVZgDOfXXgoWZQr4zPTDxWiFxO0hkTGu/9ZGanlr4KHmwC99/g90P3xA0UIpIZh5Jg/C9mHtnuP8zSRw/cYLaAcPigHIXIpZxPgR83mdmoM9bBuQtwS1XzDqH1dRCsS1aSSQoRyYrUVJi7Cd5fYi55BQfBbddDj0bQuooj+04UImkFWGb/8s9j4MuVZpLgdcWha33TUR5gSxmImyhEJLsSkszGWBOWw/r95spHl/rmVr2kYy53BXaIWBb89jtMW2uCY0s8RIaZ0OhS3zQpHfKNEh+lEBF3iN1nBvNMXGE2yqoYAffUhttrQK2rbf07FXghkpoKv8aZ4JgWCzsPQ/5cpsnYtYFZjt2BTUbxUQoRcafzKbBgs3nTO2s9HDsNJQtC++omUJpd6/XFXAMjRBKSTB/H3I0wbzMcOgFF85sX/o6acGNFzesQz1CIiKecT4Gl202/7fRY2HvUTG5uW9XcWlY2G2h5mH+GyNFT8PMOWLrDhEbsPnN/zVKmY/yWatCwnDrIxfMUIuINlgXr9pswmbHu7795lYtBy4omUJpe45F5KL4fIqeTYcMB86Kt2Qs/74SNv5vPlSgALSqaUQ2tqmhIrnifQkTscCjJTGRcsAUWboFdR8z910aYHRnrlzH/Xl/SrC5+BXwjRC6kmFVxd/9hbnFHTCd47H7YGg+plmlVVI40LYwm10CTCmZOhzrGxU4KEXGCuCNmfb+YOHNbt99cDssZbILlumJmNGr5ImYGfalC5k14JgLG/hBxuVyuxMTE1Et97q73Yf7mSx8Xntt0JNUpDdVKmGZbLvVriM3OnTvHuXPn0j4+ceIEVapUYd++fQoRcYyz52H9Plh3ANYfgJmxcPxM+o9PfOvS94eHh4cDJ6wshoK7QyQMSHTbCUVExJvCLctKysoBXmuJJCUlUapUqYvexVkWHDkB2w7B1gRzWWvdfnM7k2wuX1Urbi5pNb0GGpaHqKZ1Wbly5RXXWreuc87jjnNc6vW1sx53ncfOWv7dEjl48CD16tVj06ZNlChRwqu1OP08/vgz7KTXF6BWgxt5ZdxCfo2D5btg9V44d95ctbm+JFQtBlWKm0tZlSOh4L863i/3+ma3JXJl3TD/kpknDwsLu+gLCA+H8iXh5n885kIKbDporvct2wEzN0P0L2ZRs5DaU3h5fhhtq0Kj8tmfBxIcHOyWSxLuOI+7aoH/vr521uOk18adr3H+/Pmv6FxO+5qc9H0C5/wM2/36pqaaAUY/bITvN8DOxiu4Z0IQRfND4wowsgHcUB5qXp21+STpvb5ZbYH8xa0h4i45gk2yXl8SejcxLZadh2HRVvhgdi4++QVenQsF80Cb6+DW682/WRny1q9fP7fU6o7zuKsWd/HH18ZJr7HTviYnfZ/cxUlfU1bOk3jGzIH7/jf44TczDy5/LripCnQquZjnH7yRCkWdNcjIa6Oz3DmyJTXVNOVmr4fZG0xa5wiCqMpm+eXbawTe/ucaOeR5+/fvT7scULJkSbvL8TuB+jN8OhlmrYOvVpnwSL4AVYv/OdGwmrni4o6Z65l4fbMVTV5riYSGhvLcc88RGhp6xecKCoK6Zcxt+G1w4JiZmDN5Fdz/GTw40bRM7qsD7a43Se7v3Pn6yqX99drqNfaMQPoZTr5gWhxfroSZ6+HUObPvyCt3mL2NrvbAIrGeen0dNdnQHQ4cgymrTaD8Gmc6ndpXh143mLW0tFuhZFegvlMW90hJhcVbTXBMXQvHT5sWR4e65la+iN0VOmCeyJ9sXwr+L3v+MGEyYTlsPmjSvWcjcyt9ld3Via9RiEh2HDhmNqn6eJlZE6tcYej4Z3BUzf4gP09QiKTHsuDXXTDuZxMqp5IhqhI80Ngs2ujllTLFRylEJLMupJiO8Y+WmQ2pcodAhzrmb079ss7qGP8HhUhmnDxrLneN+9mszVUs3GyR26epV1bJFB+mEJHLOXLSbIv7/hLYf8wsFPtgU9PyCMttd3WXpRDJqt8OQPRi+OxX09F1d20YEGU67EX+TSEi6fntALy1EL6IMR93rme24K5d2t66sihbIeKxbuYRI0bQqFEj8uTJQ4ECBTJ1jGVZDBs2jGLFipE7d26ioqLYvn27p0qkagl4rzMceBVG3w0r4qDeSGg2GmauM0OJnezo0aN07tyZsLAwChQoQK9evTh58mSGxzRv3hyXy3XRrW/fvl6qWAJddHQ0ZcqUIVeuXNSvX58VK1ak+9gJEyb852c1Vy7nDLW0LHOpqtUYqPaCGZ77bFvY9wp83M37AbJkyRLatWtH8eLFcblcTJ8+/bLHLF68mFq1ahEaGorL5drhcrl6ZPV5PRYiycnJ3HPPPTz00EOZPmbUqFG8/fbbvP/++8TExJA3b15at27N2bNnPVUmYOaUPNYStr0IUx+EC6nQ/l2o/LzpDEu+4NGnz7bOnTuzceNG5s2bx+zZs1myZAl9+vS57HG9e/fm4MGDabdRo0Z5oVoJdJMnT2bAgAE899xzrFmzhurVq9O6dWsOHTqU7jFhYWEX/azu2bPHixVfWkoqfLUSqr8It75jJghO7AVxI+CptlA4nz11nTp1iurVqxMdHZ2px8fFxXHLLbfQokULYmNjAcYAH7tcrtZZemLLstx9u8gnn3xihYeH//vu/0hNTbUiIyOt1157Le2+48ePW6GhodaXX3552ePd7ZcdlnXne5bletCySj5pWW8tsKxT57xeRro2bdpkAdbKlSvT7vvhhx8sl8tlHThwIN3jmjVrZj322GNeqND/JCYmWoCVmJhodyk+qV69ela/fv3SPk5JSbGKFy9ujRw58pKPz+zfDm85d96yPl5qWRWesSz6WFbrMZa1eKtlpabaXdl/Ada0adMyfMzgwYOt66677l+H8RUwx8rC33zHzJqIi4sjPj6eqKiotPvCw8OpX78+y5cv93o9DcvD1L7w2zCz5e6AKVDmKXh1jpkYZLfly5dToEAB6tSpk3ZfVFQUQUFBxMTEZHjsxIkTKVy4MFWrVmXo0KGcPn3a0+VKgEtOTmb16tUX/X4HBQURFRWV4e/3yZMnKV26NKVKlaJ9+/Zs3LjRG+Ve5HQyvL0Qyj8DD3wO15eAlUNhzmNmH3SHjrS6rOXLl1/0/fjTXKBhVs7jmLWz4uPjAYiIiLjo/oiIiLTP2aFKcfi0JzzfDkbNhWdnwhvzYWgb6NvMvn1P4uPjKVq06EX35ciRg0KFCmX4enXq1InSpUtTvHhx1q9fz5NPPsnWrVv59ttvPV2yBLAjR46QkpJyyd/vLVu2XPKYihUrMn78eK6//noSExMZPXo0jRo1YuPGjV5ZdubseTPS6uUf4I9T0KkeDGlt/ib4g/j4+P98P4AEIMzlcuW2LCuDXUn+lqUQcblcrwBPZvSYzZs3U6lSpayc1ieULWw64Ye0gRe/gyemwuh58OwtZvLiFW5LmWbIkCG8+uqrGT5m8+Z0dvfKhH/2mVSrVo1ixYrRsmVLdu7cSfny5bN9XhF3a9iwIQ0b/v2muFGjRlSuXJkPPviAF1980WPPez4Fxv9sfs/jk6B7Q3j6Zihn/4xyR8rqn77XgQkZPaBcuXLZ+gsXGRkJQEJCAsWKFUu7PyEhgRo1amTnlB5R+ioz8uLJ1jB8Njw0yawo/NytZlhfdpem/8vAgQPp0aNHho8pV64ckZGR/+mQvHDhAkePHk17LTOjfv36AOzYsUMhko7o6Giio6NJSUmxuxSfVbhwYYKDg0lISLjo/oSEhEz/vObMmZOaNWuyY8cOT5RIaqpZkmTYTIj7w0wOfL6d2XLWH0VGRv7n+wFEAEmZbYUAzutYHz16dNp9iYmJtnWsZ9ZvByzrrvdNR1uV5yzrx43eed6/OtZXrVqVdt/cuXMv27H+b8uWLbMAa926dZ4o06+oY/3K1KtXz3rkkUfSPk5JSbFKlCiRbsf6v124cMGqWLGi1b9/f7fXtmy7ZdUZYX6P20db1vr9bn8KryKTHetVq1b912FMIosd6x4LkT179lhr1661hg8fbuXLl89au3attXbtWuvEiRNpFVesWNH69ttv0z5+5ZVXrAIFClgzZsyw1q9fb7Vv394qW7asdebMmUy/eHZZtduymowyP4Tt3rGsbfGef842bdpYNWvWtGJiYqxly5ZZ11xzjdWxY8e0z+/fv9+qWLGiFRMTY1mWZe3YscN64YUXrFWrVllxcXHWjBkzrHLlyllNmzb1fLF+QCFyZb766isrNDTUmjBhgrVp0yarT58+VoECBaz4ePPL0rVrV2vIkCFpjx8+fLg1d+5ca+fOndbq1autDh06WLly5bI2bnTfO7W4w5Z17wfm97bWS5a1ZJvbTu11J06cSPs7C1hvvPGGtXbtWmvPnj2WZVnWkCFDrK5du6Y9fteuXVaePHmsQYMGWZs3b7aAh4ELQGvLCSHSvXt3CzN7/aLbokWL0r4IwPrkk0/SPk5NTbWeffZZKyIiwgoNDbVatmxpbd261Q0vr3ekplrW16ssq/RQy8r5kGUNnGJZx0557vn++OMPq2PHjla+fPmssLAwq2fPnheFdFxc3EWv+d69e62mTZtahQoVskJDQ60KFSpYgwYN0h/FTFKIXLmxY8daV199tRUSEmLVq1fP+vXXX9M+16xZM6t79+5pHz/++ONpj42IiLDatm1rrVmzxi11JJ2xrKemWVbow5ZVbJBlTfjFslJS3HJq2yxatOiSf3P/ek27d+9uNWvW7D/H1KhRwwoJCbGAnUAPK4t/8wN62RNPOZNsRnCNnAN5QuDF28zCa8GOGVAt2aFlT3xfSip8uhyeng7Hz8ATrUz/Zj7nTIS3k9bOcpoDx2DodPj8V7PV75h7oUVFu6uS7FKI+LaftkH/r2HtPrMg4it3embzJx/mrLWzBEoUhM96wq9DIE9OuPENuPM92HXY7spEAsfuI3D3B9D8dbPtw8+DYdIDChB3UUvESywLJq2AJ7+FwyfNuPMhbdw3v0Q8Ty0R33I+Bd6YZ4biF8oLr95pWiDa3TRdupzlC06dgxHfw6gfoXIkjOsG9craXZVkhkLEdyzbAX0nwpZ4eOxGM98jv/o9LkeXs3xB3lB4+Q5Y9ZRphTR8FQZOccZ6XCK+LvEM9PkcmrwGeUPM79nr9yhAPEktERtdSDGjuJ6bZXZV/KgLtKxsd1WSHrVEnG32etP6SDoLr9xhdhTUiMgsUUvE1+QIhsGtYf2zppMvagz0+gyOnbK7MhHfceQkdB4H7aLNKMiNz8HDzRUg3qKWiEOkpsJHy2DwVDO3JLoj3FnL7qrkn9QScRbLgimr4ZGvTKv+rfugS33fXZrdAdSx7g/2H4OHJ8Gs9XBXLXinA0SG212VgELESY6dMoufTl6l3xM3Uoj4C8uCr1fBo5NNC2VcN2hfw+6qRCHiDAu3QPcJcPIcvNcJOtS1uyK/oT4Rf+FywX11YdPz0LgC3P4ePDTR7LAmEqjOnYcnvoGWb8K1RU1fogLEfmqJOJxlmd3VBkyBMoVhUi+oUcruqgKTWiL22XDAdJ5vTYCRt8PjLTVp0APUEvFHLpfZhnf10xASDPVfgTfnm8tcIv4uNdXMOq/zsnlDtXIoDGilAHESfSt8ROViEDME+jUzrZK2YyE+0e6qAkN0dDRVqlShbl1dO/Gm34/DTW/BwG/Mz/3Kp8wQXnEWXc7yQXM3mo7FVAs+6Q63VLO7osCgy1nes2AzdBpn5lJ92gOiNAnXG3Q5K1C0vs50KtYrA7e+A49NhuQLdlclcuVSU83acje9BdVKwNqnFSBOp5aID7MseGeRae7XKwNTHjTLp4hnqCXiWX+chK6fwJyN8ExbeO5WzTr3Ms0TCVTLd8LdH5p3cVMeNMOCxf0UIp6zIg7u+dDM/Zh4P7SpandFAUmXswJVw/Kw+im4NgJavA5jF5pWiojTWRZEL4LGr0FkGKx9RgHiaxQifiIyHOb3h0dbwP8mQ9fxmpwoznbyrOk8f+Qr6NsUlg7SboO+SPvq+ZGcwfDGvVC3DDzwOWz4Hb7tC+WL2F2ZyMW2JZiVGPYdhcm94d46dlck2aWWiB/qWM/s63462UzS+n6D3RWJ/G3Ob1BvpOnDW/mUAsTXKUT8VLUSZnZv4/JwazS8MFuz3MVelgWvz4Nb3oEbykPMUKgUaXdVcqUUIn6sQB6Y8TAMb2d2T+z4sfpJxB7nzkOPCWYBxUE3wcx+EJ7b7qrEHTTEN0B8u8aMwb+uuAkWzSfJOg3xzZ6jp+CO9yAmDsZ3h0717K5I0qEhvpK+O2uZ0S+/H4e6L8PavXZXJIFg12Fo9Cps/B0WDlCA+COFSACpdTWsGGpaIU1GmzW4RDzl113Q4FVIscxAj0bl7a5IPEEhEmCKF4DFA6H5tWbdrc+W212R+KNv10CLN8zmUcufhApF7a5IPEUhEoDyhsL0h6BHI7Ma8Mvfa4a7uIdlmf1u7v4Q2lc3E2AL57O7KvEkTTYMUDmC4cMuULIAPD0DDhyHtztowTvJvpRUeHwyvLMYhrSBEe21eVQgUIgEMJcLnmtnLnH1nQi/J5rtd3OH2F2Z+JozydDhY/huA3zQGfo0tbsi8Ra9TxB6NzHDfuduhKgxZklu+Zt2NsxY0hm4eSzM3wyz+ilAAo3miUiamDjT2V44H8z5H5S+yu6KnEXzRP7ryElo8xbsOAzfP6oRWD5O80TkytQvC78MhnMXoMlrsD3B7orEyQ4cg6ajYd8xM+JPARKYFCJykWsiYOkTZgRX09FmkpjIv+04ZPYAOXnWTGKtUcruisQuChH5jxIF4aeBUDQMmo3W7Ha52IYDpqUamgN+Hmw2Q5PApRCRSyoaBosGQLkiZtLYr7vsrkicICbOvLGIDIclT0ApbSIV8BQikq5CeWH+42ZZ+VZj4Kdtdlckdlq2A6LehCrFzBuMohpbIChE5DLCcpuRWg3KQZu3td5WoFq63Xz/65aBuY+ZbQZEQCEimZA31Iz/j6oEt72rIAk0S7aZeSD1ysDsR8zPg8hfFCKSKblywtS+cFNlszf2wi12VyTe8NM2aPsO1C9jAiSPVjOQf1GISKaF5IApD0LTa6BdtLnEIf5ryTZoOxYaloNZChBJh0JEsiRXTrMCcP2y5g+MRm35p5g4sxd6g7JmSRwFiKRHISJZljvE9JHUKGU6W1fvsbsicafYfeb7Wr2k2QtdASIZUYhItuQNhe8egUqRcNNbsH6/3RWJO2z63QznrlAEvntUnehyeQoRyba/hv+Wucqs/rtJS6T4tB2HzPexWLgZxhue2+6KxBcoROSKFMgDPz4GkWHmD9DuI3ZXJNnx+3Hz/QvLBfMeNxNNRTJDISJX7Kp85g9PnhBo/TYcPmF3RZIViX/uB5KSar6PEZqJLlmgEBG3iAgzl0COnzZ7kpw6Z3dF7uPPm1KdOw93vAd7j5pLk1oLS7JKm1KJW63Zaxboa1zBjOzJGWx3Re7jb5tSpaZCp3EwPRbm9zffMwlo2pRK7FfrajOPZMEW6PWZ+UMlzvTEN/D1apjUSwEi2acQEbdrWRk+7wlfxMCQaXZXI5fy+jx4cwG80wHurGV3NeLLcthdgPin++pCwgl4bLIZuTWgld0VyV8mrTCtkKduhoeb212N+DqFiHjM/26Eg4nwxFQzl0TveO23YDP0mAA9GsJL7e2uRvyBLmeJR41oD/fUgi7jYdVuu6sJbLH74I73IaoyfNgVXNnqRhW5mEJEPCooCCb0gOtLmr1I9h21u6LA9PtxM/T62qLwdW//GjUn9lKIiMflDjErwYbkMEvInzxrd0WB5XQytH/X/H9mP8iXy956xL8oRMQrIsJgdj/YdQQ6fmxmR4vnpaaaPpBNB02AFC9gd0XibxQi4jVVS5hLKd//BoOn2l1NYBg+G6asNkOua11tdzXijxQi4lVtqsKb98Ib8+GLX+2uxr9NXQMvfGcGN2hknHiKhviK1z3awiyP0vsLqFJc75A94bcD0H0C3FMbht5sdzXiz9QSEa9zueD9zlC1uFn8T6v+utexU3D7e1CuMHzSXUN5xbMUImKLXDnh275w9jzc+yGcT7G7Iv+QkmoGLhw9ZdYw086E4mkKEbFNqUIwpQ8s2wGDvsn8cUePHqVz586EhYVRoEABevXqxcmTJzM8pnnz5rhcrotuffv2vcKvwHmenQHzNsPk3lCuiN3VSCBQiIitml4LY+6FtxbClysyd0znzp3ZuHEj8+bNY/bs2SxZsoQ+ffpc9rjevXtz8ODBtNuoUaOusHpnmb0eRs6BkXdAqyp2VyOBQh3rYruHm8Mvu6DPF6aTvWJk+o/dvHkzc+bMYeXKldSpUweAsWPH0rZtW0aPHk3x4sXTPTZPnjxERmZw8n85d+4c5879vbtWUlJSpo/1tt1HoNsncFt1GHST3dVIIFFLRGzncsEHnaFEAbj3IziTnP5jly9fToECBdICBCAqKoqgoCBiYmIyfJ6JEydSuHBhqlatytChQzl9+nSGjx85ciTh4eFpt1KlSmXly/Kac+fN6xaeGyaoI128TCEijpAvF0x5ELYlmOXj0xMfH0/RokUvui9HjhwUKlSI+Pj4dI/r1KkTX3zxBYsWLWLo0KF8/vnndOnSJcOahg4dSmJiYtpt3759WfqavOWJb2DdftO/VDCv3dVIoNHlLHGEIUOG8Oqrr0LF+/no/Dg+eqEz7Jh00WM2b96c7fP/s8+kWrVqFCtWjJYtW7Jz507Kly9/yWNCQ0MJDXX28KbJK+GdxRDdEeqUsbsaCUQKEXGEgQMH0qNHDywLhsxNZH7Oz5ny6YuUK/T3ta1y5coRGRnJoUOHLjr2woULHD16NEv9HfXr1wdgx44d6YaI0+04BA98Dh3qwkPN7K5GApVCRByhSJEiFClixqROKgd1R8LgeeVYMRTyhPz9uIYNG3L8+HFWr15N7dq1AVi4cCGpqalpwZAZsbGxABQrVsxtX4M3nU+BzuPMwpYfdlE/iNhHfSLiOHlDzfX9XYf/O3+kcuXKtGnTht69e7NixQp+/vlnHnnkETp06JA2MuvAgQNUqlSJFSvMmOGdO3fy4osvsnr1anbv3s3MmTPp1q0bTZs25frrr/f2l+cWL34Hq/fCxF6QX0u7i40UIuJI1xWH0XfDuz/B9xsu/tzEiROpVKkSLVu2pG3btjRu3JgPP/ww7fPnz59n69ataaOvQkJCmD9/PjfddBOVKlVi4MCB3HXXXcyaNcubX5Lb/LwDRnwPw26B+mXtrkYCncuyLHef0+0nlMBkWXDLO2axxg3DoEh+e+tJSkoiPDycxMREwsLC7KnhDFR/0ewL8tNAyKEdCsV9snVRVC0RcSyXC8Z3M+tB9f7chEqge/Qr+OOU2R9EASJOoBARR4sMh4+6wox1MP5nu6ux1+SV8NmvMLaD1sUS51CIiOPdXgN63QCPfQ07D9tdjT32HYW+k8z+IN0a2F2NyN8UIuIT3rwXIvJDl3FwIcCWjU9NNRtM5Q0x+7BoOK84iUJEfEL+XPDF/bBiN7z2o93VeNe7P8GirfBpDyikZU3EYRQi4jMalocnWsHzs2HzQbur8Y64IzBkmpmR3rKy3dWI/JdCRHzK8Nug7FVw/6dm1JY/syx44DO4Ki+8eqfd1YhcmkJEfEqunDC+O8TshjEL7K7Gsz5aCgu3mtFpmpUuTqUQEZ/TqDw8fiM8M8N/R2vtOwpPTIX7b4CbtEuhOJhCRHzSi+0hMgz6TvS/SYiWBf2+hHyh8PrddlcjkjGFiPikvKHwXieYvxkmZryh4RWLjo6mSpUq1K1b17NP9KfpsTBrvZlUWCCPV55SJNu0dpb4tI4fmyDZPBwK5/Psc3lj7awTZ6Hyc1CjFMzqpzkh4lVaO0sCz5h74ULqf5eM91XPzoBjp+GdDgoQ8Q0KEfFpEWHw6h0wYblZIt2Xrd4DYxfB87dCmcJ2VyOSOQoR8XkPNIa6ZUxntK8uiZKaauq/rjg8HmV3NSKZpxARnxcUBNEdYf0BeH+J3dVkz+cxEBNnLmPl1BLv4kMUIuIX6paBB24wc0cOJdldTdYknYEnv4UOdaHptXZXI5I1ChHxGy/fAcFBMHS63ZVkzYvfmVFZo7S0ifgghYj4jcL54MXb4JNfIHaf3dVkzpZ4s3zLUzdDqUJ2VyOSdQoR8Su9m0DFCHjiG+fPZLcseHyyCY+BreyuRiR7FCLiV3IGm8tCC7bAnI12V5OxORth7iZ44x6zsKSIL1KIiN+59Xpofi0MmurcIb8pqTB4KjS9BtpXt7sakexTiIjfcblg9N2w8XczCdGJPl0Ov/1u6tTMdPFlChHxS7VLQ5f6ZhmRk2ftruZip87BszPNkN66ZeyuRuTKKETEb4243axDNXqe3ZVcbMwCOHwCRrS3uxKRK6cQEb91dSF4vCW89iP8ftzuaoyjp2DUXHi4GZQrYnc1IldOISJ+bejNZuTTyz/YXYnx+jyz6vDQm+2uRMQ9FCLi18Jzw6Cb4MOlsOeP7J3DXZtSHT4Bby2ER5qb1YdF/IE2pRK/d/IslHvGDKX9qGv2z3Olm1IN+gY+WApxI+AqD2+gJZIN2pRK5FLy5YInW5vlUHYetqeGg4kQvdj00ShAxJ8oRCQgPNQMiuQzix3aYeQPEJoTBmivEPEzChEJCHlCTGvkixiIO+Ld5z6YaC5jDYyCAnm8+9winqYQkYDRuwkUzGOG2HrTm/MhVw549EbvPq+INyhEJGDkDYX+LWH8L96bN3LsFLz3Ezzc3IwUE/E3ChEJKP1aQO6cZr6GN7z7E5xPMR3qIv5IISIBJTy3mafx/hIze9yTTiebeSH336B5IeK/FCIScB690cwa/2ipZ59n/M8mqAbd5NnnEbGTQkQCTkQYdK4HYxeZS02ecCHFLPzYoQ6ULeyZ5xBxAoWIBKT+UXDgOHyz2jPnn7nOLLOibW/F3ylEJCBVKwEtK8GbCzyzF/s7i+GG8lDzavefW8RJFCISsPpHwcrd8MtO9573twOwaCs82sK95xVxIoWIBKybr4OKEaY14k7vLIZi4XBnLfeeV8SJFCISsIKC4LGWMG0t7D3qnnMeOwWf/wp9m0LOYPecU8TJFCIS0LrWN+tqjf/ZPeebsNyM+OrTxD3nE3E6hYgEtHy5oGNdEyIpqVd2rtRUs9z7vbUhMtwt5Yk4nkJEAl7vJrDvGMzdeOnPZ3Znw/lbzH4l/Zq7v0YRp9LOhhLwLAtqvmQmBU57KP3HXW5nww4fwW+/w4Zh4MrWHnEittLOhiLZ4XJB78Ywa73Z+yM7jp6CabFwfyMFiAQWhYgI0Lk+hATDhF+yd/ykFaZPpEt999Yl4nQKERHMjoN314ZPl2dvBvv4n6Hd9VBUq/VKgFGIiPypY13YmgDr92ftuI2/w9p90K2hZ+oScTKFiMifoipDobwweVXWjvtyhWnJ3HydZ+oScTKFiMifcgbDnTVNiGT2kpZlwaSVcHctCM3p2fpEnEghIvIPHerAriOwak/mHh8TB3FHoFM9z9Yl4lQKEZF/aHYtFM2f+Utak1eZxRabXuPZukScSiEi8g85gs2lqa9XmSG7GbEs+HYt3FEDgvWbJAFKP/oi/3JfHbMMyq9xGT9u7T6z+u8dNb1Tl4gTKURE/qVxBShe4PKXtL5dAwXzmEtgIoFKISLyL0FB5hLVzHUZj9KaFmsmGGrfEAlkChGRS7ilGuz+A7bEX/rze/6ATQfhturerUvEaRQiIpfQ/FrIlRO+/+3Sn5+3GYJc0LKSd+sScRqFiMgl5A6BGyvC9xsu/fkfN0G9MmamukggU4iIpKNtVVi6A06cvfj+lFRYsAVaVbGnLhEnUYiIpCOqstkvfciYmRftbBi7z+wf0qqyzQWKOEAOuwsQcaprI8zs9YKVbmPTptvSdjZctBXyhUKDcnZXKGI/tURE0uFymTkjS3dcfP/CrdCioob2ioBCRCRDTSqYRRbPnf/7vhW7NSpL5C8KEZEMNK4A5y5cvKrv+QvQqLx9NYk4iUJEJAM1Spn+j39e0grNCdVL2leTiJMoREQykCMYGpaDpdv/vq9GSQjRkBQRQCEicln1y8KavX9/XKe0fbWIOI1CROQyqhaH+CSz4yHoUpbIPylERC6jWgnz79erLv5YRBQiIpd1TYSZEzJ9rfm4QlF76xFxEoWIyGXkDIbKxWDzn8vCq1Nd5G8KEZFMqFLM7gpEnEkhIpIJJQvYXYGIMylExOeMGDGCRo0akSdPHgoUKJCpYyzLYtiwYRQrVozcuXMTFRXF9u3bL3/gn4qFZ7NYET+nEBGfk5yczD333MNDDz2U6WNGjRrF22+/zfvvv09MTAx58+aldevWnD179vIHo82nRNKjLkLxOcOHDwdgwoQJmXq8ZVmMGTOGZ555hvbt2wPw2WefERERwfTp0+nQocNlzxGst1sil6RfDfF7cXFxxMfHExUVlXZfeHg49evXZ/ny5eked+7cOZKSkkhKSqJCwZPeKFXE5yhExO/Fx5uxuRERERfdHxERkfa5Sxk5ciTh4eGEh4fTuHJ++KK4R+sU8UUKEXGEIUOG4HK5Mrxt2bLFqzUNHTqUxMTEtNu+OO8+v4gvUJ+IOMLAgQPp0aNHho8pVy57+9FGRkYCkJCQQLFif0/4SEhIoEaNGukeFxoaSmhoaLaeUyRQKETEEYoUKUKRIkU8cu6yZcsSGRnJggUL0kIjKSmJmJiYLI3wEpH/0uUs8Tl79+4lNjaWvXv3kpKSQmxsLLGxsZw8+Xfnd6VKlZg2bRoALpeLxx9/nJdeeomZM2eyYcMGunXrRvHixbn99ttt+ipE/INaIuJzhg0bxqeffpr2cc2aNQFYtGgRzZs3B2Dr1q0kJiamPWbw4MGcOnWKPn36cPz4cRo3bsycOXPIlSuXV2sX8Tcuy7LcfU63n1DECZKSkggPDycxMZGwsDC7yxFxN1e2DvJAiIj4JZfLFQYkAuGWZSXZXY+IEyhERDLJ5XK5gPzACUu/OCKAQkRERK6ARmeJiEi2KURERCTbFCIiIpJtChEREck2hYiIiGSbQkRERLJNISIiItmmEBERkWz7P7WC9APG99afAAAAAElFTkSuQmCC\n", "text/plain": [ "Graphics object consisting of 1 graphics primitive" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Plotting de curvas\n", "x = var('x')\n", "parametric_plot((cos(x)^3,sin(x)^3),(x,0,2*pi),rgbcolor=hue(0.6))" ] }, { "cell_type": "code", "execution_count": 21, "id": "f9971135", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "cos(u)" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Differentiating\n", "u = var('u')\n", "diff(sin(u), u)" ] }, { "cell_type": "code", "execution_count": 26, "id": "69a3ee05", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(-sin(u), cos(u))" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Calculando o gradiente\n", "r = vector((cos(u), sin(u)))\n", "diff(r, u)" ] }, { "cell_type": "code", "execution_count": 28, "id": "e7321465", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "sqrt(abs(cos(u))^2 + abs(sin(u))^2)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Calculando a norma\n", "norm(r)" ] }, { "cell_type": "code", "execution_count": 32, "id": "a7d3a637", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "cos(u)^2 + sin(u)^2" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Produto escalar\n", "r.dot_product(r)" ] }, { "cell_type": "code", "execution_count": 35, "id": "ee6b5418", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "x*log(x) - x" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Integrando uma função de forma indefinida\n", "from sage.symbolic.integration.integral import indefinite_integral\n", "indefinite_integral(log(x), x)" ] }, { "cell_type": "code", "execution_count": 38, "id": "3bfd47ca", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Agora de uma forma definida\n", "from sage.symbolic.integration.integral import definite_integral\n", "definite_integral(sin(x),x,0,pi)" ] }, { "cell_type": "code", "execution_count": 47, "id": "061b24d5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "t" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t = var('t')\n", "assume(t>0)\n", "definite_integral(sqrt(cos(u)^2 + sin(u)^2), u, 0, t)" ] }, { "cell_type": "code", "execution_count": null, "id": "897df864", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "SageMath 9.2", "language": "sage", "name": "sagemath" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 5 }