The Mathematics of SET and Beyond

Lucas Van Meter

Lewis and Clark

November 7th, 2019

Joint work with Catherine Hsu and Jonah Ostroff*

In 1974, Marsha Falco invented the card game SET:

Color	Number	Shape	Shade
red	one	diamond	solid
blue	two	squiggle	striped
green	three	oval	open

A set is a collection of three cards for which in each of of the four qualities the cards are all the same or all different.

Is this a set?

Card 1:	green	two	squiggle	striped
Card 2:	blue	two	diamond	solid
Card 3:	red	two	oval	striped

Is this a set?

Card 1:	green	two	squiggle	striped
Card 2:	blue	two	diamond	solid
Card 3:	red	two	oval	striped

Is this a set?

Card 1:	green	three	squiggle	striped
Card 2:	green	one	squiggle	solid
Card 3:	green	two	squiggle	open

Try to find another set!

To study the mathematics behind SET, we need an new idea:

Clock Arithmetic

To study the mathematics behind SET, we need an new idea:

Clock Arithmetic

To study the mathematics behind SET, we need an new idea:

Clock Arithmetic

2+6=811+11=1010+5=3

Let's consider clock arithmetic with 3 elements:

Clock Arithmetic C₃

Let's consider clock arithmetic with 3 elements:

Clock Arithmetic C₃

1 + 2 = 01 + 1 = 22 + 2 = 1 We can represent each SET card using clock arithmetic:

C ₃	Color	Number	Shape	Shade
0	red	one	diamond	open
1	blue	two	squiggle	striped
2	green	three	oval	solid

C ₃	Color	Number	Shape	Shade
0	red	one	diamond	open
1	blue	two	squiggle	striped
2	green	three	oval	solid

C ₃	Color	Number	Shape	Shade
0	red	one	diamond	open
1	blue	two	squiggle	striped
2	green	three	oval	solid

 $(0,1,1,2)\,+(1,1,1,2)\,+(2,1,1,2)\,=(0,0,0,0)$ in \textbf{C}_3^4

a, *b*, *c* sum to (0, 0, 0, 0) in **C**⁴₃

Find the missing card and the SET it goes with!

Find the missing card and the SET it goes with!

https://upload.wikimedia.org/wikipedia/commons/6/60/Torus_from_rectangle.gif

Pokémon SET with C_2

Now, let's consider clock arithmetic with 2 hours:

Clock Arithmetic C₂

Now, let's consider clock arithmetic with 2 hours:

Clock Arithmetic C₂

0 + 1 = 11 + 1 = 0

Here are some examples of cards in C_2^6 :

Try to find another set!

In C_2^2 , there are three ways to have an even number dots of each color:

So, an even number dots can be appear as:

two of the same Pokémon

A **Pokémon C**₂-set is a collection of three cards for which the Pokémon can be partitioned into identical pairs or full evolutions.

Try to find a set!

A **Pokémon C**₂-set is a collection of three cards for which the Pokémon can be partitioned into identical pairs or full evolutions.

Try to find a set!

— Bonus question — Can you find any number of cards for which the Pokémon can be partitioned into identical pairs or full evolutions?

— Bonus question — Can you find any number of cards for which the Pokémon can be partitioned into identical pairs or full evolutions?

— Bonus question — Can you find any number of cards for which the Pokémon can be partitioned into identical pairs or full evolutions?

A Geometric Version of C_2 -SET

$$\longleftrightarrow$$
 ((1,0,0)) in \mathbf{C}_2^3

$$\leftrightarrow$$
 ((0, 1, 1)) in \mathbf{C}_2^3

A **Fano-set** is a collection of cards with three points on a line.

A **Fano-set** is a collection of cards with three points on a line.

A **Fano-set** is a collection of cards with three points on a line.

$$\longrightarrow$$
 ((1,0,0), (0,1,1)) in C_2^6

$$\longleftrightarrow$$
 $((0,1,0),(1,1,1))$ in C_2^6

This game is equivalent to C_2^6 -set.

This game is equivalent to C_2^6 -set.

There exist geometries for C_2^4, C_2^5 and C_2^6 too!

https://upload.wikimedia.org/wikipedia/commons/b/b8/ Facial_Fano_plane_within_Fano_three-space.png

More Variations on SET

http://www.gabrieldorfsmanhopkins.com/nonabelianSet/S3/index.html

Now, each strand must also have an even number of dots:

Now, each strand must also have an even number of dots:

Now, each strand must also have an even number of dots:

All SET decks can be found on my webpage:

https://lucasvanmeter.github.io/projects.html