#!/usr/bin/env python3 import cv2 import depthai as dai import numpy as np import time # Create pipeline with dai.Pipeline() as pipeline: cameraNode = pipeline.create(dai.node.Camera).build() # Longer form - useful in case of a local NNArchive # modelDescription = dai.NNModelDescription("yolov6-nano", platform=pipeline.getDefaultDevice().getPlatformAsString()) # archive = dai.NNArchive(dai.getModelFromZoo(modelDescription)) # neuralNetwork = pipeline.create(dai.node.NeuralNetwork).build(cameraNode, archive) neuralNetwork = pipeline.create(dai.node.NeuralNetwork).build(cameraNode, dai.NNModelDescription("yolov6-nano")) qNNData = neuralNetwork.out.createOutputQueue() pipeline.start() while pipeline.isRunning(): inNNData: dai.NNData = qNNData.get() tensor = inNNData.getFirstTensor() assert(isinstance(tensor, np.ndarray)) print(f"Received NN data: {tensor.shape}")