
A desperate guide to data analysis
workflow improvements

ht
tp

s:
//

xk
cd

.c
om

/1
83

8/

Peter Regner

“Reproducible Data Analysis”
Data Science @ BOKU initiative

2024-02-29
BOKU Wien

2

3

Our goal: reproducibility!

irreprod
ucibility

by obsc
urity

nobody re-
runs it

or it is br
oken

irreproducibility
by hardware demands

…but in practice:

repr
odu

ce

ever
ythi

ng

by p
ush

ing

one bu
tton

some users
might be
interested
mostly in
results

comprehensibility

traceability

Make things more usable - for yourself and others!
Reproducibility in practice: How easily can somebody use the thing later?

Think about your target audience to set priorities!

Do they want to…
● re-run all your scripts?
● run the code as piece of software?
● use the code and adapt it?
● use the computation results only?
● understand what and how we did it?

4

7 Steps towards more use-able
data analysis projects

5

Gamification: count every ✓, if you follow the guideline already!

(1) Publish your result data sets ✓
Wicherts, J. M., Bakker, M., & Molenaar, D. (2011). Willingness to Share Research Data Is Related to the Strength of the Evidence and the Quality of Reporting of
Statistical Results. In R. E. Tractenberg (Ed.), PLoS ONE (Vol. 6, Issue 11, p. e26828). Public Library of Science (PLoS). https://doi.org/10.1371/journal.pone.0026828

6

Willingness to Share
Research Data

Strength of
the Evidence

is related to

(1) Publish your result data sets: in a fair way!

7

by SangyaPundir under CC-BY-SA 4.0

https://www.go-fair.org/fair-principles/
https://doi.org/10.1038/sdata.2016.18

(1) Publish your result data sets: how?
✓ Use an open license if possible! (Allows others to publish your results as input data!)

✓ Label and document the fields of your result data set properly

✓ A CSV or NetCDF file on Zenodo is already pretty good

✗ tables in the PDF of the supplementary material

✗ non-open or non-standard file formats like *.gdx (GAMS)

✗ units for quantities not documented

More data providers: Dataverse, FigShare, AUSSDA, Dryad, Mendeley Data, DataHub, DANS, EUDat, …

8

(2) Publish your code ✓
● use an open license, e.g. MIT license or CC-BY ✓ (unless you need GPL libraries)

● For maintained projects: Use GIT / Github ✓
● Include a README file ✓

○ What does it do? (summary & link to article) ✓
○ Requirements: hardware & software ✓
○ How to run / use the thing ✓

9

Virtual environments (e.g. Conda) allow you to:

● Multiple versions of a library on one machine
● Pretty portable (Windows, Linux, Mac OS)
● Easier to use than Docker

…and to export all used libraries & precise versions!

(3) Use reproducible virtual environments ✓

10

Export all used dependencies using conda: ✓

conda env export --no-builds | grep -v "^prefix: " > env.yml

Use micromamba - conda is too slow! ✓
https://mamba.readthedocs.io/en/latest/installation/micromamba-installation.html

[...]

env.yml:

Alternatives to conda: renv, pipenv, …

(4) Automate everything

Manual steps are…

● error prone
● time consuming
● not documented

11

Every command or click
should be stored in a
way, such that it can be
executed again!

Be realistic! You will do things
over and over again…

But you can automate all steps!

Please d
on't

take th
is too

literally
!

(4) Automate everything
Goal: a single executable script ✓

● download of input data
● preprocessing
● computation
● write results to files
● create figures

13https://github.com/inwe-boku/windpower-decomposition-usa

article

or

how to & links in bonus slides

(5) Use a good folder structure ✓

14

ideally PDF files, directly used by LaTeX

raw input files, not modified after download

large files, less important interim results

results to be published

(5) Use a good folder structure
Follow common conventions!

● no spaces in file names ✓
● file names in lower case or ALL_CAPS ✓
● avoid CamelCase for files and folders ✓

15

Literature:

[1] G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal, “Good enough practices in scientific
computing,” PLOS Computational Biology, vol. 13, no. 6, p. e1005510, Jun. 2017, doi: 10.1371/journal.pcbi.1005510.

[2] W. S. Noble, “A Quick Guide to Organizing Computational Biology Projects,” PLOS Computational Biology, vol. 5,
no. 7, p. e1000424, Jul. 2009, doi: 10.1371/journal.pcbi.1000424.

[3] “Cookiecutter Data Science.” https://drivendata.github.io/cookiecutter-data-science/

your project

https://github.com/cookiecutter/cookiecutter

auto-create
from templates

✓

Organize your computation pipeline

16

Computation

17

input output

Computation

18

inputs
outputs

19

inputs outputs

Task

Task

Task Task

Task

interim
results

parameters

Task

Task

Task Task

Task

Task

Task

Task Task

Task

config

20

(6) Use a pipeline tool ✓
● Caching / incremental builds

→ skip tasks if nothing changed (inputs, code, config, parameters)

● Parametrizing tasks
→ specify (multi dimensional) parameter spaces via ranges or lists

● Run tasks in parallel
→ on different CPUs or on different nodes on a cluster (e.g. VSC)

https://github.com/pditommaso/awesome-pipeline

(7) Keep old versions of your data ✓
Re-running computations might be difficult or take long time… Keep old versions!

It would be nice to…

● know how artefacts (figures, output files, ...) were generated
→ record Git hash / code, all inputs, parameters, conda environment, config, …

● delete large files later when disk space is an issue
● compare between different versions of data

Git alone is not enough to fulfill these requirements!

Note that Git offers more features:

● Sync to other machines / collaboration with others
● Publish the repository - but data is not always publishable due to licence issues

Tools for large data: DVC, GIT-LFS, git-annex, DataLad, …

22

My poor-man data versioning
run.sh script:

● runs the computation
● creates a Git tag
● copies outputs to an archive folder

23

https://github.com/inwe-boku/windpower-decomposition-usa/blob/main/run.sh

Open issues:

● How to sync data between machines? Use Unison?
● How to collaborate with others using the same data?
● How to sync figures to Overleaf without Git?

Cookies for all of you!
Everything we have seen today in a cookiecutter template:

● folder structure
● code snippet for including results in LaTeX
● Script for building a zip file for arXiv.org
● run.sh script
● Snakemake file
● README.md, .gitignore, LICENSE, …
● …

→ https://github.com/inwe-boku/cookiecutter-data-research

24

Reproduce all the things!

Download slides:

https://bit.ly/desperate-guide

We gratefully acknowledge support from the European
Research Council (“reFUEL” ERC-2017-STG 758149).

peter.regner@boku.ac.at

https://github.com/inwe-boku/

https://refuel.world/

Automate project creation ✓
Create a new folder from a template:

● folder structure
● LICENSE file
● .gitignore file
● code snippets
● …

26

https://github.com/cookiecutter/cookiecutter

MS Word: use linked images

Latex:

Include figures in LaTex documents ✓

27

Overleaf: use GIT, Github or dropbox to sync figures - premium only… :-/
https://www.overleaf.com/learn/how-to/Dropbox_Synchronization https://www.overleaf.com/learn/how-to/Git_Integration_and_GitHub_Synchronization

folder for all figures

no figure number

Include results in LaTex documents ✓
Turns out to be surprisingly difficult! 😱

28

result_values = {}

meaning_of_life = 42
result_values['meaning_of_life'] = f'{meaning_of_life:d}'

gravity_ms2 = 9.80665
result_values['gravity'] = f'{gravity_ms2:.2f}', 'm/s^2'

write_result_values(result_values)

\newcommand{\meaning_of_life}{42}
\newcommand{\gravity}{\qty{9.81}{m/s^2}}

More details and other Solutions like Knitr:
https://tex.stackexchange.com/a/711627/8964

auto-generated LaTeX
commands

script writes results to
a file with custom
LaTeX commands

Do more good things
● Write good code

○ Don’t do no magic numbers ✓
○ No absolute file paths ✓
○ No unnecessary Abbrev. ✓
○ Follow code conventions (e.g. pep8) ✓

● Write unit / functional tests ✓
Automatically check if things are behaving as expected!

● Use a code linter (e.g. as GIT hook) ✓
Tools to automatically check code for errors and style violations, for Python: flake8, black (auto-formatter),

● Use Continuous integration ✓
Run tests, code linter or computations automatically, e.g. via Github Actions

● Do code review ✓
A great way to improve quality and spread knowledge in your team!

29

Tracking additional computation information
@task
def my_fancy_func(some_param, inputs, outputs):
 # do something here
 ...

The @task decorator creates a file with metaparameters for each output:

30

Link to source:
https://github.com/inwe-boku/c
ookiecutter-data-research/blob/
main/%7B%7B%20cookiecutter.r
epo_name%20%7D%7D/src/task
.py

maintained for
long time

programming

little maintenance

GIT / Github

single use
projects

literate
programming

Continuous
Integration

deployment
packages

Software
Development

Data
Analysis

build system

code review

large data

large
user
base

few users

few developers many
developers

debugger

plots

long run-time

unit testsinteractive
programming

GUI design

31

32

opinionated!

33

https://twitter.com/toniwhited/status/1758900448596291953

It should not be the
only priority, but I’d be
a bit skeptical about
code quality if it takes
more than a month to
get this done.

Reproducibility is a hot topic…

