
Encoding human-like operational
knowledge using declarative
Kubernetes operator patterns

Lucas Käldström

School of Electrical Engineering

Bachelor’s thesis
Espoo 10.12.2021

Supervisor

Assistant Professor Martin Andraud

Advisors

Prof. Mario Di Francesco

Dr. Stefan Schimanski



Copyright © 2021 Lucas Käldström.
This work by Lucas Käldström is licensed under the CC-BY-SA 4.0 license, unless
otherwise stated.

https://creativecommons.org/licenses/by-sa/4.0/legalcode


Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the bachelor’s thesis

Author Lucas Käldström
Title Encoding human-like operational knowledge using declarative Kubernetes

operator patterns
Degree programme Aalto Bachelor’s Programme in Science and Technology
Major Digital Systems and Design Code of major ELEC3056
Teacher in charge Assistant Professor Martin Andraud
Advisors Prof. Mario Di Francesco, Dr. Stefan Schimanski
Date 10.12.2021 Number of pages 52 Language English
Abstract
In recent years, the cloud native paradigm has emerged as an effective way of
managing server infrastructure, with over 100,000 open source contributors and users
such as Apple, CERN, Deutsche Telekom, JD.COM, Nokia and Spotify. Cloud native
is a mindset; a set of patterns and practices that provide for efficient, scalable, and
resilient server infrastructure control.

Although cloud native has a definition and has been implemented widely, accessible
context on why cloud native converged to its present state is scarce. Consequently,
if the reasons for a pattern is not known, the pattern might not be implemented
correctly, or, worse, at all. The aim of this thesis is to gather this context and
showcase the benefits of cloud native implementation in Kubernetes operators. In
other words, the goal is to identify methodologies for being able to scale systems,
even beyond human cognitive limits, while still keeping the system in a reliable state.

Through review of articles relating to server infrastructure control and open
source cloud native resources, this thesis finds that some control problems are noticed
mostly at large scale, which can lead small-scale users into a false sense of control.
The problems include the impact of inevitable entropy increase, randomness, failures
and limited information transfer rate. Through codifying human-like operational
knowledge, Kubernetes operators can effectively combat these problems and allow
for greater resource, knowledge, and monitoring scalability.

Kubernetes operators form a novel programming model, allowing a shift from
humans managing servers to servers managing servers, analogously to the Industrial
Revolution. This empowers users to once codify the control mechanism, deploy it
using a declarative abstraction layer, then finally, benefit from both system scalability
and reliability.
Keywords cloud native, Kubernetes, servers, cloud services, control engineering,

entropy, automation, declaration of intent, interfaces (computer
programmes), scalability
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Sammandrag
Under de senaste åren har “cloud native”-paradigmet (ung. “molnäkta”) utvecklats
till ett effektivt sätt att hantera serverinfrastruktur. Idag har mer än 100 000 personer
bidragit till olika cloud native öppen källkods-projekt, varav ett är Kubernetes. Kuber-
netes används av exempelvis Apple, CERN, Deutsche Telekom, JD.COM, Nokia och
Spotify. Cloud native-paradigmet är ett tankesätt med god praxis som ger möjlighet
till effektiv, skalbar och motståndskraftig kontroll över serverinfrastrukturen.

Trots att cloud native har en definition och många implementationer, finns det inte
mycket dokumenterad och lättillgänglig kontext varför cloud native designats såsom
det gjorts. Om orsaken till att en rekommendation existerar är okänd, finns det risk för
att rekommendationen inte blir implementerad rätt eller över huvud taget. Därför är
målet med detta examensarbete att samla denna kontext samt göra den lättillgänglig
och begriplig. Vidare är avsikten att visa på konkreta fördelar som uppnås i praktiken
genom implementation av cloud native, exempelvis automatiserade “Kubernetes
operators” (ung. “Kubernetes-operatörer”). Syftet är därmed att identifiera metoder
för göra serversystem mer skalbara, till och med förbi människans kognitiva kapacitet,
samtidigt som systemen hålls stabila.

Genom granskning av relevanta forskningsartiklar och öppen källkods-resurser,
identifieras i detta examensarbete utmaningar med att kontrollera serversystem. Ut-
maningarna noteras oftast i stor skala, vilket leder till att småskaliga användare kan
inledas i en falsk känsla av kontroll. Utmaningarna inkluderar effekterna av oundviklig
spontan entropiökning, slumpmässighet, krascher och begränsad överföringshastighet
av information. Genom att koda in operationell serverhanteringskunskap i “Kuberne-
tes operators” kan man effektivt motverka ovannämnda utmaningar och åstadkomma
högre skalbarhet av resurser, kunskap och övervakning.

“Kubernetes operators” exemplifierar denna nya typ av cloud native programme-
ringsmodell, vilket möjliggör en övergång från att människor hanterar servrar till
att servrar hanterar servrar, i likhet med den industriella revolutionen. Detta ger
användaren möjlighet att automatisera serverhanteringslogiken, sedan distribuera
och konfigurera automationen via ett deklarativt och abstraherande gränssnitt, samt
slutligen dra nytta av skalbarheten och driftssäkerheten.
Nyckelord cloud native, Kubernetes, servrar, molntjänster, reglerteknik, entropi,

automation, viljeförklaring, gränssnitt, skalbarhet
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IDE Integrated Development Environment
JSON JavaScript Object Notation
MTBF Mean Time Before Failure
MTTR Mean Time To Repair
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PSU Power Supply
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SRE Site Reliability Engineer
TOML Tom’s Obvious Minimal Language
UI User Interface
URL Uniform Resource Locator
VM Virtual Machine
XML Extensible Markup Language
YAML YAML Ain’t Markup Language

app Application
config Configuration
diff Difference
spec User-provided, Desired State
status Observed, Actual State



1 Introduction
In recent years, cloud native [1] has become a hot topic in the server infrastructure
ecosystem. Cloud native is both a mindset and set of patterns and practices for
managing server infrastructure. Since its introduction in 2015 [2], it has evolved into
a community of more than 110,000 open source contributors [3]. Cloud native is
defined1 as follows [1]:

Cloud native technologies empower organizations to build and run scal-
able applications in modern, dynamic environments such as public,
private, and hybrid clouds. Containers, service meshes, microservices, im-
mutable infrastructure, and declarative APIs exemplify this approach.
These techniques enable loosely coupled systems that are resilient,
manageable, and observable. Combined with robust automation,
they allow engineers to make high-impact changes frequently and pre-
dictably with minimal toil.

Kubernetes [4], the flagship cloud native project with almost 50,000 new commits in
2020 alone [5], is an open source production-grade container orchestrator. Kubernetes
is designed by engineers with decades of experience building and operating server
systems at massive scale, including, Borg [6] and Omega [7], the two orchestration
systems deployed at Google LLC.

Kubernetes’ declarative, extensible, scalable and resilient design has many benefits
[8]. This has led to vast end user adoption, including, but not limited to: Apple [9],
CERN [10], JD.COM [11], Spotify [12], and even Deutsche Telekom [13] and Nokia
[14] as it enables 5G development [15], [16].

1.1 Problem Statement and Aims
This thesis aims to shed some light on why Kubernetes and cloud native were designed
the way they are, rather than just how. What made the designers choose radically
different design decisions compared to state of the art at the time? Furthermore,
the aim is to compare some of its design decisions with similar server infrastructure
platforms such as Docker Swarm [17] and HashiCorp Terraform [18].

Kubernetes is designed in a self-healing, robust and declarative way. In addition,
it is built from the ground up to be extensible and transparent, allowing for and
encouraging users to build their own self-healing, robust and declarative application-
specific automation on top. Coined in 2017 [19], Kubernetes operators bring a
novel programming model, following a large set of best practices, to the server
infrastructure ecosystem.

This thesis aims to illustrate the (quite complex) concepts covered in a relatable
and concrete way through analogies and examples. The goal is that readers get a new
perspective on server management, and intuitively learn from those with decades of
experience building and operating large-scale systems.

1Emphasis added to the quote; denotes aspects covered in this thesis
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The research questions of this thesis are the following:

1. How can server-related operational intelligence and knowledge be codified such
that humans can delegate management of server infrastructure to automated
processes (instead of “manual” management) and thus scale server systems
beyond human cognitive limits?

2. What underlying (physical, statistical and managerial) dynamics of server
infrastructure become visible at large, but not necessarily small, scale and thus
influence management software purposefully built for massive scale?

3. What are Kubernetes operators and their design principles, and how do they
compare to other alternatives? For example, why are operators designed as
declarative, level-triggered, periodic, pull-based, explicitely versioned, bidi-
rectional, idempotent and optimistic reconciler loops, and not some other
way?

1.2 Methods
The foundational theory covered in this thesis are the core design principles behind
Kubernetes ([6]–[8], [20]), Kubernetes operators ([19], [21]–[23]), CFEngine ([24],
[25]), other server management systems ([26]–[29]) and other control systems ([30],
[31]).

Talks and slides from industry conferences, such as, KubeCon [32] and blog posts,
books, or whitepapers from leaders within the CNCF community were considered
to answer the research questions. Additionally, keyword searches are performed on
relevant concept terms that need examination, like “declarative”, “UNIX”, “Raft”,
“Kubernetes Cluster API”. The databases searched include the ACM Digital Library,
arXiv, IEEE Xplore, and Google Scholar. Backward snowballing was also used for
resources of particular importance.

As open source projects Kubernetes, Docker Swarm and HashiCorp Terraform are
examined, their websites and documentation are thoroughly searched, and the open
source code is reviewed if needed. This evaluation took place between September
2021 and December 2021.

1.3 Structure of the Thesis
This thesis is structured as follows. Chapter 2 explores the chaotic and random
nature underlying server systems, and proposes a solution: declarative reconciler
loops. Chapter 3 explores how to instruct (configure) these reconciler loops correctly
and with minimal toil. Chapter 4 binds the theory introduced in Chapters 2 and 3
together into a concrete form that produces business value for its users. Chapter 5
discusses benefits and the shortcomings of the proposed solutions. Finally, Chapter
6 details improvement opportunities and concludes the thesis.
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2 Bringing Order to Chaos
In physics, the second law of thermodynamics loosely states that the entropy of a
system left to spontaneous evolution can not decrease over time. In fact, such a
system strives for thermodynamic equilibrium, namely, the state with the highest
entropy, i.e., the least ordered state. In other words, any ordered system becomes
less ordered over time when left to spontaneous evolution.

As observed by Burgess [24], a similar pattern also applies to infrastructure
systems. The entropy increase can be caused, for instance, by inconsistent ad hoc
configuration changes, software upgrades, power outages, hardware/software failures,
security vulnerabilities, or other changes of varying predictability. This claim is
strengthened by more than a decade of experience at Google, crisply summarized as:
“Failures are the norm in large scale systems” [6]. These changes or failures happen
at random intervals and cause the system to become less ordered, therefore, more
chaotic.

To solve this issue, Burgess argues that the changes going into a system should be
split into a long-term trend part (a “slow” component) as well as a noisy and quickly
changing part (a “fast” component), like ripples (fast) within waves (slow). The
former, fast, component represents the unwanted fluctuations from the long-term
trend. The latter, slow, corresponds to the policy intended to govern the evolution of
the system over time. Without that, fluctuations could grow unboundedly, thereby
putting the system at risk of reaching an unstable state. A corrective process
countering the fluctuations needs to be applied at least as often as the fluctuations
occur [24], as shown in Figure 1.

Figure 1: Sample illustration of system state evolution over time, highlighting the
long-term policy, random fluctuations from such a policy, and corrective actions
being applied to prevent indefinite growth. The illustration is based on the idea
described in [24].

The key takeaway from this analogy is that a spontaneously evolving system
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becomes less ordered, hence, it needs periodically executed corrective actions to steer
the system towards a policy governing the intended evolution of the system over
time. Changes to the system state over time is using this model either emergent, e.g.,
a power outage, or desired, e.g., a new application deployment.

In this thesis, the corrective mechanism is referred to as a reconciler loop (or
reconciler) which drives the actual state of the system (the sum of the fast and slow
components) towards the desired long-term evolution policy – the slow component,
referred to as desired state. This mechanism is called state reconciliation [33]. The
desired state is defined such that the reconciler loop can obtain the difference (diff)
between the desired and actual state, the fluctuation, referred to here as state drift.

For those familiar with control theory, the desired state is often called the desired
output, the actual state the actual output, and state drift the error signal [30]. The
reconciler loop represents a closed-loop control mechanism, because it takes the
observed, actual state into account when deciding what actions to perform.

2.1 Entropy
Let us explore the concept of entropy in infrastructure systems a bit more precisely.
Claude Shannon introduced the concept of information entropy in his paper “A
Mathematical Theory of Communication” [25] already in 1948. Information entropy
is a measure of how much “uncertainty”, “surprise” or “choice” there is in a random
variable, denoted here by X. Given a probability density function P (X), the
information entropy H(X) expressed in bits is defined as H(X) = E[− log2(P (X))],
where E denotes the expected value operator. For a discrete random variable with
outcomes xi, it is H(X) = − ∑︁

i P (xi) log2(P (xi)).
For illustration purposes, let us consider the following: H(X) = 0 when the

outcome is known, i.e., there is one outcome xk where P (xk) = 1. H(X) simplifies to
log2 n when X is uniformly distributed, i.e., all outcomes have the same probability
1
n
, where n is the number of outcomes. A coin’s entropy is as largest when the

probability is 50-50, which makes sense as entropy is a measure of uncertainty. To
connect this to server systems, one can identify a set of distinct categories resources
can be grouped by, and model the random variable X as “how likely is it that a
randomly selected resource falls into a given category”. For example, if the set of
resources are servers, the categories can be set of OSes available, assuming one server
can only run one OS at a time (Figure 2).

Burgess proposes three dimensions of modelling infrastructure consistency [24]. In
the “consistency” dimension (Figure 2) the resources are categorized and minimum
entropy (order) is desired. The “compliance” dimension (Figure 3) models how
consistently a given category is distributed across the resources. Finally, the “time”
dimension models the evolution of a setting over time, where commonly maximum
entropy is desired. Interestingly, Burgess points out that Shannon’s definition of
information entropy agrees with the previous definitions of entropy in the field of
thermodynamics, highlighting a profound connection between information theory
and physics.
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Figure 2: Histograms of how many servers are running a given OS. In case a) the
probability of a random server having OS v1 is 100%, and thus log2 1 = 0 – in other
words, the system is ordered. In b) and c) the entropy gradually increases, and in c)
the maximum entropy state is reached, where the system administrator experiences
the maximum amount of “surprise” when managing the servers.

Figure 3: A company targets achieving maximum spread (or utilization consistency)
of its workloads across servers 1-3. Case a) contains minimum spread or consistency,
and thus no entropy. In b) the spread is a bit more even, but not as even as in c),
where the maximum entropy state is achieved, and thus all utilization consistently
distributed across the resources.

Example 1: A company buys three servers with exactly the same con-
figuration A and OS v1. The servers are powered on. The system is
ordered as the state is completely uniform. Later, a critical security OS
upgrade v2 is released, thus, sysadmin S upgrade all but server 1 that is
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running some critical workload and must not be disturbed. A day later,
server 1 experiences slow disk access time due to misconfiguration. S
pokes around imperatively (by using a web UI or CLI tools) on server
1 until the error is resolved. S notices that the user load has declined
due to a seasonal variation, hence turns off server 2 to save power. A
week later, while sysadmin S is on vacation, sysadmin T notices that
server 3 reports an error, unknowingly the same error S fixed on server 1
earlier. T imperatively “fixes” the issue for server 3, but in a different way
than S for server 1. A brand-new OS v3 with desired but incompatible
features is released, hence, only server 3 is upgraded as an experiment.
Unexpectedly, a lightning strike makes the PSU of server 3 unusable,
shutting it down. This evolution is illustrated in Figure 4.

Figure 4: In Example 1, the entropy can be modelled with “consistency” histograms,
showing how many servers belong to the different OS, config and power categories
respectively. It is worth noting that the desired entropy increases slightly due to the
experiment with OS v3 and reduced seasonal load, but the actual state is still vastly
more unorganized. There is a clear need for corrective action to lower the entropy to
the desired level.

2.2 Expect the Unexpected
Nassim Nicholas Taleb, in his masterpiece book The Black Swan [34], describes
how the world is significantly more random than we as humanity believe, but also
how blind we are to it. This in part because of our retrospective explanations of
inconceivable events which fools us into thinking the world is more predictable than
it is. The dynamics become even more interesting when the perceived low-probability
event carries extreme impact: this is called a black swan event.
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The first step on the journey of understanding the black swan phenomena, is to
realize that most of our predictions carry errors magnitudes larger than we think
and understand that it can be more efficient to focus on the extraordinary events,
not as much on the ordinary. Note that there is no “silver bullet” solution to such a
dynamic in this thesis; however, it is imperative to be aware of the need to design
for failure and also to acknowledge that nothing is certain.

At Google, engineers acknowledge that unexpected events will happen, at unknown
times, and thus allocate approximately 17% more resources than needed in order to
“deliberately leave significant headroom for workload growth, occasional ‘black swan’
events, load spikes, machine failures, hardware upgrades, and large-scale partial
failures (e.g., a power supply bus duct)” [6].

Other examples of randomness-dominated activities are large application deploy-
ments and service latency. This phenomenon is referred to as The Long Tail [27],
[28] which highlights, similarly to the black swan ethos, that a small percentage of
tasks to be executed (i.e., “stragglers”) account for a significant, disproportionate
percentage of instances of unwanted behavior, such as failures or high latency. For
example, Garraghan et. al. [28] found that “5% of task stragglers caused by data
skew impact 50% of the total jobs”, and Dean and Barroso [27] noticed that 5% of
fan-out requests [of a Google service] account for 50% of the 99th percentile latency .

Eric Sorenson makes a related remark about that large-scale systems – particu-
larly, Twitter’s server infrastructure always experience a constant rate of errors [26].
Sorenson points out that the most interesting metric is not what specific system is
experiencing errors; it is rather the derivative, i.e., the change in the rate of errors.
In control-theoretic terms, it means that although a steady state [30] never is reached,
the system can function correctly by compensating for the error rate. This practice is
applied in many other domains as well; for instance, ships both offset the navigation
error induced by the magnetic North not being equal to the geographic North and
compensate for other factors such as wind.

Example 2: If sysadmin S wants to run 100,000 instances of a web
app, S can account for an error rate of, say 9%, by declaring the desired
number of instances is to be 110,000, which to most likely yield 100,100
running instances on average in practice.
One can think of a system never reaching the steady state but offsetting the
errors as “moving”, in contrast to a system not designed for the inevitable
error rate as “static”. Consider certification rotation or upgrades: if
they are continuous, you do not “feel the acceleration”, just as when an
object already is in motion; whereas if the tasks are done manually every
quarter, you feel the acceleration when temporarily moving a bit forward.
That said, if you always are moving, the risk of falling is higher, but at a
large scale you do not have the choice to stay static.
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2.3 Declarative Programming
As the system might spontaneously drift into unwanted states due to entropy or ran-
domness, it is instrumental to declare the desired state. The word declarative means
“making a declaration”, while declare refers to “to make known as a determination”
[35], [36]. An example of a declarative sentence is “The door is shut”, whereas an
imperative example is “Shut the door!”. A declarative language is one where the
writer describes the links between the entities involved and the desired output or
transformation of a process (“the what”), in contrast to an imperative language,
which focuses more on exact sequences of operations to be executed (“the how”) [37].

In declarative programming, this means expressing only the theory or logic of
a computation, delegating the production of an appropriate control flow to a com-
piler or actuator. Using Kowalski’s equation algorithm = logic + control [38], the
programmer supplies the logic part while the compiler deduces the control part,
according to given rules and underlying constraints. Notably, it takes two to tango,
thus logic without control is not sufficient in this imperative world we are living in.
Therefore, a declarative programmer spends most of their attention describing the
end state (“the what”) to the computer while not focusing much on the imperative
steps to get there (“the how”). That said, “declarative vs imperative” is not a
binary choice, but a spectrum. Very few, if any, (programming) languages are purely
imperative or declarative.

One can think of the declarative logic as a “claim”, and the compiler or actuator
fulfilling that claim. However, errors might result in the claim not being fulfilled
at all. Generally the execution order or state evolution of declarative logic is not
defined, which applies to at least Haskell [39], SQL [40] and Kubernetes. In fact, the
lack of a defined execution order signals that the logic likely is declarative.

Example 3: Code, written in a high-level programming language, in
text files (“the what”) is essentially a declarative claim of a computer-
executable binary file with imperative CPU instructions (“the how”).
Syntax errors in the code of an invalid claim result in a failure, but
also the lack of enough computer memory can hinder the compilation
process. The result varies depending on the compiler version, the machine
architecture and applied optimizations (among others).

Examples of (at least mainly) declarative programming languages are SVG, GraphQL,
HTML, CSS, React and SQL. Functional programming is a subset of declarative
programming. Haskell [41] is functional, thus also declarative. The pure subset of
functional programming is characterized by the fact that functions are side-effect
free: they deterministically return the same output for a given input, and do not
mutate any global or shared state, nor otherwise produce effects not directly related
to the computation.
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2.4 Abstraction Layers
By definition, a declarative claim forms an abstraction layer, namely, a generalized
model hiding specific implementation details. Abstraction layers are a very common
approach in Computer Science to manage complexity, such that whoever is using the
abstraction employs some desired functionality without the need for knowing all the
details under the hood.

Declarative claims do not force the programmer to manually hard-code specific
control logic, but quite the contrary: they allow the compiler or actuator to optimize
the returned set of steps to be executed, depending on the environment. For example,
if the declarative claim is to compute the sum of a set of numbers given as input,
the control logic can parallelize the summing by utilizing multiple CPU cores at
once. This is in contrast with a hardcoded, iterative for-loop that just adds the
items one by one into an aggregated variable; such a control flow misses out on the
parallelizability.

Coupling is defined as the “manner and degree of interdependence between
software modules” [42]. It is characteristic for cloud native [1] software to be
interface-driven, thus loosely coupled. For instance, Kubernetes itself is designed
as a set of five loosely coupled microservices interacting through well-defined APIs
[43]; for many cruicial functions it does not ship with any implementation at all.
For illustration, Kubernetes leverages workload isolation and runtime support from
CRI implementations, networking from CNI implementations, and storage from CSI
implementations.

Hyrum’s Law states that “With a sufficient number of users of an API, it does
not matter what you promise in the contract: all observable behaviors of your system
will be depended on by somebody” [44]. In other words, the abstraction layer (here
equivalently referred to as API) effectively has zero “degrees of freedom” once its
user base reaches critical mass. This indeed is a challenge; however, well-defined and
-specified API contracts are still of utmost importance.

In some cases, like Haskell and Kubernetes, however, part of the API contract
might explicitly state that specific implementation details, such as order of execution,
are undefined. Kubernetes and SRE best-practices [45, ch. 22] even inject randomness
into reconcilers, e.g., their reconcile period, to reduce the probability of too many
clients issuing requests to the API server at a given time [46]. More “degrees of
freedom” are obtained as a side effect as this approach prevents users to rely on
resource reconciliation at pre-defined times.

2.5 Desired and Actual State Separation
Using a linear algebra mindset, one can think of the desired and actual state as
coordinates in some abstract state space, and the distance between them the state
drift. Because the coordinates represent specific states of a system, the desired and
actual states are hence declarative. In contrast, a vector in this space could be
thought of as an imperative, state-transforming action.
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Example 4: When you call a taxi, it is obvious to declaratively tell
the actor (taxi driver) the coordinates of your actual and desired state.
Imagine how awkward it would be to imperatively describe your movement
as a vector, that has no fixed starting point, just an angle and length:
“Drive me 50 kms southeast, but pick me up anywhere”. It is just as
awkward to execute an imperative action against a target whose actual
state is unknown.
Thus, it is instrumental to describe both the actual and desired state,
otherwise you get the same experience as Alice in Wonderland, where
she asks the cat for directions without knowing her destination. The cat
responds: “If you do not know where you are going, any road will take
you there”.

Given this separation, consider an emergent change to the actual state coordinate,
e.g., a power outage that transforms the actual state from 100 servers running to 25
servers running. An emergent change moves the actual state coordinate; it can be
caused, for instance, by humans, other systems or, as discussed above, randomness.
Furthermore, the requirements on the desired state tends to change over time. For
example, a new application maybe is deployed into production, additional available
servers are added, or the resource limits of an application are adjusted. This is called
a desired state change that only affects the desired state coordinate.

An idempotent operation f mathematically satisfies the equation ∀x : f(f(x)) =
f(x). In other words, f is such that its value does not change after the first application
f(x) after being applied any number of times to its own output. In Borg, one of the
strategies to deal with failures is having idempotent mutating operations, such that
a failed or occasionally disconnected client can submit API requests more than once
harmlessly [6].

This distinction between desired and emergent state changes highlights that they
affect the desired and actual state coordinates independently. The state drift can be
modelled as the distance between the state space coordinates; thus, it is natural for
an actuator to be idempotent and execute no action when the state drift is zero.

This abstract state space can be an useful analogy when reasoning about these
concepts, although not necessarily a 1-1 mapping to the real world. Orthogonality is
a key concept in linear algebra; orthogonality of a state space represents operational
independence. For example, in Kubernetes there are reconcilers that operate on com-
pletely independent state, e.g., Deployment and CertificateSigningRequest reconcilers.
In other words, they operate in mutually orthogonal sub-spaces within the complete
state space. Thus, each reconciler just sees its own, say one- or two-dimensional,
state sub-space and converges the actual state coordinate towards the desired state
in that projection. Figure 5 illustrates two sample dimensions from Example 1 above.

2.6 Control Through Choreography
Kubernetes’ design is an example of the control through choreography design pattern,
applied at a large scale [8]. Kubernetes reconcilers are loosely coupled, independent,
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Figure 5: Desired and actual state given two state dimensions in Example 1; the
number of servers running an OS at version v2 and with a given configuration B. At
first there is one server (of desired two) running OS v2, and one (of desired three)
with config B. This is addressed by one (or two) reconcilers issuing two possibly
independent actions, eventually making the desired and actual state converge.

executing in parallel and base their actions on observation instead of a fixed state
diagram, which makes them more robust to perturbations and failures [8]. The
system as a whole achieves the desired state through the combination of all these
autonomous reconcilers cooperating together.

There are similarities in how the reconcilers are broken up into small, independent
units and the UNIX mantra “make each program do one thing well” [47]. Using
the linear algebra analogy from above, finding a set of cooperating reconcilers that
operate independently can be thought of as orthogonalizing the state space.

This is quite different from the more centralized, graph-based model deployed
in Terraform, where tasks can be executed in parallel only to a limited degree, if
allowed by the dependency graph [48]. Reconciliation is done simultaneously for all
managed resources in the Terraform Root Module Configuration; thus all root module
resources share the reconciliation interval in contrast to Kubernetes, where intervals
are resource-specific. Remote state synchronization is handled by backends [49] in
Terraform (the API server in Kubernetes), thus allowing for “true” parallelization
if one root module is split into many independent ones. This, however, requires
conscious and careful design by the user.

Control through choreography is also quite the opposite from Borg and Docker
Swarm, that have monolithic and centralized designs [6], [50]. A centralized design
can be “easier to construct at first but tends to become brittle and rigid over time,
especially in the presence of unanticipated errors or state changes” [8]. It also allows
the user to declare the desired state for multiple dependent resources at once, and then
just wait for convergence organized by multiple independently operating reconcilers.
This is in contrast with applying steps in some order defined by a state diagram,
thereby assigning the actuator the job of managing temporal dependencies.

Mean time to recovery (MTTR) and mean time before failure (MTBF) are two
critical metrics for systems either in healthy or error condition. MTTR is the mean
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duration between a system entering a failing state and it becoming healthy again.
MTBF is the mean duration that a system continuously stays operational. Clearly, it
is required that MTTR ≤ MTBF to even have the slightest chance of keeping the
system healthy, even though MTTR ≪ MTBF is needed in practice [24]. Corrective
actuators “race” against entropy- and randomness-related actors (see Sections 2.1
2.2). This presents factual evidence and a theoretical background on why periodic
reconciliation is needed, instead of a one-off execution.

Actions repairing a system in an error condition should happen in parallel to
minimize the MTTR [24]. In fact, repair actions carried out sequentially consume
more time in total and/or might block each other unnecessarily, possibly even leading
to further problems. Of course, parallelism can be both a friend and foe to stability
and consistency. But just like firm real-time systems, there is often some grace
period before warnings or errors appear and the system severely fails [31, ch. 1]. For
example, a system receiving a constant influx of objects eventually would crash due
to finite disk space if garbage collection never would be executed.

2.7 State Relativity
As pointed out by Burgess, as speed of information transfer is finite and errors
inevitable, therefore, consistency is not instant nor guaranteed but assumed with some
probability to have occurred after a given amount of time (“stochastically probable
consistency”) [24]. Consistency cannot be guaranteed because of the “MTTR-MTBF
Race” between corrective actuators and inevitable randomness Accordingly, Burgess
argues for “configuration management from within”, a core CFEngine design principle.
In other words, actuators are pull-based and as close to the target system as possible,
empowering topologically sensible caching and reconciliation of the desired state.

When the desired state is cached, yet periodically pulled, “local” reconciliation
within a topological failure domain guarantees this stochastically probable consistency
within that failure domain, even in the case of disconnection from the rest of the world.
This is slightly analogous to Schrödinger’s Cat, whose state cannot be observed
from the outside but yet can be alive. Thus, it is possible to achieve local, per-
failure-domain (“many worlds”) consistency even when multiple failure domains are
disconnected at once, although this cannot be verified [24].

In contrast, a centralized, “push-based” actuators cannot guarantee any form of
consistency for a remote system when its failure domain is disconnected, because
the push-based approach relies on remote system connectivity. The more distant
the remote system is from the actuator, the more inevitable latency is attached to
information transfer, the more unreliable actuator actions are. Recall Example 4:
acting on a system in an unknown state is awkward; it can even be dangerous.

As the speed of information transfer is finite, request latency is always positive,
regardless of if the actuator is push- or pull-based. When reasoning about these
distributed system problems, it can be helpful to attach space and time metadata,
a frame of reference, to pieces of information handled. Figure 6 illustrates how
state can have changed between observation and corrective action, how latency need
to accounted for, and how a system can be consistent yet not verifiable. In this
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illustration, it becomes clear that all state is relative to its time and location (space).

Figure 6: State relativity illustration. User U declares a new desired state S2 = 5
[replicas] to desired state store D. At t = 50, actuator A pulls desired state from
D. U is located 200ms and A 100ms from D. S1 = 3 is returned to A, as S2 does
not arrive in time to D. A reconciles the local target system T, 25ms away. After A
observed T1 = 2, both replicas crashed (-2). A compares S1 and T1, and adds one
replica in A1 = +1. A inspects T again, and reports the actual state T2 = 1 back to
D, such that T’s state is visible to U. A’s second reconciliation receives S2 correctly,
applies A2 = +4, and observes T3 = 5. Although T is consistent (T3 = S2) at t = 800,
U cannot verify this due to a temporary network failure between A and D.

In fact, Kubernetes was designed with the objective that control plane connectivity
is not required for successful node operation, just like airplanes can shut off their
engines during a flight [51]. Clearly, nodes cannot receive any desired state updates
while disconnected, but they keep the system in sync with the latest desired state.

2.8 Concurrency Control
For a distributed system, keeping state in sync and aligned with some desired policy
is a primary concern. At its extremes, two main categories of concurrency control
can be identified: optimistic and pessimistic. Optimistic concurrency control allows
multiple independent processes to compete in parallel for the same resources, because
the frequency of conflicts are relatively rare compared to the gains in the increased
throughput from the parallelism (beneficial for lowering MTTR; see Section 2.6).
Optimistic concurrency can be implemented, for instance, through an ever-increasing
number or timestamp field that is increased every successful write. Read requests
are populated with the current value of the field; in order for a write to be successful,
the field in the write request must match the “current” value, indicating no conflicts.

Example 5: Clients A and B read resource R, with current concurrency
field Freq = 1. B tries to write a modified R. The server S accepts the
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write as Freq = Fserver = 1; then sets Fserver = 2. Later, when A tries to
update R, S notices that 1 = Freq ̸= Fserver = 2, and declines the request.
A must re-read the updated R and try again.

Pessimistic concurrency control uses a locking mechanism – for example, some kind of
mutual exclusion lock – to only allow one actor access to a particular set of resources
for some time. This can avoid conflicts at the cost of decreased throughput and
potential lock contention, depending on how fine-grained the locking is.

Google’s Borg scheduler is monolithic and not parallelized, thus, it suffers from
saturation when the computation time for a single scheduling decision increases [7].
To solve this, Google built Omega, with a novel scheduling algorithm that is parallel,
lock-free, optimistic, and uses shared state. This algorithm is more scalable, removes
head-of-line blocking and thus useful for both synthetic and real-world data [7]. For
this reason, Kubernetes API server uses optimistic concurrency [52], with an opt-in
[53] for pessimistic concurrency when needed.

Docker Swarm implements a Borg-like monolithic scheduler, where the cluster
managers form a Raft [54] cluster that elects one “leader” which provides the API and
scheduling [55] [50]. The popular Git workflow is one kind of optimistic concurrency,
many contributors work on changes in parallel, and once a change is merged to the
main branch that affects others’ changes, they will need to rebase to cleanly apply
their change. Terraform employs a pessimistic concurrency strategy using the locking
feature [56] for state backends [49].

2.9 State Reconciliation
This section summarizes the lessons learned from above sections and present a set of
design principles for how to build reconcilers. First of all, it can be concluded that
the purpose of the reconciler is to keep the target system in control and provide a
declarative abstraction layer for managing the target system to its users. By encoding
operational logic about the target system in the reconciler; the user of the declarative
API does not have to take a state diagram or temporal dependencies into account.
All in all, this is a way of centralizing complexity; moving it from the user to the
reconciler. This is a reasonable design decision, at least in the case of Kubernetes.

Because of the discrete nature of computers, state reconciliation cannot be
continuous as in physical or electrical controllers, but periodic at best. The period
varies greatly by reconciler. The reconciler needs to react to both emergent and
desired state changes (Section 2.5). The reconciler should do one thing and do it well
(Section 2.6). The reconciler should support any state transition, including rollbacks,
such that “declarative [desired] state makes rollback of a change trivially easy” [23,
ch. 1]. The reconciler should be re-entrant, i.e., be such that the control flow can be
interrupted at any time and then re-entered without issues [57].

The reconciler should be idempotent (Section 2.5), in other words always check for
if an action actually needs executing, or if it already has been executed with return
values readily available. For example, if the desired and actual state equal, no action
should be taken. Alternatively, if an automatically-generated ID field already has
been set, it should not be re-generated.
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The reconciler is tasked with managing temporal dependencies (Section 2.6). Thus,
the reconciler should “re-queue” a resource (postpone the resource reconciliation after
some duration) whose dependencies are not ready, e.g., a non-existent Kubernetes
ConfigMap on which Pod P depends postpones reconciliation of P. The retry
(“backoff”) period should be randomized and grow exponentially with the amount
of sequential “failures” [45, ch. 22]. Finally, three reconciler properties are further
investigated in the sub-sections below.

Figure 7: The control flow of a reconciler loop. 1) The desired state is fetched. 2)
The actual state is computed. 3) The actual and desired state is compared, and an
action plan is computed, if any. 4) The action plan is executed, if it exists. 5) The
result of the action(s) is observed. 6) Optionally, the new actual state is reported. 7)
The resource is scheduled for re-reconciliation after some time.

The control flow of the reconciler is described in Figure 7. At a high level, the
reconciler needs to: receive the desired state from a Desired State Source; access the
Target System being controlled; and optionally access a high-level Actual State Sink
for reporting the observed the actual state, such that other actors can access the
actual state without the need to observe the target system themselves.

2.9.1 Level- vs Edge-triggeredness

This section will cover two strategies for triggering reconciliation of a resource. Level-
triggered reconciliation is carried out by comparing two input signals (levels) against
each other, be it two voltages as for a CPU or desired and actual state for a reconciler.
Edge-triggered reconciliation reacts to events, like a falling or rising edge for an
electrical signal, keyboard press, or a HTTP request. The levels are continuous, and
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can be “checked and re-checked” as often as needed, e.g., on a periodic schedule like
most reconcilers. The events, however, are asynchronous, sporadic and available for
a finite amount of time by their nature.

For keeping server infrastructure under control, level-triggered logic is preferred
over edge-triggered logic [33], [58]. Although a level-triggered reconciler crashes or
otherwise is unavailable for some time, all data needed for making decisions is still
available in the form of desired and actual state, in contrast to past events that might
have disappeared. The risk of missing events becomes particularly significant in the
light of risk of network partitions and inevitable inter-component latency discussed
in Section 2.7.

Example 6: A workload is scheduled to a node in Kubernetes. The node
agent periodically pulls the desired state (Pod objects) and compares it
with the actual state observed from the local container engine.
Conversely, if the node agent were edge-triggered (at its extreme), it
would would only act on “Scheduled” events from the scheduler, thus not
run any Pods at all during startup, although it is already assigned 10
“old” Pods.

Finally, sometimes edge- and level-triggered designs can be combined. If the fun-
damental design is level-triggered, reconciling the desired and actual state peri-
odically, the response time can be minimized by additionally receiving resource
created/updated/deleted events triggering reconciliation before the periodic schedule.
Kubernetes does this to turn the response time from minutes to seconds [33], [59].

2.9.2 Uni- vs Bidirectionality

With unidirectional reconciliation a reconciler sources the actual state from some
cache at least occasionally; in contrast, the reconciler always observes the target
system in bidirectional mode [33]. Unidirectional mode is used when observing the
target system (e.g. a public cloud API) is monetarily too expensive, rate-limited,
too slow, or otherwise infeasible. Thus, it is still a valid option although consistency
guarantees are weakened when inconsistent actions may be performed if the cache is
stale. Deletions need to be level-triggered to empower the unidirectional reconciler
to “notice” the deletion and update its cache and target system accordingly [33].

Example 7: A unidirectional reconciler R is responsible for keeping a
cloud loadbalancer L well-configured. L is created during the R’s first
reconcile round (sync); the actual state cache records the existence of
L. Accidentally, L is deleted due to human error. R does not notice the
deletion of L (and thus, re-create L) during the second sync, as L still
exists in the cache. Thus, an admin re-creates L “by hand”. Later, L is
not needed anymore; thus deleted from the desired state. R notices the
deletion request in a level-triggered fashion through L being in the cache
but not desired state.
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In bidirectional mode, however, resource ownership needs particular attention. By
design, a bidirectional reconciler should delete any actual resources not present in the
desired state. But without an ownership mechanism, two bidirectional reconcilers
syncing disjoint subsets of the same resource type would delete the other’s resources
it does not recognize [33].

The majority of the Kubernetes reconcilers are bidirectional, however, some
of them are unidirectional because of said reasons. Level-triggered deletion in
Kubernetes is done through finalizers. Terraform has a CLI flag for mandating
unidirectional mode, and supports level-triggered deletions “automatically” thanks
to its architecture that separates storage of desired and actual state [60].

2.9.3 Actual State Reporting

In order for external actors and humans to know what the reconciler is doing, and
in what state its target system is at the moment, the reconciler should to report
what is the actual state to some actual state sink (recall Figure 6). Such “high-level”
state reporting makes it possible for higher-level actors (without access to the target
system) to build additional automation “on top” of the base resource reconciliation.
In other words, actual state reporting allows a set of reconcilers to be loosely coupled,
communicating if needed through well-defined APIs.

Example 8: A Kubernetes Pod is a declarative claim for a running
container. Before execution, the IP address of the unknown and undefined.
Once running, the Kubernetes node agent populates the Pod status
field with info about the Pod IP, container ID, etc. such that higher-level
reconcilers, e.g., can route network traffic to the Pod correctly, without
modifying the node agent.

However, there are further use-cases for this reporting. The reconciler should, by
design, transform resource claims into resources. Thus, it needs to somehow keep
track of what desired state claim maps to what target system resource. In some
cases this is trivial, in some not. Consequently, by reporting to the actual state sink
that “this claim maps to this resource”; the reconciler itself can become stateless,
thus easier to deploy and more robust [60].

When the set of resources to reconcile grows large, the reconciler needs to become
increasingly efficient to be able to process all claims in a timely manner (recall MTBF
from Section 2.6). Thus, metadata and metrics about the reconciliation process
itself. OpenMetrics [61] and OpenTelemetry [62] are two popular telemetry data
specifications for this and many other purposes.

Finally, this information can be used for visualization through UIs, aid debugging,
and overall increase introspectability and observability of the system. The actual state
becomes yet more valuable if it conforms to some well-specified set of conventions,
such that any convention implementer can process data from many distinct reconcilers
similarly, and display consistent data in UIs, CLIs and monitoring dashboards.
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Kubernetes reconcilers conventionally report the actual state to the status field
of the API object (for reference, the desired state is stored in the spec field). There
are well-defined conventions for how to report status [21], [63]. Terraform, in turn,
produces a state file [60] which is stored in a pluggable backend [49].
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3 Declarative Configuration
The key takeaway from the previous chapter is that there is a need to describe the
desired state of a target system (or application / app) declaratively. Thus, this
chapter covers the declarative representation, i.e., the configuration (“config”) of the
application.

3.1 Complexity Clock
Initially in an application’s lifecycle, before the app has a critical mass of users and
features, parameters tend to be “Hard Coded”. Over time, the need to change the
defaults arise. Configuration in its simplest form tends to be just a set of scalars
(e.g., strings, numbers or booleans) or key-value pairs (e.g., CLI flags or environment
variables). However, once the set of knobs evolve and grow larger, there is a need for
grouping and “more structured” config. Accordingly, the “simple” key-value pairs
are turned into, e.g., JSON, YAML or XML documents (“Config Values”). Over
time, the config becomes complex [29], which calls for “Rules Engine” features such
as typed schemas, validation, defaulting, and boilerplate reduction (e.g., inheritance
and overrides) [64].

Figure 8: Hadlow, M. (2012). The Configuration Complexity Clock [64]. Ac-
cessed 2021-10-29. Retrieved from https://mikehadlow.blogspot.com/2012/05/
configuration-complexity-clock.html. Licensed under the MIT license.

However, it is almost impossible to make a set of generic rules to govern the
whole configuration space, and so a DSL is born to express the config through a
custom programming language that is possibly even Turing-complete. However,
building a custom programming language comes at a significant engineering cost,

https://mikehadlow.blogspot.com/2012/05/configuration-complexity-clock.html
https://mikehadlow.blogspot.com/2012/05/configuration-complexity-clock.html
https://mit-license.org/
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and becomes another dependency to learn to get started. Moreover, the DSL now
needs to be executed to be understood, unlike “plain” configuration. Unless a great
amount of resources is invested in the DSL, it lacks features like unit testing and
debugging, which are crucial for correctness over time. Finally, the DSL is replaced
by a “real” programming language used for config generation, eventually leading to
two programs: the app and the config generator for the app, where the latter is at
the “Hard Coded” phase.

This phenomenon is common enough to have a well-established name: the
Configuration Complexity Clock [64] (visualized in Figure 8). It is not a problem
that can be easily solved; the authors of “Borg, Omega and Kubernetes” conclude:
“Of all the problems we have confronted, the ones over which the most brainpower,
ink, and code have been spilled are related to managing configurations — the set of
values supplied to applications, rather than hard-coded into them” [8].

3.2 Data and Generation Separation
Configuration structure tend to grow larger and more complex over time but, unfortu-
nately, too many configuration parameters (“knobs”) can lead to cognitive overload,
as the human brain capacity is limited [29]. The cognitive overload can be observed as
the inability to find the right knob or understand what a knob does. Thus, the need
for an abstraction layer arises (see Section 2.4), aiming to optimize the productivity
of a certain type of user. This is often done through programmatic generation of a
small, “high-level” config schema into the complex, “complete” config data.

This “config generation” method, is in fact what the authors of both [8] and [20,
ch. 14] recommend: defining a clear contract between the configuration generation
and resulting data. The config data could be expressed using a data-only format (like
YAML or JSON) and the programmatic generation in a real programming language,
similarly to how web pages clearly separate structure (HTML) from computation
(JavaScript). This best-practice is illustrated in Figure 9.

In terms of Kowalski’s equation algorithm = logic + control [38] (see Sec-
tion 2.3), this flow could be described as [config] data = high-level config +
generator (or data = generator(high-level config)). The generator func-
tion should be hermetic, i.e., deterministic and side-effect free [20, ch. 15]. Expressed
in terms of functional programming, generator should be a pure function (see
Section 2.3).

3.3 Data Formats
Overall, it seems like the cloud native community has converged on configuration
data formats that support the lingua franca of elementary data types: unordered
key-value maps, ordered arrays, and scalar values. Formats that support these basic
primitives include JSON [65], YAML [66], TOML [67], XML [68], and Protobuf [69].
When config representation is limited to this “common denominator” of data types,
the config can be represented equally well in any format, and thus converted between
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Figure 9: Beyer et al. (2018). The Site Reliability Workbook, Figure 14-2 [20,
ch. 14]. Accessed 2021-11-24. Retrieved from https://sre.google/workbook/
configuration-design/. Licensed under CC BY-NC-ND 4.0.
The Google SRE [20, ch. 14] and Kubernetes [8] best practice of separating the
configuration high-level logic and the control: generation of config data.

formats without data loss. In fact, the format used becomes only a matter of taste
for the user.

For example: Kubernetes supports JSON, YAML and Protobuf. YAML is
preferred over JSON by users writing “raw config data” by hand. JSON is preferred
by HTTP clients of the API server. Protobuf is preferred for inter-component cluster
traffic, because it is a more efficient binary wire format with lower CPU and memory
overhead. Consequently, Kubernetes is able to achieve desired scalability targets
without forcing users to deal with binary formats [70].

3.4 Generation
Regardless of how the configuration “compilation” or generation is achieved, it should
– according to best practices – “support configuration health, engineer confidence, and
productivity via tooling for managing the config files (linters, debuggers, formatters,
IDE integration, etc.)” [20, ch. 15].

Multiple config generators can be combined and put into a pipeline; there does
not have to be just a single generator. Although this can be tempting, [20, ch. 15]
reminds us that with every new step of generation, the complexity toil increases.
That said, in some cases, more than one generation steps are needed, e.g., to combine
generators written in distinct programming languages.

HashiCorp chose to develop a DSL for their software: HCL [71]. HCL can

https://sre.google/workbook/configuration-design/
https://sre.google/workbook/configuration-design/
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
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be thought of as an extension to JSON, with additional features such as formula
interpolation. Users of the generic HCL format like Terraform [18] establishes HCL
schemas and conventions. This is quite similar as how Kubernetes specifies API
conventions [21] for its use of JSON and how BCL, the configuration DSL for Borg,
[6] relates to GCL, a general-purpose configuration DSL used at Google [72].

It is worth noting that one of the primary authors of BCL, Marcel van Lohuizen,
is the creator of the open-source CUE [73] configuration language, which aims to
strike a balance between providing usability while enforcing order independence and
hermiticity while purposefully not being Turing-complete. In other words, much like
Kubernetes draws on lessons learned from Borg and Omega, CUE applies lessons
learned from the Turing-complete BCL.

It shall be noted that this kind of config generation abstraction layer by definition
builds in trade-offs by focusing on a specific user. Consequently, to meet all users’
demand, multiple distinct generators need to be made. For instance, the Kubernetes
community includes over 120 known tools to help with configuration complexity,
including, but not limited to: kustomize, Helm, kpt, CUE, ksonnet and Carvel.

3.5 Encoding and Decoding
Before two entities can communicate, they need to agree on what language to speak,
or at least know what language the other entity is using. Encoding refers to the process
of transforming a message, idea or data into a representation that can be stored or
transmitted, using some encoding format. Decoding is the opposite process which
reconstructs the stored or transmitted representation back into the original message,
idea or data. In order to decode, at least the encoded data and its format must be
known. However, although the receiver is able to technically decode the message,
they might not have enough context to know how to understand it. Examples of
context include, but are not limited to: version/dialect of encoding format, message
kind, or entity ID.

Example 9: Person A wants to describe their new home to person B.
A encodes their memory of their home into Finnish speech. B hears the
speech, and decodes it such that B now has an impression of A’s home
too. The encoding format is Finnish speech. If B does not understand
any Finnish, B might not even know what language A is speaking, thus
the encoding format is unknown. If B does not understand Finnish, B is
unable to decode the speech.
Persons C and D exchange messages online. C speaks Swedish and D
Finnish. They negotiate to use written English as their lingua franca. C
is accustomed to UK English and D US English, and because there is a
mismatch in the encoding format version, some words are misunderstood.
Furthermore, when D sends messages about their cat E without any prior
introduction, C can interpret, but not understand, the messages.
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Example 9 highlights that for decoding messages successfully, the message metadata
is crucial. Message metadata includes the encoding format (to interpret the message)
and the context (to understand the purpose of the message). Some communicators
rely entirely, sometimes quite successfully even, on auto-detection of the format
and/or the context. Some communicators hard-code assumptions about the format
and context.

Example 10: One can try to identify the format of a file by investigating
its file extension, repeatedly trying to parse the file using many parsers
until success, or looking for magic numbers (e.g., [74]). One can try to
assert the purpose of the file by looking at existence of certain data points,
e.g., JSON fields. However, all of these implicit approaches risk making
wrong decisions too often in users’ view, or have security implications.
HTTP URLs and headers often communicate both encoding format
(using the standardized Content-Type header) and related context be-
tween client and server. For instance, a HTTP POST to DigitalOcean’s
/v2/droplets explicitly communicates “create a VM (droplet) using the
parameters specified in the attached JSON object of schema v2”.

From real life, most people should agree that a “good” communicator swiftly negotiates
the format (language) and version (dialect or level) with their audience and clearly
expresses all required context before presenting their case.

In this light, Kubernetes could be considered a well-behaved communicator, as
the set of formats is fixed (JSON, YAML and Protobuf) and specifying the context is
required. Kubernetes config objects are characterized by three key context properties:
API version, API group, and kind. The API version expresses the object schema
version used, kind is a name for the object schema, whereas the API group is a
classification mechanism for grouping related but distinct kinds together. Collectively,
this triple is referred to as a GroupVersionKind (GVK). The Kubernetes encoder
always adds GVK information, which is then used by the decoder on the way back.

Example 11: A recent Kubernetes Deployment object has kind=Deployment,
group=apps, and version=v1, but a previous (now removed) API struc-
ture used group=extensions and version=v1beta1. However, there is
automation to upgrade the config structure from the previous to current
version.
The presence of API groups avoids ambiguity between projects and use-
cases, e.g. kind=Cluster could refer to a database, container, or storage
cluster. Furthermore, API groups allow several kinds to be versioned,
documented and evolved as a group. Thus, a kind is unique only within
its API group, not globally.

An alternative to auto-detection and explicit context specification is the “Convention
over Configuration” practice utilized in Ruby on Rails [75]. CoC trades some
“uniqueness” or “individuality” in favor of consistency and less cognitive overhead.
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Example 12: Many computer programs use file names and directory
structure as a way to express format and context in a CoC-like way,
similar to HTTP URLs and headers. For example, given a file extension,
the format is asserted and given a file name, the config kind is asserted.
However, users with workflow requirements in conflict with the convention
are unable to use the program.

Once type information is part of the encoding step, and always written in serialized
form, a user can use any file/folder structure, the version is clear to reviewers,
automated schema linters can be used for pre-merge validation and reconciler loops
operating on that data can know directly if they can operate on the object. For
example, if an engineering team uses Git for application development, they might also
want to use Git for a consistent application deployment to desired target environments.
Due to that the desired state checked in to a Git repository is self-describing, they
can utilize any file and folder structure, and put multiple related objects into the
same file by using e.g. YAML document separation.

Kubernetes enforces strong API conventions [21], as a lesson learned from Borg
and Omega [8]. These API conventions result in resource uniformity, and allow for
great extensibility. For example, all resources are encoded with their GVK metadata,
and express uniform metadata information in the top-level metadata field. This
allows for any reader (e.g., a CLI, UI or reconciler loop) to make sense out of an
object, although it is unknown.

3.6 Versioning
Configuration is bound to evolve over time, as a consequence of the general entropy
increasing (see Chapter 2) and the application (requirements) evolving. For example,
Xu et al. [29] found that on average, 8 config parameters were added, renamed or
deleted per application version, for four applications investigated. This highlights a
need for up- and downgrading config schemas between versions.

Let us consider a case where app A supports only one config schema version, for
each possible app version. An up- or downgrade of A possibly requires a simultaneous
config up- or downgrade. This requires the administrator to closely keep track of
tightly coupled app and config versions when up- or downgrading. Mathematically,
if function f maps app version to config version, f is surjective, possibly bijective if
the config is always upgraded when the app is. CLI parameters are an example of
this kind of app-config version relation.

Example 13: In Kubernetes, CLI parameters have been criticized by
users for this tight coupling, making it harder to run Kubernetes safely in
production. For instance, say that user U is using the –insecure-port
kubeadm flag at v1.21. This flag is removed in v1.22. Thus, the automation
that is executing kubeadm, along with related CLI flags, needs to be
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aware of the kubeadm version and adjust the CLI flags accordingly. In
contrast, if –insecure-port would still be passed at v1.22, an error would
be thrown. Furthermore, if U first upgrades to v1.22 (with correctly
adjusted flag values), and then wants to roll back, the upgrade should
not have affected the config supplied at v1.21. Thus, –insecure-port
should be passed if and only if app version is equal to or below v1.21.

A better approach, is to let each app version be compatible with N previous config
schemas, where N > 0. The app will then internally upgrade any “old” schema
it sees, within the supported interval determined by N . This allows an admin to
first upgrade the app version, and first when there is enough confidence a rollback
will not be needed, the config is upgraded to the current version. Some Kubernetes
components, kubeadm included, support this feature called ComponentConfig [76]
[77].

In fact, The Kubernetes design goes even further. Some systems are designed
with the assumption that a new config version makes up a new, independent “config
object”, such that one can say “config of version X in the system”. Kubernetes,
however, treats versions just as different “views” of the same config object.

Thus, many Kubernetes API resources are both fully upgradable and downgrad-
able, in other words, roundtrippable. Roundtrippability, in this context, means the
ability to convert between versions without any data loss, such that, e.g., config
= down(up(config)) = up(down(down(up(config)))) holds, where up and down
are up- and downgrade procedures, respectively.

Example 14: Git is an example of a system where every version is
potentially a new “object”. A Git commit represents changes in file data,
and thus file contents before and after are two separate objects with
distinct data.
Kubernetes v1.22 supports three schema versions of the Horizontal Pod
Autoscaling (HPA) resource, v1, v2beta1, and v2beta2. This means a
user can create a new HPA called H using schema version v2beta2, yet
still request H from the API server at version v1, and vice versa.

3.7 Storage
Let us discuss state stores referred to in the reconciliation model described in Section
2.9. The first crucial property of the state store is that it does not modify the target
system in any way in such a model: it should be side-effect free, just like the pure
functions discussed in Section 2.3. That might sound obvious, but several state stores
are in fact deeply entangled with the control flow of the system, e.g., Docker Swarm
whose API server operate in an imperative and side-effectful manner. Kubernetes
API server, on the other hand, is a stateless, side-effect free REST API server in
front of some private data storage, such as etcd [78].

The second property is symmetry [79], which follows quite easily if the store
is side-effect free. If a store is symmetric, it contains all the necessary state to
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express the target system; there is no “hidden” or “internal” state, i.e., the state is
symmetrically shared between the store and its user. An asymmetric system typically
contains critical portions of target system state private to the store and its related
“system components”, which makes it impossible for the user to see, verify, change or
backup the complete state. Kubernetes is symmetric and thus, readily extensible by
its users [8]. Docker Swarm, however, is asymmetric.

Finally, the store may be versioned. Versioned stores can be beneficial as users
can easily roll state back to previous points in time and audit state evolution. In
general, the Kubernetes API server is not versioned, although the underlying storage
etcd is [80]. However, workarounds exist for common cases, e.g., to allow rollbacks
of workload upgrades. Auditing [81] is supported as an alternative mechanism to
following state evolution. Swarm is not versioned. However, Git is an example of a
versioned state store that provide a clear ways of tracing state evolution, through
commits.
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4 Kubernetes Operators
The Industrial Revolution during the 18th and 19th centuries marks one of history’s
many significant turning points. The Industrial Revolution is characterized by the
transition from resource production by hand to machine-produced resources. With
the advent of the machine, did the need for humans in factories disappear? Certainly
not. Conversely, it did allow for a massive increase in efficiency, production volume
and factory employment.

For a company to be successful in taking advantage of the benefits the industrial
revolution brings, however, they need at least capital to buy the machines and
employees skilled at operating the machines. If the production volume or more
generally scale is small, the cost of the machine and operator salaries might outweigh
the benefits of the increase in efficiency.

This is analogous to server systems, as well. If the scale is small, it might
not, on capitalistic terms at least, be worth to invest in refined server automation
and employee education. But the larger the scale, the more likely it gets that
sophisticated server automation is beneficial or even the only choice. This is always
worth remembering when evaluating deploying a system like Kubernetes. However,
operating at a small scale does not free you from the underlying dynamics discussed in
Chapter 2, e.g., constant entropy increase, randomness and finite speed of information
transfer. Thus, it is worth thinking twice before disregarding automation designed
to cope with these dynamics.

The shift from relying on humans to manage servers “by hand” to designing
automation whose purpose is to manage servers is analogous to the Industrial Revo-
lution. And yet, the need for humans does not disappear although this automation
is utilized. It just takes a different, more efficient form, which allows for a higher
human-to-server ratio (or some similar, more appropriate measure). The role of
humans is now to create, oversee and maintain the automation, just as the role of
humans in a factory of today’s standards is to make sure the machines keep producing
and perform maintenance. Site Reliability Engineer is the job title popularized by
Google for a person operating this kind of server automation [45].

A Kubernetes Operator, coined by Brandon Philips at CoreOS in 2017 [19],
exactly represents this kind of server automation [22]. A Kubernetes operator, or
just operator for short, codifies domain-specific knowledge about how to operate
a given application in production. The “application” mentioned here can be any
process, server, API or resource that requires custom handling during its lifecycle.
This pushes the boundary of human limits forward, by delegating “repetitive human
activities that are devoid of lasting value” [22] to the operator.

The topics in Chapter 2 and 3 are not random, they cover the challenges to be
dealt with and the foundational design principles of Kubernetes operators. Due to
space constraints, there is no room for a detailed walkthough on how these relate.
However, the end result of combining declarative configuration, the state reconciler
model, separation of desired and actual state, control through choreography, and
the other discussed topics, is a novel programming model for the next generation of
server systems.
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Figure 10: CNCF WG App Delivery. (2021). Operator pattern [22]. Accessed
2021-09-24. Retrieved from https://github.com/cncf/tag-app-delivery/
blob/49271fe4d63b5330150c96529b1ef8ad4dc8fa20/operator-wg/whitepaper/
Operator-WhitePaper_v1-0.md. Licensed under Apache 2.0.
Operators extend the generic reconciler model depicted in Figure 7.

4.1 Maturity Levels
Depending on the application needs, Kubernetes operators can be implemented in
different degrees of sophistication. What applications the operator should deploy
(and how) is configured through a user-friendly, application-specific, declarative, and
often quite high-level API. In Kubernetes, this mechanism is called custom resources
[82]. One operator maturity model [83] (e.g., level 3 includes everything in 1 and 2)
defines the following levels:

1. Basic Install: The desired application is provisioned and configured through
a high-level, app-tailored operator configuration API. Also referred to as a
“compiler” as it “compiles” high-level API resources into lower-level ones.

2. Seamless Upgrades: Safe version up- and (possibly) downgrades, often with
automatic rollback, are supported through its declarative API.

3. Full Lifecycle: All stages of the application’s lifecycle are managed, e.g., clus-
tering, backups and restores, storage handling, failure recovery or migration.

4. Deep Insights: Application telemetry data such as metrics and logs is processed,
and critical alerts and warnings are sent to humans with a high signal-to-noise
ratio (SNR).

5. Autopilot: The application is horizontally and vertically scaled with demand,
configuration is tuned at runtime, and abnormal behavior is detected.

4.2 Use-cases
High-level objectives for a Kubernetes operator thus are to:

https://github.com/cncf/tag-app-delivery/blob/49271fe4d63b5330150c96529b1ef8ad4dc8fa20/operator-wg/whitepaper/Operator-WhitePaper_v1-0.md
https://github.com/cncf/tag-app-delivery/blob/49271fe4d63b5330150c96529b1ef8ad4dc8fa20/operator-wg/whitepaper/Operator-WhitePaper_v1-0.md
https://github.com/cncf/tag-app-delivery/blob/49271fe4d63b5330150c96529b1ef8ad4dc8fa20/operator-wg/whitepaper/Operator-WhitePaper_v1-0.md
https://www.apache.org/licenses/LICENSE-2.0.html
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– keep server infrastructure in control, continuously minimizing drift between the
desired and actual state (thus, operators are a superset of “plain” reconcilers),

– codify and automate “repetitive human activities that are devoid of lasting
value” [22], by encoding domain-specific knowledge (resource scalability),

– observe application health, metrics and logs, such that configuration can be
adaptively tuned and alerts of any abnormal behavior can be sent seldom but
with high importance (monitoring scalability, to avoid SRE burnout), and

– provide a high-level abstraction interface such that the application can be
operated by engineers without the domain-specific knowledge otherwise required
(knowledge scalability).

Use-cases of operators include:

– application data backups, e.g., mariadb-operator [84], K8up [85], and etcd-
operator [86],

– application up- or downgrades, or clustering, e.g., the etcd-operator [86],
mariadb-operator [84], and minio-operator [87],

– adaptive configuration tuning, e.g., Horizontal [88] or Vertical [89] Pod Au-
toscaling, and prometheus-operator [90],

– provide a pluggable abstraction layer, e.g., Cluster API [91] and Istio [92],

– server operating system administration, e.g., Machine Config Operator [93],

– advanced deployment rollout techniques, e.g., Flagger [94],

– GitOps workflows, e.g., Flux [95] and Argo [96].

4.3 Example: GitOps
GitOps has evolved as an industry best-practice during recent years [97] after
the coining blog post from Alexis Richardson at Weaveworks [98] in 2017. Unlike
traditional mechanisms for delivering software (industry term: continuous delivery)
that tend to be of imperative nature [99] (algorithm = control), GitOps provides for
a fully declarative (algorithm = control + logic [38], see Section 2.3) delivery flow.

GitOps is the practice of storing declarative desired state in an immutable,
versioned and auditable storage (see Section 3.7), combined with automated software
agents that continuously observe the actual state and attempt to apply the most
recently pulled desired state [100]. Notably, despite its name and popular usage,
GitOps does not mandate a specific source nor target. That said, the most popular
source is Git and delivery target Kubernetes, through the Flux [95] and Argo [96]
software agents.

On a high-level, the only difference between a GitOps software agent and a
reconciler in Section 2.9, is that GitOps requires an immutable, versioned and
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auditable desired state store, unlike the reconciler. Flux and Argo are Kubernetes
operators that whose target system is, in fact, Kubernetes itself. In other words,
they keep Kubernetes in desired control through syncing configuration from Git to
the Kubernetes API server.
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5 Discussion
Kubernetes has allowed organizations to scale to unpredecented levels [9]–[14] through
encoding human-like operational knowledge with regards to operating and scheduling
containerized workloads. With Kubernetes, users can operate on a higher abstraction
layer, and focus on their application needs, not on underlying server-related details.

The Kubernetes operator programming model has allowed subject matter experts
(that have authored, e.g., [6]–[8]) to encapsulate knowledge in a way that lets tens
of thousands of Kubernetes users “stand on the shoulders of giants” (knowledge
scalability). Furthermore, the declarative abstraction layer allows for optimizations
in the implementation (e.g., scheduling), leading to resource scalability. Finally,
through continuous reconciliation “repairing” the system as often as possible, fewer
error situations need human intervention, leading to monitoring scalability.

While most people associate Kubernetes with containers, Kubernetes can be
fundamentally seen as an extensible chaos management engine, helping humans in
the race against inevitable entropy and randomness. Kubernetes’ API machinery
[21], [101] (whose foundations are covered in Chapter 3 and [102]) and its framework
for building operators are the true innovations [103]. The patterns built into these
form the backbone of the cloud native patterns, and could apply more widely beyond
“just” server management. This is prototyped in, e.g., kcp [104] and libgitops [105].

Let us recap the key features of the Kubernetes operator model.

1. Explicitly driven by user intent: The users focus on what the end state
should look like, freeing them from thinking about state diagrams or internal
details, leading to higher development productivity and code re-use.

2. Counters unwanted inevitable state fluctuations: Operators reconcile
periodically, even during partial failures, correcting emergent changes caused
by, e.g., entropy and randomness, as well as user updates to the desired state.

3. Readily extensible and transparent: The complete system state is split up
into loosely coupled resources, usually paired with a reconciler loop. Custom
resources [82] can extend the system, and resources build upon each other.

4. APIs are versioned and self-describing “plain” config: API versioning
provides a clear evolution path. Self-describing APIs allow for seamless data
exchange. Separation of data and generation provide for relatively simple
decoding yet a rich user experience ecosystem.

However, the Kubernetes model also has shortcomings:

1. A steep learning curve: An influential factor to Kubernetes being perceived
as “too complex” is that it introduces a lot of new terminology and concepts
to learn, leading to cognitive overload [106]–[108].

2. “The Tyranny of Choice” [109]: Kubernetes as a fully transparent and
extensible system, not including critical aspects of its operation by default (e.g.,
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isolation, networking and storage subsystems) and exposing all knobs needed
for operation, can negatively affect perception and satisfaction [110].

3. Hard to debug “too many moving parts”: Although the control through
choreography is beneficial for, e.g., minimizing MTTR and scaling the system,
it can be non-trivial to debug many loosely coupled resources reconciling in
parallel [111]. In other words, it is a problem of tracability. It is even hard to
understand what happens behind the scenes when a single workload is run,
warranting long explanations like [112].

4. Dependencies are implicit, not explicit: “Kubernetes doesn’t know the
difference between ‘the system has converged successfully’ and ‘a control loop
is wedged and is blocking everything else.’” [111]. In other words, it is not
straightforward to comprehend how state will evolve without a defined execution
order.

5. Configuration is still an unsolved problem: In 2016, Burns et al. [8]
concluded that configuration is an unsolved problem, and that still holds today
[113]–[116]. Of over 120 solutions tools in [113], there has not yet been any
convergence to de facto best-practice solutions [117].

6. Lack of explicit field ownership: As multiple actors can operate on over-
lapping sets of resources, they can over time become “fighting” by flipping
between mutually exclusive states without any errors being reported [111].
Field ownership is also needed to avoid that several reconcilers overwriting
each others’ data when patching resources [118].

7. It is non-trivial for humans to write JSON and YAML: When humans
write JSON or YAML, it is easy to make mistakes in the syntax (e.g., spacing or
colons), misspell field names, add duplicated fields, forget quotation marks, or
otherwise craft an invalid config [117]. Without good linters, schema validators,
encoders and decoders, an invalid config can travel quite a long way in the
system before an error is caught. Furthermore, it is also hard to compute and
apply differences of two objects.

However, Kubernetes is not designed to be used directly “by hand”. It is a “platform
for building platforms” [119], meaning it operates at a high enough level to be a
useful, but low enough level to “work anywhere”. Thus, problems 1, 2, 7, and maybe
5 are purposefully meant to be solved by something built at a higher layer, providing
pre-set opinions and a tailored, more focused “view” of the system. The community
is trying to address problem 3 and partially 4 through, e.g., kspan [120] and kstatus
[63]. Problem 6 is being addressed, in part, by Server Side Apply [118], [121].

Over time, the foundational could native patterns described in this thesis will
hopefully be employed even more concretely outside of the “obvious” server system
domain as well. For instance, Kubernetes operators that do not use any of Kubernetes
is a sign of success of the pattern. In other words, as the underlying physical dynamics
described and the reconciler solution are quite generic, reconciliation applications
(like GitOps) could extend way beyond container orchestration.
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6 Conclusion
With Kubernetes operators, cumbersome and repetitive server-related work items
can be taken care of autonomously without human intervention. This allows for
scaling systems beyond human cognitive limits in many dimensions, analogously to
how the Industrial Revolution in the 19th century allowed production to scale beyond
the rate of production by hand. There are multiple dimensions of scaling systems,
including, but not limited to, resource, knowledge and monitoring scalability.

Resource scalability can be achieved through operators computing as optimal
decisions for actions as possible, through inspecting both the user-defined desired state,
and the actual state of the system. Knowledge scalability can be achieved through
the operator defining a declarative API for users, both humans and higher-level
automation, to utilize for controlling the underlying system. Monitoring scalability
can be achieved through the operator periodically inspecting the actual state, taking
action for minor “known” deviation or error conditions, and reporting to humans
only for unexpected states.

At small scale of server infrastructure systems, the impact of the inevitable entropy
increases, randomness, Hyrum’s Law and finite speed of information transfer might
be hard to notice and thus easy to overlook in system design. Learning from the
experience and “lessons learned” from engineers running large-scale systems can
hence be an effective way of designing systems reliably from their inception. Finally,
once a critical mass of large-scale engineers have come to similar conclusions, a set of
patterns and practices emerge fundamentally requiring a new mindset to effectively
cope with problems faced.

The Kubernetes operator patterns have indeed emerged as a consequence of
the underlying dynamics of server systems noticed at large scale. Compared to
alternatives, the Kubernetes philosophy can be summarized as “control through
choreography”, rather than more monolithic management found in, e.g., Swarm and
Terraform. Declarative configuration can be understood without execution, can be
compared, is side-effect free, and naturally forms an abstraction layer. Periodic,
pull-based reconciler loops form an effective control mechanism for systems naturally
and randomly evolving to more chaotic states. Reconciler bidirectionality and level-
triggeredness provide for more reliable operation. The principles of separation of
desired and actual state, and of configuration data and its generation provide for
“best-practice” designs.

6.1 Future Work
Currently, operators are mostly written in Go and targeted at Kubernetes / server-
related environments. Expanding this operator control mechanism further to other
programming languages and environments would provide benefits to other scenar-
ios as well, just as control theory generally has provided benefits to many kinds
of automation. Likewise, expanding the GitOps concept further beyond Git and
Kubernetes is an interesting area to follow. This, however, requires more education
on the “fundamentals” of cloud native and the operator pattern for the implementers.
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Still, there is much work to be done in how to cope with configuration complexity
of declarative files when stored in, e.g., Git, Kubernetes and generally in files. Having
an even more unified API to encode, decode, list, diff, patch, and up- and downgrade
declarative configuration stored in pluggable storages would help with that problem
[105].

Finally, as the “control through choreography” pattern comes with a relatively
high understandability cost, there is a need for better tracability and visualization
of automated operations being carried out. For instance, kspan [120] uses the
OpenTelemetry [62] specification to transform Kubernetes events into traces, tracable
timelines of multiple correlated actors and their actions executed over time.
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