{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Lesson 8 - Classification\n",
"\n",
"> In this lesson we bring together all the knowledge we have gained about Random Forests and apply it to a new type of supervised learning task: binary classification"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/lvwerra/dslectures/master?urlpath=lab/tree/notebooks%2Flesson08_classification.ipynb)[![slides](https://img.shields.io/static/v1?label=slides&message=2021-lesson08.pdf&color=blue&logo=Google-drive)](https://drive.google.com/open?id=1bu4Y859CpBFfHYKucuNeHVm0p3vMZB6-)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Learning objectives"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* Know how to apply Random Forests to classification tasks\n",
"* Understand the performance metrics associated with binary classification\n",
"* Gain an introduction to fast.ai's data preprocessing functions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This lesson is inspired by the following textbooks and online courses:\n",
"\n",
"* Chapter 3 of _Hands-On Machine Learning with Scikit-Learn and TensorFlow_ by Aurèlien Geron\n",
"* Chapter 7 of _Data Science for Business_ by Provost and Fawcett\n",
"* Lessons 1 - 4 of Jeremy Howard's fantastic online course [_Introduction to Machine Learning for Coders_](https://course18.fast.ai/ml)\n",
"\n",
"You may also find the following blog post useful:\n",
"\n",
"* [Grumpy, euphoric, and smart classifiers (interactive)](https://christian.bock.ml/posts/metrics/)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Homework\n",
"\n",
"* Solve the exercises included in this notebook\n",
"* Read chapter 3 of _Hands-On Machine Learning with Scikit-Learn and TensorFlow_ by Aurèlien Geron\n",
"* Read chapter 7 of _Data Science for Business_ by Provost and Fawcett\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What is customer churn?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
\n",
"\n",
"We will explore [IBM's telecommunications dataset](https://www.kaggle.com/blastchar/telco-customer-churn) and determine which attributes are most informative for predicting customer retention (also known as customer churn). As described by IBM, the problem setting is as follows:\n",
"\n",
"> A telecommunications company is concerned about the number of customers leaving their landline business for cable competitors. They need to understand who is leaving. Imagine that you’re an analyst at this company and you have to find out who is leaving and why.\n",
"\n",
"The kind of questions we'd like to find answers to are:\n",
"\n",
"* Which customers are likely to leave?\n",
"* Which attributes influence customers who leave?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## The data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As noted above, in this lesson we will analyse IBM's customer churn dataset:\n",
"\n",
"* `churn.csv`\n",
"\n",
"The dataset includes information about:\n",
"\n",
"* Customers who left within the last month – the column is called `Churn`\n",
"* Services that each customer has signed up for – phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies\n",
"* Customer account information – how long they’ve been a customer (tenure), contract, payment method, paperless billing, monthly charges, and total charges\n",
"* Demographic info about customers – gender, whether they're a senior citizen or not, and if they have partners and dependents\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import libraries"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# reload modules before executing user code\n",
"%load_ext autoreload\n",
"# reload all modules every time before executing Python code\n",
"%autoreload 2\n",
"# render plots in notebook\n",
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# uncomment to update the library if working locally\n",
"# !pip install dslectures --upgrade"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# data wrangling\n",
"import pandas as pd\n",
"import numpy as np\n",
"from dslectures.core import (\n",
" get_dataset,\n",
" display_large,\n",
" convert_strings_to_categories,\n",
" rf_feature_importance,\n",
" plot_feature_importance,\n",
" plot_dendogram,\n",
")\n",
"from dslectures.structured import proc_df\n",
"from pathlib import Path\n",
"\n",
"# data viz\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from sklearn.metrics import plot_confusion_matrix, plot_roc_curve\n",
"from sklearn.tree import plot_tree\n",
"\n",
"sns.set(color_codes=True)\n",
"sns.set_palette(sns.color_palette(\"muted\"))\n",
"\n",
"# ml magic\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"import scipy\n",
"from scipy.cluster import hierarchy as hc"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Download of churn.csv dataset complete.\n"
]
}
],
"source": [
"get_dataset(\"churn.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also make use of the `pathlib` library to handle our filepaths:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"churn.csv housing_merged.csv\n",
"churn_processed.csv housing_processed.csv\n",
"housing.csv submission.csv\n",
"housing_addresses.csv test.csv\n",
"housing_gmaps_data_raw.csv train.csv\n"
]
}
],
"source": [
"DATA = Path('../data/')\n",
"!ls {DATA}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"churn_data = pd.read_csv(DATA / \"churn.csv\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspect the data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Preview the data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sometimes you will find that the dataset has too many columns to be displayed with the standard `DataFrame.head()` method and just shows `...` for intermediate columns:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
customerID
\n",
"
gender
\n",
"
SeniorCitizen
\n",
"
Partner
\n",
"
Dependents
\n",
"
tenure
\n",
"
PhoneService
\n",
"
MultipleLines
\n",
"
InternetService
\n",
"
OnlineSecurity
\n",
"
...
\n",
"
DeviceProtection
\n",
"
TechSupport
\n",
"
StreamingTV
\n",
"
StreamingMovies
\n",
"
Contract
\n",
"
PaperlessBilling
\n",
"
PaymentMethod
\n",
"
MonthlyCharges
\n",
"
TotalCharges
\n",
"
Churn
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
7590-VHVEG
\n",
"
Female
\n",
"
0
\n",
"
Yes
\n",
"
No
\n",
"
1
\n",
"
No
\n",
"
No phone service
\n",
"
DSL
\n",
"
No
\n",
"
...
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
Month-to-month
\n",
"
Yes
\n",
"
Electronic check
\n",
"
29.85
\n",
"
29.85
\n",
"
No
\n",
"
\n",
"
\n",
"
1
\n",
"
5575-GNVDE
\n",
"
Male
\n",
"
0
\n",
"
No
\n",
"
No
\n",
"
34
\n",
"
Yes
\n",
"
No
\n",
"
DSL
\n",
"
Yes
\n",
"
...
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
One year
\n",
"
No
\n",
"
Mailed check
\n",
"
56.95
\n",
"
1889.5
\n",
"
No
\n",
"
\n",
"
\n",
"
2
\n",
"
3668-QPYBK
\n",
"
Male
\n",
"
0
\n",
"
No
\n",
"
No
\n",
"
2
\n",
"
Yes
\n",
"
No
\n",
"
DSL
\n",
"
Yes
\n",
"
...
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
Month-to-month
\n",
"
Yes
\n",
"
Mailed check
\n",
"
53.85
\n",
"
108.15
\n",
"
Yes
\n",
"
\n",
"
\n",
"
3
\n",
"
7795-CFOCW
\n",
"
Male
\n",
"
0
\n",
"
No
\n",
"
No
\n",
"
45
\n",
"
No
\n",
"
No phone service
\n",
"
DSL
\n",
"
Yes
\n",
"
...
\n",
"
Yes
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
One year
\n",
"
No
\n",
"
Bank transfer (automatic)
\n",
"
42.30
\n",
"
1840.75
\n",
"
No
\n",
"
\n",
"
\n",
"
4
\n",
"
9237-HQITU
\n",
"
Female
\n",
"
0
\n",
"
No
\n",
"
No
\n",
"
2
\n",
"
Yes
\n",
"
No
\n",
"
Fiber optic
\n",
"
No
\n",
"
...
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
Month-to-month
\n",
"
Yes
\n",
"
Electronic check
\n",
"
70.70
\n",
"
151.65
\n",
"
Yes
\n",
"
\n",
" \n",
"
\n",
"
5 rows × 21 columns
\n",
"
"
],
"text/plain": [
" customerID gender SeniorCitizen Partner Dependents tenure PhoneService \\\n",
"0 7590-VHVEG Female 0 Yes No 1 No \n",
"1 5575-GNVDE Male 0 No No 34 Yes \n",
"2 3668-QPYBK Male 0 No No 2 Yes \n",
"3 7795-CFOCW Male 0 No No 45 No \n",
"4 9237-HQITU Female 0 No No 2 Yes \n",
"\n",
" MultipleLines InternetService OnlineSecurity ... DeviceProtection \\\n",
"0 No phone service DSL No ... No \n",
"1 No DSL Yes ... Yes \n",
"2 No DSL Yes ... No \n",
"3 No phone service DSL Yes ... Yes \n",
"4 No Fiber optic No ... No \n",
"\n",
" TechSupport StreamingTV StreamingMovies Contract PaperlessBilling \\\n",
"0 No No No Month-to-month Yes \n",
"1 No No No One year No \n",
"2 No No No Month-to-month Yes \n",
"3 Yes No No One year No \n",
"4 No No No Month-to-month Yes \n",
"\n",
" PaymentMethod MonthlyCharges TotalCharges Churn \n",
"0 Electronic check 29.85 29.85 No \n",
"1 Mailed check 56.95 1889.5 No \n",
"2 Mailed check 53.85 108.15 Yes \n",
"3 Bank transfer (automatic) 42.30 1840.75 No \n",
"4 Electronic check 70.70 151.65 Yes \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To fix that we can configure the [options in pandas](https://pandas.pydata.org/pandas-docs/version/0.15/options.html) which we can wrap inside a simple function:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
customerID
\n",
"
gender
\n",
"
SeniorCitizen
\n",
"
Partner
\n",
"
Dependents
\n",
"
tenure
\n",
"
PhoneService
\n",
"
MultipleLines
\n",
"
InternetService
\n",
"
OnlineSecurity
\n",
"
OnlineBackup
\n",
"
DeviceProtection
\n",
"
TechSupport
\n",
"
StreamingTV
\n",
"
StreamingMovies
\n",
"
Contract
\n",
"
PaperlessBilling
\n",
"
PaymentMethod
\n",
"
MonthlyCharges
\n",
"
TotalCharges
\n",
"
Churn
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
7590-VHVEG
\n",
"
Female
\n",
"
0
\n",
"
Yes
\n",
"
No
\n",
"
1
\n",
"
No
\n",
"
No phone service
\n",
"
DSL
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
Month-to-month
\n",
"
Yes
\n",
"
Electronic check
\n",
"
29.85
\n",
"
29.85
\n",
"
No
\n",
"
\n",
"
\n",
"
1
\n",
"
5575-GNVDE
\n",
"
Male
\n",
"
0
\n",
"
No
\n",
"
No
\n",
"
34
\n",
"
Yes
\n",
"
No
\n",
"
DSL
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
One year
\n",
"
No
\n",
"
Mailed check
\n",
"
56.95
\n",
"
1889.5
\n",
"
No
\n",
"
\n",
"
\n",
"
2
\n",
"
3668-QPYBK
\n",
"
Male
\n",
"
0
\n",
"
No
\n",
"
No
\n",
"
2
\n",
"
Yes
\n",
"
No
\n",
"
DSL
\n",
"
Yes
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
Month-to-month
\n",
"
Yes
\n",
"
Mailed check
\n",
"
53.85
\n",
"
108.15
\n",
"
Yes
\n",
"
\n",
"
\n",
"
3
\n",
"
7795-CFOCW
\n",
"
Male
\n",
"
0
\n",
"
No
\n",
"
No
\n",
"
45
\n",
"
No
\n",
"
No phone service
\n",
"
DSL
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
One year
\n",
"
No
\n",
"
Bank transfer (automatic)
\n",
"
42.30
\n",
"
1840.75
\n",
"
No
\n",
"
\n",
"
\n",
"
4
\n",
"
9237-HQITU
\n",
"
Female
\n",
"
0
\n",
"
No
\n",
"
No
\n",
"
2
\n",
"
Yes
\n",
"
No
\n",
"
Fiber optic
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
Month-to-month
\n",
"
Yes
\n",
"
Electronic check
\n",
"
70.70
\n",
"
151.65
\n",
"
Yes
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" customerID gender SeniorCitizen Partner Dependents tenure PhoneService \\\n",
"0 7590-VHVEG Female 0 Yes No 1 No \n",
"1 5575-GNVDE Male 0 No No 34 Yes \n",
"2 3668-QPYBK Male 0 No No 2 Yes \n",
"3 7795-CFOCW Male 0 No No 45 No \n",
"4 9237-HQITU Female 0 No No 2 Yes \n",
"\n",
" MultipleLines InternetService OnlineSecurity OnlineBackup \\\n",
"0 No phone service DSL No Yes \n",
"1 No DSL Yes No \n",
"2 No DSL Yes Yes \n",
"3 No phone service DSL Yes No \n",
"4 No Fiber optic No No \n",
"\n",
" DeviceProtection TechSupport StreamingTV StreamingMovies Contract \\\n",
"0 No No No No Month-to-month \n",
"1 Yes No No No One year \n",
"2 No No No No Month-to-month \n",
"3 Yes Yes No No One year \n",
"4 No No No No Month-to-month \n",
"\n",
" PaperlessBilling PaymentMethod MonthlyCharges TotalCharges \\\n",
"0 Yes Electronic check 29.85 29.85 \n",
"1 No Mailed check 56.95 1889.5 \n",
"2 Yes Mailed check 53.85 108.15 \n",
"3 No Bank transfer (automatic) 42.30 1840.75 \n",
"4 Yes Electronic check 70.70 151.65 \n",
"\n",
" Churn \n",
"0 No \n",
"1 No \n",
"2 Yes \n",
"3 No \n",
"4 Yes "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_large(churn_data.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Alternatively, you can take the transpose to see all the columns more easily:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
0
\n",
"
1
\n",
"
2
\n",
"
3
\n",
"
4
\n",
"
\n",
" \n",
" \n",
"
\n",
"
customerID
\n",
"
7590-VHVEG
\n",
"
5575-GNVDE
\n",
"
3668-QPYBK
\n",
"
7795-CFOCW
\n",
"
9237-HQITU
\n",
"
\n",
"
\n",
"
gender
\n",
"
Female
\n",
"
Male
\n",
"
Male
\n",
"
Male
\n",
"
Female
\n",
"
\n",
"
\n",
"
SeniorCitizen
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
0
\n",
"
\n",
"
\n",
"
Partner
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
\n",
"
\n",
"
Dependents
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
\n",
"
\n",
"
tenure
\n",
"
1
\n",
"
34
\n",
"
2
\n",
"
45
\n",
"
2
\n",
"
\n",
"
\n",
"
PhoneService
\n",
"
No
\n",
"
Yes
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
\n",
"
\n",
"
MultipleLines
\n",
"
No phone service
\n",
"
No
\n",
"
No
\n",
"
No phone service
\n",
"
No
\n",
"
\n",
"
\n",
"
InternetService
\n",
"
DSL
\n",
"
DSL
\n",
"
DSL
\n",
"
DSL
\n",
"
Fiber optic
\n",
"
\n",
"
\n",
"
OnlineSecurity
\n",
"
No
\n",
"
Yes
\n",
"
Yes
\n",
"
Yes
\n",
"
No
\n",
"
\n",
"
\n",
"
OnlineBackup
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
No
\n",
"
\n",
"
\n",
"
DeviceProtection
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
\n",
"
\n",
"
TechSupport
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
\n",
"
\n",
"
StreamingTV
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
\n",
"
\n",
"
StreamingMovies
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
No
\n",
"
\n",
"
\n",
"
Contract
\n",
"
Month-to-month
\n",
"
One year
\n",
"
Month-to-month
\n",
"
One year
\n",
"
Month-to-month
\n",
"
\n",
"
\n",
"
PaperlessBilling
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
\n",
"
\n",
"
PaymentMethod
\n",
"
Electronic check
\n",
"
Mailed check
\n",
"
Mailed check
\n",
"
Bank transfer (automatic)
\n",
"
Electronic check
\n",
"
\n",
"
\n",
"
MonthlyCharges
\n",
"
29.85
\n",
"
56.95
\n",
"
53.85
\n",
"
42.3
\n",
"
70.7
\n",
"
\n",
"
\n",
"
TotalCharges
\n",
"
29.85
\n",
"
1889.5
\n",
"
108.15
\n",
"
1840.75
\n",
"
151.65
\n",
"
\n",
"
\n",
"
Churn
\n",
"
No
\n",
"
No
\n",
"
Yes
\n",
"
No
\n",
"
Yes
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0 1 2 \\\n",
"customerID 7590-VHVEG 5575-GNVDE 3668-QPYBK \n",
"gender Female Male Male \n",
"SeniorCitizen 0 0 0 \n",
"Partner Yes No No \n",
"Dependents No No No \n",
"tenure 1 34 2 \n",
"PhoneService No Yes Yes \n",
"MultipleLines No phone service No No \n",
"InternetService DSL DSL DSL \n",
"OnlineSecurity No Yes Yes \n",
"OnlineBackup Yes No Yes \n",
"DeviceProtection No Yes No \n",
"TechSupport No No No \n",
"StreamingTV No No No \n",
"StreamingMovies No No No \n",
"Contract Month-to-month One year Month-to-month \n",
"PaperlessBilling Yes No Yes \n",
"PaymentMethod Electronic check Mailed check Mailed check \n",
"MonthlyCharges 29.85 56.95 53.85 \n",
"TotalCharges 29.85 1889.5 108.15 \n",
"Churn No No Yes \n",
"\n",
" 3 4 \n",
"customerID 7795-CFOCW 9237-HQITU \n",
"gender Male Female \n",
"SeniorCitizen 0 0 \n",
"Partner No No \n",
"Dependents No No \n",
"tenure 45 2 \n",
"PhoneService No Yes \n",
"MultipleLines No phone service No \n",
"InternetService DSL Fiber optic \n",
"OnlineSecurity Yes No \n",
"OnlineBackup No No \n",
"DeviceProtection Yes No \n",
"TechSupport Yes No \n",
"StreamingTV No No \n",
"StreamingMovies No No \n",
"Contract One year Month-to-month \n",
"PaperlessBilling No Yes \n",
"PaymentMethod Bank transfer (automatic) Electronic check \n",
"MonthlyCharges 42.3 70.7 \n",
"TotalCharges 1840.75 151.65 \n",
"Churn No Yes "
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data.head().T"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### The shape of data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7043"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# get number of rows\n",
"len(churn_data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(7043, 21)"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# get tuples of (n_rows, n_columns)\n",
"churn_data.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this case, we see that we have 7043 customers and 21 variables or attributes that describe their telecom subscription. Let's have a look at the columns:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['customerID', 'gender', 'SeniorCitizen', 'Partner', 'Dependents',\n",
" 'tenure', 'PhoneService', 'MultipleLines', 'InternetService',\n",
" 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport',\n",
" 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling',\n",
" 'PaymentMethod', 'MonthlyCharges', 'TotalCharges', 'Churn'],\n",
" dtype='object')"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data.columns"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Note: As explained in the summary, the _**target attribute**_ is `Churn` and thus we have a _**classification problem**_ (rather than regression) because the target is a _**category**_ (Yes or No) rather than a coninuous number."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Unique values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Whenever we see an ID column like `Id`, it is useful to perform a sanity check that each value is unique. Otherwise it may be possible that you have duplicates in your data that can bias your models and hence conclusions. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"7043"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data[\"customerID\"].nunique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Good! The number of unique IDs matches the number of rows in our DataFrame."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data types"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"customerID object\n",
"gender object\n",
"SeniorCitizen int64\n",
"Partner object\n",
"Dependents object\n",
"tenure int64\n",
"PhoneService object\n",
"MultipleLines object\n",
"InternetService object\n",
"OnlineSecurity object\n",
"OnlineBackup object\n",
"DeviceProtection object\n",
"TechSupport object\n",
"StreamingTV object\n",
"StreamingMovies object\n",
"Contract object\n",
"PaperlessBilling object\n",
"PaymentMethod object\n",
"MonthlyCharges float64\n",
"TotalCharges object\n",
"Churn object\n",
"dtype: object"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hmm, `TotalCharges` is of type **object** (i.e. string) even though it is clearly a float. Since null values or NaNs don't produce this behaviour, there are presumably empty strings lurking in this column. Let's test this hypothesis using `DataFrame.value_counts()`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"20.2 11\n",
" 11\n",
"19.75 9\n",
"20.05 8\n",
"19.9 8\n",
" ..\n",
"514.75 1\n",
"676.35 1\n",
"6510.45 1\n",
"428.45 1\n",
"6004.85 1\n",
"Name: TotalCharges, Length: 6531, dtype: int64"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data[\"TotalCharges\"].value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will deal with this empty strings in the preprocessing steps below."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data preprocessing"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Recall in our housing analysis, we needed to perform three main steps to bring out DataFrame to a form suitable for training a Random Forest on:\n",
"\n",
"* Convert strings to categorical data type\n",
"* Fill missing values\n",
"* Numericalise the DataFrame and create a features matrix $X$ and target vector $y$\n",
"* Create train and validation sets\n",
"\n",
"Let's perform each of those steps below."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Convert strings to categories"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First we convert all the string columns to pandas' categorical data type:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"convert_strings_to_categories(churn_data)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"customerID category\n",
"gender category\n",
"SeniorCitizen int64\n",
"Partner category\n",
"Dependents category\n",
"tenure int64\n",
"PhoneService category\n",
"MultipleLines category\n",
"InternetService category\n",
"OnlineSecurity category\n",
"OnlineBackup category\n",
"DeviceProtection category\n",
"TechSupport category\n",
"StreamingTV category\n",
"StreamingMovies category\n",
"Contract category\n",
"PaperlessBilling category\n",
"PaymentMethod category\n",
"MonthlyCharges float64\n",
"TotalCharges category\n",
"Churn category\n",
"dtype: object"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is almost correct, although a closer look at `SeniorCitizen` reveals that it refers to a binary feature and thus should also be categorical:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 1])"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data[\"SeniorCitizen\"].unique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can fix this easily by simply changing the data type:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"churn_data[\"SeniorCitizen\"] = churn_data[\"SeniorCitizen\"].astype(\"category\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"customerID category\n",
"gender category\n",
"SeniorCitizen category\n",
"Partner category\n",
"Dependents category\n",
"tenure int64\n",
"PhoneService category\n",
"MultipleLines category\n",
"InternetService category\n",
"OnlineSecurity category\n",
"OnlineBackup category\n",
"DeviceProtection category\n",
"TechSupport category\n",
"StreamingTV category\n",
"StreamingMovies category\n",
"Contract category\n",
"PaperlessBilling category\n",
"PaymentMethod category\n",
"MonthlyCharges float64\n",
"TotalCharges category\n",
"Churn category\n",
"dtype: object"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# sanity check on the transformation\n",
"churn_data.dtypes"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fill missing values"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A quick way to test for missing values is to apply the `isna` method from pandas and calculate the sum of missing values in our DataFrame:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Churn 0.0\n",
"OnlineSecurity 0.0\n",
"gender 0.0\n",
"SeniorCitizen 0.0\n",
"Partner 0.0\n",
"Dependents 0.0\n",
"tenure 0.0\n",
"PhoneService 0.0\n",
"MultipleLines 0.0\n",
"InternetService 0.0\n",
"OnlineBackup 0.0\n",
"TotalCharges 0.0\n",
"DeviceProtection 0.0\n",
"TechSupport 0.0\n",
"StreamingTV 0.0\n",
"StreamingMovies 0.0\n",
"Contract 0.0\n",
"PaperlessBilling 0.0\n",
"PaymentMethod 0.0\n",
"MonthlyCharges 0.0\n",
"customerID 0.0\n",
"dtype: float64"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(churn_data.isna().sum() / len(churn_data)).sort_values(ascending=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In this case, it looks like we're lucky and have a pre-cleaned dataset!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create feature matrix and target vector"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have done some basic preprocessing, the final step is to numericalise the `pandas.DataFrame` and create the feature matrix $X$ and target vector $y$. In previous lessons we created some functions to automate these steps. Below we use fast.ai's utility function `proc_df` to wrap all these steps into a single step:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X, y, nas = proc_df(churn_data, \"Churn\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
customerID
\n",
"
gender
\n",
"
SeniorCitizen
\n",
"
Partner
\n",
"
Dependents
\n",
"
tenure
\n",
"
PhoneService
\n",
"
MultipleLines
\n",
"
InternetService
\n",
"
OnlineSecurity
\n",
"
OnlineBackup
\n",
"
DeviceProtection
\n",
"
TechSupport
\n",
"
StreamingTV
\n",
"
StreamingMovies
\n",
"
Contract
\n",
"
PaperlessBilling
\n",
"
PaymentMethod
\n",
"
MonthlyCharges
\n",
"
TotalCharges
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
5376
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
3
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
3
\n",
"
29.85
\n",
"
2506
\n",
"
\n",
"
\n",
"
1
\n",
"
3963
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
34
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
3
\n",
"
1
\n",
"
3
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
1
\n",
"
4
\n",
"
56.95
\n",
"
1467
\n",
"
\n",
"
\n",
"
2
\n",
"
2565
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
3
\n",
"
3
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
4
\n",
"
53.85
\n",
"
158
\n",
"
\n",
"
\n",
"
3
\n",
"
5536
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
45
\n",
"
1
\n",
"
2
\n",
"
1
\n",
"
3
\n",
"
1
\n",
"
3
\n",
"
3
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
42.30
\n",
"
1401
\n",
"
\n",
"
\n",
"
4
\n",
"
6512
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
2
\n",
"
1
\n",
"
2
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
1
\n",
"
2
\n",
"
3
\n",
"
70.70
\n",
"
926
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" customerID gender SeniorCitizen Partner Dependents tenure \\\n",
"0 5376 1 1 2 1 1 \n",
"1 3963 2 1 1 1 34 \n",
"2 2565 2 1 1 1 2 \n",
"3 5536 2 1 1 1 45 \n",
"4 6512 1 1 1 1 2 \n",
"\n",
" PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup \\\n",
"0 1 2 1 1 3 \n",
"1 2 1 1 3 1 \n",
"2 2 1 1 3 3 \n",
"3 1 2 1 3 1 \n",
"4 2 1 2 1 1 \n",
"\n",
" DeviceProtection TechSupport StreamingTV StreamingMovies Contract \\\n",
"0 1 1 1 1 1 \n",
"1 3 1 1 1 2 \n",
"2 1 1 1 1 1 \n",
"3 3 3 1 1 2 \n",
"4 1 1 1 1 1 \n",
"\n",
" PaperlessBilling PaymentMethod MonthlyCharges TotalCharges \n",
"0 2 3 29.85 2506 \n",
"1 1 4 56.95 1467 \n",
"2 2 4 53.85 158 \n",
"3 1 1 42.30 1401 \n",
"4 2 3 70.70 926 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"display_large(X.head())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"((7043, 20), (7043,))"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"X.shape, y.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For future use we can save our processed quantities:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"churn_processed = X.join(pd.Series(y, name=\"Churn\"))\n",
"\n",
"churn_processed.to_csv(DATA / \"churn_processed.csv\", index=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create train and validation sets"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5634 train rows + 1409 valid rows\n"
]
}
],
"source": [
"X_train, X_valid, y_train, y_valid = train_test_split(\n",
" X, y, test_size=0.2, random_state=42\n",
")\n",
"print(f\"{len(X_train)} train rows + {len(X_valid)} valid rows\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Select a performance measure"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Evaluating classifiers is often significantly trickier than evaluating a regressor. One way to do this is to compare the accuracy of each classifier, where \n",
"\n",
"$$ \\mbox{accuracy} = \\frac{\\mbox{Number of correct decisions made}}{\\mbox{Total number of decisions made}} $$\n",
"\n",
"In general, however, accuracy is _**not**_ the preferred performance measures for classifiers, especially when you are dealing with _**skewed datasets**_ (i.e. when some classes are much more frequent than others). For our churn example, supose we build a model that generates 75% accuracy. Is this any good? Let's have a look at the distribution of churn in the data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEJCAYAAABohnsfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAYIUlEQVR4nO3df0zV973H8deBg1iKvRZ3DmXEuNzqah1Rm5H5Iy1YbQGlTAWaOWiZq7PVbto5Z0cRRFid1FFxTYtrtta7urUrm4LW0YNLTW0UuznW6KgutfPHJjbnHJCqB8uvw7l/ND33UhQ+CsdD4flITDyf84P3aShPzvfj+R6Lz+fzCQAAAyHBHgAA8MVBNAAAxogGAMAY0QAAGCMaAABjRAMAYIxoAACMWYM9QKA1N7eoq4u3ogCAiZAQi2699earXj/ko9HV5SMaADBAODwFADBGNAAAxogGAMAY0QAAGCMaAABjRAMAYIxoAACMDfn3afTXqFtu0shw/jOhu9a2Tl26+EmwxwBuOH4a9mFkuFVZ694O9hgYZF4tnqVLwR4CCAIOTwEAjBENAICxgB6eysnJUVNTk6zWT79McXGx/v3vf2vr1q3q6OjQ4sWLlZ2dLUmqra3Vxo0b1dbWprlz52rVqlWSpOPHjys/P18ej0fx8fEqKiryPx4A4MYK2CsNn8+nkydPateuXf4/t912m8rKyvTqq69q165dev311/Xhhx+qtbVVeXl5Ki8vV3V1terr67V//35J0po1a1RQUKCamhr5fD5VVFQEamQAQB8CFo2TJ0/KYrFo6dKl+uY3v6nf/va3qq2t1fTp0zV69GhFREQoOTlZDodDR48e1bhx4zR27FhZrValpaXJ4XCooaFBra2tmjp1qiQpPT1dDocjUCMDAPoQsOM8Fy9e1IwZM7R+/Xq1trYqJydHc+fOlc1m89/Gbrfr6NGjcrlcPdadTmePdZvNJqfTeU1zjBkT2f8nA1yBzTYq2CMAN1zAonHXXXfprrvukiRFREQoMzNTGzdu1LJly7rdzmKxyOfr+XkXva1fi6YmT78+T4MfDLgat5t/dIuhJyTE0usv2wE7PPW3v/1Nhw4d8l/2+XyKjY1VY2Ojf83lcslutys6Otpo3e12y263B2pkAEAfAhaNS5cuadOmTWpra5PH41FlZaV+/vOf69ChQzp//rw++eQT7d27VwkJCZoyZYpOnTqlM2fOyOv1as+ePUpISFBsbKzCw8NVV1cnSaqqqlJCQkKgRgYA9CFgh6fuvfdeHTlyRAsWLFBXV5eysrL09a9/XatWrVJOTo46OjqUmZmpyZMnS5JKSkq0YsUKtbW1KTExUSkpKZKk0tJS5efnq6WlRZMmTVJOTk6gRgYA9MHiu9LGwRAyEHsanEYEn/dq8Sz2NDAkBW1PAwAw9BANAIAxogEAMEY0AADGiAYAwBjRAAAYIxoAAGNEAwBgjGgAAIwRDQCAMaIBADBGNAAAxogGAMAY0QAAGCMaAABjRAMAYIxoAACMEQ0AgDGiAQAwRjQAAMaIBgDAGNEAABgjGgAAY0QDAGCMaAAAjBENAIAxogEAMEY0AADGiAYAwBjRAAAYIxoAAGMBj8Yzzzyj3NxcSdLx48eVkZGh5ORkrV27Vp2dnZKkc+fOKTs7WykpKVq+fLlaWlokSRcvXtSjjz6quXPnKjs7W263O9DjAgB6EdBoHDp0SJWVlf7La9asUUFBgWpqauTz+VRRUSFJKioqUlZWlhwOh+Li4lReXi5J2rJli+Lj4/Xmm2/qwQcf1IYNGwI5LgCgDwGLxscff6yysjItW7ZMktTQ0KDW1lZNnTpVkpSeni6Hw6GOjg4dPnxYycnJ3dYl6e2331ZaWpok6YEHHtA777yjjo6OQI0MAOiDNVAPvG7dOq1atUofffSRJMnlcslms/mvt9lscjqdam5uVmRkpKxWa7f1z9/HarUqMjJS58+fV3R0tPEcY8ZEDtRTArqx2UYFewTghgtINP7whz8oJiZGM2bM0M6dOyVJPp+vx+0sFstV168mJOTaXhw1NXnU1dXza5jiBwOuxu2+FOwRgAEXEmLp9ZftgESjurpabrdb8+fP14ULF3T58mVZLBY1Njb6b+N2u2W32xUVFSWPxyOv16vQ0FD/uiTZ7XY1NjbqtttuU2dnpzwej0aPHh2IkQEABgKyp7Ft2zbt2bNHu3bt0sqVKzV79mxt3LhR4eHhqqurkyRVVVUpISFBYWFhio+PV3V1dbd1SUpMTFRVVZWkT0MUHx+vsLCwQIwMADAQsD2NKyktLVV+fr5aWlo0adIk5eTkSJIKCwuVm5urrVu3KiYmRps3b5YkPfHEE8rNzVVqaqpGjRql0tLSGzkuAOBzLL4rbSoMIQOxp5G17u2BGwhDwqvFs9jTwJDU154G7wgHABgjGgAAY0QDAGCMaAAAjBENAIAxogEAMEY0AADGiAYAwBjRAAAYIxoAAGNEAwBgjGgAAIwRDQCAMaIBADBGNAAAxogGAMAY0QAAGCMaAABjRAMAYIxoAACMEQ0AgDGiAQAwRjQAAMaIBgDAGNEAABgjGgAAY0QDAGCMaAAAjBENAIAxogEAMEY0AADGAhqNX/ziF5o3b55SU1O1bds2SVJtba3S0tKUlJSksrIy/22PHz+ujIwMJScna+3aters7JQknTt3TtnZ2UpJSdHy5cvV0tISyJEBAL0IWDT++te/6t1339Xu3bu1Y8cObd++Xf/85z+Vl5en8vJyVVdXq76+Xvv375ckrVmzRgUFBaqpqZHP51NFRYUkqaioSFlZWXI4HIqLi1N5eXmgRgYA9MEoGk6ns8fahx9+2Ot9vvGNb+iVV16R1WpVU1OTvF6vLl68qHHjxmns2LGyWq1KS0uTw+FQQ0ODWltbNXXqVElSenq6HA6HOjo6dPjwYSUnJ3dbBwAEh7W3Kz/++GNJ0tKlS7V9+3b5fD5JUmdnpx5//HHt3bu31wcPCwvTc889p5dfflkpKSlyuVyy2Wz+6+12u5xOZ491m80mp9Op5uZmRUZGymq1dlu/FmPGRF7T7QFTNtuoYI8A3HC9RmP16tU6ePCgJGnatGn/dyerVffdd5/RF1i5cqWWLl2qZcuW6fTp0z2ut1gs/hiZrl+LpiaPurp6Po4pfjDgatzuS8EeARhwISGWXn/Z7jUaL730kiTpqaee0saNG6/pC//rX/9Se3u77rzzTt10001KSkqSw+FQaGio/zYul0t2u13R0dFqbGz0r7vdbtntdkVFRcnj8cjr9So0NNS/DgAIDqM9jY0bN6qhoUHHjh3T+++/7//Tm7Nnzyo/P1/t7e1qb2/XW2+9pUWLFunUqVM6c+aMvF6v9uzZo4SEBMXGxio8PFx1dXWSpKqqKiUkJCgsLEzx8fGqrq7utg4ACI5eX2l8prS0VNu3b9eYMWP8axaLRW+99dZV75OYmKgjR45owYIFCg0NVVJSklJTUxUVFaUVK1aora1NiYmJSklJ8X+N/Px8tbS0aNKkScrJyZEkFRYWKjc3V1u3blVMTIw2b97cn+cLAOgHi+9KGwefM3v2bL322muKjo6+ETMNqIHY08ha9/bADYQh4dXiWexpYEjqa0/D6PBUTEzMFzIYAICBZXR4asaMGdq0aZPmzJmjkSNH+te/9rWvBWwwAMDgYxSNnTt3SlK3N9b1tacBABh6jKKxb9++QM8BAPgCMIrGZycb/Lzvfve7AzoMAGBwM4rGBx984P97e3u76urqur1DHAAwPBhF4/PvBj9//ryefPLJgAwEABi8ruvU6FFRUWpoaBjoWQAAg9w172n4fD7V19d3e3c4AGB4uOY9DenTN/txeAoAhp9r2tNoaGhQZ2enxo0bF9ChAACDk1E0zpw5o8cff1wul0tdXV269dZb9eKLL+r2228P9HwAgEHEaCO8uLhY3/ve93T48GHV1dVp+fLlKioqCvRsAIBBxigaTU1NWrhwof9yRkaGmpubAzYUAGBwMoqG1+v1f1649On7NAAAw4/RnsZDDz2kb33rW5o7d64k6c0339R3vvOdgA4GABh8jF5pJCYmSpI6Ojp08uRJOZ1O3X///QEdDAAw+Bi90sjNzVV2drZycnLU1tam1157TXl5efrVr34V6PkAAIOI0SuN5uZm/2d2h4eHa/HixXK73QEdDAAw+BhvhDudTv/lxsZGGXy0OABgiDE6PLV48WItWLBA99xzjywWi2prazmNCAAMQ0bRyMzMVFxcnN59912FhoZqyZIl+upXvxro2QAAg4xRNCRp4sSJmjhxYiBnAQAMctf1eRoAgOGJaAAAjBENAIAxogEAMEY0AADGiAYAwBjRAAAYIxoAAGMBjcbzzz+v1NRUpaamatOmTZKk2tpapaWlKSkpSWVlZf7bHj9+XBkZGUpOTtbatWvV2dkpSTp37pyys7OVkpKi5cuXq6WlJZAjAwB6EbBo1NbW6sCBA6qsrFRVVZXef/997dmzR3l5eSovL1d1dbXq6+u1f/9+SdKaNWtUUFCgmpoa+Xw+VVRUSJKKioqUlZUlh8OhuLg4lZeXB2pkAEAfAhYNm82m3NxcjRgxQmFhYbr99tt1+vRpjRs3TmPHjpXValVaWpocDocaGhrU2tqqqVOnSpLS09PlcDjU0dGhw4cPKzk5uds6ACA4jM89da0mTJjg//vp06dVXV2thx9+WDabzb9ut9vldDrlcrm6rdtsNjmdTjU3NysyMlJWq7Xb+rUYMyayn88EuDKbbVSwRwBuuIBF4zMnTpzQY489pp/85CeyWq06depUt+stFssVP5ujt/Vr0dTkUVfX9X/2Bz8YcDVu96VgjwAMuJAQS6+/bAd0I7yurk6LFy/W6tWrtXDhQkVHR6uxsdF/vcvlkt1u77Hudrtlt9sVFRUlj8cjr9fbbR0AEBwBi8ZHH32k73//+yotLVVqaqokacqUKTp16pTOnDkjr9erPXv2KCEhQbGxsQoPD1ddXZ0kqaqqSgkJCQoLC1N8fLyqq6u7rQMAgiNgh6deeukltbW1qaSkxL+2aNEilZSUaMWKFWpra1NiYqJSUlIkSaWlpcrPz1dLS4smTZrk/0zywsJC5ebmauvWrYqJidHmzZsDNTIAoA8W3xD/sO+B2NPIWvf2wA2EIeHV4llB39O49b9GyDoiPKgzYPDpbG9T84X2675/X3saAd8IBxAY1hHh+qB0cbDHwCDz1R//j6Trj0ZfOI0IAMAY0QAAGCMaAABjRAMAYIxoAACMEQ0AgDGiAQAwRjQAAMaIBgDAGNEAABgjGgAAY0QDAGCMaAAAjBENAIAxogEAMEY0AADGiAYAwBjRAAAYIxoAAGNEAwBgjGgAAIwRDQCAMaIBADBGNAAAxogGAMAY0QAAGCMaAABjRAMAYIxoAACMEQ0AgLGAR8Pj8eiBBx7Q2bNnJUm1tbVKS0tTUlKSysrK/Lc7fvy4MjIylJycrLVr16qzs1OSdO7cOWVnZyslJUXLly9XS0tLoEcGAFxFQKNx5MgRffvb39bp06clSa2trcrLy1N5ebmqq6tVX1+v/fv3S5LWrFmjgoIC1dTUyOfzqaKiQpJUVFSkrKwsORwOxcXFqby8PJAjAwB6EdBoVFRUqLCwUHa7XZJ09OhRjRs3TmPHjpXValVaWpocDocaGhrU2tqqqVOnSpLS09PlcDjU0dGhw4cPKzk5uds6ACA4rIF88A0bNnS77HK5ZLPZ/JftdrucTmePdZvNJqfTqebmZkVGRspqtXZbvxZjxkT24xkAV2ezjQr2CMAVBfJ7M6DR+Dyfz9djzWKxXPP6tWhq8qirq+fjmOIHA67G7b4U1K/P9yaupj/fmyEhll5/2b6h/3oqOjpajY2N/ssul0t2u73Hutvtlt1uV1RUlDwej7xeb7d1AEBw3NBoTJkyRadOndKZM2fk9Xq1Z88eJSQkKDY2VuHh4aqrq5MkVVVVKSEhQWFhYYqPj1d1dXW3dQBAcNzQw1Ph4eEqKSnRihUr1NbWpsTERKWkpEiSSktLlZ+fr5aWFk2aNEk5OTmSpMLCQuXm5mrr1q2KiYnR5s2bb+TIAID/54ZEY9++ff6/z5gxQ7t37+5xm4kTJ+qPf/xjj/XY2Fht3749oPMBAMzwjnAAgDGiAQAwRjQAAMaIBgDAGNEAABgjGgAAY0QDAGCMaAAAjBENAIAxogEAMEY0AADGiAYAwBjRAAAYIxoAAGNEAwBgjGgAAIwRDQCAMaIBADBGNAAAxogGAMAY0QAAGCMaAABjRAMAYIxoAACMEQ0AgDGiAQAwRjQAAMaIBgDAGNEAABgjGgAAY0QDAGDsCxGNN954Q/PmzdP999+v3/3ud8EeBwCGLWuwB+iL0+lUWVmZdu7cqREjRmjRokWaNm2axo8fH+zRAGDYGfTRqK2t1fTp0zV69GhJUnJyshwOh37wgx8Y3T8kxNLvGb40emS/HwNDz0B8b/WX9ZYvBXsEDEL9+d7s676DPhoul0s2m81/2W636+jRo8b3v/XWm/s9w3M/mt7vx8DQM2ZMZLBH0H8/WhrsETAIBfJ7c9Dvafh8vh5rFkvwf8MDgOFo0EcjOjpajY2N/ssul0t2uz2IEwHA8DXoozFz5kwdOnRI58+f1yeffKK9e/cqISEh2GMBwLA06Pc0oqOjtWrVKuXk5Kijo0OZmZmaPHlysMcCgGHJ4rvSpgEAAFcw6A9PAQAGD6IBADBGNAAAxogGAMAY0UAPZ8+e1R133KGDBw92W589e7bOnj0bpKkwXBUXF2vlypXd1g4cOKA5c+bI4/EEaarhi2jgisLCwlRQUMD/lAi61atXq76+Xvv27ZMkXb58WevXr9fPfvYzRUYG/1Quww3RwBXZ7XbNnDlTzzzzTI/rfvnLX2revHlKS0tTSUmJvF5vECbEcHHzzTfr6aefVnFxsS5fvqznnntOs2fP1rRp03TkyBEtWrRICxcu1JIlS9TQ0CBJ+vWvf620tDQtXLhQ69evD+4TGGKIBq4qNzdXBw4c6HaYav/+/dq3b5927typyspKnTlzRr///e+DOCWGg5kzZ+ruu+/WU089pYMHD+pHP/qR2tvblZ+fry1btqiyslIPP/yw1q1bp/b2dr388suqrKzUjh071NXVJbfbHeynMGQM+neEI3giIyP105/+VAUFBdq9e7ck6S9/+YtSU1M1cuSnp4vPyMhQVVWVsrOzgzkqhoHc3FzNmjVLL7zwgkaOHKnjx4/r7NmzeuyxxyR9enLTtrY2jRgxQnFxccrMzNScOXOUk5PT7UzZ6B+igV7dfffd3Q5TdXV19bhNZ2fnjR4Lw1BkZKRuueUWxcbGSpK8Xq++8pWvqLKy0n+5qalJkvTiiy/qvffe0zvvvKNHHnlEmzdvVnx8fNBmH0o4PIU+fXaYyuVyafr06frTn/6k1tZWdXZ2aseOHZo+nc8bwY03fvx4ud1u/f3vf5ckvf7663ryySflcrmUmpqqiRMn6oc//KGmT5+uDz74IMjTDh280kCfPjtMtWTJEs2aNUsXL15URkaGOjs7dc899+ihhx4K9ogYhkaOHKktW7Zow4YNam9v1y233KKSkhLZ7XZlZGQoPT1dERERio2N1fz584M97pDBCQsBAMY4PAUAMEY0AADGiAYAwBjRAAAYIxoAAGP8k1ugH7xer1555RW98cYb8nq96ujo0L333qsnnnhC69at04QJE7RkyZJgjwkMGKIB9MP69et14cIF/eY3v9GoUaN0+fJl/fjHP9batWsVGhoa7PGAAcf7NIDr9J///EdpaWk6cOBAt1N0u91uvffee9q3b588Ho8aGxvV2NioCRMm6Nlnn1VERITuuOMOHTp0SFFRUZLkv3zixAlt2LBBERERunz5stasWaMXXnhBY8eO1YkTJ9Te3q5169bxLnwEDXsawHU6duyYxo8f3+MzHWw2m5KSkiRJTqdT27ZtU01NjZxOp/bu3dvn4544cULPPvusdu/erREjRujo0aN65JFHVFVVpczMTD3//PMBeT6ACaIBXKeQkJArnsDx/7vvvvt00003KTQ0VBMmTND58+f7fNyYmBj/Sfkk6ctf/rLuvPNOSdKkSZN04cKF/g0O9APRAK7T5MmTdfLkyR6fbuh0OvXoo4+qtbVVVuv/bRtaLBZd6Whwe3t7t8sRERHdLn92GvreHgO4UYgGcJ2io6OVlpamvLw8fzg8Ho/Wr1+v0aNHd/th/3lRUVH6xz/+IUn685//fEPmBQYC0QD6obCwUOPHj9eiRYs0f/58Pfjggxo/fryefvrpXu+Xn5+v4uJiLVy4UMeOHeNDgvCFwb+eAgAY45UGAMAY0QAAGCMaAABjRAMAYIxoAACMEQ0AgDGiAQAwRjQAAMb+Fw4Zi8FTWDe7AAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x=\"Churn\", data=churn_data)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"No 0.73463\n",
"Yes 0.26537\n",
"Name: Churn, dtype: float64"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"churn_data[\"Churn\"].value_counts(normalize=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the plot and numbers we see that the \"No Churn\" and \"Churn\" classes appear in approximately a 3:1 ratio. If we built a dumb classifier that just classifies every single customer as \"No Churn\", then we would be right about 73.5% of the time! In practice skews of 99:1 are common, for which a report of 99% accuracy is somewhat meaningless."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Confusion matrix"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A much better way to evaluate the performance of a classifier is to look at the _**confusion matrix.**_ Recall that a confusion matrix for a problem involving $n$ classes is an $n\\times n$ matrix with the rows labelled by the _**actual**_ classes and the columns with the _**predicted**_ classes. Our churn example is a two-class problem (\"Churn\" vs \"No Churn\"), so the confusion matrix is $2\\times 2$.\n",
"\n",
"If we denote the true classes as $\\mathbf{p}$(positive) and $\\mathbf{n}$(egative), and the classes predicted by the model as $\\mathbf{Y}$(es) and $\\mathbf{N}$(o) then the confusion matrix has the form:\n",
"\n",
"| | **N** | **Y** | \n",
"| :---: | :---: | :---: |\n",
"| **n** | True negatives | False positives | \n",
"| **p** | False negatives | True positives |\n",
"\n",
"The main diagonal contains the counts of correct decisions. The errors of the classifier are the _**false negatives**_ (positives classified as negative) and **false positives** (negatives classified as positive)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"---\n",
"**You should know**\n",
"\n",
"In the _Data Science for Business_ textbook, the confusion matrix is given a different layout, namely the columns a relabelled by the actual classes and the rows by the predicted classes: \n",
"\n",
"| | **p** | **n** | \n",
"| :---: | :---: | :---: |\n",
"| **Y** | True positives | False positives | \n",
"| **P** | False negatives | True negatives |\n",
"\n",
"The layout adopted above and in this notebook is the one produced by scikit-learn, since we'd like to make use of the in-built functions included in that library.\n",
"\n",
"---"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Baseline model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's begin by creating a baseline Random Forest model to build upon. First we need a scoring function for classifiers, similar to our $R^2$ and RMSE function for regression:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def print_scores(fitted_model):\n",
" res = {\n",
" \"Accuracy on train:\": accuracy_score(fitted_model.predict(X_train), y_train),\n",
" \"ROC AUC on train:\": roc_auc_score(\n",
" y_train, fitted_model.predict_proba(X_train)[:, 1]\n",
" ),\n",
" \"Accuracy on valid:\": accuracy_score(fitted_model.predict(X_valid), y_valid),\n",
" \"ROC AUC on valid:\": roc_auc_score(\n",
" y_valid, fitted_model.predict_proba(X_valid)[:, 1]\n",
" ),\n",
" }\n",
" if hasattr(fitted_model, \"oob_score_\"):\n",
" res[\"OOB accuracy:\"] = fitted_model.oob_score_\n",
"\n",
" for k, v in res.items():\n",
" print(k, round(v, 3))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n",
" criterion='gini', max_depth=None, max_features='auto',\n",
" max_leaf_nodes=None, max_samples=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=-1,\n",
" oob_score=False, random_state=42, verbose=0,\n",
" warm_start=False)"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = RandomForestClassifier(n_estimators=10, n_jobs=-1, random_state=42)\n",
"model.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy on train: 0.984\n",
"ROC AUC on train: 0.999\n",
"Accuracy on valid: 0.771\n",
"ROC AUC on valid: 0.801\n"
]
}
],
"source": [
"print_scores(model)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ROC Curves and AUC\n",
"Note that in addition to accuracy, we also show a second value, the _**Area Under the ROC Curve**_ (AUC). The AUC is a good summary statistic of the predictiveness of a binary classifier. It varies from zero to one. A value of 0.5 corresponds to randomness (the classifier cannot distinguish at all between \"churn\" and \"no churn\") and a value of 1.0 means that it is perfect.\n",
"\n",
"The \"ROC\" refers to the Receiver Operating Characteristic (ROC) curve which plots the _true positive rate_ \n",
"\n",
"$$ \\mbox{TPR} = \\frac{\\mbox{TP}}{\\mbox{TP} + \\mbox{FP}} \\,, \\qquad \\mbox{TP (FP)} = \\mbox{number of true (false) positives}\\,,$$\n",
"\n",
"against the _false positive rate_ FPR, where the FPR is the ratio of negative instances that are incorrectly classified as positive. In general there is a tradeoff between these two quantities: the higher the TPR, the more false positives (FPR) the classifier produces. A good classifiers stays as close to the top-left corner of a ROC curve plot as possible.\n",
"\n",
"In scikit-learn we can visualise the ROC curve of an estimator using the plotting API:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEJCAYAAACUk1DVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deVxU1fvA8c8MO8giMICamkuuiEuW/NA0TXNJ3HDPXEr7mpllZfoVTctcKy2t/IYtamllRiplSmbulntumKa5K/sOA7Pc3x/oJAkOKDMDzPN+vXzFnbs9h4n73HPuueeoFEVREEIIYffUtg5ACCFE+SAJQQghBCAJQQghxA2SEIQQQgCSEIQQQtwgCUEIIQQgCUEIIcQNjrYO4F6kpmZjNJb+NQo/vyokJ2dZIKLyS8psH6TM9uFuy6xWq6ha1aPY9RU6IRiNyl0lhJv72hsps32QMtsHS5RZmoyEEEIAkhCEEELcIAlBCCEEYIWEkJWVRc+ePbl8+fJt6+Li4oiIiKBr165ERkai1+stHY4QQohiWDQh/PHHHwwZMoTz588XuX7SpElMnz6dzZs3oygKa9assWQ4Qggh7sCiCWHNmjXMmDGDgICA29ZduXIFrVZLixYtAOjXrx+bNm2yZDhCCFHhWXLGAot2O509e3ax6xISEtBoNKZljUZDfHy8JcMRQohySW9QyMw1kJ5jICPbQEaugfRsAxk5Bf/Sc/75OVtrZNKgWjQKcijzOGz2HkJRWU6lUpXqGH5+Ve76/BqN513vW1FJme2DlLl80OYbScvSkZalJy1LT+qN/xb80xUsZ+tJy9STmWso8hjOjip8qjjiU8WRID9XGtd2pKqnI01qe+Dn5VTmMdssIQQGBpKUlGRaTkxMLLJp6U6Sk7Pu6uUMjcaTxMTMUu9XkUmZ7YOU2XIURSEnz3jbHXtxd/JaXdHXJncXNZ5uDnh7OBDk7cgD1VzwdnfA290Bzxv/9XZ3wMvdAVdnVZE3yn5eTndVZrVadccbaZslhBo1auDi4sLBgwd58MEHWbduHe3bt7dVOEIIO2Q03tJUc+tFvYhmm4xcA/oibuRVQBU3dcFF3MORukGOeHs44OXuiJe7Gm93R7xuXOC93NU4O5bf3v5WTwhjxoxhwoQJNGvWjHfeeYdp06aRnZ1NkyZNGD58uLXDEUJUMvl6Ixk5RjJy9GTkGEnP0Rd7N5+Va6So+3gHNTcu8AUX8poaZ9NF3dt0cb9xV+/mgFpduubu8kqlWPKRtYVJk1HJSZntQ2Uss6IoaPMV00U8PcdA5i0/5+lVJKbl3bjY68nNL/qa4OqkKnxR93DA60bTzb8v9u4u6lI/07Smu/2ey22TkRDCfhkVhWytsdj293832+gMRV/kPVzV+Ho5UcVZRe0AZ7zd3fD2cDC10d96N+/iVH6basoLSQhCiDKhNyj/tLcXdYG/5efMHANFVe7VKm5pb3egmq/TP3fvHrc31Tg6qCplrchWJCEIIYqVp/vnLv5OF/iMbAPZecYij+Hs+E9TjZ+nI3UCXYpttvFwVaMux001lZ0kBCHsyM2uk/9ukvl3u/zNi33eHbpO3ryo3+fnjFfN4tvlXZ2K7jopyh9JCEJUYrl5Rk5dyeXkRS1xl3K5kpyPoYgbeZWKgnb3GxfxgGpOhR6y3trjxsvNASdHucBXRpIQhKhEtPlGjl/IIe6SlpMXc/k7Pg+jAk4OKh6o7kK3Vt6mPvLet9zNV3FVV5quk+LuSUIQogLTGxTOXtNy8kYCOHs9D71BwUENdYNcCH/Yhya13KhXzaVcvxAlygdJCEJUIEajwvmEPE5e1HLyUi6nr2jJ1yuogNqBzvRp68/9fg40qOGKq7MkAFE6khCEKMeMisKVJB0nL+Vy8lIuf17WknOjN08NPyc6BHvSpJYbje5zxcPVQbpginsiCUGIckRRFOLT9AUJ4GIucZdyycwtSAAB3o483MCDJjXdaFTTFR8P+fMVZUv+jxLCxpIz9Zy8WFADiLuYS0pWwQhqVas4EHK/O01qudG4piv+FhjuWIhbSUIQwsoycgymi//JS7nEpxXMJe7ppqZxTTea1HSjcS1XgnycpP++sCpJCEJYWLbWwKnLBe8BnLyYy+VkHQBuzioa1XSjcwtvmtR0o4a/k7ylK2xKEoIQZSxPZ+TPK9obNQAt5xPyUJSCIRwa1HAlrLEnTWq5UjvABQfp+y/KEUkIQtwjnf7muwAFCeDsNS0GY8GY+vWrudIntCpNarpSN8hV3vAV5ZokBCFKyWBUOB+fd6MnkJbTV7ToDAoqFdQJdKH7gz40qeXKA9VdZchlUaFIQhDCDKOicDkp/0ZPIC2nLueivTEJS01/Zzo196RJTTca3ueGu4skAFFxSUIQogjXU3WcuPjPuwBZ2oJ3AYKqOhHWqMqNl8Hc8HJ3sHGkQpQdSQhC3JCnM/Lbn1lsO5bJ2Wt5APh5OtKynntBV9Cabvh6yp+MqLzk/25h9/6Oz2PbsQz2nspCm69Q3deJIR18ebCeBxpvR3kXQNgNSQjCLuXkGdl7KottxzK4kJCPs6OKhxt48GgzLx6o7iJJQNglSQjCbiiKwl/XCmoDv/+ZTb5eoZbGmeGd/Pi/RlXwcJXnAcK+SUIQlV5mroHdcVlsP5bBlWQdrk4q2jauQodmXtQJdJbagBA3SEIQlZKiKPxxNot1O+M5+FcOOoNCvSAXnuniT5uGVWSuACGKIAlBVCrp2Xp2nshi+/EM4tP0uLuoebSZJx2aeVJL42Lr8IQo1yQhiArPaFQ4fiGXbccyOHwuB4MRGtZwZfjj1WkYqMZZ3hYWokQkIYgKKyVTz47jmew4kUlShh5PNzWPt/Tm0WaeVPN1ltnDhCglSQiiQjEYFY6cy2HbsUyOns9BUSC4thuD2/vSqp4Hjg7ygFiIuyUJQVQIiek6th/PZMfxTNKyDfh4ONDzIR86BHsS4CMziQlRFiQhiHJLb1A4dDabbccyOX4hF5UKmtdx59FmnjSv4y5zCQhRxiQhiHLnWko+245lsutkJpm5Rvy9HOkXVpX2TT1lLCEhLMiif10xMTEsXboUnU7HyJEjefLJJwutP3HiBK+//jo6nY5q1arx9ttv4+XlZcmQRDmVrzOy/0xBbeDPK1oc1NCyrjuPhngRXMsNtdQGhLA4iyWE+Ph4Fi1aRHR0NM7OzgwePJg2bdpQv3590zazZ89mwoQJdOjQgXnz5vHpp58yceJES4UkyqH4VB2xh9PZHZdFTp6RQB9HBrbz5ZGmVfD2kNqAENZksb+4PXv2EBoaio+PDwBdu3Zl06ZNjB8/3rSN0WgkOzsbgNzcXLy9vS0VjiiH9p3OYtnmRAxGhdb1CwaWa1zTVYaSEMJGLJYQEhIS0Gg0puWAgACOHj1aaJspU6YwatQo5syZg5ubG2vWrCnVOfz8qtx1fBqN513vW1GVlzIbjArLN19j7Y5EmtR2579D7sff2zI9hcpLma1JymwfLFFmiyUERVFu++zWOz+tVktkZCQrVqwgJCSEzz//nMmTJxMVFVXicyQnZ2E03n4ec+zxhaXyUubMXAMf/ZjAiYu5dGruxbBH/VDytSQmasv8XOWlzNYkZbYPd1tmtVp1xxtpi73THxgYSFJSkmk5ISGBgIAA0/Lp06dxcXEhJCQEgEGDBrFv3z5LhSPKgfMJecxYdYXTV7Q887g/Ix/zlxfJhChHLJYQwsLC2Lt3LykpKeTm5hIbG0v79u1N62vXrs3169c5d+4cAL/88gvNmjWzVDjCxnafzGTWV1cxGhUiB1WjQ7D0JhOivLFYk1FgYCATJ05k+PDh6HQ6+vfvT0hICGPGjGHChAk0a9aMuXPn8tJLL6EoCn5+fsyZM8dS4Qgb0RsUvt6RTOzhDBrd58r4noEyMb0Q5ZRKKaqxv4KQZwglZ4syp2fr+eCHBP68oqVrKy8GPeJn1SYi+Z7tg5S55Mw9Q5CO3sIizl7TsjgmnmytkbHdNYQ1tr9eIEJUNJIQRJnbfiyDFVuT8PFwZPrg6tQOkIlphKgIJCGIMqPTK3y5LYlfj2YSXNuN53oE4OkmzwuEqCgkIYgykZqlZ0lMPH9dy+OJh7wZ0NZXxh8SooKRhCDu2ekrWpb8EI8238j4ngE83ODu3yAXQthOid5DuH79Otu3b8dgMHDt2jVLxyQqCEVR2HIknbnfXsXVSc2MITUkGQhRgZlNCNu2bWPw4MG88cYbJCcn06NHD7Zs2WKN2EQ5lq838klsIiu3JhNc252ZQ6tzn7+zrcMSQtwDswnhgw8+YM2aNXh5eREQEMDq1atZvHixNWIT5VRShp7Z31xj54ks+oT6MLFPIB6u8vBYiIrO7DMEo9FYaAyixo0by/DEduzkxVw+/DEevUHhpd6BtKrnYeuQhBBlxGxCcHNz4+rVq6YkcODAAVxcpF+5vVEUhc2H0vl6RwpBVZ14sVcg1XyliUiIysRsQnjllVd4+umnSUxMZNCgQZw/f54lS5ZYIzZRTuTpjHwam8hvf2bTur47Y7oF4OZssXERhRA2YjYhtGrVijVr1nD48GGMRiPNmzfH19fXGrGJciAhTcf7G+K5nJTPgHZV6fmQjzQZClFJmb3NGz16NF5eXnTo0IGOHTvi6+vLwIEDrRGbsLFj53OYseoKKZl6XukbRPjDVSUZCFGJFVtDmDBhAn///TeXLl0iPDzc9Ller0etluaCykxRFH7Yn8baXanc5+/Mi70CCfCxzBSXQojyo9iE8Nprr3HlyhWmT5/O9OnTTZ87ODjwwAMPWCU4YX25+UY+2ZzI/jPZhDb04JnHNbg4yQ2AEPag2IRw3333cd9997Fp06bbagQ5OTkWD0xY37XUfBZviOdaio4hHXzp1spbmoiEsCNmHypv3bqVxYsXk5OTg6IoGI1G0tLSOHz4sDXiE1Zy+Gw2//spAUcHFa9FVKNJLTdbhySEsDKzCWHBggW89NJLfPXVV4wZM4YtW7bg4SEvI1UWRkVh3d5U1v2Wxv2BzkwID8LfS8Y8FMIelejFtB49ehAXF4eLiwszZ84kIiLCGrEJCzMYFT76MYH9Z7J5pGkVRnTyx1meFwhht8z+9Ts7O5Ofn0+tWrWIi4tDrVaTn59vjdiEBRkVhWU3Hh4Pbu/L6Mc1kgyEsHNmawiPPfYYzz77LPPmzWPw4MEcPHgQHx8fa8QmLERRFFZuTWZPXBb921alR2v5PoUQJUgIY8eOpVevXgQFBfHhhx9y4MCBQu8liIpFURTW7Exh6x8ZPPGQN+EPSzIQQhS4YxvB33//TUJCAtWrVwegadOmdOvWjdmzZ1slOFH2Yval8eOBdDo192JgO1/pViqEMCk2IXzyySf069ePrl27sn//fhRF4bPPPqN79+4kJiZaM0ZRRmIPp7N2dyptG1dheCc/SQZCiEKKbTL65ptv2LhxI9euXeOzzz7jiy++4NChQ7zxxhvSZFQB/XwwhS9/TebB+u6M7qpBLclACPEvxdYQ3NzcqFatGq1ateLAgQPk5+ezceNGSQYV0L7TWbz33SWCa7sxrkcgDmpJBkKI2xVbQ3Bw+GdKRE9PT9577z1cXV2tEpQoO0f/zmHpxgQa1XLnxV4BODlKMhBCFK1EHc+rVKkiyaACOnU5l8Ux8dT0d+bNkXVlkDohxB0VW0NITk7m888/v+3nm0aNGmXZyMQ9OXc9j4XrruPv5cir/arh4epATqatoxJClGfFJoS2bdty+vTp234W5d/lpHzejr6Gp5sDr0VUw8vdwfxOQgi7V2xCmDt37j0fPCYmhqVLl6LT6Rg5ciRPPvlkofXnzp1jxowZpKeno9FoWLhwId7e3vd8XnsWn6pj/nfXcHJQMTmiGr6eMlCdEKJkLNaoHB8fz6JFi1i9ejXr16/nm2++4a+//jKtVxSF5557jjFjxrBhwwYaN25MVFSUpcKxCymZeuZ/dw2DQWFy/2oyy5kQolQslhD27NlDaGgoPj4+uLu707VrVzZt2mRaf+LECdzd3Wnfvj1QMETGv2sQouQycgzMX3uNbK2BSRHVqOHnbOuQhBAVjMUSQkJCAhqNxrQcEBBAfHy8afnixYv4+/szefJkwsPDmTFjBu7u7pYKp1LL1hpY8N01kjP1vNy3GnUCXWwdkhCiAipRA/PRo0c5efIk/fr148SJE7Rs2dLsPoqi3PbZrUMl6PV69u3bx5dffkmzZs147733mDdvHvPmzStx8H5+VUq87b9pNJ53vW95kptnYO7ac1xN0TFzeB0ebFB8uSpLmUtDymwfpMxlw2xCiI6O5tNPPyUvL48uXbowbtw4Jk6cyMCBA++4X2BgIAcOHDAtJyQkEBAQYFrWaDTUrl2bZs2aAdCzZ08mTJhQquCTk7MwGm9PPOZoNJ4kJlb8Ppj5eiML18Xz56VcxvcMpFZVii1XZSlzaUiZ7YOUueTUatUdb6TNNhl98cUXfPPNN1SpUgU/Pz+io6NZsWKF2ROHhYWxd+9eUlJSyM3NJTY21vS8AKBly5akpKRw6tQpoGDu5qZNm5akTALQGxQ+/DGBkxdzGdNVQ+sHZFpTIcS9MVtDUKvVVKnyT0apVq1aoWEtihMYGMjEiRMZPnw4Op2O/v37ExISwpgxY5gwYQLNmjXjww8/ZNq0aeTm5hIUFMSCBQvurTR24uZsZ4fP5jC8kx9tm9hfdVkIUfbMJgQfHx/i4uJM7f8bNmwo8bsC4eHhtw2Gt2zZMtPPzZs3Z+3ataWJ1+4pisKKX5LYeyqLge186dxC3tsQQpQNswlh6tSpvPjii1y8eJF27drh4uLCRx99ZI3YxL8oisLXO1L49Wgm4Q/70FNmOxNClCGzCaFu3bqsX7+e8+fPYzAYqFOnDk5O8sKTLWz4PY2fDqbTubkX/dtWtXU4QohKxuxD5Q4dOvDhhx/i6upKgwYNJBnYyJYj6Xy3J5W2TaowTGY7E0JYgNmEsHz5cvLz8xkyZAjPPPMMmzZtQq/XWyM2cUNqlp6vd6TQvI4box+X2c6EEJZhNiHUrVuXV199lW3btjF8+HA+++yzQt1HheVt+D0Ng1HhqY7+MtuZEMJiSvSmcnJyMhs2bOD77783DUonrCMxXce2Yxl0CPaUweqEEBZlNiGMHTuWQ4cO0bVrV2bNmkXz5s2tEZe44fu9qahVKnq1kYfIQgjLMpsQOnXqxLvvvouHh7wJa21XkvPZHZdFt1beMq+BEMLiir3KrF+/nt69e5OVlcWaNWtuWy9TaFpe9J5UXJxU8r6BEMIqik0IFy5cAODMmTNWC0b84+/4PPafyaZPqA+ebjIFphDC8opNCDdHHn3sscfo3LlzoXXr1q2zbFSC73an4OGqpvuDUjsQQlhHsQlh69at6PV6FixYgKIopvkN9Ho9ixYtok+fPlYL0t6cupzL0fO5DHrEFzcXi81hJIQQhRSbEOLi4vjtt99ITk5m5cqV/+zg6MgzzzxjleDskaIorN2dio+HA51beNk6HCGEHSk2ITz//PM8//zzrFq1SuY6tqJj53M5fUXLiMf8cXGS2oEQwnrM9jLKy8vj888/v2299DIqe0ZF4dvdKWi8HekQLHMcCCGsS3oZlSMHzmRzISGfZ7tpcHSQISqEENZltpfR3LlzTZ9lZWWRkZFB9erVLR+ZnTEaFb7bk0p1XyfCGhU/56kQQliK2Ubqn3/+mVmzZpGVlUWvXr3o3bt3ieZUFqWzOy6Layk6Itr6opYB7IQQNmA2IXz88ccMHDiQ2NhYWrRowa+//sqGDRusEZvd0OkVvt+byv2BzrSu727rcIQQdspsQlAUhYYNG7Jnzx7at29PlSpVTO8kiLKx/XgGSRl6+rf1lYlvhBA2YzYhqNVqNm7cyM6dO2nbti3bt2+3Rlx2I09nZP3vaTSs4Uqz2m62DkcIYcfMJoTJkyezZs0aXnnlFTQaDUuXLmXatGnWiM0ubDmSQXq2gf7tpHYghLAts2Mqt27dmuXLl3PlyhUuXLjA119/bY247EJOnpEf9qURcr8bDWu42jocIYSdM5sQzp8/z/PPP09CQgJGo5GqVavy8ccfU69ePWvEV6n9dCCN7Dwj/dv62joUIYQw32Q0a9YsRo8ezf79+zl48CDPPfccb7zxhjViq9QycgxsPpTOww08uD/QxdbhCCGE+YSQnJxM3759TcsRERGkpqZaNCh78MP+NPL0Cv3CZGpMIUT5YDYhGAwG0tLSTMspKSkWDcgepGTq+eVIBu2aVKG6r7OtwxFCCKAEzxCGDRvGoEGD6N69OwA//fQTI0aMsHhgldn631IxKgp9QqV2IIQoP8wmhEGDBlG7dm127tyJ0WhkxowZhIWFWSO2Sik+VceOE5l0DPFC4+1k63CEEMLkjglh+/btnDt3joceeohJkyZZK6ZK7fu9qTioVfRqI1NjCiHKl2KfIURFRTFr1iz++OMPxo4dS0xMjDXjqpQuJeaz91QWXVp64eNhtnImhBBWVWxCiImJYd26dbz33nusXLmSVatWlfrgMTEx9OjRgy5dutxx/23bttGpU6dSH7+iWbs7BTcXNU+0ltqBEKL8KfY21dHRkSpVCsblr1u3LtnZ2aU6cHx8PIsWLSI6OhpnZ2cGDx5MmzZtqF+/fqHtkpKSmD9//l2EXrGcuarl8Lkc+retShU3B1uHI4QQtynxpL2OjqVr4tizZw+hoaH4+Pjg7u5O165d2bRp023bTZs2jfHjx5fq2BWNoiis2ZmCt7sDXVt52zocIYQoUrFXeYPBQHp6ummo638v+/jcudkjISEBjUZjWg4ICODo0aOFtlm5ciVNmjShefPmdxW8n9/dzyym0VhvzuIDf2bw5xUt43rV4L7qtksI1ixzeSFltg9S5rJRbEI4ffo0oaGhheY+aNOmDQAqlYq4uLg7HrioORNuHc3z9OnTxMbGsnz5cq5fv17qwAGSk7MwGks/N4NG40liYuZdnbO0jIrCJxuvoPF2pHUdZ6ud99+sWebyQspsH6TMJadWq+54I11sQjh16lSpT3arwMBADhw4YFpOSEggICDAtLxp0yYSExOJiIhAp9ORkJDA0KFDWb169T2dt7zZdzqbCwn5/KebBkcHGd5aCFF+lfgZQmmFhYWxd+9eUlJSyM3NJTY2lvbt25vWT5gwgc2bN7N+/XqioqIICAiodMlAb1D4bncq9/k58X+N7r55SwghrMFiCSEwMJCJEycyfPhw+vTpQ8+ePQkJCWHMmDEcO3bMUqctV3aeyCQ+TUf/dr6o1VI7EEKUbyqlAk+QXJ6fIeTrjEz67BJ+Xo5MH1zd5rOhSTurfZAy2wdLPUMoUQ1Bq9Xy559/oigKWq221EHYo5+PZJCabWCgTI0phKggzCaEI0eO0LlzZ/7zn/8QHx9Phw4dOHTokDViq7CytQbT1JiNarrZOhwhhCgRswlhwYIFLF++HB8fH4KCgliwYAGzZ8+2RmwV1k8H0wumxmwnU2MKISoOswlBq9UWGm6iQ4cOGAwGiwZVkaVn69l0MJ02DT24P0CmxhRCVBxmE4KjoyPp6emmdvBz585ZPKiKbP3vaegNChFhUjsQQlQsZgcoeu655xg2bBhJSUm8/PLL7N69mzfffNMasVU4iek6fj2aQYdgT4KqyuQ3QoiKxWxC6NixI3Xr1mX37t0YjUbGjRt324ilokD0nlTUKhW9ZWpMIUQFZDYhpKWl4e3tTY8ePQp9Zm5wO3tzOSmfPXFZdG/tja+nTH4jhKh4zF65QkNDb+tHr9Fo2LFjh8WCqojW7k7B1VnFEw9JohRCVExmE8Ktg9zpdDpiY2PveeC7yubMVS2HzhZMfuMpk98IISqoUo1l5OTkxBNPPMHu3bstFU+FoygK3+5KwcvdgcdbyuQ3QoiKq0TPEG5SFIXjx4+TkZFh0aAqkmMXcjl1Wcuwjn64OltsrEAhhLC4Ej9DuDkGnp+fH5GRkRYPrCIwKgprd6Xg7+VIx2Zetg5HCCHuidmEsHbtWoKDg60RS4Wz/3Q25xPyebabBidHGcBOCFGxmW3jmDRpkjXiqHDy9Ua+2ZlCTX9nwmTyGyFEJWA2ITRs2JCYmBiuXr1KWlqa6Z+923wog6QMPUMf9ZPJb4QQlYLZJqNffvmFTZs2FfpMpVIRFxdnsaDKu7RsPTG/p9KynjtNa8nw1kKIyqHYhJCfn4+zs7PdTHdZGmt3paIzKAxp72frUIQQoswU22Q0aNAga8ZRYZyPz2PniUweb+ktA9gJISqVYhNCBZ5q2WIURWHVtmSquKnp1UaGqBBCVC7FNhnl5eVx8uTJYhND06ZNLRZUebX/TDZ/XtEysrM/Hq4yRIUQonIpNiFcunSJF154ociEoFKp+OWXXywaWHmTrzfy9Y6CbqYdgj1tHY4QQpS5YhNC/fr1WbdunTVjKddudjOd0r8aDtLNVAhRCcngOyWQllXQzbRVPXeaSDdTIUQlVWxCaN26tTXjKNfW7i7oZjpYupkKISqxYhPCtGnTrBlHuSXdTIUQ9kKajO7g1m6mMk+yEKKyk4RwBze7mUa09cXdRX5VQojKTa5yxbi1m+mj0s1UCGEHJCEUY/OhdJIy9Dwpo5kKIeyERRNCTEwMPXr0oEuXLqxateq29Vu2bKF379706tWLcePGkZ6ebslwSiwjx0DM72nSzVQIYVcslhDi4+NZtGgRq1evZv369XzzzTf89ddfpvVZWVnMnDmTqKgoNmzYQMOGDVmyZImlwimV/Wey0eoU+oXJg2QhhP2wWELYs2cPoaGh+Pj44O7uTteuXQvNq6DT6Zg5cyaBgYFAwUQ8165ds1Q4pXL4bDaBPo7U9He2dShCCGE1FksICQkJaDQa03JAQADx8fGm5apVq9K5c2cAtFotUVFRpmVbys03cvJSLi3reaBSybMDIYT9MDtj2t0qblC8f8vMzGTcuHE0atSIvn37luocfn53P5exRlN0z6Gdx9LQG6DTg/5oNJVrruTiylyZSZntg5S5bFgsIQQGBnLgwAHTckJCAgEBAYW2SUhI4JlnniE0NJSpU6eW+hzJyVkYjaWft0Gj8SQxMbPIddsPJ+PhqswkdtYAAB0USURBVEbjbix2m4roTmWurKTM9kHKXHJqteqON9IWazIKCwtj7969pKSkkJubS2xsLO3btzetNxgMjB07lu7duxMZGVkummcMRoUjf+fQoq67jGgqhLA7Fq0hTJw4keHDh6PT6ejfvz8hISGMGTOGCRMmcP36dU6ePInBYGDz5s0ABAcHM3v2bEuFZNaZK1qytUZa1XW3WQxCCGErFksIAOHh4YSHhxf6bNmyZQA0a9aMU6dOWfL0pXboXA6ODtDsfkkIQgj7I28q36AoCof+yqZJTTdcneXXIoSwP3Llu+Fqio6EdD2t6nnYOhQhhLAJSQg3HDqbDUALeX4ghLBTkhBuOHQ2hzqBLvh6WvSxihBClFuSEIC0bD3nruXRqp7UDoQQ9ksSAnDkXA4K0FISghDCjklCAA6fzcHfSwazE0LYN7tPCHk6I8cv5NKqnnu5eFtaCCFsxe4TwvELuegMinQ3FULYPbtPCIfOZuPuoqZBDVdbhyKEEDZl1wnBaFQ4ci6HkPvdcHSQ5iIhhH2z64Rw9noemblGWtWX5iIhhLDrhPDXVS0ATWu52TgSIYSwPbtOCPFpOjxc1Xi6Odg6FCGEsDm7TggJ6XoCfZxsHYYQQpQLdp0Q4tN0BHjL2EVCCAF2nBD0BoWkDKkhCCHETXabEJIy9CgKBEhCEEIIwI4TQkKaDkBqCEIIcYPdJoT4GwkhwEeeIQghBIDdXg0T0nW4OKnwdpcup5ZgMOhJTU1Er8+3WQwJCWqMRqPNzm8LUmb7YK7MarUDbm5VqFLFu1SDdtptQohP0xPg7SQjnFpIamoirq7ueHgE2ex37OioRq+3rwuFlNk+3KnMiqJgMOjJzEwjNTURX9+AEh/XbpuMEtJ00lxkQXp9Ph4eXpJwhbAylUqFo6MTPj5+5OdrS7WvXSYEo1EhUV5KszhJBkLYjkqlBpRS7WOXCSE5Q4fOoEiXUyGEuIVdJoT41IIHnfKWsn24du0qjz4aysiRQxk5cigjRgymf/9wPv304zI5/saNMcyePbNMjtO9eydTnCNHDuXll8ffe4DFOHnyOB99tNi0nJSUxJtvTmfYsIGMGDGE1157iStXLptiK4sy3jRy5FAAsrOzeOaZpxg5cijffvs1n3zyv3s67ocfvs/p06dMy7t376Rdu9acOhVXaLv+/cO5du1qoc/Gj3+WQ4cOAKDT6YiK+ojhwwcxcuRQnn12JPv3/37XcWVmZjJp0os8+WR/nn9+DMnJSUVut3jxuwwbNpCnnhrIzz9vMn0eG7uJYcMGMGhQH777bg0AOTk5TJ06CYPBcNdx/ZtdXhFvJgQ/L7ssvl3y99ewfPlq03JSUiKDB/flscce5/7769gwssLatWtPZORMq5zr/Pm/SU1NASA3N5fx459lyJBhTJ/+JiqVitjYn5g48XlWr/6uzM9987s4c+Y0Tk5OfPrpF/d8zDNnTpOcnESDBo1Mn23cuIFHH32M9eu/o1GjaSU+1uzZM3F2dmbZspW4uLhw9uxfTJz4PO+/v5Q6deqWOrZlyz4iJKQlb7/9Pps2/cj777/Lm2/OLbTNgQP7OHnyBCtWfEV6ehpDh/bnkUceJTMzg2XLPuLTT7/AycmZsWOf5uGHH6Zmzftp3fph1q+Ppl+/AaWOqSh2eUWMTy14B8HP0y6LLyi4G1YUBXd3d/R6Pe++O49z586SkpJCrVq1mTNnASkpKUyd+ip169bj9Ok/8fX1Y9aseXh5ebNp04+sWPEpHh5VCAoKws3NHYDjx4/x/vvvkJ+fj4+PD5MmTeW++2oyfvyzNGjQkAMH9pGXl8dLL01i7dpv+PvvswwaNJRBg568Y7x3Oq6Xlzd//32WN9+cS1paClFRS9Hr9VSrVoPJkyPx9vbhgw/eY//+33FwUNOuXQcGDBjCJ5/8j9zcXFas+BQ/Pz/8/f3p3buf6ZyPP94dJycn8vMLdx3eunULX3/9JXl5eeTl5TFlyjRatGjF119/yU8//YharaJx46a89lokf/11hgULZmMwGHB2dmbq1BnUrFmLdu1aExMTy9y5b5KSkszkyRPp0KEThw8fJDJyJnFxJ1i8eCF5eVq8vQvKW716jdvK+8ADDU1xff31lzz+eHfTclpaGgcP7ufzz1czatRQxo9/CQ+PKmb/37h8+RK7d+9gw4ZYXFxcAKhXrz4zZ87G1bXwzIonThzn7bfnFPrM3d2djz76pNBne/fu5oMPogDo3LkrCxcuQK/X4+j4zzXIaDSSn5+HXq9Hq9Xi7OwMFCSKVq1a4+XlDUDHjo+xdesWRowYTefOj/Pss6Po27d/mTyzs8srYkJaPt4eDjg72mWLmU3sOpnJjuOZFjl2+2BP2jXxvOM2SUmJjBw5lPz8PNLT02jUqClz5rxDQEAgR44cwtHRiY8//hyj0ciECWPZu3c3DRs25q+/zvDf/75OgwaNiIycRGzsTzz66GMsXbqYzz9fjZeXN6+99hJubu7odDpmzpzKrFnzaNy4KVu3bmHmzEg++WSlKY6VK7/hs8+ieO+9t1mx4mvS0lIZOfKfhLBr1w5TcwrAhAkv06xZ8zset169+syZ8zapqanMmfMG77//P7y8vFi37juWLl3CyJGj+e23PXz55Rry8vKYP/8tnJ2dGT16LIcPH2TEiGdYuHA+TZoE3/Z769ixc6Flo9HI+vXfsWDBe/j4+PDDD+tZvfoLgoND+PLL5axbtwm1Ws3ChfNJTExgzZrVDB48jE6dOvPLL7GcOHGMmjVrAVC1qi+TJ0/js8+imD9/ERs3xgAFzTXz5r3F/PmLCAoK4vff9zJ//mzef/+jQuW9laIo7Nmzi1df/a/ps9jYn3jooVCqVatOw4ZN2Lz5pxLdSZ858yf3318XN7fC86S0atX6tm2bNg0uVPMsTlJSIn5+/gA4Ojri4eFBWloq/v4a0zYPPxzKhg3R9O3bA602l7FjX8DV1bXQvgB+fv6cOnUCAC8vb9zd3fjrrzM88EADs3GYY5cJIT41H39pLrIrN5uMjEYjH3ywiLNn/+LBBx8CoEWLVnh5efPdd2u4ePE8ly9fIjc3Fyi4aN1sgqhbtz4ZGRkcO/YHwcEh+Pr6AQV30gcP7ufSpQt4enrSuHFTADp16syCBbPJysoCIDS0LQBBQdVo2rQZrq6uBAVVIyvrn0RZVJPRuXN/3fG4Ny/kJ08eJz7+OhMmjAXAaDTg5eWNv78GFxcXnnvuacLCHmHMmOdMd743qdUl65GiVquZM+dtdu/eycWLFzh8+CBqtRpHR0eCg0MYPXo4jzzSgX79BqDRBPB//9eWhQsX8PvvewgLe4RHH33M7DkuXbrA1auXmTLlZdNn2dnZpp+LSlxpaWkAhS7iGzfGMGrUGAAee6wL3323xpQQCnrgFF2+kv4uoOQ1BEW5/Xj/vqNfvz4aBwcHNmzYTHp6GhMmjKVJk+Ai9y2IsUBgYDUuX74oCeFuxafmU0sjPYysqV0T83fx1qBWqxk37kVGjRrKV199wVNPjWLXru188snHDBgwmB49epGWlmb6I7xZbb9JURRUKhVG4z9/pA4OBW+73/rZLXtgNBY89Lu1eeDmPiVh7rg3L+5Go4GQkBbMm7cQgLy8PHJycnB0dCQqajlHjhxi797djB07iiVLogodrWHDxvz00w+3nWXevFkMHPhPjSUnJ4fRo4fTtWsPmjdvSb169U0POefOfZcTJ47x2297eOWVCbz++iw6duxMcHAIu3fv5Ntvv+K333YzefKd2/INBiPVq9cw3XkbDAbTs45by3srtVpV6Hd6+vQpzp37i/fff4clSxZiNBpJSkrk+PGjBAeH4OnpWSgRA6SmpuDp6UVQUHXOnz9PXp4WF5d/mojWrFmNr68fnTt3NX1W0hqCRhNASkoyAQGB6PV6srOz8fb2KbTNrl3b6dOnP46Ojvj5+RMW9ghHjx5Gowngjz8Om7ZLTk4qVLNwdHQslCDuhUXbTGJiYujRowddunRh1apVt62Pi4sjIiKCrl27EhkZiV6vt2Q4ABgVhcR0ndQQ7JijoyPPP/8SK1d+TnJyEgcO7KNTp8488UQv/Pz8+OOPw6aLbVFCQlpw8uQxEhMTMBqNbN36MwC1atUmPT2duLiC6vwvv/xMYGA1U9vv3SrpcZs0Ceb48aNcvHgBgOXLP+Gjjwp63Ywf/yzNm7dk/PiXuP/+uly8eAEHBwdTD5VOnTpz7do1fvhhnel4P/64gcOHD3LffTVNn126dBG1Ws3w4U/z4IMP8dtvezAajaSmpvLkk/2pW7c+o0eP5aGH2nD27Blef/2/nDx5gj59Ihg9eix//nkKc2rXvp+MjAzTRfDHHzcwc2bkHffx9vZBUYzk5OQABbWDXr36Eh39I2vXxhAd/SNdu/Zg/fpoAFq3fogff9xgSvyHDx8kNzeX2rXvJygoiLCwtixa9DZ5eXlAQYJZtWoFdevWMxt/UUJD27Jp048AbN36M82btyh0gwBQv34Ddu7cBhQ85D94cB+NGjWhdeuHOXhwP6mpqWi1WrZt20poaJhpv2vXrlKjRk3KgsWuivHx8SxatIjo6GicnZ0ZPHgwbdq0oX79+qZtJk2axFtvvUWLFi2YOnUqa9asYejQoXc46r1LyzKgNyj4e0kNwZ6FhobRtGkwy5YtZcCAIbzxRiS//roFJydnmjYN5urVqzz4YNH7+vr68dJLk3jppXG4urqZeik5Ozvz5ptzWbhwAVptLl5e3rf1JLkbJT2un58/kZEzeP31/2I0GtBoAnn99Tfx9vYhODiE4cMH4erqygMPNCQ0NIyrV6/w2WdRLF26hOeee4H33vuQJUsW8vXXq1GpoHr1Gixc+EGhWlL9+g9Qv34Dhg7tj6urKy1atOL69WtUrVqV3r37MWbMcFxcXAkMDKJHj3CaN2/F/PlvsWLFJzg4OPDCCxNLVN5Zs+aZHqK7u3swbdobZvcLDQ3jjz8O0bp1G37+eROLFxfuVjxo0JP85z8jeeGFlxk5cjTvvfcOTz01CJWqoC1+7tx3TRfp//53BkuXLmbUqKE4OTnj6urK9OmzqFu3flGnNmvMmLHMnj2TYcMG4ulZhddffwsoqBXs2rWDKVOmM3z407z77jyefLI/arWanj17m55bjBkzjgkT/oNOpyc8vDdNmwaj1xvJzMwkKyuL+vUfuKu4/k2lFNVAVQa+//579u/fz5w5Be1rH374IYqiMH58Qb/qK1euMGLECLZs2QLAgQMHWLx4MStXriz2mP+WnJxVTHW6eKevaHnrm6u80jeI5nXcS7VvRabReJKYaJmHukW5fv0CQUG1rXa+osgYN/bhZpnPnDnNihWf8tZb820dksXdLPOaNV/h4OBARMTAIrf799+hWq3Cz6/4nlYWqyEkJCSg0fzTzhUQEMDRo0eLXa/RaIiPjy/VOe5UsOIk5qhxdFAR0qAqGh9n8ztUIhqN9drwExLUOJaDXlzlIQZrs9cyN27ciKCgIM6ePU3Dho3M71TB5edrOXhwH/Pnv1vsd65Wq0v1d2+xhGDuqXpJnrqbczc1BH83hW+mNyU7I4fExLxS7VuRWbuGYDQabX6nas93y/bk1jKPH1/QJFXZfweOjmqcnV2ZP38RUHx5jUZjob97czUEi91KBAYGkpT0z+vZCQkJBAQEFLs+MTGx0HpLUalUuLvIHAhCCPFvFksIYWFh7N27l5SUFHJzc4mNjaV9+/am9TVq1MDFxYWDBw8CsG7dukLrRcVnocdTQogSUBQjULpWF4vWECZOnMjw4cPp06cPPXv2JCQkhDFjxnDs2DEA3nnnHebOnUv37t3Jzc1l+PDhlgpHWJmjozPZ2RmSFISwMkVR0Ot1pKUl4ezsan6HW1isl5E13M0zBLB+e3p5YO0yl4cpNNVq+5taUcpsH8yVubgpNG3Wy0jYNwcHR/z9q9k0Bkn89kHKXHbsr3+aEEKIIklCEEIIAVTwJiO1+u7H/76XfSsqKbN9kDLbh7sps7l9KvRDZSGEEGVHmoyEEEIAkhCEEELcIAlBCCEEIAlBCCHEDZIQhBBCAJIQhBBC3CAJQQghBCAJQQghxA2SEIQQQgCVPCHExMTQo0cPunTpwqpVq25bHxcXR0REBF27diUyMhK9Xm+DKMuWuTJv2bKF3r1706tXL8aNG0d6eroNoixb5sp807Zt2+jUqZMVI7Mcc2U+d+4cTz31FL169eKZZ56xi+/5xIkTRERE0KtXL/7zn/+QkZFhgyjLVlZWFj179uTy5cu3rbPI9UuppK5fv6507NhRSU1NVbKzs5Xw8HDlzJkzhbZ54oknlMOHDyuKoij//e9/lVWrVtki1DJjrsyZmZlK27ZtlevXryuKoijvvfeeMmvWLFuFWyZK8j0riqIkJiYq3bp1Uzp27GiDKMuWuTIbjUbl8ccfV7Zv364oiqK8/fbbyoIFC2wVbpkoyfc8ZMgQZdu2bYqiKMrcuXOVhQsX2iLUMnPkyBGlZ8+eStOmTZVLly7dtt4S169KW0PYs2cPoaGh+Pj44O7uTteuXdm0aZNp/ZUrV9BqtbRo0QKAfv36FVpfEZkrs06nY+bMmQQGBgLQsGFDrl27Zqtwy4S5Mt80bdo0xo8fb4MIy565Mp84cQJ3d3fTlLRjx47lySeftFW4ZaIk37PRaCQ7OxuA3NxcXF1LN1tYebNmzRpmzJhR5Fzzlrp+VdqEkJCQgEajMS0HBAQQHx9f7HqNRlNofUVkrsxVq1alc+fOAGi1WqKiokzLFZW5MgOsXLmSJk2a0Lx5c2uHZxHmynzx4kX8/f2ZPHky4eHhzJgxA3d3d1uEWmZK8j1PmTKFyMhI2rVrx549exg8eLC1wyxTs2fPpnXr1kWus9T1q9ImBKWIQVxvnUrO3PqKqKRlyszMZMyYMTRq1Ii+fftaIzSLMVfm06dPExsby7hx46wZlkWZK7Ner2ffvn0MGzaMmJgYatasybx586wZYpkzV2atVktkZCQrVqxg165dDB06lMmTJ1szRKuy1PWr0iaEwMBAkpKSTMsJCQmFql7/Xp+YmFhk1awiMVfmm58NHTqURo0aMXv2bGuHWObMlXnTpk0kJiYSERHBs88+ayp/RWauzBqNhtq1a9OsWTMAevbsydGjR60eZ1kyV+bTp0/j4uJCSEgIAIMGDWLfvn1Wj9NaLHX9qrQJISwsjL1795KSkkJubi6xsbGmNlWAGjVq4OLiwsGDBwFYt25dofUVkbkyGwwGxo4dS/fu3YmMjKzwNSIwX+YJEyawefNm1q9fT1RUFAEBAaxevdqGEd87c2Vu2bIlKSkpnDp1CoCtW7fStGlTW4VbJsyVuXbt2ly/fp1z584B8Msvv5gSYmVksevXPT+WLsc2bNigPPHEE8rjjz+uREVFKYqiKKNHj1aOHj2qKIqixMXFKREREUq3bt2Ul19+WcnLy7NluGXiTmWOjY1VGjZsqPTq1cv0b+rUqTaO+N6Z+55vunTpUqXoZaQo5st85MgRJSIiQunRo4fy9NNPK0lJSbYMt0yYK/O2bduU8PBwpWfPnsqIESOUixcv2jLcMtOxY0dTLyNLX79kxjQhhBBAJW4yEkIIUTqSEIQQQgCSEIQQQtwgCUEIIQQgCUEIIcQNjrYOQIibGjZsSIMGDVCr/7lPCQ4OvuMLdNHR0WzevJmPP/74ns+/ZMkSVq1aRWBgICqVCoPBgJ+fHzNmzKBOnTqlPl58fDwvvvgiX3/9NZcuXWLBggUsWbKk0Of36vLly3Tp0oUGDRqYPsvJySEoKIg5c+ZQs2bNO+7/wQcf0KhRowo/hIkoG5IQRLmyYsUKfH19bXb+Hj168Prrr5uWv/jiC1555RWio6NLfazAwEDTRf/q1av8/ffft31eFlxdXVm/fr1pWVEU3nrrLRYtWsTChQvvuO/vv/9O/fr1yywWUbFJk5GoENauXcuAAQPo06cPHTt2LPJt49jYWPr27Uu/fv0YMGAA+/fvBwrGbpoyZQr9+vUjPDycOXPmlHjs+P/7v/8zXcivX7/O2LFjCQ8Pp2fPnnzyySdAwdhBM2bMIDw8nH79+jFhwgSys7O5fPkyLVu2xGAwMG3aNC5evMgzzzxj+txoNNKhQweOHTtmOt/EiRNNZVu6dCl9+/ald+/ejBs3rsSDl+Xl5ZGYmIi3tzcAf//9N6NGjWLQoEF07NiR5557jry8PFatWsXx48dZsGABP//8M/n5+cyZM4e+ffvSq1cvpkyZQlZWVonOKSoHSQiiXBkxYgS9e/c2/UtOTiY7O5tvv/2WqKgo1q1bx6JFi3j77bdv23fBggXMmDGD6OhoXnzxRX7//XcA5syZQ9OmTYmOjmbdunWkpqby+eefm41Fr9ezdu1a2rRpA8Crr75KmzZtiImJ4auvvmLDhg38+OOPHDlyhH379rFhwwaio6OpWbMmf/75p+k4Dg4OvPXWW9SqVYtPP/3U9LlarSYiIoLvv/8egPT0dPbs2UN4eDjr1q3j9OnTfPvtt6xfv54OHTowbdq0IuPUarX07t2b8PBwwsLC6Nu3L3Xq1OHVV18FCoZR7tOnD9988w2xsbFcvnyZbdu28eSTTxIcHMxrr71Gly5diIqKwsHBgejoaDZs2EBAQADvvPNOCb85URlIk5EoV4prMvrf//7H9u3bOX/+PKdOnSInJ+e2bZ544gnGjx9Phw4daNu2LWPGjAEKZko7duwYa9euBQouoMXZuHGjaXwYnU5H06ZNmTVrFjk5ORw6dIjPPvsMAE9PT/r168eOHTuIjIzEwcGBAQMG0K5dO7p27UpISEiRs1z9W0REBP3792fKlCn88MMPdOzYEU9PT3799VeOHTtGREQEUDDWf25ubpHHuLXJaOfOnUyaNIm2bdvi4eEBwKRJk9i9ezfLli3j/PnzJCQkFPn727ZtG5mZmezZs8dUfj8/P7NlEJWHJARR7l2/fp1BgwYxcOBAHnzwQbp168avv/5623YTJ06kf//+7Nq1i+joaKKiooiOjsZoNPL+++9Tr149ADIyMood2O/fzxBuysrKum3IYaPRiF6vx8vLi/Xr13Po0CF+++03XnrpJYYPH16iB7U1atSgSZMmbNu2jejoaKZOnWo69ujRo00js+bn55doGsxHHnmEUaNG8fLLL/PTTz/h6enJyy+/jMFgoHv37jz66KNcu3atyOGTjUYjU6dOpUOHDgBkZ2eTl5dn9pyi8pAmI1HuHT9+HF9fX8aNG8cjjzxiSgYGg8G0jV6vp1OnTuTk5DBkyBBmzJjB2bNn0ev1tGvXjuXLl6MoCvn5+Tz33HN8+eWXpYqhSpUqNG/e3DSXb2ZmJuvWrSMsLIxff/2VkSNH0rJlS1544QX69OljGmn0JgcHB3Q6XZHHHjhwIMuWLUOr1fLggw8C0K5dO9auXWtqw3///fd57bXXShTr008/jZeXF4sXLwZg165dPP/88/To0QOVSsUff/xh+t05ODiYnqe0a9eOVatWkZ+fj9FoZPr06WYfSovKRWoIotxr27Yta9eupVu3bri5uRESEoKvry8XLlwwbePo6MjUqVN59dVXcXR0RKVSMWfOHJydnYmMjGT27NmEh4ej0+kICwtj9OjRpY7jnXfe4c033yQ6Opr8/HzTQ2Sj0ciOHTvo2bMn7u7ueHt7M2vWrEL7PvDAAzg4ONC/f38WLVpUaF2nTp144403TE1cAAMGDCA+Pp6BAweiUqmoVq1aiSe5cXJyYvr06YwePZoBAwYwceJEnn/+eby9vXFzc+Ohhx7i4sWLAHTs2JH58+ej0+kYN24c8+fPp2/fvhgMBho3bsyUKVNK/XsSFZeMdiqEEAKQJiMhhBA3SEIQQggBSEIQQghxgyQEIYQQgCQEIYQQN0hCEEIIAUhCEEIIcYMkBCGEEAD8P9VOM3tOr4yuAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# extract labels for classes\n",
"class_names = churn_data[\"Churn\"].cat.categories\n",
"\n",
"plot_confusion_matrix(\n",
" model,\n",
" X_valid,\n",
" y_valid,\n",
" display_labels=class_names,\n",
" cmap=plt.cm.Blues,\n",
" normalize=\"true\",\n",
")\n",
"plt.grid(None)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From the confusion matrix we see that our baseline model is able to identify churners only 42% of the time and incorrectly classifies people who churned 58% of the time. We can do better, but first let's inspect how a single decision tree is making decisions on this data."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Single tree"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have a baseline model, let's make a single tree so we can gain some insight into how the decisions are being made:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RandomForestClassifier(bootstrap=False, ccp_alpha=0.0, class_weight=None,\n",
" criterion='gini', max_depth=3, max_features='auto',\n",
" max_leaf_nodes=None, max_samples=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, n_estimators=1, n_jobs=-1,\n",
" oob_score=False, random_state=42, verbose=0,\n",
" warm_start=False)"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = RandomForestClassifier(\n",
" n_estimators=1, max_depth=3, bootstrap=False, n_jobs=-1, random_state=42\n",
")\n",
"model.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABpgAAAIuCAYAAACrewsjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd1SW5/3H8Q887D0EZAkoQ0FU3OLejAwzGrP3akabNm2Ttr8mbZq0TYc2adLsUVMTE2uiRlDce4EbBwiKIktl7/37A33iE4YQB4736xxO4L6v+7q/F57jCX74XpeZj49PswAAAAAAAAAAAIBOMu/uAgAAAAAAAAAAAHB1IWACAAAAAAAAAABAlxAwAQAAAAAAAAAAoEsImAAAAAAAAAAAANAlBEwAAAAAAAAAAADoEgImAAAAAAAAAAAAdAkBEwAAAAAAAAAAALqEgAkAAAAAAAAAAABdQsAEAAAAAAAAAACALiFgAgAAAAAAAAAAQJcQMAEAAAAAAAAAAKBLCJgAAAAAAAAAAADQJQRMAAAAAAAAAAAA6BICJgAAAAAAAAAAAHQJARMAAAAAAAAAAAC6hIAJAAAAAAAAAAAAXULABAAAAAAAAAAAgC4hYAIAAAAAAAAAAECXEDABAAAAAAAAAACgSwiYAAAAAAAAAAAA0CUETAAAAAAAAAAAAOgSAiYAAAAAAAAAAAB0CQETAAAAAAAAAAAAuoSACQAAAAAAAAAAAF1CwAQAAAAAAAAAAIAuIWACAAAAAAAAAABAlxAwAQAAAAAAAAAAoEsImAAAAAAAAAAAANAlFt1dAAAAAIAWu3Yky7OnT3eXAVzRTubnKmrIsO4uAwAAALjuETABAAAAVwjPnj4qXvhKd5cBXNE8Z7zU3SUAAAAAEFvkAQAAAAAAAAAAoIsImAAAAAAAAAAAANAlBEwAAAAAAAAAAADoEgImAAAAAAAAAAAAdIlFdxcAAAAA4Pxe+WqLEnccMblmZibZWFrIv4ej4of01o+iw2RubtZNFV5exRU1srIwyN7GUpL0wYq9+mjlPknS249P0ZA+Xm0+9+nqVL2btEeStPX1e37Qu08UlsvP3VGSlFtUoVtfX6T7JoTr6dioHzRfZz3+znKdLK3SwhdnXNL3dMXCbRmavzlNx0+VycbKQoN7e+rHMYMU6Ol83meffn+ldmQWtLre19dNn/4k9lKUCwAAAOAiImACAAAAriLP3TBEzvbWZ75qVlVtg9btz9bsb3cor7hSz904pFvruxw2H8rR7+dt1vtPTZO9TesgY/3+7HYDpjWp2Rf07uc+Wi0HGyu9es+YC5rnWvD5+oN6M2Gnhvbx0owRg1VaWauvNqfp8X8v18fPxhhDuPYcyS/RiBBvxQwOMrnubGd1KcsGAAAAcJEQMAEAAABXkXERfvJxczC5NmNEsB7793LN35yme8eHq4eTbTdVd3nszy5UWXVdm/d83Ry0/sAJ/eymoa3u5RZVKC2nSK721iqurP1B796anqcpAwJ+0LNXgsqaemPX1wXNU1uv95L2aHhIT73xyCSZmbV0zk3o768H3lyqj1fu00szo9t9vqiiRsWVtRoV5qPY7wVMAAAAAK4OnMEEAAAAXOUM5uaaPCBAjU3NSj1+urvL6VbjI/yVV1yptJyiVvfWpGbL0dZKg9vpbrqW5RSWa/biFN34p68vynz7j59WbUOj4ob0NoZLkhTs7ao+PV20J+tUh88fyS+RJAV6Ol2UegAAAABcfnQwAQAAANcAw5l/5G9obDJeW5uarfmb05SWU6Sa+ka5OdhoTD9fPRUzSA62VtqWnqeffrRaz8YP1j3j+pnMN3txir7ZdlhLfnur1h84oVfnb9Wcn8bqs7UHtPlQrszNzTShv7+ev2modh89qXeS9ijrZKm8Xe31+LSBmhTZyzhXU1Ozvtx0SIu2ZyinsELOdtYaF+GnJ6YPlLOdtXHcyBfm6vFpA+RgY6X5m9OUX1wpb1d73Tm2r24dGSrJ9CyqO/+xRFG9PfXOE1ONc4wN99W8jYe0fv8Jhfm6maxp7b7jGtPPV03Nza2+f2VVtfpgxT6tTT2ukspaebva68ZhfXTPuHCZm5sZz1qSpJV7j2nl3mN6+/Ep8na1N67xo5X79G1yhooqahTo6axHp0RqXIS/yXs2HczRnLX7dSinSAZzM0X28tCjUyMVGeBhMm5N6nH9Z/V+HT1ZKi9nOz00uX9Hf/zt2pGZry83pmnjwRxZGMw0+Zzuq5EvzO3w2bghvfXSHaPavDcw0FNf/PyGNrvlSiprZWNp6HDuzIKWgCnIq2WLw6raetlZX3hnFQAAAIDLh4AJAAAAuAZsz8iTJGOosiQlU6/O36qRod56MmaQ1NysLWm5+nrrYZVW1uq1e8dqaLCXejjaatWeYyYBU1NTs1btPa5RYb5yOicA+sWn69TPz03PxkdpW3qevk3OVP6ZbqHbo0N149De+mLDIb30xSaF+rgaz+B57X9btXTnUcUMDtIdo8N04nSFFmxN164jJ/XRM9NNgoXFyZmqq2/U7dGhcrK10oIth/XXb5LV08Ve0X19dcuIYFXW1Gvd/mw9ExelEG9Xk++Dq4ONBgZ6aN2BbD02bYDx+qmyKqVmn9Z9EyO0au8xk2eq6xr04/dWKK+4UreNClVPF3vtyTqlt5fu1tGCUr00M1quDjZ6eWa0/vDlZvXv1UO3jQpVoKeTausbJUkLtqSrh5Od7hjdV82S5m04qF//d4M+fTZWIT4tNS7cdlh/+Xq7Qrxd9fi0gapraNSibYf14/dW6q/3j1N0X19J0rJdR/X7eZvV19dNT8UM0qmyav1lwXYZzM3kZG+t86lraNTyXVn6clOaDucVy9PZTo9OjdSMESFyc7Axjnu5gy3sJMnP3aHde9aWBmM4dK51+7N1srRKNw7r0+HcR/JLZTA302drD2jZrqOqqKlXD0db3TcxXDNH9z3PCgEAAABcCQiYAAAAgKtIeXWdSiprJEmNTc06WVqlxcmZ2nwoVxP7+8u/R0uoM3fdQfX1ddOshybK3Lylu+n26DA9+OZSbUnPldSytd6UgQGat/GQcosqjGc77TxSoNPl1ZoeFWjy7mBvF71+/3hJ0g1D++iG175Wcka+Zj00wRiO+Lg56OefrFVKRoH83B21I7NACTuO6Gc3DtHMMd8FB+Mi/PTj91Zo3oZDenhKpPF6UXm1vvrFTep5pjNobLifbv7zQi3blaXovr6KDPBQsHee1u3P1ph+vgr0bB1yjI/w1z+X7FBOYbl8z4Rca1OzZWtloREh3q0Cpv+uO6Csk2X66Onp6uvnLkm6bVSoens5692kPbppeLAGBXkqdnCQ/vDlZvV0sTeeG5RbVCFJsrW21CfPxsjR1kqSFObjqmc+WKW1+7MV4uOq0qpavblkp0K8XfXRM9NlZdHS4XPLiGDdNStBr3+9XQteuFnmZmZ6K2GXgr1d9P5T04zjhvbx0nMfrzlvwJS444j+lbBTxZW1GhTkodfuGaPxEf6yMLTeHf1in31UUFKpv32TLCsL81Ydcd93JL9EjU3NOlFYrl/fNkJ1DY1avD1TsxfvUFllnUk4CAAAAODKRMAEAAAAXEUeeHNpq2sGczPFDQ7S8zOGGa999lycqmrrjeGSJBVX1MjBxlLVdQ3GazGDgzRv4yGt3HNM90+MkCQt350lBxtLjenna/KeCeds92ZhMJevm4Oqaxs0KszHeP1soFNYXi2pZas3SRrdz9cYjEktZ+/4ujlo48Eck4ApolcPY7gkSV4u9nKxt1bRmfk6Y3x/P/1zyQ6t239Cd58JOtbsy9bovr6ybmPrtrWpxxXg4aServYmNY4L99O7SXu04eAJDQry7PCdo8J8jOGSJPXzbwmqTpe11J18OF9VdQ26a2xfY2gkSS72NvrRqFC9v2KvDp0oksFgptPl1bpnfD+TcSPDfBTo6aSaMx1T7UnJLFBxZa3G9PPVr2YMl6eLXbtjz11rW6wsDJ3etu50WbV+8uFqnS6v1ou3Dm8z+DvXDcP6aGJkL+OfjyRNHxSkx99Zrv+s3a9bR4XI3bH19nsAAAAArhwETAAAAMBV5Pd3Rhu3OTM3M5ODjaUCPJ1la2X6v/YWBnMdzivR8t1ZyjpZqpzCCp1uI6Tp6+umQE8nrdzbEjA1NDZpbWq2JvbvZRJwSJKbo43J1waDuVwdrGVm9l2IZX7m87PnHOUUtnT43P7XxW2ux9WhweRrN3ubVmMsDeZqbOPcpPZ4uzoozNdN6w9k6+5x/VRcUaM9WSf1x7vHtDn+RGGFausbFfPKgjbv5xdXnvedrg6mnUXWZ7539WfOxMotbvk+9PJwavVs4Jmt5vKKK4yB4NmgzmScp7MO5RR1WMeDkyJkbWGuxJ1HdcvrCzUhwl8/Gh3WZkDW3nrP6ugMpnOdKCzXTz9crZyiCj0+bYBmjAg57zM3Dw9udc3c3EwzRgTr1flbtfvoSZPzogAAAABceQiYAAAAgKvIgAAP41Z2HZm1OEVfbUpTsLeLIgM8NHVggCJ69dDn6w9qxR7TLeJiooL0btIeHT9VpuOny1RWXddqezypZUu9Vs4Jl9rS1NQsawuD/vbg+Dbvf3/rNrPzzNdZE/r764Ple1VcUaP1B07I0mCu6HM6rb5fY4S/u56YPrDN+64OrUOv7zM/X90d5GPNZ8IzCwtzNbfkUaqtb2h3XEd69XDSC7eO0JPTB2nB1nR9veWwVu07rlAfV90xOkzTBgUag8M3H53U4VweTu13P52VkVesn360WoXlNXo2Lkr3jA8/7zMdORueVte2Xj8AAACAKwsBEwAAAHCNySuu0Feb0jR5QC+9evcYk9CmqKL1tmjTowL13vI9Wn/ghI6dKpOHk60G9/a6KLV4u9pr2+FG9enp0mrLs3X7szsVYvwQEyL89V7SHm04cELr9mdrVJiPbKza/vHH29VeFTX1Gh7ibXK9srZeW9NyOxXonY+3W8u2f8dOlal/rx4m946dLJMkeTnbGzuYsk+Xt5rjxJlusM5wtrfWw5Mjdd/4cC3fc0zzNhzSq/O36u3EXVr60u2S1Gq9XXX8dJme/WCVSqpq9cItw3XLyPN3LkktWzU+/f5KRff11TNxUSb3ss58L3zcL/x7DgAAAODSauNXEAEAAABczcqq6iS1bKl2brh0ILtQe7JOSZIazmzdJrVsKTcw0EObDuVoy6FcTR0YaHJ204UYG+4nSfpkdarJ9R2Z+Xphznot2p7R5TkNZ9bUUUNPkJezAjyctHx3lnZkFGhSZK8Oazx2qkyr9x03uf75uoP67dyN2n/8tPGauZlZpzqJvm94sLesLQ2at+GQ6hq+O0eprKpWC7amq4ejrfr6uinMx1XervZauC1DlbX1xnE7MguUmV/S5fdaWhgUP6S3PnsuTm89Nlnh3wu3fqiGxib95r8bVFxZqxdvHdHpcElq6QirrW9UQkqmis8JPMur6zRv4yH1dLXXgACPi1InAAAAgEuHDiYAAADgGtPby1nervb6fP1BNTU1q6ervTLySvRtcoYMZmZqkFRVWy8nu+/ODYqJCtJfvt4uSW1uj/dDRff10bhwP/1vc7oKSqo0MtRbp8qqNH9TutwdbfTQpP5dntPlzHlHX2w4qDHhfhp3JsT6vvERfpqz9oCsLQyK7ufb7nz3T4zQmtRs/e7zjdo5IkTB3i7an12oJSmZiurtaXIWkIu9tfZkndLCbRkaGdr5DiBne2s9FTtIsxfv0CNvJSlmcJAaGhu1aHumSipr9ed7xxpDvV/OGKZf/medHnlrmW4eHqyyqjp9ufGQXOytz/OWjg0N7qmhwT0vaI6zknZnKSOvRAEeTrKyMGjpzqMm960tDcZQ73BesTLySjQgoIfxbKlf3TJcz328Wo/9O0m3jgxVQ1OTFm3LUHFFjWY/PLHV1okAAAAArjwETAAAAMA1xtLCoFkPTdSbCTu1YEu6Gpua5e1mr0emRMrHzUG/nbtRyRn5JsHJpMhemrU4Rb5ujgrzdbtotZiZmelP947Vf9cd0NKdR7U1LVfOdtYa3c9Hj08bqJ6u9l2ec+rAQK3Zl61lu45qT9apdgOmCf17ac7aAxoe6i17a8t253O2s9YHT03Thyv2at3+bC3aniEvFzvdNz5cD0zqbxJ2PB0XpX8v3aVZi5P169tGaGCgZ6frnjm6rzyd7TR33UG9n7RHVpYGRQb00O9nRmtA4HcdO9F9ffXGI5P03vI9ejdpj1wdbPR0XJRSMvJ1MKeo0++7lHZkFkhq2fLvD19ubnXfzcHGGDCtTc3WRyv36f9+NNIYMI0I9dbshybqk9Wpem/5HhnMzRTZy0N/uGt0qy0EAQAAAFyZzHx8fLq+vwMAAACAiy4nJ0fFC1/plndXVNcp7tUFemRKpB6Y2PWuIuBycZ3xknx92+9IAwAAAHB5sO8AAAAAAC1KzlRjU7Nio3p3dykAAAAAgKsAW+QBAAAA17F3lu1WZn6JtqTlavqgQHm62HV3SQAAAACAqwAdTAAAAMB1rKq2QckZ+RoZ6q2f3TS0u8sBAAAAAFwl6GACAAAArmPP3zxUz99MsAQAAAAA6Bo6mAAAAAAAAAAAANAlBEwAAAAAAAAAAADoErbIAwAAAHBF+2DFXn20cp/mPX+DAj2dO/1cblGFbn19ke6bEK6nY6MuYYXS+gMn9PHKfco6WSoXe2vdOCxYD0yMkIXh/L/Tt+lgjj5etU9HCkrlYGOpSZG99Pj0gbK3tjQZl3rstN5J2q3U46dlb22pkWE+emLaAHm52F+qZQEAAABAu+hgAgAAAHBFm9DfXy/PjJaHk12XnnN1sNHLM6M1dWDAJaqsxdrUbL0wZ51srSz0TPxgjQj10Qcr9urvC5PP++ya1ON6/tO1Mjc309NxUZoWFaiF2zL03Ier1djUZBy3++hJPfX+Ch3OLda948N197h+2nWkQI++naS84opLuTwAAAAAaBMdTAAAAACuaCHergrxdu3yc7ZWFoodHHQJKvpOY1OT3liyQ3193fSvxyYbO5bsrS31xcaD+tHoMPXp6dLu8298u0NBns5654mpxme9XR3094XJ2ngwR+Mj/CVJf1uYrOZm6d0np6r3mfliBwfpzn8s0b8SdulP9469pOsEAAAAgO+jgwkAAAAAfqB9x04rr7hSNw8PNtkOb+aYMDU3Syv2ZLX7bFFFjfzcHTVjpOmzUUGekqTDucWSpLziCmXml2jKwABjuCRJ7o62ih/SW+v2Z6u8uu4irwwAAAAAOkYHEwAAAIBus/1wnj5YsVcZeSVytLXSjOHBalbLuUtbX79HUuszmJakZOrV+Vv1n5/E6suNh7TxUI7q6hs1MNBTz8RHGbudOnMG09kxHXlkSqQemzqgzXsHTxRKkvr6uZtc93Kxl5uDjQ5mF7U7r5uDjd56fEqr6+lngqWeri1nK50srZIkBbfRCeXXw1GNTc3KzC/RoDPBFAAAAABcDgRMAAAAALrF5kM5+uV/1sm/h6MemzpA5dV1mrv+oAwGs049/8Jn6+Xn5qDHpw3U6bIqfbH+kH7+8Rp98+IMk46gjpw9p6kjwd7tb3F3qrRakuTp3Pp8qB5OtsovqexUHc3NzcovqVRKRoH+lbBTvb2cNWVAy9lRdlaWkqSq2oZWz5VV1UqSCsurO/UeAAAAALhYCJgAAAAAdItZi1PUw9FWHz0TI3vrlhBlXISfHn5rWaeeD/J01uyHJxq/trIw6P3le7Ujs0AjQr07NceFntNUVVsvSbKxNLS6Z2NlodLK2k7Nc7K0Srf8ZZFxrudvHiYbq5Yf14K8nGVvbam1+7P18JT+Mpi3hGfNzc1at/+EJKmuofEHrwEAAAAAfgjOYAIAAABw2R3OK9aJwgrNGBliDJckqZ+fu0aEdC4cmjygl8nXYT5ukqSiis538zQ1NauksqbDj5q61p1DZzWf+a+ZWdtdV2bmnevGsrIw6LV7xuh3d4ySfw8n/eTDVVq977gkycJgrnvG91Nmfol+O3ej0nOLlJlfole+2qK8ogpJMoZOAAAAAHC50MEEAAAA4LLLPl0uSerVw7HVvUBPZ21NzzvvHG4ONiZfW1q0hCyNTc1tDW9TfknlBZ3BZHumy6imrsH4+Vk1dQ0m4VlHXB1sNPnMlngT+/vr7llL9Ma3OzQpsiVEe3Bif1XW1mvehkNam5otSYoK8tTzNw/Vy/M2y8nWqlPvAQAAAICLhYAJAAAAwGXX2NgkSbK0aL21nJVF57px2usa6gp3R1u9+eikDsf4ujm0e8/b1V6SdLq8Wq7fC7xOl1UrzNetyzXZWVtqdD9fLdhyWCWVNXKxt5G5uZmejRus+8aHK+tkmdwdbeXfw1FLkjMlST7u7dcIAAAAAJcCARMAAACAy87vTOdS9qmyVvfOdjddDtaWBg3v5JZ8bTkbIKWdKFKIt6vxekFJpYoqahTu797us3uyTuqlzzfpyZhBrc6BqqptkJnZdwHcit1ZcnWw0dDgnhoU9F2Qte1wntwcbOTv3roTDAAAAAAuJTbqBgAAAHDZhfm4ycfNQUtSjpiccZR9ulyb03K7sbKuGRDgIQ8nWy3Ymq6GM11ZkvTlxjSZmUnTBgW2+2xvLxcVVdRowZZ0NTZ992xuUYXWpWZrcG8v4xZ78zYe0l+/2W7yjgPZhVqTmq3bo0MvSjcXAAAAAHQFHUwAAAAALjtzczP97MYhemHOej3ydpJuGNpbVbUNmr85rbtL6xJzczP9JH6wfvfFJj374SpNHxSkgycKtWh7hm4fFaoADyfj2H3HTulEYYWGh/SUu6OtHG2t9Ex8lGYv3qFn3l+lyQMDVFxRo/9tTpfBYK5f3DzM+Ox9EyL04mfr9dxHqzV5QIAKy6s1b+MhhXi76K6x/bpj6QAAAACucwRMAAAAALrF2HA/vX7/OH24cp/eWbZbLvY2umtsXx0pKNWafce7u7xOmzooUDKTPl2dqlmLk+XhZKfHpw3Q/RMiTMZ9sy1DiTuO6O3Hp8jd0VaSNHN0XznYWOmLDQf1z293yM7aQsODvfXE9IHy7/HdtncT+vvrtXvGaM7aA3pjyQ652FvrhqF99MiUSNla8WMdAAAAgMvPzMfHp7m7iwAAAAAg5eTkqHjhK91dxmXR2NSksqo6uTrYtLr3/KdrlZFbrEW/uaUbKsOVznXGS/L19e3uMgAAAIDrHmcwAQAAALjsmpqadeOfvtErX242uV5YXq2dmQUK93fvpsoAAAAAAJ3BXgoAAAAALjtLC4OmDgzQ0l1HZTA3V/+AHiqtrNWi7RmSpEenDujmCgEAAAAAHSFgAgAAANAtXrx1hAI8nLR051Et35MlWysLRQV56tGpA9Snp0t3lwcAAAAA6AABEwAAAIBuYW1p0IOT+uvBSf27uxQAAAAAQBdxBhMAAAAAAAAAAAC6hIAJAAAAAAAAAAAAXcIWeQAAAACuKSNfmKspAwL06j1juruUTnt1/hYtSTnS6rqznbWSXr7d+HVjU5PmbTikRdszVFBSpZ6u9rp1ZIh+FB0mc3Mz47jSqlq9l7RHmw7mqLSqVmG+bnp4cqRGhHp3WMdv527Qqr3Hte7VO2Vtabh4CwQAAABwzSFgAgAAAIBudiS/VKE+rrprbD+T69YWpiHPX77erm+TMxU/pLfuHOuuLWl5mv3tDpVX1+nRqQMkSfUNjXruo9U6UlCqO0aHycvZTst2Zem5j1frbw+M15h+fm3WsCb1uFbtPX5pFggAAADgmkPABAAAAADdqLm5WUdPluqmYX0UOzio3XE7Mgv0bXKmHpgYoR/HDJIk3ToyVM99tFqfrT2geyeEy8bSQst2ZengiSL9/s5oxUS1zHfDsD668+/f6r2kvW0GTKWVtfrrN8myNJirvrHp0iwUAAAAwDWFM5gAAAAAoBvlFlWouq5BgZ7OHY5bkpIpe2tLPTSpv8n1hydH6t4J4aqsqZckVdXVK8zXTVMGBBjH2FhaqJ+fuzLzS9Tc3Nxq7r8vSpaLnbUmRvpfhBUBAAAAuB7QwQQAAACgXeXVdXpzyU4lZ+SpsLxG7o42Ghvur8enDZCjrZVx3M4jBZq77oBSjxeqoqZOznbWGhbSU0/HRsnT2U5SS0Dy6vytmvPTWH229oA2H8qVubmZJvT31/M3DdXuoyf1TtIeZZ0slbervR6fNlCTIntJaglhbn19kX51yzDlFVdqSXKm6hqaNDDIQ0/HRqlPT5cO17H5UI4+WZ2qw7nFsjCYK6q3l348faB6n/NcZ9f6fa98tUWJO1qfn3Sura/f0+69zIJSSVKQV0vAVF3XIBtLg8zMzEzG7T56UgMCPWRjZWEcZ21h0IBADw0I9DCOmzm6r2aO7mvybENjk44UlMrTxa7VvOv2Z2vV3uN6/6lp+nrr4Q7XAQAAAABnETABAAAAaNdv/rtBablFuiM6TJ7OdkrPLdaCLek6dqpUbz46WZKUnJGv5z5arb6+bnp4Sn9ZGsy1++gpLd+dpexT5fr42RiTOX/x6Tr183PTs/FR2paep2+TM5VfXKm0nCLdHh2qG4f21hcbDumlLzYp1MdVfu6OxmfnrNmv+sYm3Tm2rxqbmjVv4yE98c5yffxsjHr1cGpzDUtSMvXa/7YqKshLT8VGqbK2Xou2HdajbyfpvaemKcTbtdNrbcstI4I1LLjnD/4eH8kvkSQl7c7Sr/+7QcUVNXKys9JtI0P1yJRIWRjMVVvfqPySSo0M9dbSnUf10cq9OlFYITtrC90yIkQ/jhkkC0PrDSoqa+uVdbJUc9bs17FTZfrdHaNM7pdW1er1r7dr5pgw9e/Vg4AJAAAAQKcRMAEAAABoU1FFjZIz8vVsXJTuGR9uvG5jZaGdmQWqqWuQjZWFvthwUG4ONnr7iSmysWz5EePWkaGqb2jUmtRslVbVytnO2vh8sLeLXr9/vCTphqF9dMNrXys5I1+zHpqg6L6+kiQfNwf9/JO1SskoMAmYiitq9cXzN8jHzUGSNDbcTw+8sVQfLN+rP949ptUaKmvqNXvxDo0L9zO+s6W+EN31jyV649sdeuvxKZ1ea1siAzwUGeDR5r3OOFLQEiGNGQwAACAASURBVDAdzi3WT+IHy8JgphW7j+mT1akqKKnUSzOjVVlbr+ZmKSWzQEm7svTApAj593DShgMnNHf9QZVW1er/fjSq1dz/XLxD36ZkSpImRfbS5DMdYWf9Y1GK7Kwt9cT0gT+4fgAAAADXJwImAAAAAG1ysLGUnZWFFmw9rJ6u9hoV5iM7a0s9ExdlMu5vD4xXRXW9MVySpIrquu+2cqttMAmYJkR8d86PhcFcvm4Oqq5t0KgwH+N13zOhUmF5tcm7pkUFGsMlSQrxdtXwkJ7adChHTU3NMjc33f5t2+E8VdbWa3yEv0oqa0zujQz11rJdWaqsre/0WttSVVuvuobGDse42Nu0e29CRC8Fejjr/okRxi6kqQMD9dv/blDizqO6Y3SYXB1ans8+Xa7ZD080fq8mRfZSc3OzlqQc0T3jwo3b7J01ZWCAxob7ak/WKX25KU1Pvb9S7z45VVYWBq0/cEIr9mTp7cenmPzZAQAAAEBn8FMEAAAAgDZZWRj04m0j9OcF2/TbuRtlaTDXgEAPjYvw0w1D+sjexlKSZDA3V15JpT5YuVdH8kuVW1SugtIqNTe3zNN09pMz3BxNwxaDwVyuDtYmZwOZn/n8+8/2/l6AIkn+PZy0NT1PpVW1xiDmrJzCckkt5yS152RJlYK8nDu11rb8fVHKBZ3BNGlArzav3zoqVKv2HVdKZoFuHNZHkuTlbGcSxElS/NA+WrYrSzsy81sFTCNCvSVJ4yL85eVir1mLU5S0K0vjI/z016+3a9qgQPX2cjaGb/VngrLSqlrZWVnIoYOzpwAAAABc3wiYAAAAALRr2qBAjQrz0foDJ7TlUK62Z+RpR2aBvthwSJ88EyNXBxt9seGg3liyU37ujooK8tTYcF/183PXhoMnNHfdwVZzGsxbnxUkM7PW19rQ1jlDTc1NZ+ZtPcfZgOoXM4apVw/HVvclycvFrtNrbct948MVExXYqfq7wu3M+6prG+RkayVbK4s2a3C1b+kOq6pt6HC+qQMDNGtxitJyiuTj5qDT5dVK2pWlpF1Zrcbe9KdvFNXbU+88MfXCFwIAAADgmkTABAAAAKBNlbX1OpxbrN5ezoof0lvxQ3qrsalJ/113QO8s26MVe47p5uHBei9pjwYEeujfj08xCYCWnDn752LKKaxodS37dLlc7K3ldM42fGd5u7Zsp+dsa6XhId4m93YfPana+kZZWRg6tdY7Roe1WVOQl3OrzqHOamxq0mNvL5dfD0e9ctdok3tZp0olST7uDjIzM1Ooj6sy80vU0Nhk8n3OLWr5npwNyv5v7kZlnSrVf5+LN5mvqrZekmRtaVCIt4vefHRSq3rmrjuobYfzNOuhCcaACwAAAADa0savDgIAAACAlJZTpCffXaFF2zOM1wzm5gr373HmczPV1jeopr5Rfu6OrUKP9ftPSJIam0y3ubsQS3ceVWlVrfHrQzlFSs7I18TItreZGx7SU9YWBs1df9C4/ZskFVXU6MXP1usfi5JlMDfr1FovBYO5ueysLbQ29biOnSozXq9raNR/Vu+XnbWFxvbzlSRNjwpURU29FmxNN45ramrWl5vSZG1pMG6d5+Vqp4y8Em06mGPyrs83tHSTjennKyc7aw0P8W714e5kK0ka0qen+vq5X5I1AwAAALg20MEEAAAAoE2DAj01INBD7y/fq4KSKoX4uKqwvFoLtqSrh6OtpgwMkJOdtSJ79VDSrqNysrVSby9nZReWa9H2DNXWtwQ6ZztnLoaaugY98laSbhkZoqraen258ZB6ONrq0SmRbY53sbfRkzED9caSnXr4rSTFDg6SJH299bDKq+v00h2jZGZm1qm1XirP3ThEj7yVpB+/u0I/Gh0mG0uDlu48qsN5xXrpjmhjZ9ZNw4K1fHeW3vh2p46dLFOfni5ak5qtHZkF+tmNQ4zjHprYX2v2Zet3n2/U7dGh8nKx1+a0XG06mKMZw4MV1dvrkq0FAAAAwPWDgAkAAABAm8zNzfS3+8fr41X7tOFgjhYnZ8jexkrDQ3rqiWkD5Xwm0Hjt3rF6c8lOJe06qpr6Rnk622nG8GBF9/XVk++uUHJGvsJ83S5KTbeNClVTc7M+XZ0qMzNpdD9fPR0TJXdH23afuWtsP3k52+vzDQf1/vI9srIwKMTHVb++bbiG9OnZpbVeCsHernrnyal6f/kefbZmv5qamxXq66Z/PDhB0X19jeMsDOaa/fAkfbxqn5J2ZWlJSqZ6eTjp5ZmjFDu4t3Gcg62V3n1yqv69dJcWbs9QdW2Denk46hczhum2kSGXbB0AAAAAri9mPj4+F2+/CgAAAAA/WE5OjooXvtLdZVyRcosqdOvri3TfhHA9HRvV3eWgG7nOeEm+vr7nHwgAAADgkuIMJgAAAAAAAAAAAHQJARMAAAAAAAAAAAC6hIAJAAAAAAAAAAAAXWLR3QUAAAAAwPn4uDlo6+v3dHcZAAAAAIAz6GACAAAAAAAAAABAl9DBBAAAAKBDr3y1RYk7jmjdq3fK2tLQ3eV0ygcr9uqjlfuMXy976Ta52NuYjGlqatYT7yxXTlGFEn93W7tz5RZV6K5ZS/SX+8ZpVJiPyb2GxiZ9tSlNi7ZnKL+kUt6u9rp1ZKh+FB0qMzMzk7Er9mRpzpoDyjpZKgcbS42L8NczcVFytLW64PXOWbtf8zYc6nAdklRd16B7ZyfIxd5aHz0TY3KvorpO7ybt0ep9x1Vd16Bgbxc9OLG/RvfzbTXP+gMn9J/VqcrIL5GLnbXGRvjpyWkD5WBrpfLqOk39/Xzj2PsmhOvp2KgLXiMAAACAKwsdTAAAAACuWc/ERenlmdGys7Zsde+LjYe07/jpDp8vr67Tr+asU219Y5v331iyU28m7FRfPzf99IbBCvVx1azFKXpr6S6Tcct2HdXvPt8kMzPpJzcM1vSoIC1JydRPP1qtxqamH75ASVvTcvX+8r2dGvv20l3KKapodb22vlFPf7BK/9uSrqHBXno6dpBc7G30i/+s1cJtGSZjl+48ol/9Z50sLcz10xsGa1yEv77ZelgvfrZeTU3NsrWy0Mszo/XcDUMuaF0AAAAArmx0MAEAAAC4Zo3p56tAT+dW14+fKtP7y/fI0tD+79wdLSjVi5+t17FTZW3eP1FYrvmb03TTsD76ze0jJUm3jgxVY2OzvtyYpnvHhcvVoaVr6pNVqXJ1sNE7T0yVvU1L2NXDyVZvJe7Suv0nNCmy1w9a38Jth/WPRSlqaDx/SLXrSIG+3nJYFm2secGWdKXlFOmBiRH6ccwgSdLt0WF66YtNenPJDo0N95W7o63Kq+s0a/EORQV56l+PTTbO5eFkq38v261dR09qSB8vxQ4OUm5Rhf65ZMcPWhcAAACAKx8dTAAAAACuK01NzXr1f1s1IMBD/QN6tDkmYccR3f9GosqqanXTsD5tjikoqVS4v7tuGh5scn1Qb081NDbp6MlS47XcogpF+LsbwyVJxu32MvNLftA6fvLhKv3l6+0a0sdLYb5uHY6tqWvQa//bqvihvdXDybbV/Y0Hc2RtYdCDk/qbXL9vfLiq6hq0et9xSdLa1GyVV9fpyZiBJkFV/NDeemBihGyt+B1GAAAA4HrB//0DAAAA15i/frNdC7dlaPFvbjEJE5qamnXzn79RkJez3nx0sqSWwGD+5jSl5RSppr5Rbg42GtPPV0/FDJJDO2cDtXcm08vzNilpV5a2vn6P8drJkiq9u3yPthzKUWVtvfx7OOnOMX11YzuhzVnfP0OpLV+/cLN83BzO+/34vi83HdLh3GLN/Vm8/jh/S5tjMvKKNXVggJ6Oi9KWtFwtTs5sNWZIn576+HvnGElSem6xJKmni73xWi8PR2WfLldzc7PxbKazW9V5tBH4dEZecaV+OWOYbh0ZoqfeX9nh2H8v263a+kb9NH6w7n0jsdX9k6VV8nV3aBUQ+fdwbFlTTsuadh89KTsrC/Xv1RLM1dY3ymBuJndHW2PnEwAAAIDrAwETAAAAcI2JiQrS11sPa/W+47pjdJjx+q6jBTpVVm0MApakZOrV+Vs1MtRbT8YMkpqbtSUtV19vPazSylq9du/YC6rjVFmVHnl7mRqbmnXbqFC52Ftrc1quXvvfVuUXV+qxaQPafXZCf3/5uTt2OP/Z7ee6Ivt0ud5N2qOnY6M6DKeeihkkSwtDu/e/r76hUTlFFVq686iWpGTqhqG9Teb/SfwQ/WrOOs3+dofuGB2mgpIq/fPbHfJ1c9DUgYFdXockff6z+E7VuPvoSf1vc7pev39cu6GhnbWFyqpqW10vq6qTJBVWVEtq2VrQw9lO6bnFmrU4RanHT8vczExj+vnqV7cMl7vjDwvLAAAAAFx9CJgAAACAa8yAQA/5ujlo5d5jJgHT8t3HZGNp0IT+/pKkuesOqq+vm2Y9NFHm5i1dNbdHh+nBN5dqS3ruBdfxzrI9qqpt0Nyfxaunq71x/j8v2KZP16Qq/nshzLlCvF0V4u16wTWcq7m5Wa/9b4v6+rrpR9GhHY7tSrgkSSv3HtMfvmzphgrwcNJjU03Ds4GBHrppWLC+2pSmrzalSZJc7K317pNTTbbN64rO1FhT36BX52/VlIEBGhvu1+64/r166Outh7U/+7Qi/L/bNnDN/pat8erqGyVJ5TV1qqip0zPvr9K0qEDdMy5ch3OLNWftfj3z/ip98pMY2VjyYyYAAABwPeAMJgAAAOAaND0qUPuOndLJkipJUkNjk9akHtfYcD/ZWbcEGp89F6c3H51kDJckqbiiRg42lqqua7ig9zc1NWv9/mxFBvSQjZVBJZU1xo8J/f3V2NSszWnth1g1dQ0mz7T10dTU3KWavtqUpoPZRfrt7SON29RdLMHervrr/eP00xsGq6yqVg++uVTHT5dJagm2fvbJGs3fnKbYwUH6071j9cItw+VgY6Un3lmhtJyii1rLud5dtkeVtfX6+U1DOhx355i+srY06DefbdD6/dnKLarQou0Z+nDFPtlZW8hg3vKjY31DkwrLa3TbqBC9cMtwTejvr8emDdAvZwzT0ZOlWpJy5JKtBQAAAMCVhV8tAwAAAK5BMVFB+nhVqlbuPaa7x/XTtvQ8lVXVKSYqyDjGwmCuw3klWr47S1knS5VTWKHT5dUX5f0lVbWqqKnX1vQ8xbyyoM0x+cWV7T7/2boDF/UMppzCcr2zbLdmjgmTk52VSiprJLUEb82SSiprZGVhMIZvXXVux9WQPl566F/L9MmqVL08M1pb0/O068hJ3ToyRL+6ZbjxmUmRvXTXrCX604Jt+s9PYn/QezuyN+uUvtqUpudvHipJxjU3NzWrsalZJZU1srG0kI2VhXp5OOnvD07QK19u1q/mrJckudpb6ze3j9BbCbvkZNeytZ7NmTOabh4ebPKu2MFB+svX27Uzs0C3j+q4OwwAAADAtYGACQAAALgG9fJwUrifuzFgWr4nSy721hoR6m0cM2txir7alKZgbxdFBnho6sAARfTqoc/XH9SKPce6/M5zO4rOfj423K/d7eh6uti3O1fc4CANDPTo8H1dOe9n19GTqqlv1Jy1BzRn7YFW92NeWaC4Ib310h2jOj1ne0J93NSrh5OxMykzv6TlHeeEe5LkbG+tseF+WrQ9QxXVde2ej/RDbTucp6bmZv1tYbL+tjDZ5F5BaZViXlmgR6ZEGrfzGxbcU9+8OEPpucWSpBBvFzVL+t3nmzRlYIAkydPZTpn5Ja3Ov7K0MMjB1lJVtfUXdQ0AAAAArlwETAAAAEA3c3R01JQpUy76vNMHB2r24h06UViuDQdOKG5wb1kYWrY6yyuu0Feb0jR5QC+9evcYky3jiipqOpzXcGZsfUOjrC2/OweosPy751zsrWVjaVB9Q6OGh3ibPH+6rFqpx08bu2Ha4uvuKF93x84v9jxGhvrozUcntbr+ZsJOnSyp0qv3jJGHk12X5py34ZA+XZOqT5+NNZ4xdVZVbb3cHFtCGKszZyU1Nbfe0u/stbbuXaj2Qrrfz9ssJzsr/fymofI90wF26EShDuUUacaIEIX7uxvHbk3LVUNjk3Gevr5u2pKWq6MnS03OaqqorlNZVZ28OggNL6bg4GBlZGRclncBAAAAaBtnMAEAAADdwNXVVTNnztScOXOUnJysm2+++aK/Y+rAQBnMzfTPb3eoqrbBpIOmrKpOkhTo6WwSLh3ILtSerFOSWraPa8vZ4ORwXrHxWl5xhfYfP2382sJgrui+vtp+OF8HsgtNnv/30l168bP1HW6Rd7H1cLLV8BDvVh+OtlayMJhreIi3grycuzRnLw9HlVTWav7mNJPrq/YeU0Fplcb085MkDQ/pKTMz6eut6SbjCsurtX7/CYX6uMrJzvrCFtgGX3fHNtdsZWmQvbWlhod4G0O8AycKW7a4O1JgfL6mvkEfrdynAA8nY+fbtEGBMjcz02drD6j5nFDsiw2HJEkT+vtf9HW0Zd68eVqzZo1++ctfKiIi4rK8EwAAAIApOpgAAACAy8TDw0MxMTGKi4vToEGDtGHDBi1YsEBPPfWUKioqlJOTc1Hf5+Zgo+Eh3tp4MEd+7g7qH/Bdx0lvL2d5u9rr8/UH1dTUrJ6u9srIK9G3yRkymJmpQS1dOG0FH1MGBmjO2v36w5ebddfYfqpraNT8zenycrHT8dPlxnFPxQ5SSma+nn5/pW4bFSpfNwdtP5ynNanZmjYoUAPOswXelS66r68m9PfX5xsOqriiRpEBHsrIL9bCbRkK9XHV3eP6SWoJ8e4e209z1x9UaWWdJvT3V0lVrb7ekq7qunr9/KahxjkP5xUrI69EAwJ6XNQOrvOZOjBQc9Ye0P/N3ag7x/SVvY2lElKOKDO/RLMfmSiDecvvJgZ5Oeu+CeH6z5r9+tnHazQ+wl8HTxRqcXKmxkf4aVSYz2Wpd9iwYYqKilJ8fLw+/PBDNTY2KjExUYmJidq9e/dlqQEAAAC43hEwAQAAAJeQj4+PYmNjFRcXp379+mn16tX67LPP9PDDD6u6uvqSvz8mKlBb0nI1fZDp+T+WFgbNemii3kzYqQVb0tXY1CxvN3s9MiVSPm4O+u3cjUrOyNfkAQGt5gzxdtWrd4/Rx6v26a3EXfJysddDk/qrvLpO/1723T/u+7k76uNnYvT+8r1KSMlUVW2Derra66nYQbprTN9LvvbL4ZW7RuvjVfu0bOdRJe3OUg9HW80c3VePTI2U7TlbAD4bP1j+PZz0vy1pmrU4RVYWBg0M8tBjUweon993W9KtTc3WRyv36f9+NPKyBkyOtlZ6+7HJeitxlz7f0BI6hvu7699PTjHZCk+SfhwzSN6uDpq/+ZBmf5siNwcbPTSpvx6ZEnnZ6m1ubtbOnTu1c+dO/fGPf1T//v0VHx+vN954Q7a2tlq6dKkSEhKUkpKipqa2O/EAAAAAXBgzHx+fi7/ZNwAAAHAdCwgIUFxcnOLi4hQUFKTly5crMTFRGzZsUG1tbbvP5eTkqHjhK5ex0mvXByv26qOV+zTv+RsU6Nm1re+62ytfbdHIUG9NGxTY3aVckNyiCt36+iLdNyFcT8dGXbR5XWe8JF9f33bvh4aGKj4+XnFxcXJ3d1dSUpISEhK0ZcsWNTY2XrQ6AAAAgOsdHUwAAADARRAcHGz8R20vLy8lJSXpr3/9q7Zs2aKGhobuLg9XiezT5dqWnqtHJvfv7lKuWunp6UpPT9fs2bMVFBSkuLg4/frXv5a/v78x7N24caPq6uq6u1QAAADgqkbABAAAAPxAERERxk4lR0dHJSYm6uWXX9b27dvZlusKsfFgjg6eKNLkAb1kZWHo7nLO63RZlV66I/qybo93sTU0NmnFnmMqrWy/W+9yOXr0qN5++229/fbb8vX1VVxcnJ599ln961//0qpVq5SYmKi1a9eqpqamu0sFAAAArjoETAAAAEAXDBo0yBgqGQwGJSQk6Pnnn9euXbvU3Mzu01eatxJ3SZJGhXlfFQFTVG+v7i7hglXXNegPX27u7jJaycnJ0QcffKAPPvhAXl5eiomJ0cMPP6zZs2dr3bp1SkxM1KpVq1RZWdndpQIAAABXBc5gAgAAADpgbm6uoUOHKj4+XrGxsaqurlZiYqISEhKUmpp6Ud/FGUzA+Z3vDKaucnNz0/Tp0xUXF6dhw4Zp8+bNSkxM1IoVK1RaWnrR3gMAAABcawiYAAAAgO8xGAyKjo5WXFycpk+frsLCQiUkJCgxMVHp6emX7L0ETMD5XeyA6VxOTk6aOnWq4uPjFR0drZSUFCUmJmrZsmUqKiq6JO8EAAAArlYETAAAAIAkKysrjRkzRnFxcZo2bZqys7OVmJioxMREHT169LLUQMAEnN+lDJjOZW9vr8mTJysuLk7jx4/Xvn37lJCQoGXLlqmgoOCSvx8AAAC40hEwAQAA4LplY2OjCRMmKC4uTpMnT1Z6eroxVMrJybns9RAwAed3uQKmc9nY2Gj8+PGKj4/X5MmTdfjwYeNWmd3xdwUAAABwJSBgAgAAwHWlva6EpUuX6uTJk91aGwETcH7dETCd69xux+nTp+v48eOXvdsRAAAAuBIQMAEAAOCa5+zsrKlTpyouLk7R0dFKTk5WYmKikpKSrqhzVQiYgPPr7oDpXAaDQaNGjVJcXJxiY2N1+vRpY9iUlpbW3eUBAAAAlxQBEwAAAK5Jbm5uiomJUVxcnIYOHapNmzYpMTFRK1asUFlZWXeX16ZdO5Ll2dOnu8sArmgn83MVNWRYd5fRirm5uYYOHar4+HjFxsaqpqbGuI3evn37urs8AAAA4KIjYAIAAMA1w8vLSzExMYqPj1dkZKTWrVunxMRErVq1SpWVld1dHoDryKBBgxQXF6e4uDgZDAZjZ9POnTvV3MyP4QAAALj6ETABAADgqubr66v4+HjFxcUpODhYq1evVkJCgtatW6eampruLg8AFB4ebvx7ytHRUUuXLlViYqK2bdumpqam7i4PAAAA+EEImAAAAHDVCQoKUlxcnOLj4+Xv76+kpCQlJCRo48aNqq+v7+7yAKBdwcHBxrDJy8vL+PfX5s2b1dDQ0N3lAQAAAJ1GwAQAAICrQlhYmHG7KXd3dy1btkyJiYnasmWLGhsbu7s8AOiygIAAxcbGKj4+XkFBQVqxYoUSExO1fv161dbWdnd5AAAAQIcImAAAAHDFioyMNP6mv42NjZYuXaolS5Zox44dbCsF4Jri4+Oj2NhYxcXFqV+/flqzZo0SExO1evVqVVdXd3d5AAAAQCsETAAAALhimJmZafDgwcZOpcbGRiUmJioxMVG7d+/u7vIA4LLw8PBQTEyM4uLiFBUVpfXr1ysxMVErV65URUVFd5cHAAAASCJgAgAAQDczNzfXiBEjFBcXp9jYWJWVlRlDpQMHDnR3eQDQrVxdXTVt2jTFx8dr+PDh2rZtmxISErR8+XKVlJR0d3kAAAC4jhEwAQAA4LKzsLBQdHS04uPjNX36dBUUFCgxMVEJCQnKyMjo7vIA4Irk6OioKVOmKC4uTmPHjtXOnTuVmJioZcuW6fTp091dHgAAAK4zBEwAAAC4LKytrTVu3P+zd9/RcZTX/8ffq957b5Yt9y733usuphhMx/SaQCCBhEBIyJeWQCD+kcQEHENMMB3jppV77xZylbvc1Kxm9S7t/v4QXiNULOOy2P68zskJmpnnmTsjDtrZO8+9IzAajYwfP55jx46RkJCA2Wzm5MmT9g5PROSK4u7uzpgxYzAajYwePZp9+/ZhNptJTEwkKyvL3uGJiIiIyDVACSYRERERuWSa+wJ0yZIlZGZm2js8EZGrwpkEvslkYty4cUrgi4iIiMhloQSTiIiIiFxUXl5ethJOI0aMYMeOHbakUm5urr3DExG5qjk7OzNkyBCMRiOTJk0iKyvLVoI0NTXV3uGJiIiIyFVECSYRERERuWB+fn62JvQDBw60NaFfvnw5BQUF9g5PROSa5OjoyMCBAzEajUyePJmioiLMZjNms5l9+/bZOzwRERERucIpwSQiIiIiP0lQUBCTJk3CaDTSp08f1q9fT0JCAitXrqSkpMTe4YmIyA8YDAb69u2L0WjEaDRSW1trK6O3a9cue4cnIiIiIlcgJZhEREREpNXCw8OZPHkyRqORrl27snr1asxmM6tWraKiosLe4YmISCv16NEDk8mEyWTCxcWFxMREEhISSEpKwmrV1wQiIiIicm5KMImIiIhIi2JiYjAajZhMJtq2bcvy5csxm82sW7eOqqoqe4cnIiIXqHPnzraVTQEBASQmJmI2m9myZQt1dXX2Dk9EREREfqaUYBIRERGRRuLi4jCZTBiNRsLDw1myZAlms5lNmzZRU1Nj7/BEROQSadeunS3ZFBUVxdKlSzGbzWzYsEH//RcRERGRBpRgEhEREREAunbtavtS0cfHx/YG+9atW7FYLPYOT0RELrPo6Gjb34W4uDhWrVpFQkICa9eupbKy0t7hiYiIiIidKcEkIiIicg3r1auXrfydk5MTZrOZhIQEkpOT1YNDRERswsLCmDRpEiaTiW7durF27VrMZjMrV66kvLzc3uGJiIiIiB0owSQiIiJyDTEYDPTr1w+TycTkyZOpqqqyJZX27Nlj7/BEROQKEBgYyMSJEzEajfTr14+NGzdiNptZvnw5xcXF9g5PRERERC4TJZhERERErnKOjo4MHjwYo9HIpEmTyM/Px2w2YzabOXjwoL3DExGRK5ivry8TJkzAaDQyePBgtm/fTkJCAkuXLqWgoMDe4YmIiIjIJaQEk4iIiMhVyNnZmWHDhmE0Gpk4cSLp6em2pNLRo0ftHZ6IiFyFPD09GTt2LCaTiREjRrB7927MZjOJiYnk5OTYOzwRERERuciUYBIRERG5Sri5uTFy5EhMJhNjxozhyJEjtqRSenq6vcMTEZFriJubG6NGjbL9TTp06JCtPGRCFQAAIABJREFUJGtmZqa9wxMRERGRi0AJJhEREZErmIeHB2PHjsVoNDJy5EhSUlJYvHgxS5YsITs7297hiYiI4OLiwvDhwzEajUyYMIETJ07YXoA4fvy4vcMTERERkZ9ICSYRERGRK4yPjw/jx4/HaDQydOhQkpKSMJvNLF26lPz8fHuHJyIi0iwnJ6cGfQHz8vJISEggISGBw4cP2zs8ERERETkPSjCJiIiIXAH8/f2ZOHEiJpOJ/v37s2nTJsxmM8uXL6eoqMje4YmIiJw3BwcH+vfvj9FoxGg0UlZWZiujl5KSYu/wREREROQclGASERER+ZkKCQlh8uTJGI1Gevbsybp160hISGDlypWUlZXZOzwREZGLxmAw0Lt3b1uyCSAxMRGz2cyOHTuwWvXVhYiIiMjPjRJMIiIiIj8jERERmEwmjEYjHTt2ZOXKlZjNZtasWUNlZaW9wxMREbksunXrhtFoxGQy4eXlRUJCAmazme3bt2OxWOwdnoiIiIigBJOIiIiI3cXGxtre2G7Tpg1Lly7FbDazYcMGqqur7R2eiIiIXXXo0MH28kVwcDBLly4lISGBzZs3U1tba+/wRERERK5ZSjCJiIiI2MGZL8tMJhNBQUEsWbIEs9msL8tERERaEBsbaysfGxsby/LlyzGbzaxbt04vZYiIiIhcZkowiYiIiFwm3bp1s72B7enpaWtknpSUpHI/IiIi5ykiIsK2ArhTp06sWrUKs9nM6tWrVVZWRERE5DJQgklERETkEjEYDMTHx9u+/LJarbak0s6dO+0dnoiIyFUjJCSESZMmYTQa6dWrF+vXrychIYGVK1dSWlpq7/BERERErkpKMImIiIhcRA4ODvTv39/WmLykpASz2YzZbCYlJcXe4YmIiFz1/P39mTBhAiaTiQEDBrB582bMZjPLli2jqKjI3uGJiIiIXDWUYBIRERG5QE5OTgwePBiTycTEiRPJzc0lISGBhIQEjhw5Yu/wRERErlk+Pj6MGzcOo9HI0KFDSU5Oxmw2s2TJEvLz8+0dnoiIiMgVTQkmERERkZ/AxcWFESNGYDQaGT9+PMePH7etVDpx4oS9wxMREZEf8fDwYMyYMRiNRkaNGkVKSgoJCQksWbKEU6dO2Ts8ERERkSuOEkwiIiIireTm5sbo0aMxGo2MGTOGAwcOYDabSUxMJDMz097hiYiISCu5ubkxYsQITCYTY8eOJTU11dYnMT093d7hiYiIiFwRlGASERERaYGXlxdjx47FZDIxfPhwdu3aZUsq5ebm2js8ERERuUDOzs4MHToUo9HIxIkTyczMtK1KTk1NtXd4IiIiIj9bSjCJiIiI/Iivry8TJkzAaDQyePBgtm3bRkJCAsuWLaOgoMDe4YmIiMgl4ujoyMCBAzEajUyePJmCggJbsunAgQP2Dk9ERETkZ0UJJhEREREgMDCQSZMmYTQa6dOnDxs3biQhIYEVK1ZQUlJi7/BERETkMjMYDPTt2xeTyYTRaKS6upqEhATMZjO7d++2d3giIiIidqcEk4iIiFyzwsLCmDRpEiaTiW7durFmzRrMZjOrVq2ivLzc3uGJiIjIz0jPnj0xGo2YTCacnZ1tK5u+++47rFZ9tSIiIiLXHiWYRERE5JoSFRVlexM5Li6OFStWkJCQwLp166iqqrJ3eCIiInIF6Ny5s+3zhK+vL0uWLMFsNrN161bq6ursHZ6IiIjIZaEEk4iIiFz14uLiMBqNGI1GIiIiWLp0KQkJCWzatImamhp7hyciIiJXMH3OEBERkWuVEkwiIiJyVercubPtyx5/f38SExP1ZrGIiIhcUtHR0bbPH1opLSIiIlc7JZhERETkqqHeCCIiIvJzER4ezqRJkzAajQ16Pa5cuZKKigp7hyciIiJywZRgEpFrXnLSNkLDI+0dhsgVJzsrgz79Btg1BoPBQN++fTGZTEyePJmamhoSEhIwm83s3r3brrGJiIiInBEYGGhLNvXp04cNGzZgNptZsWIFJSUl9g7vnHZ8l0RIWLi9wxCxi5xTWcT37WfvMEREfpaUYBKRa15GRga5s+63dxgiV5zghz8iMvLyJ2cdHR0ZOHAgRqORSZMmUVhYaFupdODAgcsej4iIiMj58PPzY/z48ZhMJgYNGsS2bdtISEhg2bJlFBQU2Du8JmVkZFC64WN7hyFiF17DptvluUdE5ErgZO8ARERERM7F2dmZoUOHYjQamThxIpmZmZjNZm677TZSU1PtHZ6IiIhIqxUWFvLVV1/x1Vdf4eXlxdixYzGZTLz88svs2rWLhIQElixZQm5urr1DFREREWmREkwiIiLys+Tq6sqIESMwmUyMGzeO1NRUzGYz1113HWlpafYOT0REROSClZaWsmDBAhYsWICbmxujR4/GaDTy/PPPc+DAAcxmM4mJiWRmZto7VBEREZFGlGASERGRnw13d3fGjh2L0Whk1KhRpKSkkJCQwF/+8hdOnTpl7/BERERELpnKykoSExNJTEzExcWFESNGYDQaeeaZZzh27JitJPCJEyfsHaqIiIgIoASTiIiIXCLdu3fn5Zdf5pZbbmnxOG9vb8aNG4fRaGTYsGEkJydjNpt56aWXyM/Pv0zRioiIiPx8VFdXs2LFClasWIGTkxODBw/GZDIxf/58cnJyMJvNJCQkcOTIEXuHKiIiItcwJZhERFrwWuJhElMa1j53djTg6+5Mjwhv7uwfQZdw70t2fvPeHF5fcoS/3dyFQW39L/r8t3zwHaeKqxpsczSAu4sjHUM8uXNA5EU/b3l1HZU1dQR4ulzUeX8oo7CSSD83ALKKKpk2K5m7BkTy+Ig2l+ycPxelVbXc9eEO7h8czY29w1o1Ztqs78gqqmq0fVSHAF69ofNPiqNXr17MmTOH3/3ud03u9/f3Z8KECZhMJvr378+WLVswm80899xzFBYW/qRzioiIiFyNamtrWb9+PevXr+eFF16gf//+GI1GPv/8c0pKSmwrm1JSUuwSX9KBEzz61ic8cv1wHr1hxHmPt1qtZOYVERnsdwmiu3jKK6upqKom0NerwfaVSQf4es13HDhxisrqGoL8vOjfJZb7Jw8hOjTgssd53W//SaCvJ3NevP+yn/tymLd2B1+sSuLEqXzcXJzp2ymGX948mrbhQecc++hbn5B0oPEKwC5twvjkjw9einBFRK56SjCJiLTCU6Nj8XV3BqCypo5TxVWY9+aw7shpXjZ1YHSnc3+Y/Sl6RfnwkrED7YM9L8n8AH7uTjw5uq3tZ4vVSlFFLQt2neK5b/bz2g2dGNEh8KKc68CpUn4//wC/mxjHoLaXJsH066/34e3qyJ+ndALAz92Zl4wdaBfkcUnO93NSU2fhpYUHyS+rafWYiuo6ThVVMb5LUKNkYpiP60+Ko0+fPnz00Uc8++yzLF++3LY9ODiYyZMnYzQa6dWrF+vXr+ebb77hiSeeoLS09CedS0RERORaYrFY2Lp1K1u3buXll18mPj4eo9HIrFmzsFgstmTTzp07zzmXu7s7kydPZt68eZch8qaVVlTxxNuf0q9zG566ZYzd4jiX/cez+PU/v+Kle00M6XE2wfT+gnV8sHA9g7q144HrhuLp5srJ7NPMX7+TpVv38f5zd9G9XeRljfU3t4/H1eXq/Lrvk6Vb+fuXK+jfOZapt/amqLSCz1cm8cDrc/j4pQeIDmn55cjUjFwGdWuHaXD3Btt9vdwvZdgiIle1q/MvjojIRTa8fQDhvm4Ntt3eL4JHP93Dq4lH6B7hTbD3T/syviWRfm62lTiXipuzIxO7BjfaPr5LELf/J5kP1p+8aAmmo3nl5JZWX5S5mrPteCFjO52N192l6euzt7KqWjxdL96f4dySKv646BB7MkvOa9yx/HKswOiOgRfl99yvXz9mz57NM888w6pVq4iIiLAllTp37syqVauYM2cOq1evprKy8oLPJyIiInKtslqtJCcnk5yczKuvvkq3bt0wmUzMmDEDDw8PEhMTSUhIICkpCYvF0uT4Rx99lK5du/Lqq6/a4QqguKyClGOZ9Ov88640cDg9h5yChp+zs08XMzthIzcM78Uf77uuwb6pI+O568+zefPTpXz8hwcuZ6iM7tPpsp7vXEorqvByv/Bn5bKKKmZ+u4aBXdvyr1/fgcFgAGB0387c9X+zmbVoPf/34PXNjj9dXEZBSTlDe8RhHNzjguMREZF6DvYOQETkSuXr7szvJsRRVWvhq+Qse4dz0QV6uhAf7cvx0xUUV9baO5yrxpHcMl5fcoSH5+65aHNuO17InR/u4EhuGbf0CT+vsUfzygGIDbzwFV4DBgxg9uzZvPbaa3Tq1IlFixaxdOlSunbtysyZM4mPj+fJJ58kMTFRySURERGRiywlJYU333yTUaNGcdddd1FQUMBrr71GUlISb7zxBsOGDcPR0dF2fGVlJbfddhtDhw7l5Zdftl/gV6g9RzOoq7MwpHtco30xoQEM69megyezqahqfXWBq0l6bgF/+2wZxmffvSjz7T2WSVVNLdcN7WlLLgF0iAqhfUQwOw+ntTj+SEZ96fvY8Ivz8qSIiNTTCiYRkQsQH+1LiLcLm48W8MTIWNv24/nlzNpwku9OFlFdZyUuyIN7B0UxrH19De6VB/L40+JD/Pm6jozt3LC83p8WHWTLsUIWPtGflQfyGvVgqq2zMHd7JktScsguqSbI05nxXYKZPigKV6f69wYsVitffZfFot3ZZBRV4uPmxPD2ATwyLAaf70v9tYajQ/0H97q6+jceh/1tE/cMjOTE6Qq2HC0g0NOFOff1xsPFkb2ZJXy4KY29mSXUWax0DPVk+sAoBrerj3v2xpN8tDkdgGe/2U+YjytfP9IXgJySKmZtOMnmowWUV9cR7e/OtL7hXNcjtEE85dV1fLQpjTWH8skvryHcx5Xre4YyrW842cVVTJuVXH9/D+az8uAm3r21G+G+rk32YEpMyeGr5CyO55Xj6uxIn2gfHh4W0yDRcssH39GvjS/92vjxvy3ppBVUEODpwnU9Qpg+KAqHHzzYtMRitbIptYAvv8skOa0Yd2cHpsbXJ4LO9Ihqyf2Do3hwaEyz+4/nl9MnxpenRrclu7iKr88j4XksrxxnRwORfm5YrVYqayy4uziee+CPTJkyhXfeeYfs7Gx+//vfs3TpUt588002b95Mba0SlCIiIiKX0+HDh5kxYwYzZswgNjYWo9HI888/T0xMDMuWLcNsNrNhwwYKCwu5/fbbmTt3Lq+88govvfTSRTn/n2YvYueRNP762FRmfLmSPUczcHV2YmTvDjx96zh8vdxtvZsA5iRuZk7iZhb99RdEBPlRVVPL7MUbWLIlhZzCEoJ8vZg4sBuPXD8cV+f6r7LOjP/T/dfx2YptHM/KZ0iPON7+5TT6Pvgaj984Ei8PV75YmURWfhERgb7cOWEAt4zq2yDWPakZvDd/LXtSM7BipXvbSB67cQS9O0QDZ8vgATw543PCA31Z/OYv8XCrL/m9eNNuhvfqYIvrjP976HrecLqpwbYLua4Tp04D8PWrjzaY81hWHrf84X1+MXUUD5iGNtmDad/xTGYt3MDOw2lYqe859PiNI+nZPursPJl5zPx2DdsPnKC6ppb2USE8eN1QRvbueF6/++0HjvPZ8u2s33UYJ0cHxvfvatvX98HXWhx73ZCe/PnBKU3u690hmq9eeYRgv8Y9kAtLy3Fzafk5N/X7BFO7iPrqFuWV1bbfoYiI/HRKMImIXKC4IA+2HCukts6Ck6MDqbllPPHZXnzdnbh7QCQuTg6sPpTP8/MP8PzEOK7rEcqw9gF4ujiy6mBegwRTRXUdG1MLGNM5yJYs+rEXFhxk09ECxnQK5Na+EaTmlvHxlnTSCypsfYf+suQIS/blMrFrMLf0CSe9sJJvd55iZ3oxH9zVE49WJBDKq+tIySwhxNsFf8+zH7y/Ts6ic5gXT41pS0llLR4ujmw+WsDz8w8Q4u3C3QMicXI0sCQll9/O289vJ8QxpWcoIzsGkl9Ww8Ld2dzZP4LuEfUPBnml1Twydw8Wi5Wp8eH4ujux5WgBf1maSnZxlS2xUltn4Zdf7OVIThmmHqF0CvVkZ1ox/1hznNPlNdw3KIqXjB14xXyYbuFeTI0PJzbQnaraxuVA3l9/gv9tzaBXlA+Pj4ylqLyGeTtP8cjcPfzztm50DD1bV3378UJWH8xnanwYoT5hLE3J5T8b0/Bxc7IliVq6h4v3ZPPNjlNkFFYS7e/Gr8a0xdgt2FYe70yPqJbEBbe8uuim3mHc2jcCgOziqhaP/bGjeeV4uzrx+pIjrDucT0WNhUg/Nx4eFsO4zq3vLfbQQw/h4OBAcHAwhw8fxt3dnfj4eHx9fUlNTeXYsWNatSQiIiJiB8ePH2fmzJnMnDmTyMhIjEYjTz75JP/4xz9YuXIlZrOZ++67jw8//JA33niDF154AavVesHnLSqt4PG/zWVUfEcmDOjCzsPpLNy4m/KqGv76+FTahgfym9vH8/bnyxneqz0T+nfF39uDOouFZ979kuRDJ5k6Ip64yGAOnjzF/5ZsZu/RDGb+5k4cHc4+K7356VImDezGTSPi8fE820tn/vqdVNfUcuuYfvh4uvHV6u94439LCAvwZVjP9gBsSTnK0+9+SbuIIB69YQQWq4XFm/bw6FufMOOp2xjcvR1j+nQir6iUeWt3MH3SIHrG1Sdl+neOJTLYj/W7jmB67h+M7tOJAV3a0q9zDP7enjg7NXzmutDryswr5F/z1nA4PYcOUSG245ZuTcFggMkDG/YVOmPn4TQe/9tc/Lw9uGvCQLw8XPly1Xc89vZcPnz+Xjq3CeNweg4P/uVj/LzcuW/yYFycnViRtJ9f/+Mr/nifiRuG927xd11dU8uSrSl8tmIbh9JyCPX35tEbRjB1ZDwBPmf7Cb/yUPMl7ACigpvvoeTq7GRLDv3Q6uSDZBeUcMPwXi3OnZqRg6OjA3MSN2HevJfSiiqCfL24zziEO8b1b3GsiIg0TwkmEZEL5O3mhBUorqwlwNOFv688hperIx9N72VLItwcH85v5+3nn2uOM6ZTEB4ujozsGMiKA3mUV9fZEj7rU09TWWtptmfQlmMFbDpawH2Donho2NkVLa5ODnzxXRYPDq0gr7Qac0ouT42OtSUdoL6P1C8/38uX32Vy3+Bo23aL1Uph+dmyDdV1FtILKvlwUxqny2t4ZkzbRnH89aYutpjrLFbeWp6Kn7sTs+/phY9b/TVP7R3GI3P38O7qY4zsEED7YE+6R3izcHc2fWJ8bSuy3l9/gorqOubc15swH1fb/frrslQ+3pLO5G4hRPi5sXhPDoeyy2xJOoAbe4VRU1dfonD6wEgmdg3mFfNhwnxcbfcwq6hhUuNEfjlzt2UwuK0ff53axbYKaWK3YO6ds4u3Vxzl/bt62o7PLqnm/bt60C28PiE2qWswN7yXxPL9eS0mmOZuy2DOlnQqa+oY1NafX49ty4BYvwblHODi9IhydvzpFW+P5pVzurwGi9XKS8YOFFfW8uV3Wby8+BCVNXWNVpE154YbbgDA39+fuLg42/9uvPFG4uLiiIiIYOLEiRw/fvwnxyoiIiIiFyYjI4NZs2Yxa9YsQkJCmDx5Mvfffz/vvPMOmzZtYsiQIbzzzjv8+te/vuAkU0l5JU/ePJr7jEMAmDqyD7mFJazecZCKqhoCfb0YFd+Rtz9fTruIYFtfnIUbdrF13zHe/uUtjIo/208ovmMMf5i1gCVbUjANOdtDp2tsOH+419To/PlFpcx7/XHCA30BGNG7I6bn/kHilr0M69kei8XK6/9LpENUCB+9cB9O33+mvm1sf6a/+hF/mbuE+a8/TofoUHq0i2Te2h307xzLkB71JfGcnRz51zN38OKs+aQcy2Le2h3MW7sDgwG6t43kjnH9mTiwmy2ehE17Lui6svKKmPntGpZv29cgwbRs2z56t48mPMi3yd/D379cgYebK5+89ACBvvUv0o3r14Ubnp/Jx0u38PojN/LWp0vxdnfl0z89ZOuXdNvYfjz9/77gnS9WMK5fFzyb6aO0eNNuZny5koKScuI7RPOXx6Yyuk8n2/38oYvd++jU6WL+8skSXJwcuWfioBaPTc3Ipa7OQnpOAX+410R1TS3z1+/kb58to6i0nMduHHlRYxMRuVYowSQicoFqLWcfvIoqatiZXsz1PUOpqWuYuBnRIYCtxwvZlV7M4Hb+TOwajHlvDhuOnGbC9wmGlQfyCPZyIT7ap8lzbUwtAGjUZ+feQVEYu4cQ7uvKNzvqy6MNjQtocP42Ae5E+LmxMbWgQYIpp6Sa62Zub3QuL1dHHh0ew9T4sAbbO4V6NVgBdTC7lJySah4cEm1LLgG4OTtyZ/8IXk08wrYTRU2uhrFYraw/cpruEd64OTk0iHdkhwAW7c5my7ECpsaHszH1NF6ujkzuFtJgjmfGtuORqlrcnFtX1m1DagEWK9w1ILJBibtof3fGdw4iYW8OeaXVBHnVr9oK83G1JZfOXFe0vxv5ZdUtnudMub8pPUJ4bEQbfJspTWixWimuaLmEnJuzQ6uv73xYrVZu7xeBt5tTg0TSuM5B3PPRTt5bd4KJXYPPK4FVUFBAUlISSUlJFz1eEREREbl4cnJymDNnDmazmd69e2M0GnFzc+PWW2/F09OTRx555ILPMWFA1wY/d4oJY9v+4xSVVeDu2vTn41XJB/B0d6VX+2gKSspt2wd2bYurixPrdh1ukIjp07HpUtI94iJtySWAsAAf/Lw8yC8qA+DgyVNk5BZy/dBelJQ3fCltZO8OzF68kWNZeU2umjkjOjSAj//wADsOp7Em+SBb9x3jSEYOe45msOeDDJIOnuDF6caLcl3hQb70bh/Nsu37eGLqKAD2n8jiRPZp7powsMn4TheXsfdoJreO6WtLLgEE+Xrx3xfvI8Dbg8LScr47eJKpI+Opqa1rENvoPp3YtPcoOw6n2VZ9/dj2/ScoKClnRK8OPH/3JEIDmn6WBRrM3RRXZ6dWl63LLSzhibc/Ja+olBenT6ZteMvVF64f1ouxfbtw98Sz92ryoO488MYcPjJv4pbRfQn6wT0SEZHWUYJJROQCFVXU4mioX8l0OKf+YWXh7mwW7s5u8vhT35cwi4/2IcTbhZUH85jQNZjiylq2HS/klvjwZnv7nCqqxMvVET+Phg9jPu7Ott5KGYX1D0e3/afpvj7lPxob4OHMS6azJdqcHAz4ujkRE+iBk0PjOH587qyi+uuJCXBvdOyZfkY/XkV0RlF5DaVVdWw9XthkkgvO3q+s4irCfd1sfaHOCPJysSWDWuNMLE3H624755k5/T0aP/g6OzlgOccLnU+OjuXT7ZmYU3JZtj+P8V2CuKVPOO2DPRsc98PeUc05Vw+mn8pgMHBH/8hG292cHZnULZiPNqdzJKeMLuGN65yLiIiIyJWpU6dO/OIXvyAuLo527dpRU1PD0aNHSU1N5eOPPyYrK+uivSzk793ws6/L92XjLJbGZazPSM8ppKyiinFP/73J/Vn5RQ1+/mEJtpbODeDi7IjFWn/utNz6l/fem7+W9+avbfZcLSWYzojvEE389z2b8opKSdyyl1kL1zNv7Q6Mg7oT3zHmolyXcXB3Xvs4kf0nsujSJpylW/fh7OTI+P5dWpwzOiSg0b4zq6D2Hs0AsK3Aak1sP/TgdUNxdXZk8eY9THn+X4yO78Tt4/rb7scPNXftZ7TUg+mH0nIK+MU7n5KRW8jjN45k6sg+5xxz04j4RtscHAxMHRnPnz/KYMehtGbvo4iINE8JJhGRC2C1WknNLaNNoAfOjmeTDtf3DGV0p8Amx8T41ycxHAwGxnUO4qvkLEoqa1l7KJ+aOqttNVNT6qw0KrH2YxYruDg58NebOje5/8dJIxcnB/q38Wtxzh9y/NHpW8qznCmr0dwKmLrvBw+L8+fmPk2Xmwv1ri/FYLFCy1feOi3HW///zj+4yHPc7mZ1CvXiz9d1JKekiq+Ts1i4O5vFe3LoHeXDtD7hDGsfgKODob6s4rSuLc4V4ev204K4AGcSaxU1zT/8i4iIiMiVp6SkhHXr1vHf//6Xo0ePUlhYeMnO5dDEC2vnYrFYCA/05aX7Gpe9AxqtcGnuHM29tHf2PPUf/h+aMqzZVVAdo0Oa3A7w+crtlFdW84BpaIPtQb5e3DNxEKH+Pvz+/W/ZcTiN+I4xF+W6xvXrwlufLmP5tv10jglj2fZ9DOke16D3VFPX2NIz5Jljpo6MZ1y/phMsbcKafrYFiAkN4IXpRp6YOoqvVyfz1ervWJG0n04xodw+tj+TBnbDxbn+68eZv7mz2XkAgv3OvYLocHoOv3jnU/KLyvjVtLFMn9RyabxzOZPIq6hquUKFiIg0TQkmEZELkHSiiMKKWq7vVV9G7kwPIYOBRkmbtIIKTpyuwM35bLJlQtdgPt2eyeajBaw6mEfbQHc6hDT9Bh5AqI8r244XUlxRY1uxBJBZWMn7608wNT6cMB9XqmsttAvyINCz4UPKusP5BJ/Hap/WCPetv+YTpysa7TuzLcS76XP6eTjj5uRAdZ210f3KK60mJasE9+/vV6i3C/tPlWKxWhs8LO7NLGHejiymD4qyrZhqMV6fs/EG/Oj+2OK9iPcoxNuVJ0bGcv/gaBL25vBVchYvLjxIlzAvZt3dE9fzTPBdTEdyy/jTokPc1DusUdnFk9/fiwjfpmuti4iIiMiVKTMzk6+//treYTQrPMiP3UfS6dupTYM+PhaLlRVJ+wlsZsXS+Yr4vnyem4szA7s27Dt74MQp8otLcXNpuowfwNodh9h1JJ1po/vi7dH4hbC4yGDb/HBxrsvH052hPduzKvkAI+M7kn26mF/fNq7Z48O+L1eXnlPQaN+HCRspKq2wlYwzQKP7cDL7NMez8nBzOffXh35eHjw6cu4KAAAgAElEQVQ0ZRj3Th7Mkq0pfLp8K3/+aDHvfr2KFTOegSbmP18ns0/z+N/mUlhazgv3TObmUedeuQRQUFLGo2/OZVjP9jw1bUyDfcez8gGIDLbPM5mIyJXup3cFFxG5xpVU1vLu6mO4Oztw8/d9ioK8XOgc6smyfbmc+kFZOIvVylvLUnlx/oEGK0LaB3sSF+TBkn257EgrbnH1EsDQdv4ALPhR+b3Fe3NYeTAfb1dHhsXVH/PxlvQGxySfLOKFBQdZuCfnp190EzqFehHk5cKCXacorjzbS6i61sLnSZm4OBpsCZQzL+GdWSnk5GBgUDt/kk4Usj+rpMG8/153ghcXHLSVyBsSF0BpVR0rD+Q1OG7ejixWHsy3JYscDLRYvm5oXH15iE+3ZWD5QePizMJKVhzIo0uYF/6eFzcJB+Du4sgtfcL57MF4Xr+hU5Ml+i63aH93ckqq+HbnKapqz/57mVVUScLeHHpEehNmh9VTIiIiInJtcHCo/1rK+oPP5SN7d6C8qprPVmxrcOziTbv5/fvfsm7X4Yty7i6x4QT5evHVqqQGPZgqqmp4cdZ8XvxgAWdqKDh+H+cPnx+Mg3tQVVPL258vp7au8ar/eWt34GAwMLxXh4t6XcZB3UnLKeC/5k14ubsyoleHZo8N9vemU0woy5P2UVR69oXAgpIy/rdkC1n5RQT7edM1NpzELSlk5Z0thWexWHntYzPP/utrKqpqmpq+Sc5OjkwZ2pPPXn6Y9569i+7tIlo9tiU1tXX8duY3FJSU8+J0Y6uTS1BfLrGypoaFG3dRUFJm215SXsmny7cSHuhLr/aNS/qJiMi5aQWTiEgrrD9yGt/vVwxV11pIL6xk6b5cCstr+L8pHRusFHp6bDue+jKFhz7ZzU29wwj0dGH1oXyS04q5Z2CkbZXTGRO6BvPeuhMYgPFdzpFgivNnUFs/3l9/kpOnK+gW4c2h7DIS9mQzpUcI7YI9aRvkwfD2AXyz4xTZxVUMbOtPbmk13yRnEejpzL2Doi7qvXFyMPDM2Lb8ceFBHvzfLq7vGYqTg4Gl+3I5klvOM2Pb4u1W/+fmTP+mhbuzKamqZUKXYB4f0Ybkk0U89WUKN/UOI8LPjaTjhaw5fJrxXYLoEVn/1t31PUMx783h1cQj7M0soW2QBztOFrHyYD4PD4vB58w53J3ZnVHMwt3ZDIht/BZa2yAPbusbzhffZfHUFymM6hhIUUUN3+48hQH49dgLe6vuXBwMBkZ0CGREh+bLTFwqezNLyCispH8bXwI8XXB1cuCp0W3567JUHv90D8buIZRU1vLNjiwcHQw8N67dZY9RRERERK4dvp7uOBgMbNydSkxoAGP7dubG4b1ZvGk3M75cyeG0HHq1j+L4qXy+Xv0dbcODmDa670U5t7OTI7+9cyLP/3sed/15NjeNjMfD1ZmFG3dzPCufF6dPxt21/vnF37u+UsK363ZQUl7J5EHduW5ID7buO8aijbvZczSDCf27EhbgQ3F5JWt3HGLH4TSevnUs0SH1LwBerOsa1rM93h5urNt1mBuG9bKVn2vOb24fzy/e+Yx7XvmQqSPjcXF24us1ydRZLDx+00gAnrtjAo/9bS73vPoh00b3JdDXkxXbD5B04AT3G4cQ/v1qr/M1oEssA7rE/qSxP7ZkawqH03OIDQ/E1dkJ8+Y9Dfa7Ojsztl99mfjDadkcTs+hZ/soooLr7//v757MkzM+477X5zBtVF9q6+qYt24Hp0vKeffp2xusKhMRkdZTgklEpBXeXX3c9s9ODgYCPJ3pE+3DHf0jG5W06x7hzb/v6M6Hm9L4KjmL2jorUf5uPDe+Hdf3DG009/guQby//gQ9I30aJZ9+zGAw8PoNnZmzJZ1l+3NZeSCPMF83Hh4Ww+39ImzHvDKlI59uz2TJvly2Hj+Gj5sTg9v58/CwmHOe46cY2SGQGbd247+b0/l4SzoGg4GOIZ68eVNnhsSdbSjbL8aXMZ0C2ZhawM70YkZ2CCTSz41Zd/fkPxtPYt6bQ3mNhXAfVx4bHsNt/c6+7ebq5MC7t3Zj9saTrDl8mkV7coj2c+N3E+K4rsfZ2uiPj2jDv9efYMbKo/x2Qhy9onwaxfvk6LbEBLjz7c5TzFx7HA8XR+KjfXlgSDRtg85dZu9KtWDXKRJTcnn31m62FV9Teobi6uzA50mZ/GvtcVydHOgb48ujw9v8LFZZiYiIiMjVy93VmSemjuJ/S7bw1mfLiA4JoF/nNvz72bv5z6INLE/ax7Lt+wj08WTKsF48ev3wJsvR/VRj+3XmX7+5kw8Xb+TDxRsxGKBtRBBvPn6zLVkB0L9LLOP7d2HdrsMkHzzJmL6dcXV24tWHb2B4z/Ys3rSbb9YkU1RWgZe7G93bRTDzN3c2KAnn4ux0Ua7LxdmJcf068+26nUwe3P2cx/ft1IZZv72H9+avZfbijTg7OdK9XQR/fXwqbcODAOjZPooPf38vHyxcx2crtlNTW0dMqD8vTp/MTSPiz/OuXhpJB04A9SXtXvrPwkb7A308bb+zVckH+WDhev50/3W2BNPg7u149+nbmb14IzPnr8HJwYEecVG89siN9GgXefkuRETkKmOIiIhoqd+5iMhVLyMjg9xZ99s7DJErTvDDHxEZqYcxERERkatdRkYGpRs+tncYInbhNWy6nntERJqh9Z8iIiIiIiIiIiIiIiJyXpRgEhERERERERERERERkfOiBJOIiIiIiIiIiIiIiIicFyWYRERERERERERERERE5LwowSQiIiIiIiIiIiIiIiLnRQkmEREREREREREREREROS9O9g5ARER+PmZvPMlHm9OZe39v2gR6tHpcVlEl02Ylc9eASB4f0eYSRggbjpzmo81pnMivwNfdiet6hHLPoCicHAznHLv2UD5zt2dwJLccRwN0i/Dm4WExdAv3bnAdLXlhUnuM3UMaba+oruPeOTvx83Dmg7t6/rSLExERERERu3p/wTo+WLier199lLbhQa0el5lXyJTf/Yt7Jw/mqVvGXMIIYe3OQ8xauJ5jWfn4eblzw/DePGAaipPj+b1HvnHPEZ6a8QW/v2cSt4zq22Dfo299QtKBE43GdGkTxid/fND286G0bN77di3Jh05SXVNLbHggd08YhGlIj592cSIickVRgklERGxGdgwkyt+dIC+X8xrn5+7MS8YOtAtqfVLqp1h7OJ8/LDhIrygfnhjZhsO55czelEZuaTW/nRDX8thD+by48CCdQj15bHgM1bUWvt15il9+vpd/3Nad7hHetuv4sTqLlf+36hgGA/SO8mly/n+vP0FmURV+Hs4X5VpFREREROTyG9OnE9Eh/gT7eZ/XOH9vD1556HriIoMvUWT1ViUf4LczvyG+Qwy/mjaGQ2nZvL9gHbmFJbw43djqeUrKK3ltjrnZ/akZuQzq1g7T4O4Ntvt6udv+OTOvkIf+8jFuLs7cPXEgPh5uLNu+nz/OXkhBSTl3Txx4/hcoIiJXFCWYRETEpn2wJ+2DPc97nLuLIxO7XtoHqTqLlX+uPk6nUE9mTOtqezvP08WRL5IyuSU+jHYtxD5j1TFiA915/84etrGTu4dw14c7+Pe6E/zz9u7NXsfsjScpq67jlSkdifBza7R/Z1oR3+481apVVCIiIiIi8vPVITqUDtGh5z3O3dUF4+BLu2qnzmLh71+soEubcGb+5k6cnRwB8HRzZe7yrdw2ph/toxpXW2jK379YwemS8ib3nS4uo6CknKE94lq8pn/NW0NNbR1z//QQ0SH+AEwb3Y+H/vox/16wlqkj4/FwO7+XF0VE5MqiHkwiInJF2JtZQlZxFVN6hjYo/TCtTzhWYMXB/GbHphdUkFtazfguwQ3GBnq6EB/ty57MEqxWa5NjT56u4OOtGQyN82d0p8YlMipr6nhjaSrG7iHnvfJLRERERESktXYfSSczr4ibRvS2JZcA7hg/AKsVlm3b16p5Nu1NZdHG3TxgGtrk/iMZuQDEhge2OE/yoZPEd4yxJZcAHBwMjOvXhYqqGg6ePNWqeERE5MqlFUwiIteI7ScK+XBjGkdyy/B2c+L6nqFYrTB7Uxobnh0CNO7BZN6bw+tLjvDhPT358rssNh0toLrWQs/vS9SdWe3Umh5MrelvdP/gKB4cGtPkvgOnSgHoHObVYHuojysBHs62/U0J83Hl0wfi8XJ1bLSvqKIGRwMYDE2vPvpg/QkMwC9HxTa5/9/rT1JVa+GXo2K5b86uZmMQERERERH72rrvGO8vWMehtGx8PNy4aWQ8Vmt936XvZr8INO7BtHDDLv780WLm/vFBPl2xjQ27jlBVU0vvDtE8PW2MbbVTa3ownTmmJY9cP5xHbxjR5L59x7MA6BIb3mB7WIAPgT6epHy/vyWlFVW8OsfMzaP60Kdj089eqd8nmNpF1Fd3KK+sbnIl0ofP30utxdJoe2Fp/cooRwe91y4icrVTgklE5Bqw+WgBz3+7n2h/dx4cGkNJZS2fbc/EsZUl3V5YcJBIPzceGhpNXlkNnydl8uw3+/n6kb6tLgvXXH+jH4oLbr6HU25pNQAhTawSCvJyIbu4qtmxTo4OxAS4N9p+KLuUPRkl9InxbXLc0bxy1hw+zZQeIUT7Nx6/K72YeTuyeP3Gzni56k+qiIiIiMjP1YbdR/j1P74kJjSQx24YSXF5Bf9buhWnViZBnv3X10QF+/PYjSPIKyzlk2VbeXLG5yx+88kGVRJacqZPU0s6tFDiLqegBIBQ/8Z9YYP8vDh1uuicMfz9ixU4GAw8dcsYW8Lqx1IzcnB0dGBO4ibMm/dSWlFFkK8X9xmHcMe4/rbjwoMaP0dVVNWwcMMuPFxd6NQm7JzxiIjIlU3fhomIXANmrDpGoJcLH9zdEw+X+lU8w9sH8PAnu1s1PjbQnb/d3NX2s4ujgf9sTGPHySL6x/q1ao4L7dNUXl0HgKtz41VIrs4OFFbUnNd8pVW1vGI+DMD0QVFNHvPtzlMYgNv7RTTaV1VTxxtLjjC2cxDD4gLO69wiIiIiInJ5vfXZMoL8vJnz4n14ursCMCq+I9Nf/ahV49tFBPHu07fbfnZxduK9+WtJOnCcQd3atWqOC+3TVF5V/9Kdm4tzo31uLs4Ulla0OH5LylEWbNjJP56+o8XeSKkZudTVWUjPKeAP95qorqll/vqd/O2zZRSVlvPYjSObHfvG/xLJLSzl4SnDcHXW144iIlc7/ZdeROQqdyS3jIzCSh4eFmNLLkF9qbn+sX5sO154zjnG/Kj3UMeQ+tJ4+WXVrY7DYrVSXFHb4jFuzg64NZFAAjjTIam59VIOzZS4a0p5dR3PzdvPsfwK7hkYSd8mVjBV1VpYui+XAbF+tAlsvLLq/Q0nKauu41ej27b6vCIiIiIicvkdTssmPaeAJ24aaUsuAXSNjWBQt3Zs3nv0nHOM69elwc+dYupL4+UXlbU6DovFSlFZy0kgNxdn3F0bJ5AAW9/Y5h59WnomKquo4pX/JjBlSE8Gd285IXb9sF6M7duFuycOtG2bPKg7D7wxh4/Mm7hldF+CfL0ajXvr02UkbN5Dn44xPHjdsBbPISIiVwclmERErnLpBZUARPu7NdoXG+jeqgSTv0fDBxxnp/oSEBZrU0c3Lbu46oJ6MHk415+zstaCu0vDJFRVjQVPl6YTUz9WWF7Ds9/s40B2GVN6hPDo8KZ7RiWfLKK8uo6xnYMa7duTUczXyVk8M7adbU6oT6LVWawUlte0mCwTEREREZHL52R2AQAxoYGN9rUND2pVginAx7PBzy7fr86pa6IHUXNOnS66oB5MHq71q44qq2twd224AqmyuqZB8uzH/t9XK6moruEB01AKSup7JJVW1D8rVlTVUFBSjq+nOw4OBm4aEd9ovIODgakj4/nzRxnsOJTG+P5nE251FguvzTGzYMMuurQJ450np+HspGchEZFrgRJMIiJXudrvs0AuTdQFb2pbU85jcVCzAjxd+Pu0ri0eE+HbOAl2RqhP/cNSfll1o4RXXmk1HUM9mxrWQE5JFc98tY8Tpyu4OT6Mp8c0v/po89ECnBwMDGvfuPzdtuOFWKzw9oqjvL2i4cNoTkk1183c3mKyTERERERELp/auvpy2y5NvADm0soybudTMaE5gb5ezPzNnS0eExncfAnysMD6ygt5haX4ezd8/skrLKVzCz2PNu09SlFpBTe+8F6jfTO+XMmML1ey6K+/ICKo+fOfSbJVVJ2tZFFTW8cL73/LquSD9Gofxf/71W14ezT/XCciIlcXJZhERK5yUX71H+5PFjQuxZDexLZLxdXJgf5tWtevqSmdQutLMBw8VUr74LMPU9nFVZwur6FLWOMSDT9UUF7DU1+mkF5QyT0DI5tduXTG7oxiOoZ64uPW+E/lpG4h9Ixq3Fj3lYTD+Lg58auxbVtMlomIiIiIyOUTHeoPwIlTpxvtS8tuvO1ScXV2YmDXn15iu0tsOAD7T5yiQ3Sobfup08XkF5fRrW3j3rFnvPrwDVTVNCxZfigtmxlfruSOcf0Z3qsDgb5eFJSU8eibcxnWsz1PTRvT4PjjWfnA2SSYxWLlxQ/msyr5IAO7tuXtX97SaGWViIhc3ZRgEhG5ynUM9STc1xXz3hym9g6zlW1LL6hg87Fzl8f7uegR6U2wlwvf7jzFxG4hODnUv0H4VXIWBmB8l+AWx7+WeJj0gkqmD4rikWEtryyqqbNwPL+CKT1Dm9wf6edGpF/jBJKLkwMero4XlEgTEREREZGLq3NMOJFBfizauItpo/vaehylZZ9mw54jdo6u9XrFRRHi781Xq7/DOLgHTt9XpPhs+TYMBpg4sFuzY3t3iG60zdGhfnxseKAt8eXq7ERlTQ0LN+7inkkDbSulSsor+XT5VsIDfenVvn6uj5dsZuV3B+jfOZYZT93a6tVgIiJy9dB/+UVErnIOBgO/GtOWF+Yf4NG5ezB2D6G8uo5vdmTZO7Tz4mAw8ItRsby8+BBPf5nChK7B7D9VyqLd2UztHUZMgLvt2L2ZJWQUVtK/jS8Bni7sSCtiy7FC/NydiPZ3Y+m+3Ebzj+8SZCt7kVVURa3FSphP8zXMRURERETkyuDgYODZO8bzm39+zX2v/5frh/akrLKaL1Ym2Tu08+LgYODpaWN54YP5PPH2XCYN7M6+45l8u24nt47pS2zY2R5Tu4+kk55bwMCubQn0bbnaw4/9/u7JPDnjM+57fQ7TRvWltq6Oeet2cLqknHefvh0nRwfKKqr40LwJgwGG9oxjRdL+RvP07xJLsJ/3BV+3iIj8fCnBJCJyDRgWF8DrN3bmw01pvL/+BH4eztzWL4JjeeWsOZRv7/BabVznIAzAnC3pzFh5lCAvFx4aGs3dA6MaHLdg1ykSU3J599ZuBHi6kHyyCIDCilpeS2z6DcVRHQNxdapPMBVV1ADg6arGtCIiIiIiV4MRvTvy9i9v4f2F6/nnN6vx9/bgrgkDOJqZx8omkiM/VxMHdsNgMPCfxRt469OlBPt78/iNI7nPOKTBcd+s3cHiTbt5/7m7zzvBNLh7O959+nZmL97IzPlrcHJwoEdcFK89ciM92kUC9WX6yiqqgPoeTk35x9O3K8EkInKVM0RERFjtHYSIiD1lZGSQO+t+e4dxydRZrBRX1uLv4dxo32/n7edIbhnzHu1nh8jkShf88EdERkbaOwwRERERucQyMjIo3fCxvcP4yeosForLKmzl3n7o6Xe/4FBaDua3nrRDZHIl8Bo2Xc89IiLNcLB3ACIicmlZrFZu+ncSr5oPN9ieX1bNjrQiuoad39tsIiIiIiIiVxKLxcqk37zLH2cvbLA9r6iUpAMn6N42wk6RiYiIXNlUIk9E5Crn7OjA2M5BLN2Xi6ODge4R3hRW1LBodzYADwxp3OxVRERERETkauHs5MjEAd0wb97zfbm3SApLK/h23Q4AHrl+uJ0jFBERuTIpwSQicg347YQ42gS4s3RfLisO5OHu7EDvKB8eGBJNu+DGZSJERERERESuJi/eayQ2PJCEzXtYsi0FdxcX+naK4ZHrh9M+KsTe4YmIiFyRlGASEbkGuDo5MH1QFNMHRdk7FBERERERkcvO1dmJB0xDecA01N6hiIiIXDXUg0lERERERERERERERETOi1YwiYjIRTfsb5sY2ymQP0/pZO9QWu1wThn/2XiSXenFVNdaiAlw5/Z+EUzq1ny5jIrqOu6dsxM/D2c+uKtno/2L92TzVXIWaQWVBHk6M6FLMNMHReHidPb9jp1pRfzyi5Qm5//rTZ0ZGhdw4RcnIiIiIiKXVd8HX2NC/6688dhN9g6l1Y5m5vKPr1ezKzUdi8XKgC6xPHnzaKJDm38mWbZtH79//1s2/ft3uDo3/ppxwfqdfLZiOyezTxPk58XkQd150DQUlx8cW11Ty6xF60nYvJfC0nJiwwK5c/wArhvS+BlLRER+XpRgEhGRa15WUSW/+Hwvbk4O3N4vAm9XJ1YezOPVxCMUVtRye7+IJsf9e/0JMouq8PNwbrTvv5vT+M/GNIa3D+Cm3mHszSjhv1vSySmp4oXJHWzHHc0rB+DZ8e1wd3ZsMEfHEPXHEhERERGRSy8jt5AH3vgYDzcX7ps8BLDy6fJt3Pvaf/n05YcIC/BpNObgyVO8+rG52Tn/s2gD781fy8jeHZk2ui+7UtP5z6INZJ8u5uUHpgBgtVp5buY3bNh9hKE94hjaI46U41n8afYiTp46zRNTR12aCxYRkYtCCSYREbnmfbDhJLV1Ft6b3otIPzcAbooP4xef7WX2xpNc3zMUD5eGyZ+daUV8u/MUTg6GRvOlFVTw383pjO8SxJ9MHQG4sVcYrs4OLNiVzf1Dogn3rT/P0bxyvFwdubFX2CW+ShERERERkaa9v2AdVdU1/O+lB4gO8QdgaI/23PrHD/hk6RaevWNCg+PX7DjIH2cvoqyiqsn5TmafZtai9Uwa2I3XHrkRgJtH9cHN2Ylv1u7gkeuHExHkx+rkg2zYfYTJg7rz6sM32MaH+HnzkXkT4/t3oUN06CW6ahERuVDqwSQiIte8nWnF9IzysSWXABwMBkZ3CqSixsLhnLIGx1fW1PHG0lSM3UMI8nJpNN/SlFzqLFYeH9GmwfZpfcK5b1AUNXVW27Zj+RW0CXC/yFckIiIiIiLSeg4OBsb372pLLgHERQbj6+XOobScBse+9rGZ3/zza2JC/BnUrV2T8yVs3kOdxcJTt4xpsP2OcQN4aMowamrrAFi36zAAj904osFx904ejMVqZfGmPRd8bSIiculoBZOIyM9cSWUt/1xznKQThfx/9u47uqoy6+P4N733XiCEEGrohCIgCoJiBRFURESwl3EU1JmxzDAioy+i4tiVUYoKithApEoVEnoLJdRAeu+5yS3vH4HAJQEpgRvg91krS3LOc87Zz3UtyM4+z37yyqrwd3eidzN/xvRsjJfrib/GNx8p5Jv1aexML6bEYMLH1ZEuUT48fm0UQV4uAPy6I4uJv+3ji5HtmZmYyroD+djZwXXNA/hr32i2Hi3ik9UpHM4tJ8zbhYd6Nea65gFAdRu5oZ9tYtwNTUkvMjB/eyZVJgvtIrx4/NoomgaduZ3b2gP5TF93lOSsUhwd7OgQ6c0jvaNoGuh+znM91esLklmwM/uMz1897prTnvvo3jhOqvnUKCw3AuBwyiqlj1elYDCaeeq6JoyatrXWdVtTi4jydyP42OdeUWXCycGeJgHuPNSrsdXYgzll9G5W3dO80mjG3g4cHfT+h4iIiIjIccVlFbwzewkJSQfJLSolwNuDPh2b8/igPni5n3hJbOOew0z/bR3bD6RSUm7A18ONrq2j+ctd1xPsV93i7efVWxn/xTy+/ucYpi1Yy+rt+7G3s6Nv5xY8f++NbE5O4YO5yzmYnkN4gC+PD+pDvy4tAUjLKeC2Fz/g7/ffRFpOIT+v3kql0USHZpH85a6+NIs8/f6tAKu37eN/89ewJyUTRwd7OrdozJN3Xk9MRNA5z/VU/5z6C/P+2HbG52+c+tJpzx1vWXeyjLwiCkvKCQvwsTp+MC2HxwZdy6iB1zBhWt0t8jbvPUKT0EBCjrXWKzdU4ezkQHR4II8P6lMzLiu/GDcXJyKD/Kyu93J3xc/LnT0pmWeck4iI2JYKTCIiDdwrv+xhb2Ypd3UKI9jLmb2ZpczdksHhvHLeGdoGgA2HCxg7J4kWoZ6M6tEIJ3s7tqYWsXhXDkfyK/hshPXmqC/+sIsWIZ480SeK9YcKmLc9i4wiA3sySxnSIZRb4oKZvSGNf83by1ejO1qt7JmRcBSj2cLdXcIxmS18uzGdJ2bt4LMR7WjkV/dKnF93ZPGf3/bRoZE3j10bRWmliZ+3ZvDoV9v4aHhbmh0rTp3NXOtyR/tQukT5nvdnHOpTO1GrqDIxf0cWbk72xJ60F9LWo0XM3ZzOxEEt8XSp+5/RlLxyYoI8SDiYz4crDrM/pwxnR3tuaBnIX/tG17TbyymppKjCSG5pJWNmbCU5qxQ7oGsTX/7ar6nV5y4iIiIicrV68aO57D6cwT39uhDs782elAy+W7aRQ+m5fDh2OACJSQd56p1vaNUkjIdv642Toz2b9x7ht4QdpGTmMv3l0Vb3fPa9b2nVJIy/Du3Lup0H+WnVVjJyi9h1KJ1h/bpwR6/2zFyUwD8+/YE5jR+zWtnzxfw/qDKZGN6/K2Zz9V5FY96YzoxXRtM4xL/OOfy8eiv//nIenZpH8fRd11NabmDuis2Mev1L/vf3kTVt4M5mrnUZ0qcj3Vo3ubAP+pj84lKSDqUz5btluLs4M/Km7lbnPxp3H06ODqe5utrhjFxiGwXzx479TPluGfuOZuHi5MiNXVvz/PAbcXet7gTh5uJEpdFEldFkdU+z2UJJuYHcopJ6mZOIiFwcKjCJiDRg+aWVbAw1WtoAACAASURBVDhcyBN9ohgeH1F9sC24Otmz+UgRFVUmXJ0cmL0hDT8PZ/47rA0uTtU/lA/qEEqV0czy5DyKyqvwdnOquW9MoDv/GVT9Ft4tbUMY9NF6NhwuZNKdrejRtDpxCvdx5fm5u9iYUmhV6MgvNzJzVAfCjx3r1cyf0dO38vmaI4y/tXmtOZQajExZdpBezfxrngkwuH0II77Ywn9/P8SUYW3Oeq51iQv3Ii7c6zw/5bpNWnyAnJJKHuwRiYtj9YoiQ5WJ//y2j34tA+kVU3fiCFBiMHEkv5x//LSHoZ3CGN2zEVuOFDFnUzqZRQbeHdoaOzs7DuSUAbAzvYT74sN5sEcj9mSW8PX6NJ74ZjtT729fZws+EREREZGrRV5RKQlJB3lmaD+rQoebszMb9hyi3FCFm4sTMxcl4O/twSfPj8DVuTr3ueu6zlQZTSzduJvCknJ8PE+8ENcsMpjJTw0F4PZeHbjxuSkkJB1kyjN306tdMwAignz5y7uzWb/rkFWBKb+4jO9ee5SIoOqX3Pp0iGX4+Kl8/OMKJj46uNYcSsoNvDVrMX06NK955vH4hr7yCZNnLeHj5+8767nWpV2zSNo1izznz7cuD7z+JanZBQA8M7Sv1Qor4E+LSwDF5RWkZOQx7oM53HtDVx69ozeb9qQwa+l60nOL+GjccOzs7GgXE8nyzXtZvnkv/eNb1Vy/alsyVUYThipjvcxJREQuDhWYREQaMA8XR9yc7PlhSwah3i50j/bD3dmBJ/o0sRr3xuBWlBiMNcUlwOr7sioz3ictLupzrO0dgKO9HeG+rpRVldE9+sQqoONFpdySSqtnDWgVWFNcAmgW5EGXKF/WHsjHbLFgb2fdTm794UJKK01cG+tPQVmV1bmuTXxZtCubskrTWc+1LmWVJiqN5jOO8XWvOxGry7vLDrIwKZsOkd480P1EkvbJ6hRKK008c330Ga+vMplJLzQwrn9TBrUPBaBPbADuzg5MW3eUdQcL6NHUjxAvZx7sEUmf5gE1q7h6NfOndZgXz8/dxYyEozzbr+6e5iIiIiIiVwNPNxfcXZyZ8/tGwgJ86Nk2BndXZ/4y1Hpvn3f+Mozisoqa4hJg9X2ZodKqwNS384mX3xwd7IkM9qXcUEnPtjE1xyOOtW3LKbReRXNT9zY1xSWA2EYhdGsTzept+zCbLdif0mI7YedBSssNXN+pBfnFZVbnusc1ZcHaHZSWG856rnUpq6j802KMn5f7Gc8f98Tg63Cwt2fx+iSmfLeMrPxixt074KyuPa6qykRqTgH/uH8gQ67rBEDfTi1xd3Vm6rw1rNm+n17tmnFH7/Z8tSiBidN/pbLKSIfYRuw6nM6bXy3E290VR3u1DxcRachUYBIRacCcHe15YUAM/7doP6/+shcnBzvahnvROzaAm9sE4XGsRZuDvR0ZRQb+98cRDuSUkVZQQVZxJce3FbJYrDcY8jul2OJgb4efmyN2JxWHjudE5lOujQ6onZQ09nMl8VABheXGWvdOLagA4PUF+047z6xiA00C3M9qrnV5Z+mBC9qD6TiT2cL/LdrP/B1ZtAjx4I3BLWv2Q9qeWr0C6XjB53ixzGyxYDJbKCirwtXJHlcnB1ydHDBUmbglzroH+81xwUxbd5RNKYX0aOpHVIA7Y3pa78kE0KOpH6HeLmxMKfzTmEVERERErmTOTo689MDNTJg2n799PBcnRwfaN4vkuo4tuK1nOzzdqvc9dbC3Jz23kE9/WsW+1GxSs/PJzC/ieDpzak7k7229h6yDvT1+Xu5WOZHDsT+fem1MuPWKHoDGIf6s3XGAwtIy/Lys7300Ox+o3ifpdLLyi4kODzyrudblza8WXtAeTCe7qVt1e/L+8a14/oM5zFq6nrv7dqHRadr/1cXNxYmKyipu79Xe6vhtPdszdd4aNuw+TK92zfD1dOf95+7lbx//wKtTfwbAw9WZp4Zcz7KNe6iorKrr9iIi0kCowCQi0sD1bxVE92g/Vu/LY93BfNYfLmTTkSJmb0jjsxHt8HN3YvaGNP67/BCRvq60j/SmV4w/LUM9WbM/j6/Xp9W6p8Mpb9QBVonUmTjWca3Jcvr7Hi9QPdcvmkb+de/RFOzlctZzrcvw+AgGtK6d5J2LKpOZf83by4rkPNqGezFpSCurPZYSDxVgtsDkJQeYvOSA1bVZxZXc+uF6HuwRyZiejQn2dCa/vAonB+u37Y7HX1Zl+tN4/NydyCut/NNxIiIiIiJXupu6taFn2xiWb97LH9v3k5B0kA27D/PVogRmvPIgfl4efLUogbdnL6FRsB+dmjemT4dYWjcJY+XWZKb/tq7WPetaGXPWOZFD7WvN5uq8x6GO+5rM1d0WXrzvRqJCA2qdBwjx9z7rudblgYHdublH3FnFfy4GdG3Dsk172HMk85wKTMF+3uQVl9Zqp+d/bBVVWYWh5ljzRiF8P+FRko9mYag00iwyCDcXZ6YtWEuH2Eb1MxEREbkoVGASEWnAyipNJGeVEh3ozsC4YAbGBWMyW/h6fSqfrEph6e4cbmsXwmerU2gb4cV/h7WxSnbm78iq95hSCytqHTuaX46vmyPerrX/WQn1ri4eebs5ER/la3Vu69EiKo1mnB3szmqud3UKqzOm6EB3ogPPrt1DXcwWC+OPFZfio3yYeEdL3JytE6Gb2gTTLtK71rWvzU/G29WRZ/pFE+5T3TqwRagni5KyySutxN/jxB5Kx1dzhRwrqH259gjzt2fx6X1t8TtpnNFs4WhBBc2Czn9OIiIiIiJXgtJyA3uPZBITEcRtPdtxW892mMxmpi1Yywdzl7MwMYnB13bkwx9W0L5ZJJ88P8KqqPHz6q31HtPRY/sTnSwlMw9fT3e8PWq/VBceWJ0H+Xi40a21dbvtzclHMFRW4eTocFZzvadffJ0xNQ0PomkdK6vORkVlFff9eyqdmzfmHyNvtjp3vBDk4nRuv0JsFRXKgoQd5BaWEODjWXM8Naf6swsN8AHgUEYuG3cf5uYecTRvFFIz7lBGLhl5RSowiYg0cGpkKiLSgO3JLOHJWTv4ZVtmzTEHeztahXrW/NlgNFNhNBPp62pVXEovrGDVvjyguvVbfVmYlE1R+Yk2BXsyS9hwuJDrmtf9Jl58lC/OjvZ8sz6VKtOJfZLySyt56afdvL30AA72dmc114vl68RUlifn0bmxD28OblWruATVe1LFR/nW+nJ2tMfdxYH4KN+afav6twrEAnyVmGp1j283pmEHXBtb/eZfqLcL6UUG5m7JqDWuuMLIgFYXtipLRERERORytzslg4fenMEPK7fUHHOwtycuOrzmz4bKKioqq2gU7G9VXErLKWD55r0AmExn3rP1XMxfu53CkvKa73cdTidx10H6dWlZ5/huraNxcXJkxsJ1VBlPdDPIKypl3Ptz+L+vFuLoYH9Wc70YXJ2d8HB1ZmFiEtn5xTXHq4wmZi/bgKebCx2b127tfSYDu8dhscC0BWutjn+1KBE7O7i+YwsA0rILmDhjAUs27K4ZYzZb+HDucnw83BjYvf5XZYmISP3RCiYRkQasfaQ3bSO8+HxNCplFBmKDPcgtreSHLRkEeDjRr0UA3q6OxIV7sSgpG29XR6ID3TmSX8Ev2zIxGKuTqLLKP2/JdrbKq8w88tV27mgfQlmlie82pRPg6czoa+p+s8zX3YlHezXmv8sP8fDMbdzUpnpfoh+3ZFBcYeSlgbHY2dmd1VwvhrJKEzMSUrEDukf78vve3FpjOjf2IdDTufbFp9E92o8bWgYye2M6uaVVdIj0ZsPhApYn5zGscxhNju1j1b9VEPO2ZzFt3VEyiytpHerJjrRifkvKpmsTX25pG/wnTxIRERERubJ1jG1M+2aRfPTjCjLyCmneKITcwlK+/X0DgT6eDIhvjbeHG+1iIliwbjs+Hq40jQgiJTOPH1duwVBlBKC0ov7aT1cYqnjg9S8Ycl0nyioq+XpxIoE+njx6e+86x/t5ufPkndfx9uwljJzwP27p0Q6AOcs3UlxWzvgxt2FnZ3dWc71Y/jbiJkb/Zzqj35jG0Ou7YG9nxy9/bONAajbjH7r9jPs/1eWatjHc2K0NXy1OJKeolE7NG5GYdIilG3czvH9XosMDAYhv1YTWTcKY9PVCjmbnE+LnxZINu0ncdZAJDw865+eKiMilpQKTiEgDZm9nxxuDWvLl2qOs3p/HvO2ZeLg4Eh/lw0M9G+PtVr2nz2u3Nef95YdYmJSNwWgm2MuF29uF0KOpH0/O2sGGw4U0D/H8k6ednTs7hGKxWJi27ij2dnZc09SPx66NsmoFd6q7u4QT7OXMrA1pfL46BSdHe2KD3HlhQAydGvuc01zr2+6MEkqPFeA+WHG4zjFvDWl1TgUmgJdvjiUmyJ3527NYkZxLiLcLT1/XhGGdT7T5c7C3483BLfl8zRGW781lUVI2QV7OPNgjkhHdIrE/yx7wIiIiIiJXKnt7O95+eiif/7KalVuS+XHlFjzdXenWOprHB/XBx7O6Jd2bj9/JO7OX8uu6HVRUVhHi783gPh3p1a4ZD70xncRdB2kZFVovMQ29vjMWi4Wp89Zgb2dH7/axPD3keqtWcKe6b0A3Qvy9mbkwgY9+XIGzowPNG4fw0gM3E9+yyTnN9WJo3SScT58fwUc/ruCTn1YC0CY6jA+eu5eup7T1O1v/HnM7sZHB/LRqC8s27iYswIfn7r6B4f271oxxcnTg3b8M44O5y/lx5RbKDZXENgrhvb/ewzVxMfUyNxERuXjswsPD669vkojIZSg1NZXszx60dRgNXnphBUM/28R9XSN4/NooW4cjDUDQw18QERFh6zBERERE5CJLTU2lZPV0W4dhc2k5Bdz24gc8MLAHf7mrr63DkUvEs9dI5T0iIqehPZhERERERERERERERETknKjAJCIiIiIiIiIiIiIiIudEBSYRERERERERERERERE5J462DkBERC4PYT6urB53ja3DEBERERERsYnwQF82Tn3J1mGIiIg0GFrBJCIiIiIiIiIiIiIiIudEBSYRERERERERERERERE5J2qRJyJymXp9QTILdmaz9K/dcXG8PN4XmLomhS/WHq35ft4T8fi6O1FQVsWnq1NYsz+PwnIjQZ7O9G8dxIM9InFysJ7bvO2ZzN6QRlqhgWAvZ+7qFMaQjmG1nrU9tYjPVqewK6MENycH4pv48vi1UQR6OluN+3lbJt9vSiclvxwXR3s6NvLhsd6NiQpwv+D55pRUcv+XW+ga5cP421pYnTNUmfjf2qMs2ZVNQbmRZkHuPNyrMV2ifK3GFZVXfzZ/HMinqNxI8xAPRvVoRNcm1eOSs0p5cPrWmvHjbmjKoA6hFxy7iIiIiEhD8s+pvzDvj2388fGLuDhdHr/O+uSnlXz686qa75e8+yx+Xu7kF5fx4Q/LWbklmYKSMoL9vBjYLY6Hb++Nk6OD1T1+WrWFrxYlcjQnn1A/b+65IZ5hfbuc9hl1ObmtX0ZeEe9//zt/7NiP0WSmVVQof7mrL22iwy94vosSk/j7Jz/U+f/IZDYzc2ECP6zcTFZ+MY1D/Bl9S08GdG1tNa6yyshnv6xi/todFJSU0SQ0gOH9u3LrNe2sxhlNZmYtWc8PqzaTnltIeIAvd13fibv7dsHOzg6APk+9RUm5AYAB8a35z2ODL3iOIiJi7fL4F1lERK4oT1wbRYCnM+7ODhhNZp77PomDOWXc0T6UJv5ubE8rZvq6oxzILuWNwa1qrvt2Yxrv/X6IXjF+DOkYxobDBbyz9CBllSbu7xZZM25jSiHjvk+isb8bj10bRU5JJd9uTGdPZglTR7TDxak6aZu1IY33lx+ic2Mfbm8XQmGFkTmb0nnsmx18PqIdEb6uFzTPSYv3U1xhrPPcv+Yn88f+PAZ3DCPK341ftmUy9vtdvDesDe0jvQGoMpl5bk4SB3PLuatTGMFezixKymbsnCTeGNySnjH+hHi78MrNsRzKLWNGQuoFxSsiIiIiIvXvmaF9CfTxxMPVmSqjiafe+Yb9qdkM6dOJ6PAAtiYfZer8NexLzeLtp4fVXPf14kQmz1pMnw6xDOvXmcSkQ7z51UJKyg2MvqUnAH07taBRsF+tZ+46nMHXixPp0yG25lh2QTGjJ36JocrEiAHdcHZ05JsliTzyfzOZ+cpoosMDz3uOe1IymDD919Oef/fbpXy9OJFbr2lHu5gIFq2vLkaZLRZu6tYGAIvFwvMffs/qbfvo2TaGnm1j2HkonX9O/YWUjDyeuPO6mvu9PXsxs5duYGD3OO69IZ5Ne48w6etFZOYV8czQfgC89MDNGI0mXvn85/Oel4iInJkKTCIicsn1jPGrWSH087ZM9maW8urNsQxoHQTAoA6hBHo681ViKptSCunU2IfiCiOfrU6hdzN/Jt7RAjs7OwZ1COXln3bz5dqj3NY2BF93J0xmC/+3aD9hPq58eE8cHi7V/9TFBHnwr3l7Wbonl5vjgimrNPHp6hTio3x4+67WJ95yi/Vn9IxtfPHHEV6+ObbuCZyF33ZmkXiooM5zGw4XsGpfHk9f14S7u1S/KXhj6yAe+HIL//39IJ/f3x6AhUnZ7D7ls7k1Lpjh/9vMZ6tT6Bnjj7erIze2DmJTSqEKTCIiIiIiDVDv9rFEh1UXb+au2Mzuwxm89vAd3Nw9DoC7rutMkJ8X0xasZf3uQ8S3bEJxWQUf/bCCPh2aM/mpu7Czs+Ou6zrzwoff8/m81Qy+tiN+Xu7ENgohtlGI1fMqKquYOn8NIf7e/PPB22qOv//9cvKKy5jxymhiI4MB6NelJYP/8RFfLljL+DG3cT6Wb97Dq1N/ofTYaqFTpWTmMWvJeu7pF8/zwwcAcEfvDox5YxrvfruEfp1b4uTowO+b9rB62z4Gdo9jwsN31Fwf7OvFF7/+Qf/4VsQ2CuFIVj6zl25gUO8OvDLqlprP0GQy8/XiREbe1B0/Lw8GxFevjlKBSUTk4rk8eiqJiMgVa8uRQpwd7LihlfXbcje0rP5+W2oRAGv251FeZWZwh9CaYhDA0M7hGIxmVu3Lq77f0SJSCyoY1T2yprgE1YWj+7tFEORV3SJvZ3oxlUYzA9sEW90vJsiDpoHuNc89H7mllUz5/RAPdI+s8/ziXTk42ttxe7sTiaC7swO3tA1md2YpR/PLASivMtM8xIO+LQJqxrk4OdAq1JMDOWVYLJbzjlFERERERC69TXtTcHZ04KaubayOH1/FsyX5CAArtyRTZqhk6PWdrfKVe2+Ix1BpZPnmPad9xpe//sGh9FzG3dMfH083AMoNlSzekMQtPdrWFJcAwgJ8eHZYPzrE1p27/JnXp//K2Pfn0DjYj+5tmtY5ZmHiTswWC8P6dq455uhgz7Dru5BdUMKmvSnVc96aDMBjg661uv6BgT0wWyzM+2M7ABl5hbSJDmfQtR2sxnVq3gijycyBtJzzmouIiJw7rWASEblE3lq8n5+3ZTL30S5W+wCZLRbu/GQj0QFuvDO0OqlYkZzL95vS2ZtVSkWVGX8PJ65p6sdj10bh6VL3X92n25Pp3/P3smhXDqvHXVNzLKvYwGerU1h7IJ+yShON/NwY2jmMW9uG1HXrGqfuoVSX7x7uRJjP2beW+8v10QzvGoH9SUkTQGF5FQAO9tXHd2eWAtAyxMNq3PHvd2WUcFu7ELYerS4MxUf5ANW9uU0WcHG059HeUTXXtYvwZsaoDrX2ZDr+7AvZ1+qtxQcI8XJmRNcIPl9zpNb53ZklRPm74eZs3V+9ZahnzVwi/dwY2imMoZ2s95cymi0cyC0n2MvFKtEUEREREWlI/jNjAXNXbObXt54myNer5rjZbOHm59+jaXgQH44dDsCyTbuZvXQDuw9nUFFZRYC3B73bx/LUkOvxcq87tzjdnkwvf/YTC9btsNp3KDOviA9/WMGa7fsoLTfQODSA4TfEc0fvDnXdusbZ7G/0y5tPEh7oe8YxJxt7T38euKk79vbWP8sXFJcB4GBfnYckHUoHoHUT63yg1bHvkw6lM/jajrXun1tYwsxFCXRuEUXfzi1rjicdSsdQaaRbm2iguh1dRWUVbi7O3N0v/qzjP9XBtBweG3QtowZew4RpdbfI23UoHQ83F6JCA6yOt46unsvOg2l0ax1NVn4xbi5ORAZZt/zzcnfFz8udPSmZAMS3bML0lx+s9Zw9R6rPh/r7nPd8RETk3KjAJCJyidzYOogft2ayfG8ud51UNNhypIickkoe7d0YgF93ZDHxt310beLLI70aYwESDhbw49ZMCsuNvHZ7iwuKI6ekkke+2o7ZbOHOjmH4uDmy7kA+byzcT2aRgTE9G5/22j7NA4j0czvj/X3dnM4pHl93J3zda1/z/eYMoLoQBJBTbMDF0R7vU+7v4uSAl6sjmUXV7RhS8spxdrCjpNLEhAVJbDhcgNkCHRt5M65/DI39q+N3cbQnOtC91nNXJueSVVzJrW2Da507G4uSsvnjQD6f3dcWR4e6i1Q5JZW0OlZMOtnxYtfxuZysrNJUs89SSl45L93U7LziExERERG5FG7u0ZY5yzexdONu7jmpgLFx72GyC0p4asj1APy8eivjv5hHj7imPHlsj5012/czZ/kmCkrKefPxOy8ojuz8Yh54/QvMZgvDru+Mr5c7q7ft499fzic9t5DHBvU57bWn29/oZH5etXOKPxtf1zWzlm4AoGPz6nwsu6AYF2fHmhVIx7k6O+Ht7kpGbmGd95+5KIFyQxVPDLae1+GMXAC83FyZOGMBv67dTrmhiqgQf8be25+ebc8vv/ho3H04OTqccUxWfjHBJxUZjzteeMzIq35J0M3FiUqjiSqjyeqeZrOFknIDuUUlte5RZTRxNDufX9du5+fVW7m9Zzsigs6+4CciIhdGBSYRkUukbYQ34T4uLN2TY1VgWrw7B1dHe/rEVr/N9fX6VFqEePDWkFY1q3qGdAxjzIytJJxmT59z8cmqw5RXmpg2qgOh3i41939z0X6mrzvKwDbBhPvW/ZZgsyAPmgV51HmuPs3bnsmqfXl0iPSmfWR1gamsyoyrU90FG1dHeyqMZgBKDEbs7ex4evZO2kd48a9bm5NeZGD6uqM8PXsHX4xsj79H7VVLUF3YmbzkAM4Odtx7bG+kc5FXWsm7yw4yPD6c5iG1C0jHlVWacK1jhdTxYxVV5lrnpiw7yPwdWQBc1zyA61sE1BojIiIiItJQtG8WSUSQL4sSk6wKTAsTduLq7ETfTtWra2YsXEerqFDee+aemlU9w/p2YcS/p7J2x/4LjuP9ucspM1Qxe/zDhAX41Nx/wrT5/G/+Gm7r2f60BYm69je6GH5ctYUVW/bSqXljOsY2AqC0ohJX57pf3nN1caLcUFXruKHKyE+rt9K2aQQdjt3nuOKy6pfY/u/rhXi4OvP3EQMxmc1M+20tz773Le8/N5yurZqcc+x/VlwCKKuoxN21dg52fH4Vx+bSLiaS5Zv3snzzXvrHt6oZt2pbMlVGE4YqY617LEpM4tWp1XssRYUG8OgZCoYiIlL/tAeTiMglNKBVEDtSi8kqrv7h3mgys2JvLj2b+eN+rF3alyPb887QNlYt4/LLqvB0caS80nRBzzdbLKzal0dcuBeujvYUlFXVfPWJ9cdkgXUH8097fUWVyeqaur7MF7gv0NLdOUxafIAADydevjm25rjFYuFMDeGOn6syWagwmmkf6c3421pwfYtAhsdH8NrtLcgtrWLWhrQ6r88pqeTZOUnkllbxTN9oogLO7U1EgLeWHMDf3YkHezQ64ziLBThDe7u6Tt3QMpD/DGrJvV3CWb0vj6dn76TSWLsQJSIiIiLSUAzsHse2/UfJPLZCpcpoYtnGPfTpEFtTcPj6nw/x4djhVi3j8otL8XRzpcxQeUHPN5stLN+8h/YxEbg6O5FfXFbz1bdTS0xmC2u27zvt9eWGKqtr6voymy8s/1m0PomJMxYQ4OPBvx+6veZ4df5z+pzh1BZ7AEs37qawpJzh/bvWOldprC7OmExmPv/bSG65pi2392rP5y+OxM3Fmfe/X3ZB8ziT6vTnTPlP9bk7ercnwNuDidN/Zf4f20nNLmDJhl1MmPYr3u6uONrX/jVm80bBTH7qLp67+waKSssZ8e+ppGTmXaypiIjIKbSCSUTkEhrQOogv1x1l2Z5c7ukSTuKhAooqjNzYKrBmjKODPftSi1m8O4fDuWWkFlSQW1r77bTzUVhWRYnBRMKhAm79cH2dYzLqaM923FeJqfW+B9PJ5m3PZNKi/Xi6OvLWkNY1K6wA3Jwd6lzZA1BhNOPhUl2gO77K6fZ21m8axkf5EuzlzKaU2q0kUgsqePa7naQVGnioZyPuaB96zrEv2Z3DyuQ83hjckrJKE2UnFQOrzBYKyqpwd3bA2dEeN2cHDFW1i4XHV2F51LHPVnyT6rcqezfzJ8TbhXeXHWTRruw/3TdLRERERMRWbu4ex+e/rGbx+l2MuLEb63YeoLC0nIHd42rGODk6sHVfFr8l7OBgei5Hs/LJKazdCu18FJSUUVJu4I8dB7jhr+/UOSYjt+i010//bW2978F0sh9XbWHi9F/xdHfl/WfvrVlhBeDu6kxFZd15YIWhCg9Xl1rHV2zei6uzE73bx9Y65+ZcXdAb2CPOamWUn5c717aPZUHCjtOuNLpQbi5Odc7l+DEPt+pn+nq68/5z9/K3j3+oWZXk4erMU0OuZ9nGPXXe4+RVZl1aRnH/a//j819WWxXrRETk4lGBSUTkEmrs70arUE+W7s7hni7hLNmdg6+bI12jT/T1fnfZQeZsSicmyJ224V70axlImzAvvtmQxtLdOef8TJOl9p97xfgxpFNYneNDvGonKsfd1CaYdsda1p3O6drP/ZmvE1P5cOVh/N2deHdoa5qe0oov1NuFCqOZUoPRqgBj7pRu2gAAIABJREFUqDJRXGEk6Nj+Rcf/6+dW+584X3cnyk4pUu3PLuW5YyuXnugTxfD4iPOKP+HYyq+//bC71rmVyXmsTM7jHzc14+a4YEK9XeosGuaUVFrN4XT6tQzk3WUH2ZtZCm3PK1wRERERkYsuKjSANtFhLFqfxIgbu7EwMQlfT3d6xMXUjJn09SJmLV1PbGQw7ZpFcmPX1sQ1DWfmwgQWJiad8zPN5hM/75uO/blPh1juPqlN38lC/U+f39xyTdtareZOFeBz+tbYZzL9t7VM+W4ZAd4efDh2OM0irfeADQvwoaKyipJyA55uJ3K0isoqisoqCPaz3tPIaDKzbucBeraNwc2ldmu9YP/q8f517P/k5+2BxQJlhotTYAoL8GHTnpRax7MLigEI8Tvx/6B5oxC+n/AoyUezMFQaaRYZhJuLM9MWrP3T/xctGocSFRrA7sMZ9TsBERE5LRWYREQusQGtg5iy7CCpBRWs3p/PTa2DcDzW3iCjsII5m9Lp2yKA8bc2t2ojkF965vYQx1vqVZnMuJy0v0/eSdf5ujvh6mhPpclCfJT1W3Y5JZXsTC/G7TT7HAFE+LoScZr9mS7EtxvT+HDlYUK8nJkyrA2Rfm61xrQ4tqfRnsxSOjU+8Wbf7sxSAFqHVSdMLUM9YWsmB3PLrYpUZouFzCIDzYNPHDuSX84z3+6ksNzIuP5NGXQeK5eOGx4fwYDWQbWOP/tdEh0beTOyeyTRx9rutQjxYFFSNoYqEy5OJ3qW784oOTaX6rn+85c9HMorZ9oDHazueXx1lEsd+ziJiIiIiDQkA7u35a1vFnEkK5+VW/ZyyzVtcXSo/jk2PaeQWUvX0z++Ff95dLBV/pNbVHrG+zocy6Eqq4y4OJ349VZO4Ynr/Lw8cHV2otJoolvraKvrswuK2X4gtc5izHGRQX5EBvmd9vz5+npxIlO+W0aovzcfj7uPRiH+tca0iqrOTXYdTie+ZZOa47sOpQPQJtp6z9j9qVmUlBvo2roJdWkVVf2C4YG02i8tpmbn4+LkiF8dxaf60CoqjOWb95KaXWC131XSQeu5HMrIZePuw9zcI47mJ+19dSgjl4y8opoC09eLE5k6bw0zXx1tteoLqveuCvC++PsGi4hINf1mSkTkEruhRQAO9na89/tByipNVkWJoorqvthR/m5WydWu9GK2pVa/3WU8TY9vf4/qxGhf1omEKqOwgp3pJ9pLONrb0b2pHxsOF7Arvdjq+o9XHualn/acsUXexbAjrZj3lx8i0NOZD+6Jq7O4BNCjqR+ujvZ8tynd6vh3G9Nwc7KnV7PqpKx3M3/cnOyZvTGNKtOJtxcX7MiisNxIn9gAoPoNv5d/3kNBuZEXBsRcUHEJIDrQnfgo31pfAP7uTsRH+RJ4bGXS9c0DqDRZ+GlbZs31ZZUm5m/PIi7cq6bFYIi3C/uzy/hjv3UP8eP7SPWMqf9kV0RERESkPt3YtTUODva8PWsxpRWV3Nz9xBL8wtJyAKLDAq3yn50H09iSfASo/rm9LgE+1UWE5CNZNcfScwrZcSC15ntHB3t6to0hYedBdh603ov1v9//zvMffE/6GVrkXQzb9h3lndlLCPL15PMXR9ZZXALo1a4Zrs5OzFpi3dr8myXrcXNx4rqOza2O70mpzi2OF5JO1SjYj7im4SxI2ElG3ok5H87IZfW2ffTp0ByHOvY4qg/9OrfEzg5mLT0xF6PJzLe/byDU37umcJSWXcDEGQtYsuFEVwiz2cKHc5fj4+FW01qxcYg/BSVlzF66weo5i9fvIjOvqM4WgSIicnFoBZOIyCXm5+FMfJQPa/bnE+HrSlz4idYG0YHuhHm7MGtDGmZLdVu4/dmlzNueVb2Jq9lCWaUJb9faf333axnIzIRUXvs1mbu7hFNlsvD95nRCvJw5kl9RM+7xa6PYlFLIX77dyeAOoYT7urLhUAHLk/Po3yqQthFnboFX3z5ZdRizpbqAtDW1mK2p1oWvpoHuxAZ74O3qyKgekXy8KoV//LSbHtF+JBzMZ3lyHk/0iar5THzcnHjquiZMWnyAJ2ft4KbWQaQWVPD95gxahXpya9vq1hOLd+WwP7uMKH83nB3tWZiUbfVcF0d7rmteXYzal13K/uwy4sK96mUFV7doP7o18eWDFYfJLDLQyN+Nn7dmklNaySu3nEiGRnaP5Pe9ufxz3l6GdAwjxNuFtQfy+eNAPre3C6FDI58zPEVERERExPb8vT3o3jqalVuTiQz2o23MiZbUMRFBhAf6MGPhOkxmM2EBPiQfzeKnVVtxsLfHaDJTVmHA26P2S2gD4lvzxa9/8MrnP3HfgG5UGU3MXrqeUH9vDmeeeEHr6bv6smH3YR6dNJNh13chIsiXhKSDLN24m5u6taF9s8hL8jkc9/7c5ZgtFnq1a8bm5BQ2J1ufj4kIokXjULw93Hj4tl789/vfGffBHHq2jWHtjgMs3bibZ4b2q/WZpByb86krek72txE38cibMxk98Uvu7heP2WLhm8WJuLtU73N03NHsfLbtO0psZHDN/kYXIjo8kDv7dOLrxYmUVhiIi45gUWISOw6k8Z/HBtesaItv1YTWTcKY9PVCjmbnE+LnxZINu0ncdZAJDw+qaRXYq10z+nZqwcxF68grLqV9TCTJR7OYu3IzLRqHcP+N3S44ZhEROTsqMImI2MCA1kGsO1jAgFaBVsedHOyZNKQV7y8/xNwtGZjNFkJ9XHjwmkaE+bjw6i972XC4gL4tAmvds1mQB+Nva86Xa4/y0crDhHi5MLJ7JMUVRj5ZdaLfdYSvK5+NaMfna1L4dUcWZVVmwrxdeKx3Y+7uEl7rvheT0WSuWZn1y7ZMfjlpRc9x93WNIPZYW7sR3SJxdXJgzqZ01h3IJ8zHlXE3NGVQB+vVR3e0D8XX3YkZ647y/orDeLk4cHu7EB7t3bgmedl0pBCAw3nlvPbrKVkd1auOjheYVuzN5Yu1R/nHTc3qrUXga7e34NPVKSzalUNFlYlmQR5MHtKadicV+DxdHPnwnjg+XpXCz9syKa8y0cjPjef6RTO4w4WtuBIRERERuVQGdo9jzfb9DOzWxuq4k6MD7z1zD+98u4Tvlm3EZLEQHuDDI7f3JjzQl799PJeEpEP0j29V656xjUL4z6N38tkvq3hvTnW7uTG39qKorIL3v/+9ZlyjYD+mvfwgH/+4gp/XbKWsopKwQB+eHnI99w24tIWIKqOJLfuqV2b9sHILP6zcUmvMAwN70KJx9c/6o26+BleX6lVMa7btIzzIl7/ffxN3Xde51nUFJWUAVvs1napVVBj/+/tI3p+7nKnzVmNnZ0fnFo35y9B+Vq3rNu1JYfwX83jk9t71UmACeGH4jQR4e/DT6q38lrCTJiEB/N/jQ+jXpWXNGCdHB979yzA+mLucH1duodxQSWyjEN776z1cc9K+XQCvPzKIz39Zzfy12/ktYSeBPp7c2y+eR27vjZtL/e8jJSIidbMLDw+vu9eSiMhVIjU1lezPHrR1GFeFqWtS+GLtUb56sANRARenv/fF8vqCZLo28aV/q9r7LDUEx1el1VVwu1iCHv6CiIiIPx8oIiIiIpe11NRUSlZPt3UYl51PflrJpz+vYs6ER4kOq/2SYEP2yU8rcXJ0YPQtPW0dygXrPOZ1BsS35j+PDT6v6z17jVTeIyJyGtqDSURE5E8czS8n8VABrcO8/nywiIiIiIjIZSyvqJSFCTvpeGxvJBERkdNRizwREbnk1uzPZ3dmKdc3D8DZseG/65BTUslLA2PrrT1efSqqMLL2QD6HcstsHYqIiIiIiNRh1dZkdh1K54YurXB2avi/iisoKePh23vTsXljW4dyQRatT8JoNNk6DBGRK1rD/1dNRESuOB+uPAxAtya+l0WBqUOj02+Ua2uZRYY695ASEREREZGGYcp3ywDoERdzWRSYmoYH0TS8YbYGPxevT/uVknKDrcMQEbmiaQ8mEbnqaQ8mkfOjPZhERERErg7ag0muZtqDSUTk9Br+a+MiIiIiIiIiIiIiIiLSoKjAJCIiIiIiIiIiIiIiIudEBSYRERERERERERERERE5JyowiYiIiIiIiIiIiIiIyDlRgUlERERERERERERERETOiaOtAxARsbXM9FRCHv7C1mGIXHYy01NtHYKIiIiIXAJZGekE9xpp6zBEbCIrI93WIYiINFh24eHhFlsHISJytbnzzjt59dVX+fbbb3n77bepqKiwdUhyGbruuut48803WbNmDePHj6ewsNDWIYmIiIiInBXlRFIflBOJiNiWWuSJiFxC4eHhTJ8+nccff5yRI0cyceJEJVJy3pYvX07fvn0pKytj2bJlDBw40NYhiYiIiIickXIiqU/KiUREbEsrmERELgE7Ozvuv/9+xo0bx9SpU/nggw8wGo22DkuuIF27duWtt95i9+7dvPTSS2RnZ9s6JBERERGRGsqJ5GJTTiQiculpBZOIyEXWtGlT5syZw5AhQxgyZAhTpkxRIiX1LjExkf79+3PgwAGWLFnC0KFDbR2SiIiIiAignEguDeVEIiKXnlYwiYhcJA4ODjzyyCM88cQTvPPOO3z55ZeYzWZbhyVXgbi4OCZPnkx2djYvvvgiqamptg5JRERERK5CyonEVpQTiYhcGg5eXl7/snUQIiJXmtatWzNt2jRCQkIYNWoUK1aswGJRPV8ujaysLGbNmkVoaCjvvvsu5eXlbN261dZhiYiIiMhVRDmR2JJyIhGRS0MrmERE6pGLiwvPPPMM9913H6+//jrffvutrUOSq1xMTAyTJ0/GYrEwbtw49u/fb+uQREREROQKppxIGhrlRCIiF49WMImI1JMuXbowY8YMAEaNGkViYqKNIxKB/Px8Zs+ejaurK++99x6Ojo5s2rRJrUlEREREpN4pJ5KGSDmRiMjFoxVMIiIXyN3dnRdffJFbb72VV199lfnz59s6JJE6RURE8OabbxIUFMRzzz3Hzp07bR2SiIiIiFwBlBPJ5UI5kYhI/dIKJhGRC9C7d29mzpxJdnY2o0ePZvv27bYOSeS0iouLmTt3LgaDgSlTpuDr68v69esxmUy2Dk1ERERELlPKieRyopxIRKR+aQWTiMh58PHx4dVXX6Vnz568+OKLrFixwtYhiZyToKAgJkyYQKtWrRg7dizr16+3dUgiIiIichlRTiSXO+VEIiIXTiuYRETO0cCBA/nyyy/ZtWsXjzzyCMnJybYOSeSclZWVMW/ePDIyMnj77bdp3LgxCQkJVFVV2To0EREREWnglBPJlUA5kYjIhdMKJhGRsxQUFMTrr79OixYtGDdunN5ukiuG3j4VERERkbOhnEiuVMqJRETOj1YwiYichaFDh/LZZ5+xatUqnnzySVJSUmwdkki9MRgMLFq0iL179/Lmm2/Stm1bEhISqKiosHVoIiIiItJAKCeSK5lyIhGR82Nv6wBERBqyiIgIZs6cyUMPPcR9993HG2+8gcFgsHVYIhfFypUr6devH4WFhSxZsoRbbrnF1iGJiIiIiI0pJ5KriXIiEZFzoxZ5IiJ1sLOz44EHHmDs2LF88sknfPzxxxiNRluHJXLJdOnShbfeeovk5GReeuklsrKybB2SiIiIiFxCyonkaqecSETkz6lFnojIKWJiYpg6dSotW7Zk9OjRLFy4ELPZbOuwRC6ptLQ0vvnmG2JjY5k0aRJ5eXns3LnT1mGJiIiIyCWgnEhEOZGIyNnQCiYRkWMcHR157LHHePTRR5k8eTLTpk3DYtFfkSJt2rThrbfeoqCggBdeeIEjR47YOiQRERERuQiUE4nUTTmRiEjdtIJJRITqHxanT5+Ov78/o0aNYtWqVbYOSaTByM7OZtasWQQGBvLuu+9iMBjYunWrftkgIiIicgVRTiRyesqJRETqphVMInJVc3Fx4dlnn+Wee+5hwoQJzJkzx9YhiTRoTZs2ZdKkSTg6OjJ27Fj27dtn65BERERE5AIoJxI5N8qJRERO0AomEblqxcfHM3PmTIxGI6NGjWLDhg22DkmkwcvPz+e7777DycmJKVOm4OzszMaNG9WTX0REROQypJxI5NwpJxIROUErmETkquPh4cHf//53brrpJl555RUWLFhg65BELkvh4eG88cYbhIWF8dxzz7F9+3ZbhyQiIiIiZ0E5kUj9UE4kIlc7rWASkatKnz59mDFjBunp6YwZM4YdO3bYOiSRy1ZxcTE//PADpaWlTJkyBX9/f9avX4/RaLR1aCIiIiJyGsqJROqPciIRudppBZOIXBX8/Pz45z//Sbdu3XjhhRe0Ya1IPQsICGDChAnExcUxbtw4EhISbB2SiIiIiJxEOZHIxaWcSESuRlrBJCJXvFtuuYUvvviC7du388gjj7B//35bhyRyxSkvL2f+/PmkpaUxefJkmjRpQkJCApWVlbYOTUREROSqp5xI5OJTTiQiVyOtYBKRK1ZwcDCvv/46zZo1Y9y4cWzcuNHWIYlcFby9vXn55Zfp06cPf//731m2bJmtQxIRERG5KiknErEN5UQicrXQCiYRuSINGzaMzz77jN9//52nnnqKo0eP2jokkauGwWBg8eLF7N69m4kTJ9KhQwfWrVtHRUWFrUMTERERuWooJxKxHeVEInK1sLd1ACIi9alRo0Z88803jBo1invvvZdJkyZpObqIjaxevZobbriB3Nxcli5dym233WbrkERERESueMqJRBoO5UQicqVTizwRuSLY29szatQonn32WT788EM+/fRTTCaTrcMSkWM6derEW2+9xcGDB/nHP/5BZmamrUMSERERuaIoJxJp2JQTiciVSC3yROSy16xZM/73v/8RExPDmDFjWLx4MRaLauciDUl6ejrffPMNTZs25a233qKwsJAdO3bYOiwRERGRK4JyIpGGTzmRiFyJtIJJRC5bjo6OPPnkk4wZM4ZJkyYxc+ZMJVEil4GWLVsyefJkSkpKeP7550lJSbF1SCIiIiKXJeVEIpcn5UQicqXQCiYRuSy1bduWGTNm4OXlxahRo1izZo2tQxKRs5STk8Ps2bPx8/NjypQpGI1GtmzZol+GiIiIiJwD5UQily/lRCJypdAKJhG5rLi6uvLcc88xbNgwxo8fzw8//GDrkETkAjRp0oRJkybh6urK2LFj2bt3r61DEhEREWnQlBOJXFmUE4nI5cze1gGIiJxq5MiRvPTSS7WOd+vWjcWLFxMZGUm/fv2USIlcAQ4dOsSwYcOYNWsWc+bM4a9//StOTk5WY5o2bcovv/yCg4ODjaIUERERubSUE4lcPZQTicjlTAUmEWlQAgICGDduHLNnz6455unpycSJE/nggw947bXXeOKJJ8jNzbVhlCJSnywWC1999RU33ngjHTp04Ndff6V9+/Y15w8cOEB5eTkjRoywYZQiIiIil4ZyIpGrj3IiEblcaQ8mEWlQ/v3vf7Nly5aaN/H69u3L9OnTSUlJ4aGHHiIpKcnGEYrIxVJSUsKPP/5IUVER7777LkFBQSQmJmI0Gtm2bRtvv/02s2fPpqKiwtahioiIiFw0yolErl7KiUTkcqM9mESkwWjfvj1ffPEFffr0wdHRkfHjx9O5c2deeOEFbVgrcpXx9/dn/PjxdOzYkeeff561a9cyfvx4XFxc+Nvf/mbr8EREREQuCuVEInKcciIRuRyowCQiDYKdnR0///wzM2bMoKKign/961/8+OOPTJo0ifLycluHJyI20r9/fyZOnMiyZct47733mDdvHiNGjGDnzp22Dk1ERESkXiknEpG6KCcSkYZMBSYRaRCGDRvG6NGjSUtLo0mTJowdO5bNmzfbOiwRaQC8vLx46aWX6NevH7/99htxcXEMHjzY1mGJiIiI1CvlRCJyOsqJRKShUoFJRGzOy8uLxMRE7OzsWLhwIYmJiQQHBxMeHl7zNWvWLD755BNbhyoil0B4eDizZ88mJyeHtLQ00tPTSUtLw9vbm+HDh+Pj48OECROYMWOGrUMVERERqRfKiUTkZMqJRORyoQKTiNjcyy+/zKOPPkpaWhqHDh0iLS2t1tehQ4cwGAy2DlVELpGIiAgiIyOtfqly/CsmJobS0lLat29v6zBFRERE6oVyIhE5lXIiEbkcqMAkIiIiIiIiIiIiIiIi58Te1gGIiIiIiIiIiIiIiIjI5cXR1gHIxbV543qCQ8NtHYaIzWRlpNGxc7ytwxCRP7FpQyIhYRG2DkPknGSmp9KpS1dbhyEiF2jzpo0Eh4TaOgyR85aVmUHHTp1tHYbIVUu5jMiFUV51eVOB6QoXHBpO/g/jbR2GiM0ED/6nrUMQkbMQEhZB5pQ7bR2GyDkJeWaurUMQkXoQHBJKRfIftg5D5LwFx15j6xBErmohYRFkvjvI1mGIXLZC/vqjrUOQC6AWeSIiIiIiIiIiIiIiInJOVGASERERERERERERERGRc6ICk4iIiIiIiIiIiIiIiJwTFZhERERERERERERERETknDjaOgCxnY37M3nys6WM6RfHw/3bnfP1FouF9PxSwv09L0J09afMUEV5pZEALzer48u2pzA3IZm9qflUVFWf7xITysjrWtMo0OuSxznojZ8I8HJl6pM3XvJnX0pGk5kH/vsb17QI58mBHc7qmic/XcrGA5m1jreM8OfLp2+q7xBFpAGZuDSV3/YU/Om4DuHuvDcoul6f/dOOPCavTGfKHU3oGOHxp+OPFBiYsTGHjUdLKCg34e5sT8tgN25v7Ufvpt71GputpRZWEuHjbOsw6rRgdwH/WZbKyifanNX4xJQSxs07XOe5t2+Lokujhv1zjohc3vIKi3B2csLT3e3PB8tZ+21lAi/+38ckzv0UF2enmuNj/vYGG3bsOe11XeJaMPWNv532vNFkovuQx6gyGmudGzn4RsaOuefCAheRK8rEZWn8tqfwT8d1CHfnvTuizunelSYzBeUmgj2d/nzwSX7amc/klRlMub1xrRxnR0YZc7fnsyOznNxSI16u9nQM92BEpwBiAlxrxh3ON3D/rAOM6hLI6Pigc3q+nJ2jhZV8lpDFptQyyirNhPs4MaiNH0Pa+luNM5otfL05l193F5BTaiTKz5mRnQPpU0f+ueJAEV9tzuVgngFfVweuberNmPhA3J0dasaYLRa+2ZLLL0nV9wv3duKONn7cGeeHnZ3dn8Y9eFoyuf/P3lkHNnW2bfwXa9qmkqTuLVAKLRSKu9uwYYO5sDHfu435O3tn39zYmAJjwpANZ7gMh+JQvNRL3S1p0uT7I21KSFpaZALP75/Rc55z8py0O8+5z3Xf111pv0YOjfTg1SFBl/FNCP4NCIFJcFlU6Aw8MXsznVv4NVkk+Ds4lVHIcz9t5b8Tu9Mzqj5o+37DUWZvSqB7pD/3DIxB5awgPb+MFfGJbDiSwswHBxMT4v2XzvXpMZ1QKmSXHvgvxmw283+L93Iuu5heUYFNPi4pp5jukf6M6GT78tjTVXm1pygQCP5hjI3R0CW4PvA5klXJyhNFjInW0CHA1bpd4/r3PtKczqviiaXJqF3kjGqrwddNQbHOyOazpby8Np27Onszrbvf3zrHq8W7mzPJLq3m86ss6F0NTuZU8dn2rGYdk1yoA+CFgYEopLZBU4SXWGcEAsG1Y8f+o7z00Xf89OHLQmC6ipxKSuOtL390uO+BKWMYP7yf3fY/tuxm18EEBvSIa/TcqZnZGIxG7hg7lOjIcJt9LUOaHt8IBIIbg7HRagexTDFjotW2sYxL894FZZRU89wfadzdyZub2qivylxnx+fx04F8wjROjGzjiZernIySalaeKGZ7chnvjwyhc/Clk+4EV06Jzsjjy1KoNpqZ0F6Dl6ucXSnlfL4jh9xyA4/0rI8rP9+ezfITxYxq40kbXxc2nC3h1XWZvDUcG5Fp1YkiPtiaTacgVx7v5ce5Aj2LjxWSVqzng5EhVvHogz+zWH2qhNgAF26J1ZJapOeLnTkk5ut4YWDj61yproaCSiMjojxt/u4BAjyaJ4QK/l0IgUlwWZRU6jmRXkDnFv/sl2WJ2cXklVbZbMstqWTuluOM6dKSlyd1t9l3c7eW3DtjLR8v38+cx//aypj+MSF/6eddigqdAZXz1VsAyqqqefu3PWw9kdGs4wrLdRRV6OkZFchNcf+8l5kCgeDa0s7flXb+9cFXjdnMyhNFtPN3YVjU1QmmrgYzd2bjrpQxe3JL3JX1AeLtcd48vSKVeQfzGRGlJkT97xcs9qaWE6q58uqlyuoam2y5K+XPcyW8u/k8VQZTs45LLtSjrRUGBQKB4K/k2OkkSssr/u5p/K2UV1ZdVXFty56DvPLJLMorqxzu7xlnX92alH6eN7+YS7+uHbhrXONuEompmQCMHdKHNi1Cr3zCAoHgusYSy9T/XGMys/JEMe38XBjW2vOyz5tZUk1mieEqzNDCqpPF/Hggn/HtNDzZxw/pBZUqE9ppeXhJCi+vzWDRna3wcL6+E6OvhKsV3/x8sICiyhq+mRhOW1/LGjm+nZaX16az6EghE9pr8XNTkFSgY/mJYm7r6MUjPX0BGNVGzUNLkpm5K5e+Ee5IJRKKq4x8uSuXLsEqPhwVgqw2qU7tImPu/nxO5OiI8XfhWHYlq0+V0DVExQcj68eFqpXM2JnDkEjPRkXGpEI9AINbedA9VLhA3EiIHkyCG46EtHxqTGZ6RgXY7Qv19qBXm0DOZBWjq7Yv6bwRyCwo59OVBxjz7tKrds6z54uY/NFKdp4+zx392jbr2KRsizVWuO/1ZS8lEAiuH8xmMwnZVUT7udqISwBSiYRJ7bWYzXA82/HLrhsJY42Z9aeLefC3cyxJKLxq531nYwavrcsgQqukUxPsDC8kqVBP2FUQzAQCgUDQNIw1NazZupc7n3mLn5euu2rnffPLuTz19heEBvo5FJIa4u2ZPyGRSHi0Ez+6AAAgAElEQVTlsbsvOTYxNROpVEJ4kP8lxwoEAsG/geoaE1/tyiFM42QnLgH4uSuY2tWbSoOJ9Wcubfd3o2GsMbP+TAkP/p7MkoSiq3LOI+crCdcqreJSHYNaeVJjhhM5lrhyU2IpABPa1SfKyWUSxsVoyC4zkFAbf245V0qlwcRDPXysohHA6LZq7urkhUJm2bYrpRyAe7t424wb106Dq0LK6lONW9fXOUOEaf79SZWC5iEqmAQ2vLloN0dT83jn9j58sfoQCWn5OClk9GsbzBOj4vB0VVp7NwH8vPUEP289wZLnxxKodUNvqGHulgTWHU4hr6QKL3cXhnUM4/7B7a32b3XHvzKpOwt3niY1r5SerQN5/+5+9HjxVx4cGoubs4Lfdp8hu6iCAI2KW/u0YUKPSJu5JqTl892GoySk5mMGYkK8mDY0lg7hFv/XOhs8gKd/+BN/tYplL96Mq9LyZ//HgSR6twmys6X735ReyGW22uuVXFdqvuWGv2D6aJtzpuSWcOsnf/Dw8A7cOzDGYQ+mkxkFzN6UwNGUPMxmM1HBWh4aGkv7sHqP2+TcEr5dd5QD57KpNppoGaDm3oEx9IsObtbv/sC5HBbuPM2Ok5nIZRIGt6/PyOvx4q+NHjuyUwSvTe7Z4P7zReWE+ngwfUxn3F2cmLftZJPndS7H8gAT4WvJ7qnUG3BVitJagUDQMEkFOmbF53I4swKDyUwrL2fu6eJDjzDb/nr5FQZm7c1lb1o5FdU1hKiV3BbnzZBI22zCwkojb2/MYFdqGTUmiA1w5T99/K3VSBKJBBeFlEOZFaQX6+2qlHpHuLPp4WjktQ/peqOJod+dZESUmv8OrvehrjTUMOL7U4yN1vDsAIv9wLgfTtMz3I0YP1d+PphHYaWRCK0z93X1oecF1/O/9emcztXx8pAgZmzPIqlQj4+bxad7cgcvG7/sEp2R2Xtz2ZFSRnFVDX7uCoa19uTOTt4oate/uv5Tb48I4cud2RRWGpnYXsv8wwWW76TKSL+vjvP60GAGR146+7K4ysjy40UsSyikoNJIhFZprUz7ZncOvx7Kb/T4pfe2xsu14Xt/ekk1D/bw5daO3ry9semVsmazmdRCPcPbWK6husaEFAly2aX9xQUCgeBKePXTWazYtBOAcY/816b3T1L6eb78eQnxR05SbTAQGR7CtCmjGdC93r7t63nL+H7hSlZ89y4fzVpA/BHL83XPuHY888AUAn0tdt/LN+7gtc9m89Ub0+ndub31+CXrtvLGF3OZ9X8v0DW2jXXcxy89xmdzfyO3oIiJw/vzwkN3YDKZmLdiA0vWbSM9Kxe1hxsDe8Tx+F0T8HRveoZySVk5v6/dysI/NpGTX0REcACdYlpbr+eb+csbPX717A8J8mvYxjw5PYtH7xjP1EkjefPLuU2a09b4wxxIOM0jt9+Mn7f2kuMTUzMI9PXGWemEyWRCX23AxVm8SBMIBFePcwU6Zsfncfh8JdU1ZiK0SqZ00FpjlLoeSgDvbsni423ZbHywDWCx7f7lYAHHsiop1degcpLRIcCVh3r4NOiksDetgvJqE/d20diJS3UMa+1JpyCVXQ/WGpOZWfG5rDlVQomuhgitkqldfegZVr82GGrMLDxSwKbEUjJLqjGZIcjDidHRam6Jrb/vjpt7hr4R7hhMZjaeLcVdKeObieH4uSk4kVPF93tzOZmrw1kuYVhrT/w9FHy2PYel90TiVWuXXqIzMjs+n+3JZZTqagjwUDC29nMujIc2J5ay4HABqcXVSIDWPs7c2cmLbs3ovVpcZWT5iWKWJRRZ4hvNBfHNnlx+PVTQ6PEXzvti/m9EsENXhhKdJRG+LlQ5ladD7SzDz902TmpTK0ydyq0iNsCVo1lVeChltPa29NHSG03IJBJ83RRM6+5rPS6vwlIVd2G/LQC5VIK/u4Kz+bpGrym5UI+LXIKfmxyz2YzOaMZFIWpbbgSEwCSwo6RCzxOzNtMvOpghsWEcScll1YEkqqqNvHNHH8J9PXhqdCc+W3WQ3m0CGdIhDI2bMzUmE8/+uJXDybnc3K0VLf09OXO+iHnbTnI8rYAZDwxEJq2/sXy84gDDOoZxc7dWeLjUL1Ir9p2j2ljDpJ6t8XB1YvHus3ywbB/+ald6tbG8iNt7Notn524lws+TB4a2x2Qys+ZgMo99v4mP7+lP99YBDGgXQkGZjmXxidzRry2xYZZgpHMLP4K0buw8dZ5x7y2jf0wIXVv506mFLxo3Zztx6Uqv63xRBd+sO0JidjGt/OvtnDYcSUUigeEdwx3+Ho6k5PHErE14uiq5tU8b3JwVLN5zlsdnbea7h4cSFaQlMbuYh77egFql5K4BMSjlUjYdS+f5n7bx8sTujOnastHfdbWxhvWHU1i48zRns4rx9XTlgSHtGde9FVq3+gXl9SkNi0cAwdrGF+FeUYFWC8DzheWNjr2YpJxiZFIJP289wdpDKZTrDHi7u3DXgGim9I5q1rkEAsH1z+ncKv6zLAVvNzl3dvZBLrUEEC/8kcbLQ4IY1tpyHy6uMvLg70mU6WsY305LkIcTfyaV8uaGDAw1Jm5qU58F9v6WTNr5u/JQDz8yS6pZfLSQZ1am8usdkVbRaFRbNQsOF3D3gkS6hbjRPdSNTkEqwrXOSCUSpFegV+xPr2DDmRImtNfirZKz8kQxL61O463hIfS9wFe7RG/kuVWpdA91Y0QbNbtTy5m5K4e8CiOP97ZkWpfojDyyOJnsMgM3x2gI1Sg5nFnBD/vyOJ5dxfujQm2y1d7bnMn4dlrcnWVEejvT0suZz7ZnoXWVc3dnH2L8G7c1Oleg4/ejBWw4U0KNyUyvcHcmtNfSObh+3Rgc6UELbeMv59wuYTXxxbhwqzjWHLJKDVQZTeSWGbh/0TnOFeiQSKB7qDtP9fXH311UNgkEgmvDpBEDKK+sYvPugzx932Siau3Wzqakc+/z76L2cGPqLSNRKhSs37mfJ9+awf/+cx/jh9X3DzJj5v6X3icmMoKnp07mXNp5Fv6xiay8An799LXLmtdrn83mlpED8dZ40qK2p9DrM35g1eadjB7Yi9vGDCE9K4dFq7ewP+E08z5+FVcX50bPeS4tk3krNvDHlt1UGwz07dKBN568nx4do60v/Ab36kxIoG+j59F4uje6/7u3n0OhaN4rjm/nr8Bd5crd45tmj56YmomTk4L/vPk5uw8lUG0wEhURwvT7p9CjY9OrpgQCgcARJ3KqeHJFKiqFlFtitaicZGxOLOHNjec5X2rg7s7edApScVtHLfMPFzImWk1coEXUOJuv47GlqQR7OnFbnBcuCimncnWsOV3MmXwd829vafOcX8epXEuVS4xfw8/1SrnUTlwC+O1oIb5uCqZ08KLGZGbh0QL+uzadHya3ILy2iuWdzefZeq6Um2M0TGynoUxv4o9TxXyxMwdXhZRRbevfk60/U0KIWskTvf3IqzBYxaUnV6SicZFzd2dvDCYzS44VUnOR/lJRXcNjS1MprDQyLsbSE/fQ+Qq+3JVLanE1z/W3uBjtSy/nzY2Z9ApzY1RbNXqjmeXHi3jhj3S+mhBuVzV0MZb4ppANZ0tr4xs3JrTT2ljHDW7VlPim4djFx80+sa7GZGZ5QjEyCcTUCln55UZ83OzXPe9a4Sqn3CJIpRXr8XWTczynii925nAyV4dMCn3D3Znezx+1i2W8i9wyp8rqGlwvEobK9DXojeZGrympUI+bUsabG8+zM6UMndFMiKcT07r7MKClcCW6nhECk8COMp2BR0d05O4B0QCM696KvLIq/jyejq7aiJe7C/2ig/ls1UFa+KmtfXFW7U9iX2I2H9zVj34x9dUzHSN8eX3BLtYfTuWmTvU9dNoEaXlpgm0PJIDC8ioWPTsGf7Xl5ty3bRA3v7ectYdT6NUmCJPJzAdL99EqQM33jwyzCkK39Ipi6sx1fLh8H789O4bIAA3tQr1ZFp9Il5Z+9IyyBEgKuYzPpg7k9QU7OZFRyLL4RJbFJyKRWKqgpvSOYmiHcOt81hxMuaLryiqq4Nv1R9h4JNVOYOoQ5kOAxrGVz4w/DuKqVDD3iRF4uVsWuMGxoUz8YAXztp3kzdt68/Hy/bi7KPjpPzdZ+yVN6tWaZ+Zu5fM/DjIoNhRVA9U+qw8k8cXqQxRV6OkY7sM7t/ehf0ywncAGXHHvI4X88j1ok7ItLyUzCsp5aUJ3qo01rNh3jk9XHqC0Us+0obFXNDeBQHB98Wmt+DHrlpbWbKkJ7b14ZmUqX+zIpn8LD5RyKT8dyCO/wsjM8RG0r22wOypaw4O/JfHj/jwbgalzsBvvjqyv6pQA8w8XcDq3yvpw/2B3v9rgpJDdqeXsTrWI6T4qOcOj1NzZyfuy/bhzyg28M6JeTBrVVsNd8xP5cle2jcBUrjcxKVbLf/pYgqfx7bS8tCadxUcLmNBOS6CnEz8fyCejpNrmfOPbaQnek8PPB/NZf6bEplHwoFaeTOth22/xq105aF3ljfbAKtEZeX1dBgczK/B0ljEp1ovx7TT4ORBsIr1diPS+sv4blyMuASTV2jgcz6ni9jhv7uvqw6ncKhYcLuCxJcnMntzSGnAJBALB1aRD21a0Dg9h8+6D9O/WkYgQy737vW/m4a5yZeGMN6y9iW4dPYQn3vyMj2cvYFifrqhqt5tMZvp26WBj7abT61m6fjupmdmEXYaN2+BenXn6vsnWn/cdPcWKjTt4ftpt3HHzMOv2gT06MfXF9/h52Xoeum2sw3OVVVTy7HtfsefQcTzcVEwZNYjJIwcR7O9jN7Z1RAitI66sJ21zxaWEM0kcP5vM1EkjLymSAeirDWRk5wLQLbYtH774KNl5hcxdvIZHX/uEmW9Mb5Y1n0AgEFzMx9uykEokfDcpAt9akWFCOw3TV6Xxw748hkR6EKJ2olOQivmHC2nn52KtbFp8rBCZBGbcHGbtkzQ2GhQyCUsTikgvribcgehRUGkRIbxUzX/mdVfK+G5iuDXOCdcqeWF1OjuSywjXKMkpM7A5sZQ747x4sEd9EsGIKE/G/XiW+PRyG4FJX2PmvZHBeKvq32PN3JWDQirhmwnhaGuFk6GRHty9IMlmLj8fLCCr1MB3k8KtFTjj2mkIjc/jxwP5jG6rpq2vC5sSLdVR74wItiY59G/hztMr0ziXr2tQYCrRGXl9fSYHMytr4xst42M0dtVDAJHezkR6X3pdaQ7f7skluUjPmGi1tfKp0lCDr4N3fsraOFhXWwVVrjdhMJl5ZlU6I9t4ckecF6fzdMw/XEBmaTVfTwjHSSYlxt+F5SeK2ZpUxsT29dVlJ3KqyKsw4ixvPGsypbCaUn0NCpmEV4cEUVxlZNHRQl5bn8mrg80MvYK+Y4J/NiJiFjhkSKxtw9KoQC37E3MoqdTj7OT4z2ZLQhoqpYLYcG+KK+rLJru28kepkLHjZKaNENOpheMMtZgQb6u4BOCnVqFWKSkss5zzzPkiMgvLGdU5lnJdtc2x/aKD+GHzcVJyS4nwa/jGFeLtzpzHR3A4JZdtxzOIP5vNuZxiEtIKSEjbxYFzubw4odtVua4AjYoOYT5sPJrKw8M7AHAqs5C0/DJu69vG4fwKy3UcTy9gUs9Iq7gE4OXuwqzHhqNRKSmp0HMoOZdx3VphqKmhuKLGOm5ATAh7zmRxJDnXWvV1MfvP5VBUoadP2yCeH9cVX0/XBr+vC6/bEU5y2TWzrRvdpQUD24dwe9/63k3DO4bz4Dfr+fHPE0zoYfsdCQSCG5e8cgMncqqY2F6L3mhCb6xPa+sX4c6hzAoSsivpHOzGrpQyonycreISWEr/3xoRwsWPzRdb5tVZDuRX1Pfqk8skPN0vgNvjvNhyrpT4tHKOZVeSV2Hkl4P5bDlXylfjI9A0YIPQGBFapY2QpHKSMbqthrn78zhXoLOxMLi7c/1LO4lEwpQOXuxKKWN3ahkTY73YnlxKmMb2fAB3dvZh/uECtieX2ghMHZvZz6iO4qoaDmZW4OYk5Zn+gfRv4W5jS3EhOoMJndHeAuJCPJ1lDR5/JQR6OHFvFx8GtfK0Btx9IjyI9Hbh1XXp/Hoon0d7iT4bAoHgr6G4tJz9CaeZOKI/BoORopIy675BPTux88AxDh4/Q9+uHazbh/ftZnOONi3CgO0UFJVelsDUuZ2tQ8DGXfsB6Neto818IoIDCPb3YWv84QYFptLySvYcOo6rizP/feROhvfthlTqOCGgSqdHp692uK8OT3dVg8dfDovXbkUqlXDbmCFNGm8wGnni7omEBfozuFdn6/bBvToz7uH/8tGs+Sye+fZVm59AILixyCkzcDZfz7gYtVVcAkuccVcnL55ZVcmO5HImd3Bs5/n8gAAe7uFrFZcAqgwmFLVVS5UOLNcAZLXP2DWmxqtTHNEzzM0mia6tryUuqROt/NwVrH0giovv3OXVNTgrpHZzCvJwshGXCiuNJGRXMb6dxiougeUZflArD9aeru8JtTWplAitEi9XOcVV9XFanwg3fjyQz66Uctr6uuCjUlCiq2HmrlxGR6sJ1yjxc1fw6+2NOwBZ4ptKS3zTz/8vjW9+PpDPgiOFtPRS8liv+uQ/M9jFrhdSd3qDyUx+hZH7ulgS6gD6tfDASyXns+05bDhTyqi2aga29ODHA/l8uycXmURCt1AVqUXVfLo9G3ellMb+RIwmM3d08kLjImPEBYmIg1t5cNeCJGbuzmFQKw+HVXSCfz9CYBI45EJ7NKjPDG5swcksLKdCb2DEW0sc7s8qrrD5WePmWM2/+LPrPr/uszMKLYHNdxuO8t2Gow1+VmMCUx0dw33pGG4RhArKqlh7KIXZm46xLD6REXHhdIzwvSrXNSIugveWxnMqs5A2QVo2HElFIZMyuH2Yw3NmF1nOGeJlbwNRVwV1PN3Sr6KuAsvx3Codbge4d1AMSoWM1QeTGf/+cgbEhHBL79bW78Nm/g1cex2X6sF0JdzcrZXdNqlUwrhukbz9+x4OJ+cx+CJBVCAQ3JhkllpeTC0+VsjiY4UOx+SUGTCbzeSUGxxmpzmyflC72FYeKWutA4wO1kQ/dydu7ejNrR29qa4xEZ9Wzg/78jibr+OH/blM7xfY7OsKd9AkNURtmWd2mcEqMGlcZHbVNnXjsuquu8xA73D7tcVFIcXPXUF2qcFmu8bl8qqugjyceH5AIL8dLeC1dekEeToxoZ2WkW3VqC6q5Jq7P++KezBdLi28nGnhZb9u92/pgdZFzsHMCgdHCQQCwbUhPctSHbN47VYWr93qcExWnm1PB63a9p7uVFvFU2Nq/MVWQ2jVtgkIGbVzGj3thSaNvxB/by1vPX0/vyxbz4sffssXPy1hyqhBjB/WDw832+S2uYvXXHEPpuZgNpvZGn+YTtGt8fXSXPoAwM3VhamTRtlt99GqGdSzEys27aSwpBStp7ABEggEzSerzBLLOOqVVBcPZJc1LMRLJRJKdDX8cqiApAI950uryS4zWEUBcwOv8+qqYQqrjA5jocbQXBR7ONXGSYaa+g9TSCVsPFtCfHoF6cXVZJZWU1Ftcjini2OPzJJqzNTHNBcSpqnfZjabySo1YDIbGDv3rMO5ZpdZ4pzJHbQcyKxg0dFCFh0txN9dQY9QN0ZEeRLdiE2gJb4J4LfaipwgT4UlvmnjaR/fHMi/oh5MF/LtnlzmHSog2NOJD0eF2FjXuSik6BzY1ulrhTtVrQ2fc+3vZUy0rQPFiCg1n23P4dD5Cka1VaOUS/loVCivr8/kk+2WPl9OtQJnalE1CTlVDc5TLpVwW0cvu+2uTjKGtvbk10MFpBTp7fo7Ca4PhMAkcMjlZAmbTGb81Sr+O9He9g7AVWn759ZQ88BLfbSpdnWcOqgdHSMcV0FFBjRs27No52kqq43cO9DWvsDL3YU7+rXF19OVV+fv5HBKHh0jfK/KdQ1qH8onK/ez8WgqUYEaNh5JpWdUIB6ujhdvU90q28iXUfc9jOvWikHtHQssYT4N+5SHenvwwvhuPDysA4v3nGXJnrNsOpZG60ANk3tFMaxjGE611nYz7h/U4HkAfDz++goirZvlAauq2nCJkQKB4EahLnga305L3wjH978wjRIzYDI1fa1raL2q4/D5CnYkl3FrRy+bjDsnmZQ+ER50DFQx+eczHD3fsOhP7ZwcIXeQ5VV3rTJJ4+PqvMllUkuGW0OBJVgCM7nM9hyXuvaGkMskjI7WMDpaQ3xaOYuOFPDlzmxmxecyIkrNxPZaQmsD5dHRaroEN14p5aG8fKvVy0XtInPYXFcgEAiuFabahWDiiP4M69PV4Zjwi6qSpJLLq+hpSICSSe370SqdFMx47UmH4+Wyhu/PMpmUsYP7MHZwH/YePsHPy9fz6Q+L+PrXZbX9nAbTMtTitjBmcC/iYiIbnbO35upZ65xITKGguJRpU8ZclfPViUqVVXq0wgFIIBBcBo09p9fdsRWyhp/N158p4f82n8dbJScuUEXXYBWtfZw5k6/j6925DR7XPsDyPud4dhXt/R0721QaTExfkcqAlh7ceoGIcKlQQWcw8diyFJIK9MQFqegU5MqkWA0dAlx54Pdku/HSi+KZuoQ+R9ftdIFFdl2cE+vvwr1d7W1YAbS14pW7UsZX48M5nl3FzpQy4tMrWH68iGXHi3iitx+3xDquEJPLJIxuq2Z0WzXx6eUsOlLIlztzmBWfx4goTya209THN22vPL4xmc18vDWblSeLidAo+WRsqJ0g5e+mILFAb3dsfm0FmU9tbOqjkpNRUm2XjOiqkOIsl1BZXf9MEOTpxKxbIkgu1FNeXUOERombUsZDi5MJ9Li8hL864VDEVtcvQmASXDUCNCqOpebTqYWvTR8fk8nMpmNpeLlfHZW6rmeRs5OMbpG2AdbpzEIKynUN2vgBbDuZwbGUfCb1jMTN2V7gaelviQicFTLr513pdXm4OtEzKpA/E9LpFx1MTkklT47u1OB4P7VlUc8sKLPbN3fLcUor9VbLOIkEu+8hLb+U1NxSnJvgQ+6pUjJ1cDvu6t+W9UdSWbDjFG//voeZaw6x5tWJgP35/yqKynU89v0merUJ5PGb4mz2peSVAhCodXN0qEAguAHxr/W/lkmhS4jtvSG1SE9mSTXOcilSiQQfNwWZJfYZgH+eK2F3ajmP9vKz29cQGcXVLDpSQEsvZxt7uTrclDJ83BQ412ab1dlQGC7qTFtYabQ7FuB8qf08M2rnHnxBNl9BpRGdwWT9HMs4S8AR4qlEKpHg564grdj+fFUGE7nlRlpdZa9wgG6hbnQLdSOlUMeiIwX8cbKIZQmFPDcgkNHRGoI9lQR7Nt4E91oxa28O68+UMHtyS9wvCPIMNSaySg3EBjZsHysQCARXm8Da6hwJEnp0tE2GS83MJjkjG2dl8+6XdZZy1QbbpKyCohJHwx3Oafeh47QKC7YTeDbvPoivV8OJfRfSvWM03TtGk5KRxc/L1rNy805+W7OFlx6+k1tHDybY35dgf8fJg9eCQycsGe4Xf8+NsfPAMd77dh5P3zeZQT1tY7nkjCycFPImfx8CgUBwMQEeluf6tCJ7waBu24XWeRfz9e5cgj2d+H5ShLUXLcCBjMYr8jsGqvB0lrHmVAmTO2gdJphtPVfKiVwdHQKbZ5+9/mwJZ/P1vDAgwLbXktFkI2o0RF1FVbqD+CXjglhOKpHg6yan0mCyE3bK9DUcyKiwiiMpRXr0RhMx/i7E+LvwYA9LvPWf5anMP1zQoMB0Id1C3OgW4kZKoZ5FRwv542QxyxKKeK6/f21840RwM6vBLubTbRZxqY2vMx+OCsHT2f79XmsfZ/amV5BfYbBJdDyVa6k0qnPsiPJx5tD5SlIvqiAqrDSiM5qtfaSyywzsSy+nT7g7ERf06yrRGTmTr+OuuIariE/lVvH2pvNM7qBlbLRtZXBakeV3Vfc3Lrj+uHoGxoIbijrPTNMFKRZ9o4OprDaycOdpm7GrDybx6vydbD+ZeVU+u22wF97uLvy++6xNDyZdtZHXFuzi9fk7rR6kdfM0XzDPm+Ii0Btr+HTlQYw19gvasr2JSCUS+rQNuqrXNSIugoyCcn768wRuzgrr+R3h4+FK60ANm46lUVJZ/3BRVK7j120nySqqwNvDhbbBWtYdSiGrqP6BwWQy8/6Sfbz4y3aqDI5fVjpCIZcxqnMLfn5yJF8+MIjoEPvS1r8ajZszekMNf+xPoqi8vg9UWVU1C3acxl+tIjbMcXaKQCC48Qj0cCJCq2TtqWLyK+pfpBlNZt7fkskra9Oprs3Y7hXmxqncKk7n1pf5m8xm5h8qYH96ebMqZvq2cMdFLuWHfbnklttXVR7LqiSlUE+f2qoquUyCh1LGuQK9zfq0OdHxy77jOVWcyKmvfirT17DyeBGR3s42wozJDIuPFVzws5kFhwtwkknoVWuL1zvcndQiPduTSm0+Y/6hfIwmM73CGq58rUMqpVH/7YYI1zrz/MAgfr+7Nfd19blkxuNfgZ+7guwyA8uP21oq/nqogCqjiaGRIg1dIBBcO+rEH5PZsjb5aNXERIazeusezufWW4eaTCbemvkj09/5giqd/YvHxqgThU4np1u3GYxGNu062KTjB3S3JHl9v3Clzfb4oyd5+p0vWLJuW7PmEx4cwKuP38O6Hz7m8bsmXNWeSs3h1LlUXF2cCQtqekJJREgAGdm5/Lpyg836fex0Etv3H2FI7y44Ka5NX1qBQHD94++uoKWXkvVnS21iihqTmV8PFSCVQI9QSxJdXaFPvf2dmTJ9Df7uChtxqbjKyPqzlhijpoESKYVMwn1dvUku0jNzV67N/Q0s4s7MXbmonKTcEts0S9E6SnWWXuEXW37/fqyQGvOl+z75uilo6+vMpsRSyvT1fccLK41sTrSNZ3qHu5NYoGd3qm2i9i8HC3htfSZn8y3vlO5NVnIAACAASURBVN7fksV/12Sgu6CaJtDDCa2LnEYKxBwSrlXy/IAAfr+rFfd19b5qPWPXnCpm+YliIr2VfDom1KG4BDCgpaV6dvGxIus2Y42ZZceLCPJU0NbPIiYNifREAsw7aGvbt/CIJQbqVxunlulr+HBrNqtPF9uMm7U3D5lEYmexdyGhaieyywwsTSiysUhML65m/dkSOge5NskSUPDvRPxmBZeFp6slE3r36fOEerszsF0oY7u2ZPWBJL5YfYjErCJiw31IzS1lyd6zhPt6MKln45YHTUUukzJ9bGde+XUnd89Yw7hurXBxkrPqQBKpeaW8OL6btYJJrbIsYsvjz1GmMzC8YzgjO0UQfzabPw4kkZCWz5DYUPzVKkqrqtl+IoPDKXk8MTKO4Nr+R1frunq3CcTdWcGOk5mM6dLCaj/XEE+N7sSTs7dw35drGdctEie5lKV7EzGaTDw0LBaA6WM68/j3m5n65Vom9IjEy92FzcfSOJCUwz0DovFXX15z9i6t/OnS6q+vWjqbVURidjGxoT4EeVkenJ4f15WnftjCtK/XM6FHJMYaM8vjEykq1/HpfQNsqsoEAoHgqb4BPLsylQd+S2JcjAa1i5xNiSUkZFcxtauPtY/P3V182J5cxpPLU5gYq8VHpeDPc6WczK3izeEhzQoOPJ3lvDQ4iDc3ZHDPgkSGRHpaK4FO5lSx4UwJ7QNcmdyhXrgfHOnJ0oRCXl2XTvdQN07mVLErpRw3pf09zUkm4dmVqUyK9cLVScqK40WUV9fw5ohgu7Fz9+eRVWqghZeS7cllHMio4JGeftamuPd08WFnShmvr8/g5hgNYRolR7Mq2Xi2hLhAV4ZHXTrzWu0s51yBjmUJhXQKUlmtIJqK2kXOvV3/uiz1OkxmMxvPlKBSyqx9qG5qo2H1yWJm7c0lq9RAa29njtR+H73C3RnaWghMAoHg2qHxtNyLflm2nv7dOzKgexwvPHgH017+gNuffpMpIwfhpfFkw4597Dt6ivtvGUWAb/OSwLq0j8Jb48mc3/7AZDLhrfFkxaad6A1Ns5nu2yWWgT3iWLBqE9l5BfTu3J7cgiLmr9yEt8bzsi3m1B5uV82e7nJIO5+Dv7e2UYFr96HjFBSXMKhnZ1ydlQT6enP/LaP4fuEqpr38AcP6dOV8bgELVm3Cz0vL9KlT/sIrEAgE1yNP9fHnmVVpPPh7MuPaaVA5ydhyrpSE7Cru6extreipszrbcLYEMzCqjSfdQ93YnlzGh1uzaOvrQm6ZgVWniq0iT2MVQ+NiNCTm6/ntaCEHMysY1NIDD2dLQtya08WYzfDW8CCbKpmm0DVExez4PN7enMn4GC1OMgn7MsrZnlyOk0xCZRMs057o7ceTy9OY9nsyY6M1mDGzNKEIndFybF3Udk9nb3aklPHK2kzGxqiJ0CpJyK5i7ekSugSr6FP7/H97nBevrM3gsWUpDG+tRimXsDetnFN5Oh5vhovFhahd5Nzb5eokP9eYzMyKzwMsotnOlHK7Me38XQj0cCLS25mboiz9jcr0NUT5OLPuTAmJ+XreGRFsrUZr7ePMLbFaFh0tpNJgomeYGydyqlhzuoTBrTyIC7K8O4z0dqZ7iIof9uVTUlVDqNqJPWkVbEsu44nefvhcUEF3NKuS7DID3UJUqF3kuDrJeKSnL5/vyKn9bj0pqaphSUIRznIpT/f9e5yRBH8NQmASXBbOTnIeHh7LL9tO8snKAwR7udO5pR9fThvMnM0JbDqaxsajFvu4UZ1b8MCQ9g7t6C6XQe1DmXG/E3O3HGfu5uMggQhfT/7vjj42/Yi6tvJncGwoO05mcig5lwExISgVMt64tRd92gbyx4Fklu5NpLSqGjdnBTEhXsy4f5CNJZyTXHZVrstJLmNQbCjL488xIi7ikuM7tfDj64eG8N2Go8zdnIBcLqVdiDfv3NGHcF/LC6/2YT5898hQZm08xqKdpzHUmAjxdufF8d24uVvLZn6rfz9/JqQze1MCr0zqYRWYurcO4NP7BvDD5uN8u/4oMqmE9qHevHFrL9qFXp0mvwKB4PohLkjFl+MjmLs/l0VHCjCazISolbw4MJCRbesz7rxVCr6ZGMF3e3JZcbyIaqOZCC8l748MpWf4pat4LmZASw/CNC1YeLiAfenlrD1djFQiIUTtxLQevkxq72XT3+ihnr6YzWa2nCslPq2c9gGufHZzOM//kWp37mg/FwZHevLT/jzK9RY7h1eGBBHtZ2/f9smYcD7eep61p4sJVSt5dUgQQ1vXi0ZqFzlfT4xgTnweW86VUqarwd9Dwf3dfLk9zsta+dsY93f35dNtWXyxI5tpPXybLTD9XRhqzLy9KZNQtZNVYJJLJXwwOoxZe3PZllTKmlPF+LkpuL+bD7fHXb0sRIFAIHDEiH7d2bRrP6u27OLQibMM6B5Hh7at+PHDl/nm12XMW7EBg9FIWKAfrz5+DxOH92/2Zyjkcma+MZ2PZy3gxyVrcXVxZmT/HvTv3pFp//3gksdLJBI+fPFRflyylpWbd7LzQAJqDzf6do3lsTsnNFvw+qdQVFqO2r1xq+1ZC1eyP+E0q2e3xtXZstY9ducENJ4e/L7mT97/7lfcVa4M7d2FJ+6eiI9W2OMJBIIro0OgKzPHhzFnXz4LjxRiMpmJ0Cp5bUggQy6orG/lpWRstJoNZ0o4maujW4iKFwYE4K6UsjOljPVnSvBRKegX4c7NMRruWZjE/swKeoQ5vu9JJRKeHxBAzzA3az+ioiojns5y+rdw585O3nZVSE0hyseFN4cHM3d/HrPic3FRSAlVK3n3pmB2pZaz5lQxJTpjgxU6AO38Xfl4TAjf7c1jzr48VE5SRrZRozea+P1YkbU/k8ZVzjcTwpmzL58/z5Wx4ngxvu5y7u7sxR1x3tY4p2+EO2+PCGb+4QJ+PJBHdY2ZcI2SFwcGMNKB3flfTUZJNXkVFjeiufvzHY55aWAAgbV2c8/2D8BbJWft6RLWnSkhTK3knRHBVveMOh7r5UuQp4IlCUXM2JGDl0rOfV28uauz7Xu114cGMXtfHptrY8UwrZI3hgUxsLZaqo4lCUVsTizl6/HhVsFzYnstrgopvx0t5Ktdlt9352BXpnX3vWLLQME/G0lgYOBlmJwI/i1kZmZStPSNv3saAsHfhmb86wQFNWxHKBAI/hlkZmaS8/mEv3sa/zjG/XCaUI0TM8Y1npjwv/XpbE4sZdujTe8lIbhy/J5cItYYgeA6IDMzE93ZXX/3NASCy8Y5spdYjwSCv5HMzExyPhv3d0/juqSg0ujQWu2DP7NYd7qEjQ9GiaSw6wC/p5aJdexfjPCWEggEAoFAIBAIBAKBQCAQCAQCwT+K+xcl8cyqNJttldU17E4tp42vsxCXBIJ/AMIiTyAQCAQCgUAgEAgEAoFAIBAIBP8ohkd5Mv9wIa+vz6BzsIoqg4nVp0oo0Rl5faioeBEI/gkIgUkgEAgEAoFAIBAIBAKBQCAQCAT/KB7s7ouPSsGqk8XsSS1HIZPS1s+Z5/sHEOPv8ndPTyAQIAQmgUAgEAgEgn8sy+6LatK4/w0L4X/DrvFkBAKBQCAQCAQCgeAvRCaVMClWy6RY7d89FYFA0ACiB5NAIBAIBAKBQCAQCAQCgUAgEAgEAoGgWQiBSSAQCAQCgUAgEAgEAoFAIBAIBAKBQNAshEWe4Lri+w1Hmb0pgQXTRxHu69nk484XljPhgxXc1T+ax27qeA1nCNtOZDBnUwIpuSWoVUrGdGnJPQNjkMsurffuPJXJnE0JJOWU4OasYFD7UB4cFotKqbAZdyqzkJlrDnMsNQ+pRELHCF+eGBlHhJ/td5JRUMYXqw9x4FwOhhoT0cFePDy8Ax3Cfa7qNQsEAsGNwpz4XObuz+Pn21oRplE2+bis0mqm/HKW2+O8ebin3zWcIexILuXH/XmkFunxdJYzqq2aOzv7IJdKmnWe51alonKS8r9hIXb7jmdX8t3eXE7kVKJSyOgW6sb93Xzxc1c4OJOF/AoD9yw4R9cQlcNzCgQCgaBpfD1vGd/MX86yr/+PiJCAJh+XmZPPyPuf475JI3nq3luu4Qzhz72H+Hb+CpLSz6PxcGfcsL48MHk0cpmsWefZsf8oj/3vU15+9G4mjxxos+9kYgqfzf2NwycTkUqldI5pzdNTJ9My1LYp/GufzWb5xh1251Z7uLH11y+af3ECgUBwgzNnXx5z9+fz860tmh8TzTvH7XFePNzD9xrOEHYkl/HjgfzamEhmiYk6eV9GTJSGSinjf0OD7Padzqvi2z15JGRXIpFI6BDgwqM9/QjXNvydzDuUz29HCll2b+tmX5NA8HchBCbBdcWAdiEEe7vj4+HarOM0bs68PqUnLf3U12hmFv5MSOeledvpGO7L4yPjOJtVxPcbj5FXWsWLE7o1euyWhHRe+mU77cO8eeymjmQVVfD7rjOcSC/gm4eHIJNaBKrUvFIe/XYjSoWMqYPbIZFI+HXbSR76ZgM//ucmAjQqAIordDz8zUYq9AZu7ROF2lXJol1nePz7TXz3yFDaBntd0+9CIBAIrkf6t/Ag2NMJb1XzHrHULnJeGRxEhFfTA7DLYVtSKa+uTSc20JVHevmTmK9jzr488iqMPDcgsMnnmROfy960cga18rDbd+R8Bc+sTEUpl3JbR29cFFKWJhTy6JIkZk6IwN/dyeE5P9qaRZm+5rKvTSAQCAQWBvfqTEigLz5ezYttNJ7uvPPMNFqFBV+jmVnYtOsAz7w7k04xrZk+dQqnk9L4et4ycguKeO3xe5t8nrKKSt78cq7DfSkZWUx96X2UTgoevHUsUomEH5eu5d7n32XhjP8R6OttHZuYmkmblqHcNW64zTmUioaTIgQCgUDQMP1buF9BTBRIRCMCzNVgW1Ipr67LJDbAlUd6+pKYr2fOvnxLTNS/6YkZc+Lz2Jte4TAmSivS85/laShlEu7u7I1UImHB4QIeW5bC7Fta4O8g8S4+rZzZ8Xl4KJuXbCEQ/N0IgUlwXREZoCEyQNPs41yc5NwUF3ENZlRPjcnE538cpE2Qli8eGGStWFIpFczfcYpberWmpX/DQeDnqw4Q4evJ1w8OsR4boFHx0fL97DiZSf8YS7b3gh2nqKw2MuOBQbQLtQROnVv4MXXmOuZtO8mzN3cBYMW+JPLLqnjrtt4M7RAGQP92IUz5aBWzNh7j43sHXKuvQiAQCK5bWno709LbudnHuSikDIu6tkkONSYzX+7MJsrHmU/HhCOXWbLzXBVSFh0pYGJ7LS28Gp+73mjiy53ZLD9e1OCYT7dlYTbDl+PDidBazjc8Ss2d88/y1a4c3hxuX5207nQx+9LKr+DqBAKBQFBH64gQWkc0vxLU1VnJ6IG9rsGM6qmpMfHR7AVEtwrj27efRSG3vJJQuTrz87L13DZ6CJHhTRO4Ppq1gMLiMof7flm+gcoqHd++/SyxUS0B6Brbhjumv8WPS9by0sN3AmA2m0lKP8+EYf2u+bULBALBjUJLL2daXiKucISLQsqw1k13I7ocakxmvtyVWxsThdbHRE5SFh0pZGI7TRNjohyWnyhucMxvRwupMpj4dEw40X4uAMQFufLQ4hQWHC7gqb7+NuNXnCji8+05GE1XeIECwd+A6MEkEPxFHEvNJ6uogpu7trKxw5vSOwqzGTYcSW3w2MJyHcFe7ozrbntsXISlZPhsVv2idr6wHFel3CouAUSHeOHpquRctu04gG6R9Yuav1pFhJ8n57JLruBKBQKBQPBPJCG7kuwyA6OjNdZACmBSrBdmYFNi4/f+/AoDd81PZMXxIu6I83Y4JrusmqRCPYNaeVjFJQCtq5ybotRsTyq1q1IqqDQwY0c2d3cR9qwCgUBwvXPkZCLnc/KZMLy/VVwCuGPsUMxmM+u2723SeXYeOMaKTTt4YMpoh/szsnNRuThbxSWAdq1boPZwIzElw7otMyePKp2+WVaCAoFAIPj3kpBdVRsTqS+KibS1MVFpo8fnVxi4a0ESK04Uc0dcw84/58sMuCqkVnEJoK2vC57OMpIK9TZjp69M46Ot2cQFudL6MpIVBYK/G1HBJPjXEH82m+83HiUxqxh3FyfGdWuJ2QzfbzzGnvduB+x7MK3an8Tbv+/hxydGsHDnaXacyqTaUEOHcB8eHxlnrXZqSg+mujGNcf/gdkwbGutw38mMQgDaBGtttvupVWjdnDmZUdDgebVuznw5bbDd9jNZlgxyf7XKui3E24O9Z7PJL63C28OykJVU6inXVePj4XLBOHcA0vPL8Ay1lB8bjDXkllQSpHVr9DoFAoHgRmR/ejlz9uVyLl+Pm1LK2BgNZrPFY3zbozGAfQ+mNaeKeHfzeWbd0oLfjhawO6Wc6hoT7QNcebSnv7XaqSk9mOrGNMa9XXyY2s2xX/npvCoAonxdbLb7uSvQusg5lVvV6LmLqoy4KqR8MjaMzsFuzDuUbzcmr9wI4DDrL1itpMYMSQU6OgTWr1sfb83Cz03BHXHezI7PbXQOAoFAcKOz5/Bxvp63jNPJ6Xi4uTJx+ADMmPl63jKOrPoBsO/BtHzjDl77bDYLPv8f85avZ9u+I+irDcRFRzJ96hRrtVNTejDVjWmMh2+7mUfuGOdw3/HEZABiWoXbbPf38cJL7UHCmeRLfgfllVW8+eVcbrlpIJ1johyOCQvyZ/eh4+QVFuOjtVQIl5SVU1ZeaWMdmJiaCUDLEEvvjEqdHhelExJJ83pwCAQCwY3C/owK5uzL41y+DjeljLHRaszAnH35bHukLWDfg2nNqWLe3ZLFrEkR/Ha0kN2pF8ZEvtZqp6b0YKob0xj3dvFmalfHyWvWmMjHNl7xc1OgdZFxKk/X6LmLqmosMdGYUDoHq5h3yPG7vBBPJ/alV5BfYcBbZbHDK9XVUK6vwdvV9nV8dpmB6X39uTlGzZMr0qCi0SkIBP84hMAk+Few61Qmz/20jRBvd6YNbU9ZVTXztp1CJmvag/8LP28n2MuNB4fGkl9axfztp5j+w58sfeFmm4qgxqjr09QYrRqxuMsrrQTA19O+P5S3hwvZxZVNmofZbCa7uJL9idl8sfoQLfw8GRIbat1/94Bodp7K5PUFu3hqdCekUgkz/jiIXCrltr5trOPGdWvF+iMpvLsknhfHd8XTVckPmxMoqtBdsh+UQCAQ3GjsTi3jv6vTCFYrmdrNhzJ9DQsOFyBr4guoV9amE+jhxP3dfcmvMLDwcAHP/ZHKortaN7mRbF2fpsZozIqiTvzxVdn7fXup5OSUGRo9d4TGmR+mtGz0pZuLwrKmVhnsvR1KdZbKpcJKo3Xb+jPF7E4t49uJLWwyCAUCgUBgz/Z9R3jyrRmEBfnz6B3jKS2v4Kela5E1MZ6Z/s4XBPv78tidE8grLOKnpet49PVPWPvDR8hlTev3UNenqTFahzdsz5dbYEmQ8/XW2u3z8VKTnVd4yTl8PGsBUomEp+69heNnUxyOmTppJNv2HeGlj77luQduQyqV8vHsBcjlMpteS3UC0+qte3jmvZkUFpfi6a5i8shBPHz7zU3+XgQCgeBGYHdqOf9dk06w2qk+JjpS2PSYaF0GgR4K7u/mTX6FkYVHCnnuj3QW3dmqmTFR471jWzbS1zav4kpjIiU/TI64ZCLC7XFe7Eot562N53mitx9SCczcnYtMKmFyB9s18McpLVCIWEjwL0YITIJ/BZ+sPIC3uwuzHxuOSmlZBPpFBzN15romHR/h58Gn9w20/uwkl/HdhqMcSMqhe2TT7BCutE9Tpd6yiDkr7IMUZ4Wckgq93XZH5JZUMv795dZzPTO2C85O9f8r+3q6ct+gdnywbB93zVgDgFQi4c3betE2uL58V+WsYNqQWF5fsItpX2+wbn9iZBz9oq9tY1+BQCD4tzFjezZeKgXfTozA1clyH+8T4cFDvyc16fgwjZIPR4dZf3aSSZkdn8uhzAq6hjStavRK+zRV1oo+SoV98OIsl1Kiq7HbfiFNEYDCNUpUTlK2JZVyTxcfZLWBotlsZnuyxW6iusYMWISmGduzub2jN619XBo8p0AgEAgsvP/dr/h4qfnl41dQuVrumwN7xHHH9LeadHyLkEBmvjHd+rOTQsHMX5ay7+gpesbFNOkcV9qnqaLKkhnuonSy2+esVFJc2ng/vt2HjrN0w3a+emM6ri4NJ1X4eWuZNmUM73z1E5P/8zoAUqmE9557mJjI+pguMdVil3c6KY1n7p+CXCZj7ba9fL9wJdl5Bbw9vXExTSAQCG4kZuzIxksl59sJ4fUxUbg7Dy1OadLxYRonPhxVnyDtJJcyOz6v+THRFfRpqo+J7JMzLDFR4wJTU5PifN0U3N3Zm0+2ZTH1N0t1rlQCrw0Jos1FjhJCXBL82xECk+Afz9msIjIKynloWKxVXAJoG+xF98gA9pzJuuQ5BrcPs/k5KshijVdY1njp64WYTGZKqxoXgZwVchux50LMWF6oNZTl0FQbBie5jHdu74POYGTBjlP8Z/Zm3rqtN4PaWxbp79YfZc7mBNqHejOhRyRSqYRV+5N4bf4uqvRGxnS1+JCv3HeOdxbvJdzXgyf7dkKlVLA5IY0vVh+iqtrIA0PaN2k+AoFAcL1zLl9HZmk1D3TztQZSAG18Xega4kZ8euMvwwAGtfKw+bnOW/vCap5LYTKbrVVADeEsl+LsIFi6EAmO15smJg02ilwm4daOFqu719enW0QmiYT5h/LJKrUEa3Wi08dbz6NxlXNPA/YVAoFAIKjnTHI66Vm5PH7XBKu4BBATGUHPuBh2HUy45DmG9bV1KWjT0hIj5Rc1vf+qyWSipKxx7x5npRMuzg1kj5tr/9tA7CNtJCaqqKzijRk/MHZwb3p1atfoHGb+spTvFqygQ5uW3DJyEDKphOUbd/Dih99QWaVj/LB+AAzu2ZmI4EDunzzKWq00ol93nnvvK1Zu3sXtY4cSfZGdn0AgENyInCvQkVlq4IFuPg5iIhXx6Zf2dRvU8uKYyLJWFFY2HuNcyBXHRLXrUEOrTWPrUHOYHZ/HjwfyifFzYVyMBqkE1pwu4c2NmVQZTIxqe/mJgwLBPw0hMAn+8aTnlwEQ6u1hty/cx6NJApPWzTbAUdQGDzUms6PhDskurriiHkwutcKTrtpo/XcdOoMRlbN9ea4jNG7ODK61xBvYLoTbP/2Dz1cdZFD7UMqqqvll2wla+av5+qEhVvu/YR3CeHLOFj5asZ/ebYPQujnzzfojeLu78P0jw3B3sWQQDo4NRaXcy+xNx+gfE2ztUSUQCAQ3Mukl1QCEqO2zrcM0TsSnX/ocahfb+35dlprJ3PR1KKfMcEU9mOrs6/RGk/XfdeiMJlwvIUw1lbs6e1NZXcOiowVsS7Ks4R0CXXmqrz9vbczEQylj09kStieX8e7IUCqrTVRSb6lnqDFTXGXE1UmKUxNtnwQCgeB6J+18DmDpLXQxLUICmyQwaT3dbX52UljWJpPJ3ta0IbLyCq+oB1Od8KTT63G9SITS6fU24tnFfDJnEVV6PQ9MHk1RiWV9Ka+02IxX6fQUlZTh6a6ivFLH3MWraR0ewuz3XkQht1znTf178PBrH/Pet/Po160jXmoPhvbp6vCzJo8cxPod+4g/clIITAKBQACkFzcWEymbJDDZx0SWZ/1mx0RX0IPpr4iJyvQ1zD9cQEsvJV/cHGatehoS6cEzq9L5bEc2vcLc0LiK1/KC6wPxlyz4x1NTG/Ao5PY3eScHdnOOuBpNWr3cXZhx/6BGxwRpGy7pDVBbGprnl1WhcbO1c8gvrbJWVTUHV6WC3m2CWLznLMUVOs4XVlBtNDGkQ5hNbymJRMKozi2IP5tNQmo+7cO8KSjTcXO3llZxqY7RXVqwYt85Dp7LEQKTQCAQUJ+M4Mi6oKkCyNWoDtK6yvlkTFijYwI97AO+OvzcLIkMBRVGu+CuoMJIpE/DVkPNQSqR8Egvf26L8ya1SI+XSk6wp5LVJy19NwI8FGw8YMmWf2l1mt3x25PL2J58mpcGBXJTG7EOCQQCAYDBaMnWrhOFLsTRNkdIpVf+0sxb48m3bz/b6Jhg/4YrUwN9LZbd+YUlaD1tEwjzCopp27LhdW7XwWMUl5Yz5sEX7fZ9Mmchn8xZyOrZH1JUUvr/7N13dJTF+sDx77b0ZNN7L0BCgIQaOtJBOlhAUbAgKPZ+LVwLlp9eBRULAiqKiNKbdAxICy100iAhvffNJlvy+2OTDctuMCAQy3zO4Vwzb9mZPffkzfM+M89Qp9EyrF93Y3IJDDHR2EG9OXj8DCfPp3JbXOdmP8vV2ZCMU6lbXvFCEAThn8wYE1kIbKxaWOLtxsVEgVc9x9ep+QncXo4NMZHq5sVEWeV11OnqGRjmZFJSTyKRMKKtkiNZ1ZzOr6FviONV7iIIfx8iwST85fm7GX7hNq5kupyltpvFWiGje4T5jMGWautv2MQvKbvEJHGTX1ZNSZWaqMv2R7rSifRCXl++j5nDO5ntA6Wq1SCRgEIuMybcLM1CbJwRoq+vx0reeJ75LJGm865ldIIgCP9cfkpD0qZx1t7lssrN224Wa7mUri2sTW5JW09DsJRUWEOYe1PglF+poaRGS6TnjdkHaWdKOc62Mrr4O5gEbYczq3C1leOvtGJKrJvF2unPbMgg1teOqV08CHZtfnNeQRCEf5tAX8Pq1IzsPLNjl3IKblk/rK0UxMW0bL8mSyIbVgOdTU2nTUiAsT2vsJjisgqi24Q2e+07zz1CbZ3pczfpQiYfLVnBPWOG0K97J9xdlKhqagDQ6a4SE+nr0en0TH3ubYJ8vXj3+UdMzruYZaiScbVkmSAIwr+JMSayEP/c8pjI3/66r2/r0RgTqQlzuywmqtJQUqO7ITGR1VWqVTS21F/Dqi1B+KsTdUeEv7y2vq74utqz8cgF1HVNe1VkFb/yZQAAIABJREFUFlWyPymnFXt2bToGeuDhZMuqgyloLwt2VuxLQiKBoTHBzV4b6qWkpErNqgPJxhVdADklVcSfyaJziBf21gpCPZV4ONmy+dhFai77rvT6etYnpKGQSekY7IG9jYLoQDfiz2ZRXFlj8llrD6UC0CXM6waNXBAE4e+tjYcNPk4Kfj1fhlrT9Ds4q7yWg5du3USHPyva2w4PezlrT5egvWwWwcqTxUiAwRHXv1nu5X45WcxHe3LR6po+41x+DfEXKhnfwRWJREKwqw1dAxzM/gG42MnpGuCAu33LSscKgiD8G0SGBeHn5cHaHb9To27aF/ZSTj6/Hz3Zij27NjGR4Xi6ufDz5l1odU17aCxbv90ws7t/j2avjY2KIC6mvcm/xvJ1wf4+xMW0x9pKQVigH55uLmzctQ/VZd+VXq9nzdY9KORyYqIikMmk2NvasGP/EdKzmsqu12k0LP55E/a2NgzoEXvjvwRBEIS/oTYeNvg4WoqJ6jh46Y/3pP2riPa2bYiJSq+IiUoMMVG4+fYc1yrE1RoPezlbksupuey70tfXs/FcGQqphA7edn/6cwThr0KsYBL+8qRSCU+P6sKL3+/lwc+3MapLKKpaDb8cSG7trl0TqVTCE7fH8try/Ty+aBfDYoM5l1XMuoQ0JvWMIMij6SF2KqOQrJIquod74+Zoi6OtFbNHxvLxhqPM/noXgzoGUlqlZuWBFGRSCc+N7Wr8jOfHdePlH/Yy7dMtjO0ehkwqZVtiOmcyi3lsRAyuDeX5nhndlUcX7mD6Z1uZEBeBg42C389lczA5lwlxEbTxFWWJBEEQwFDy7Yk+Przy6yVmrrrAyEhnVHV6Vp0qae2uXROpRMKjvbx5Y3sWz6xPZ0gbJecL1Gw4W8r4aFcCXZpWDJ3OU5FTXkfXAAdcr7E2+JRYd17dkslzGzO4LdyJEpWWX04UE+5mzZ2dml+tKwiCIDRPKpXywowpPD33E6Y+9zZjB/ehukbNTxt2tHbXrolUKuWZB+7ipQ++5JFXPmDkgJ6cSbnIqq3x3HX7QIL9fYznnjiXSmZeAT1j2uPm0vJJEFKplFcencozcz9jylNvMGFYf2QyKb/GH+RU0gWemnYHbs6G2OuFGZO555m3eOCl95g8ejA21lZs2LWf5IuZvP3MQzg5XP8seUEQhH8SQ0zkxStbspi5Op2R7ZSoNHpWnSpt7a5dE6lEwqM9PXljRw7PbLjEkAgnQ0x0rozx0S7mMVGFhq7+9tcUE0klEp7u681rW7N4eOVFRkc5I5NI2JFSztkCNTPjPMX+S8I/ivh/s/C30DfKn/en9mXRzlN8sTURZ3sbJvdpx4X8cnafNt+/4a9qSKdgQMK3u07z0fojeDjZMWNIR+4bEGVy3ppDqWw+dpEFDw/CzdGwPPeu3m1xsFGwfO955m08hp21nO7h3jwytBMB7k11W/tF+fPpQwNZsvM0X28/hV5fT5i3krcm92ZIp6aa5lEBbnz96FAWbjvJD/FnqdXoCHR35LmxXZkYF3Ervg5BEIS/jd7BjswdEcg3hwtYeLAApY2Muzq5cbGklvgLFa3dvRYb1LBKaenRQubvzcPdXs6D3T25p7O7yXnrz5SyJamM+WODrznB1C/UiTeG+rPseBEL9uWhtJEzMtKF+7t6mG2kKwiCILTcgB4xfPzKE3z541o++W4lLkpHpo4bRuqlbHbsO9La3WuxEf17IJHA1ys28N5XP+Dp5sJj947ngTtuNzlv5ZbfWL9zH4veefGaEkwAA3rEsnDu83y1fD2fL1uDXq8nPMif91+YyfB+TaukIoIDWPLeSyz4YQ1LVm5Gr9fTLiyIz+Y8RZ+uHW/IeAVBEP4pegc7Mne4P98cLmLhocKGmMi1ISb6+1R2GBShBImEpUeLmP97fkNM5ME9saaT4dafLWNLUjnzxwRec0zUJ8SRj8cE8u2RIpYkFKKrh1A3a+YM8WPQDVglJQh/JRJfX19R9PEfLDs7m9I1b7R2N/4UnV5PhaoOFwfzjfae/fY3UnPLWPfyuFbomfB34DJ+Dn5+fq3dDUEQ/kB2djb58ye0djcs0unrqazVmW0CC/DSpgxSi2tZeV+bVuiZ0Nq8nlwtnjGC8A+QnZ2NOmV/a3fjqnQ6PeVVVbgqzV9KPf7GPJLTM9n6zf9aoWfCX4FNRC/xPBKEVpSdnU3+vH/2e6mrxkSbM0ktVrNyqpisLFwfr6fWiufY35iYRir85en19Yx+dy1v/nzApL24soZjFwqIChDldgRBEISbR19fz4Tvkpm7M8ukvVil4Xi26oZsBCsIgiAIV6PX6xly/zO8+tHXJu1FpeUcPnWe6IjQVuqZIAiC8G+gr4cJS1OYu9N0L/RilZbj2dUiJhKEfzFRIk/4y1PIZQzpGMivxy8ik0qIDnSnXFXLuoQ0AB4a3KGVeygIgiD8kylkUgaFO7EtqRyZREK0tx1lai0bzxrqjU/v5tHKPRQEQRD+6RQKOcP79mDj7gPIZDI6tQujtKKK1VvjAZg5ZWwr91AQBEH4J1PIJAwKV7ItuRyZFKK9bClT69h4rgyA6V3d/+AOgiD8U4kEk/C38NKEHgR5Kvn12EW2ncjA1kpObIgnDw3uQJi3c2t3TxAEQfiHe26AL4Eu1mxNKmNnajk2cikxvvZM7+ZBqJt5CVdBEARBuNFef3waIQE+bNy1ny17DmFrbUWX6HbMnDKWiGD/1u6eIAiC8A/3XH9vAp2t2Jpczs7UioaYyI7pXd1FTCQI/2IiwST8LVgrZEy7rT3Tbmvf2l0RBEEQ/oWs5VKmdvFgahexWkkQBEFoHdZWCh66cxQP3TmqtbsiCIIg/AsZYiJ3pnYRq5UEQWgi9mASBEEQBEEQBEEQBEEQBEEQBEEQrolYwSQILRT30o8M7hjI21P6tHZXWiyruJJPNx/naFo+Gp2eKH83Zg7rRKfgphn4495bR15ZdbP3GNk5hNfv7AmAWqPl211n2HEyg8KKGoI8nLi3XyRDY4Jv9lAEQRD+Vfp9foaB4U78d2hAa3fluiw7VsgvJ0pYO72t2bFvDxew5HChxeu2PNwOO4UMgKpaHV8fKiA+rYIajZ4wd2umdvagZ7CjyTVqjZ5vjhSwO7WComotzrYy+oY48XAPTxysZTd+cIIgCP8SnUZNZ1jf7vzfi7NauystlnThEgt+WMOxM0nU1mkI8fdh6vjhjB7Yq9lrVOpa7pj9Gi5KR37432vG9gdfeo8jp5Oava5rdFsWv/cSAFqdjh/X72D11nhyC4vx9XTnjpG3MXnUICQSyY0boCAIwr9cvy/OGeKkIX6t3ZUWq9XqWXq0iO0pFZTWaPFXWjE5xo2hbZQm5xVWafjqUAEHM6rR1dcT6WnLA93cifa2M7vnpnNlrDxVQmZZHe72coZEKJnaxQ0rmVhLItx6IsEkCP9QZdVqZn65g+paDXf3aYuznTU/709m9tc7WThrCJH+bgA8Pbozqjqt2fU//X6epOxS+kY11XN/7cd97E/KYVz3cMK8ndlzNovXf9pPRU0dk3q2uWVjEwRBEP66Ei5VsTihEKdmkjsXS2rxdFAwo4en2bHGgKhWq+ep9ekkF6oZHKEk2tuWw5nVvLT5Es8N8GF0lKvxmv9uz+JAeiUj2jkT6WVLWrGa9WdLOJevYsGEEBQiyBIEQfhXyM4vYvqL72JjbcXUccNxcrBj694EXv3oa0rLK7lv/DCL183/9hey8gpxUZpOYHjortGMH9bP7PxNuw+w/9hpBsTFGts+XPQTyzfsYOSAOKaMGcKxM0m8/9Uy8gtLePqBO2/sQAVBEIS/DX19PS//msXxnGrGt3chwNmKnakVvL0zB52+nhHtDPvKl9VoeXRNOoXVWkZHOhPsas1vaZU8ue4Sbw/3p2eQg/Ge3x0tYnFCIX2CHRjX3oXTeTV8d7SIgioNLw/0ba2hCv9iIsEkCP9Q6w9foKiyhrcm92ZIpyAA+kcHcNeHG1m04xT/mzbA0NbefHb8kdQ8knNKmdQzgtuiA4xte89l88jQjkwfGA3A+B7hPPj5NhbtOMW47uHIxUs8QRCEf7X1Z0qYvzcPrb6+2XMulNTSxsOGoW2dmz1n7ekSkgvVTO3szsNxXgBM6ODGm9uz+GxfPr2DnXC1k3M4s4r96ZU81N2T+7o2rc4Nc7Xhf3ty2Z5czshIlxs3QEEQBOEv67Olq9Botaz45A0CfAyTGO66fSDTX3yXz5etYdLw/tjZmm5Cf/R0Ej9v3oVcbj4pomes+f6/FzJzePPTb+nXrRNTxxkSVpm5BSzfsIMJQ/sx54npANw58jZ0Oj0/rN/G/ROH46p0utHDFQRBEP4GtiaVcySrmuf6ezMmyhCXjIly4YGfL/LNkSJjgum7o0XkV2l5vr83oxvOG9vehafWZ/BhfC4/TgnDWi4ls6yO744UMjjCidcH+xnPs5ZLWH+2jGld3fFxsmqdwQr/WuJtsCD8Q+WUVAHQPcLb2ObtbE+Il5K0vPJmr9Pq9Ly3JgE3B1seHR5jbC+trqWNjwujuoYa2yQSCTHBHpRV11JYUXMTRiEIgiD8XTyzPp0P43OJ9bOnjYeNxXM0Oj1Z5bUEOVtf9V770yuxkkm4t4uHSfuUWHdqNHp2pxmeY4k5hhKvjYFZo0ERhnITJ3NV1zUWQRAE4e/nyOkkOrdvY0wuAUilUob26UaNupbzaZdMzq9R1zJn/hLGDu6Dp2vzkx4u9/aCpUgkEl597D5jW25hMdFtQs1WO3Vu3watVseFSzl/YlSCIAjC39mm82UEKK0YHdn0nJFJJczs6cHt7ZTUavUA7EuvwttRwajLzpNLJdzVyY3Cai1Hswxxz7bkcnR6mBlnWg1iUkdX7u/iftWJfoJws4gVTEKrqKyp45NNxzicmkdxpRo3Rxv6RvkzY0hHHG2bMu3HLuSzbM85Tl8qpkpdh9LOmm7h3jw2IgZPpaEG6cYjF3h75UGWPjGC7+PPsv98DlIJDIgO5NkxXUhML+CLrSdIL6jAx8WeGUM6MrBDIGBIwkz4v/W8MK4buaXVbDySRp1WT6dgDx4bEUOY99UDjf3ns/lm9xlSckqRy6TEhngya3gnQr2armvpWK/05s8H2Hzs4lU//+B7U5o9FuBuKPGQWVSJMtDwIk+j1VFQrsLP1aHZ69YcSiGruIrX7ojDzlphbB/SKci4EupyybmlWCtkuDhc/WWhIAhCa6ms1bFgXx5Hs6opUWlxtZPTJ8SRB7p74nhZGbfE7GqWJxZxNr+GqjodSms5XfztmdnTCw8Hw+/DX8+X8u6uHBbfGcqPx4o4eKkKiQT6hzrxZB8fTuaqWHgon4zSWrwdrXiwuycDwgyzlnMr6rjrhxSe7edDbqWGzedL0ejq6eBtx8yeXoS6WU7KNDqQUcn3RwtJLVIjl0ro5GvPjDhPQlybrmvpWK/0zs5stiSVXfXz9zxqPpP7cnmVGp7p58PY9i48uS7d4jmXSuvQ6SHY1fDMUGv0WMklSK/Yn6KgWouf0gpbhelcKH+l4bmZUqgG4O4Yd/qHOuFub/onbblaBxiCN0EQhL+CiioV/1v8E4cSz1JUWo67i5IBcbE8es94nBya9lY4cuo8367ewqmkNKqqa1A62tMjJoqnpt2Jl7thRvO6Hb/z+rzFrPjkDb5ZuZnfj5xEIpEwuHcXXpxxD8fOJPPp0lVczMrF19Odx+4dz+DeXQFDGbmRDz7PK4/eR05BEWu370Wj0RIbFcGT0+4gItjfYv8b7T18gkU/b+T8hUso5DK6RLfl8fsmER7UtBdGS8d6pdc+XsT6nfuu+vknNn7T7LHvPvgPOp3erL20wjDxTnZFtYVPvluJuraOZx+8mzsff/2qnwsQn5DI0dNJzJoyFi/3plKt3TtGsuyj18zOT7poSGh5e7j94b0FQRBaQ2WtjgX78xtiBx2udjJD7NDNwzROyqlmeWLJZXGSzBAnxXleFieV8e7uXBbfEcKPx4sNcRLQP9SRJ/t4N8RJhWSU1eLtqODBbh6mcdKyNJ7t522Ik86VodHX08Hblplxni2Ik6r4/ljRZXGSHTN6eBLi2vSeqqVjvdI7u3LYktT8JG2APbMiLbZrdfWcza9hVKSzcT8+lUaPrVxCzyBHegY1lWYtrNbQPcDBbN++gMb4p0hNr2BHTuaqCHSxwrPhe1dr9ChkEoJdrHmwu+nkPEG4VUSCSWgV/1n2O0k5JdzZqy2eSjuSc0pYdSCFjMIKPnlwIACHU/N4aslu2vm58sCgaBQyKYnpBWw7kU5mUQVLZg83uedz38UT6efK4yNjOZSSy4YjaeSVVZOUXcKknm0Y3TWM5XvP8/pP+2nj64K/W9Mv8qW/nUGj03N3n3bo9PX8tO88j3y5nSWzhxHobrmcwcYjF5i76iCxIZ48OjyG6loN6xJSeWjBNr6aNYQIH5cWj9WS8T3C6XbZ6qNrNa57ONtOpPPu6gReGt8NpZ013+w6TWm1mpcmdLd4jVanZ+lvZwl0d2REbEiz91ZrtGQWVbLyQDJHUvN5eHAHbBTi14kgCH9Nc7ZmklyoZmJHVzzsFaQUqVlzuoSM0lo+GhMMwNGsKp7bkEFbT1vu7+qBQirhRK6KHSnlZJbXsXBSqMk9X9p0iXaetszq6cXhzGo2nSsjv1JDUqGaCR1cGdnOmZ9PFPPm9iwi3MPxUzZNKPjhWBEafT13dnRDVw+/nChm9pqLfDUplIBmVvb8er6U93blEONrxyNxXlTX6dlwtpSZqy7y+fgQwtxtWjxWS8a0d6Grv/2f+p6/uzvsD/c7ulBiSAwdy65m0aEC8qs02CqkDGuj5NFe3tg0JJTsFFIqGpJEl6uoNbSVqAx7Bzpay3D0sDU7b9WpYgA6+TT/IlMQBOFWev69BZxLy2DK6MF4urtyPi2DFZt2cjErl6/eeg6AQ4lnmfX6/4iKCGbG3WNQyOUcP5PMr/GHyMjO58ePTZMgT7w5j6jwEJ5+4E4OHDvDmm17yS0o5mxqBnePGsS4IX35fu1WXvzgS9aGvmOysmfJL5vQaLVMHTsUnV7PD+u2Mf3Fd1j20esE+VmOQdbt+J0585fQJbotT067g2pVDau2xDP1ubf57v/+Q5uQgBaP1ZJJwwfQIybqur9jX093s7YadS1rt+/FztaGdmFNk+WOnUnmp007+fiVJ3C0b9mz4qvl63G0t+O+8cObPUej0ZKVV8jG3ftZu/13xg7ug7+3eOEnCMJf05xt2YbYoYMLHg6NsUMpGaV1fDTaMDH7aFY1z228RFsPG+7v4o5C1hgnVRjipImm745e2pxJO08bZvX0NMRJ58vJr9KSVFjDhGhXRkYq+flECW/uyCbC3cZynNTJtSFOKmH22gy+mhhCgLPlCdq/ni/jvd25DXGSZ1OctDqdz8cHEdaQnGrJWC0ZE+V83XFSbmUdWj14OihYcaKYnxJLKFZpUdrImBzjxpTYpgkItnIpqjrzSRKN8U+xyvC/l8rqCHOzJuFSFZ8fKOBCSS1WMgmDI5x4oo83dgpRrEy49cQbYeGWK6lSczg1j8dHxnJPv8Ysfxg2VnKOpeWjrtNiYyVn+d7zuDrYsGDGIGPyYkJcBBqtnt2nMylX1aK0a3oRF+7tzPv3GcoSjOoayqh31nA4NY+PpvWnVzvDjDpfVwee+eY3jqTlmySYSqtqWf7M7fg2rOzpG+XH/Z9s4evtp3hrcm+zMVSrNXy84Sj9Iv2Nn9nYv8kfbWL+xmN89vCgFo/Vkg5BHnQIuv5gxN5GwcODOzLnp/08/MV2Y/vjI2PpF2V5ZmL8mSwKK2p4cXw3pFeZ9f3jnnMs3H4KgI5BHtzRq+1191MQBOFmKlVpOZJVzayeXkyObXrxZKOQcDxbhVqjx0YhZUViMS52cuaPDcZabvijfGy0KxpdPfEXKqhQa3Gyafp9HeZmw9wRhkBkZKQL479N4khWNe/fHmiciebrZMULmy5xLLsKP2XTTOfSGi1LJ4fj21Abu0+wIw/+ksaShALmDDXfF6+6Tscnv+fRJ8TR+JkA46JduG95Gp/uy2Pe2OAWj9WSaG87or3/XDLmj5JLABdLagE4m1/D/V09cLCWcTCjkrVnSskoreXjscFIJRLae9my9kwpZ/NVRHk19WvPhQoA6nTNl35IuFTFmlMl+CmtuC1c7HkhCELrKy6r4GDiWZ554E7unzDC2G5rY83hk+epUddia2PN92u34ursxKJ3XsTG2vCMuHPkbdRptOzYf4TyyiqUjk2VCNoEBzDv1ccBGDekL4OnPsXBxLN8Nucp+nbrBIC/tweP/fdjEk6cM0kwlZRXsPrzucbkx4Aesdz15Bw+X7aW91+YaTaGKlUN/7fwRwb0iDV+ZmP/xs96hQ++Xs7X77zQ4rFa0ikynE6R4df8/V7N2wuWUlhSxiOTx2Bt1TDbu7aOOfMWM7xvDwb0iPmDOxicTr7AmZSLPDBppNk+TpfbsjeBVz/6GoBgf28evWfcnx+EIAjCTdAUO3gyOaYp0WEjl3I8p7opTjrRGCcFNcVJ7V0a4qRKKtQ6nGyaVgCFuVkzd7ghphnZzpnx36UY4qSRAfQMMjzDfB2teGFzJseyq00STKU1OpbeHXpZnOTAg79cZMnhQuYMaVop26i6Tscn+/LpE+Jg/EyAce1duO+nND7dl8+8MUEtHqslhjjpmr9eACprDQmjzefLqa7TcV8Xd1zt5GxJKufLgwXU6fRMa9hHtr23LcezVeRXavBybKomtOdCJQB1DSt0q+p0ZJbV8crWLCZ1cOWBbu4k5qhYdaqUvEoNH48ONFsFJQg3m0gwCbecg40COys5qw4m4+1sT8+2PthZK5g9ItbkvA/u70dVjcZkZUyVug4bheHBVVOnNUkwDYhuepjIZVL8XB2oqdXSs62vsb2xNFzxFfsFDY0JNiaXACJ8XOge4c2+89no9fVmyZZDKblU12ro396fsmq1ybG4Nj5sOZ5Oda2mxWO1RFWroU5rPnv7cs72zQc3Gw6nMXfVIYI9nXiyb2fsrRXsOn2JTzcfp6ZOy0ODO5hdszYhFSdbK0Z2DrVwxyZdw70J93YhNa+U7+PP8cCCLSx6dOhV+yMIgtAa7K2l2CqkrD1Tgrejgh5BDtgpZMzqaRolvDsykKo6nTFoAqiq1WEjN/z+r9HocbrsV1y/0KbEhVwqwU9pRY1GTVxg07OkMTAqrtaafNaQNkrjMYAwdxu6+jtwIKMKfX29Wbm4w5nVVNfp6RviRFmN6b26BdqzPbkcVZ2uxWO1RKXRUae9er1uZ9s//2djrJ89UglMjnXH3srwPB8Q5oTSRsbyxGL2XKhkQJgTd3Ry49ekMl7fmsWTfb0Jc7PhWFY1Sw4XYKeQ0lwu60RONa9tycRKJuW/Q/1blPQSBEG42RztbbGztWHFpt34eLrTp0sH7GxteHr6nSbnzX/tSSqrVcbkEmDys6qm1iTBNLBXF+N/y2Uy/H08Ualr6dO1o7G9MYFUWGpaBnXkgDiTlTVtQgKIi2nP3sMn0Ov1SKWmvz8PHj9DlaqGQT07U1peaXKsV+doNv12gGpVTYvHaomqRk1tneaq57goHa96/HLvf7WMjbv30yW6LQ/fNdrY/unSVVTVqHlhRvPlxq+0aks8UqmEyaMHX/W8tiGGpF9WXiGLf9nE3U+9wXf/959mV4UJgiC0FmPscLrUEDsEOmCnkDKrp+nePu+OCGgmTjL8bIiTmhJMZnGSk4IajZ64wKZVQL5OhgRKseqKOCnCyTROcrOhq799C+IkR/M4KcCB7SlXxEl/MFZLVBo9dVrzlUWXay5O0jRMisutrGPxpBBjqb8BoY48vi6DH44VMyHaFScbGffEunM4M4MXNmXyRB8vvB0VxF+o5NekMmTSptLfGl09uZUanu3nzdj2hspJ/UKdsLOSsvRoMQcvVRsTeYJwq4gEk3DLWcllvDShO++uTuCVH39HIZPSMciDfu39GdUlFHsbw4NGJpWSW1bN1ztOcSG/jJySKvLLVdQ3vP/SX7FxnauDaXJDJpXi4mBtkrlvfBjp602vDfVSmvUzwN2Rg8m5lKtqcbni3tklhjreb/5ysNlxFpSrCPFUtmislny47sif2oPpy20ncHe05etZQ417PQ3qGIi99SEW7zxF//b+xjJ+YEjeHb9YwNBOQVgrmq8/C4ZVSwD9Gu7x/NI9/LwvmRlDO171OkEQhFvNSibl+QG+fLA7hznbslBIJUT72NE3xJER7ZyNSQ6ZVEJepYZvDhdysVhNToWGgioNjU+LK/dKdbUz/RNKJpHgYis3feZILV97eS3wRgHOViRkVlGh1pkFKDkVdQC8syu72XEWVGkJdrVu0Vgtmbcn70/vwdQS3QIc6BZgHvCMi3ZleWIxx7KrGBDmRICzNe+NDGTuzmxe+TUTAGdbGS8O8OOLA3k4WaiTfiCjkjlbM6kH3hkRSFsLpfMEQRBag5VCweuz7+eNT7/l+fc+RyGXExMVzm1xnRk7uA8OdobfVzKZlNyCIr74cS2pGdlk5xWSV1RCfUPscmUM4+ZsukpTJpPhqnS64llkeBjVX/EwCgs0nwke5OfN/mOnKauswlVpeu/M3AIAXv14UbPjzC8uJTTAt0VjteTdL3/4U3swNdLp9Lz52bes3b6XqPBg5r/2BAq54dmaeC6FHzds5+WZ9wIYk2X6+np0Oj2l5ZXYWFuZrLKqr68nPiGRzlFt8HRzMf/Ay7QJCTCWCuzWMZIpT73Bwp82MPfZh/+w34IgCLeSlUzK8/29+eC3XOZsyzbEDt62DbGD0kKcVMTFklpyKuooqNJeFidd8W7O1vTvdJlUgout7IpnU+O7OdM+NR8nVTcTJxkmJbyzK7fZcRZUawl2sW7RWC2ZtzfvuvdgslEYxtney9ZkHymJRMLwts49AmZkAAAgAElEQVSczM3lTL6KnkGOxPja8eogXz7ak8fTGxr28HNUMHd4AE+vzzDGPzZyKbVaPSPbme4ZP6KtM0uPFnM8WySYhFtPJJiEVjE0JpiebX3ZczaLA0k5JKTmcfRCPsv3nueb2cNwcbBh+d7zzN90DH83B2JDPOkb6U+kvyt7z2WzbM85s3ta3si7ZctC5TLz8xoTWDKp+eznxmPPje3a7B5NXkq7Fo/Vkqn9oxh+lX2Qrqa0Sk1xpZqx3cOMyaVGo7qGsv5wGsfS8k0STAkpeWh1egZ2aL72rCV9Iv2wtZKTlFNyXX0VBEG42QZHKOkR6MDvFys5dKmSI5nVHM+u5ucTxSycFIqzrZyfTxTx2b58/JRWdPKxo3eII209bNmfXsnyxGKze1paGNPSSgSWnle6hsBMZuEmjc+cp/v5GDd5vZKno7zFY7VkSqwbQ9uYT7a4VVwa+lWjaZod2MXfgZ+ntiGl0LBSONzdmnrgje1aBoWbfg87UsqZuzMLK5mU90YG0tnvz+0nJQiCcKON6B9H7y4d+e3QMX4/coqDiWc4fPI8P6zdyrKPX8dV6cT3a7fy4aKfCPTxpHN0Wwb0iKF9eAjxCYl8u/pXs3vKZeYvxFr6LLJ0rV6v/8Nj/5k1lSA/L4v39HZ3bfFYLZk2cQS339azZQNohkaj5cUPvmTn/qPERIbz2X+fNtlj6cCxM+j19cz9/Hvmfv69ybV5hSUMuOcJZk4ey6zLStudTU2nuKzCZBVUS7QLDSTI35tzaRl/akyCIAg3i0nskFltiB1yVPx8soSFE4Mb4qRiPttfgJ9SYYiTgh0McVJGJcsTzd8DWYp1WlqyzWKcpG/+WGNy6+m+Xs3uZevpoGjxWC2ZEnP9cZKnveGzXSzc26UhEXf5vkuDI5T0DXEkpUiNlUxKuLs1eZUadPVNq748HOSU1ehQXPEe03g/zdVXWwnCzSASTMItV12rISWnlFAvZ27vEsrtXUING8vGn+OLrSfYfiKDsd3D+WrbCToGefD5jEHIL3uTt/HIhRvep+ziKrO2zOJKnO2tcbIzf5nn42J4caW0s6J7hGm5g8T0Amo1OqzkshaN9c7elvcvCvFSEmJhZVVLWMkND5YrV3lB0wP4ykMn0guRSiR0CbMcMH6y6RjbT2Sw8vkxJiuctDo9dVrdH656EgRBaA2qOh0pRWpCXW0Y0c6ZEe2c0enrWX68iIWHCtiZUs6oKBcWHSqgg7cd88cGm0w6+PX81Vf1XI+c8jqztqyyOpQ2MhxtzH+XejeUiXCyltH1itU/J3OrqdXWYyWVtmisEzu6md0fINjVhmBXi4duqJc2X6K6Tsen40wnUGSUGfZmaiyJkVRQQ1JhDWPauxLp1TTbPeFSFVp9PR18ml4WxqdV8PaOLOytZHwwKtBkzyZBEIS/gmpVDUkXMgkP9mPMoD6MGdQHnU7Pt6s288nSVWzZk8DEYf357PvVxERFsOidF4wrbgDW7th7w/uUlVdo1paRk4+LkwNODuZJel8vw95+Tg72xMWYrmg9diaZ2joNCoW8RWOd0kyZubBAP4srq1pKr9fz0gdfsXP/UeJi2/PxK49jd8V+T6MH9SK2fYTZtf/5cCFKRwdefGSKSelAgONnUwDMxt3oh3XbWLRiA8vn/RcfT9PnrKpGbbbSTBAE4a/AEDvUEupmbRo7JBaz8FAhO1MrGBXpzKKEQjp42zJ/TJBpnPQH1Q+uR+OKpMtllTfESRYqGHg37FXkZC2jq7/ps+tkroparR4rqaRFY53YwXIwFOxqTbCFlVUt4WInx8NeTnpprdmxxrF6NowhMaeagiotQ9soTfbGPZxZDWCMf9p62LA9uYISldakqkbj/bwcmq+UJAg3iyhML9xySdklzPxqB+sOpxrbZFIpUQGGP8ZlMim1Gh1qjQ5/NweT5FJOSRV7zmYBoLOQPLlevx5Pp1zV9Av/fHYJh1PzuC3afLN1gO4R3ljLZSzbcx7NZfsklVSpeen7vfxv3RFkUkmLxnoz2NsoiA50I/5sFsWVpvtNrT1k6MuViaTknFKCPJywtbKcd/Z1daCwooYNR9JM2lfsS0Knr6dPu+sPBgVBEG6W5EI1j69NZ8O5UmObTCoxJi1kUgl12nrU2nr8lFYmQVNuRR17LxpK5+jqb9wzZ1tyORXqphrhSYU1HM2qZkCY5RdQXf3tsZJJ+CmxCI2uaUZaqUrLK79mMm9vLjJpy8ba2pxtZJzIUXE8u9rYpq+v59vDhcgkMCjcMLHifEENH8bnknjZebVaPd8cLiDQ2cpYZi+nvI53dmZjLZfy8ZggkVwSBOEv6VxaBtNfepdVW+KNbTKZlOg2hn1P5TIptXV1qGvrCPTxNEkuZecXsfvgcQB0uqvvz3otNu7eT3ll0yS7c6npHEo8y+De3SyeHxfTHmsrBUvXbEGjaXqGFZdV8MzcT3n3yx+Qy2QtGuvN8u3qX9mx/wjdO0by6etPmiWXAPy9PYmLaW/2z9pKgb2dDXEx7fH3Nt2T43xaBna2Ns2u3Ary9aK0oorlG3eYtG/7/TB5hSX06x5z4wYpCIJwgyQXqXl8XQYbzjYlimRSCZGeDbGDREKdriVx0o3rkyFOanrWGeOkUMv77xnjpBMlxv2OoCFO2pLFvL35hjipBWO9WYa0UZJRWsfvF5v2L6zV6ll3phR3ezlRDX04eKmad3blGMujA5TVaPnpRDFd/OwIdjE804ZEKKkHfjxuWmXj55MlSIC+zXxXgnAziRVMwi0XE+xJxyAPFm47SX5ZNRE+LhRXqll1MBl3R1sGdwzEyc6KDoHubE1Mx8nOilAvZzKLKll3OJVajeFho6q9+gaw10Jdp+XBBVsZ3yMCVa2GFfuScHe05aHBHSye72xvw8xhnZi/6RgPLNjKiM6GmdirD6ZQWVPH63fEIZFIWjTWm+WZ0V15dOEOpn+2lQlxETjYKPj9XDYHk3OZEBdBG1/T+uGZRZVE+Do3czcY1z2cX49dZN7GY6QXVBDmreREeiFbjqfTs60Pw2KDb9pYBEEQrldHXzs6eNux+FAB+ZUaItxtKFZpWXO6BDc7OQPDnXC0kdHey5btyWU42cgIdrEmq7yOjWdLqW3Y0PXy0gV/Vo1GzyOrLjK2vQuqOj0rTxbjZi9nejfLm8w628qZEefJZ/vyeWTlRYa1NSRh1p4ppapWx38G+SGRSFo01tb2UA9P9mdU8vLmS0zs6IqrnZz4tAoSc1Q81N2TwIbAaWCEkmXHi/jvtiwmdXLFwUrG5vNlXChW8+GoIGOy7LujhdRoDRv7ppfUkl5iOjvQ20lBRx9RLk8QhNbVuX0bYqIiWPDDGnILi2kXGkhRaTkrNu3Cw9WZYX274+RgT6d2YWzafQAnB3vCgvy4lJPP6q3x1NYZXjZV16hvWJ9q1LXc+8xbTBpxG6oaNcvWb8PdRcmsKWMtnu+idOTx+yby4aKfuOeZNxk1sDcAv2zeRUWVireefgiJRNKisd4M1aoaFv+8CYlEQp+uHdn2+2Gzc3p0isLDtfl4pzmXcvLxdnc17md1pb7dOjGoVxeWrtlKSVkFnSLDSUnPYtWWeNqFBXLf+OHX/JmCIAg3W0cfOzp427I4oZD8Kg0RbtYU1+hM4yTrxjipHCdrGcGujXFSGbVaQ0LnhsdJqy8yNsoFlUbPypMlDXGSh8XznW3lzOjhwWf7C3hklYU4aaCvIU5qwVhvlqmd3fj9YiVv7MhmQrQLng4KtiSVk1VexxtD/YxxzdgoZ9afKeXZDZcYH+2KRALrzpRSqdbz7vCmykk9Ah0YHO7EzydLKFFp6eRrx5GsauIvVHJHR1djIkoQbiWRYBJuOalUwgf39WPJrtPsPZfF+sNp2NtY0T3cm0eGdkRpZ/hlOPeePnyy6Rhbj6ej1ujwVNoxrns4vdr5MvPLHRxOzaOt342p5zOxZ4RhBvWu00ikEnq38+OxETG4OTa/Ce3kvu3wcrbjx73nWLjtJFZyGRE+Lrw8oYdxdVBLx3ozRAW48fWjQ1m47SQ/xJ+lVqMj0N2R58Z2ZWKceVmIMlUtDjaW9/YAw2zDeQ/cxpdbT7D79CXWJtTh7WzHjCEduW9AlMW9qgRBEFqbVCLhnZEBfHekkH3plWw6V4q9lZSu/g482MMTJxvDn0JvDgtgwf48tiWXUaupx8NBzugoF3oGOzB7TTpHs6pp49H8M+FajI92pR5YerQQKRJ6BjnySE8vkxIHV7qzkzueDgpWJBazOKEAhUxKuLsNzw/wNe431NKxtiZ3ewULxoew8GABa06XUKetJ8jFmlcG+TGsbdNLP0drGfPGBPPFgXxWJBajr4coL1s+GRdsskqpcSXU3ouVxlmUlxsY7iQSTIIgtDqpVMr8V59g4U/r+e1QImu27cHB3o64mCgeu3cCSkfDqswPXnqM/y3+iU2/HUBdW4e3uysTh/Wnb7dOTH/xXQ4lniUyLOiG9Omu2wei19fz9YoNSKUS+nbrxFPT7sDNpfkS3VPHDcPb3ZWla7ay4IfVWCkUtA0N4LXHp9G9Y+Q1jfVGO5uaQZXKULnhoyUrLJ7z+RvPXFeCqbSiCuc/6Pd7zz/Cwp/Ws3HXAX6NP4S7q5IpYwYzc/JYiyupBEEQWptUIuGdEf58d6SIfelVbDpX1hA72PNgdw+cGkp3vznUjwUHCtiWXE6tVo+Hg4LRUc70DHJg9tqMhjjJ8t7i12p8tAv19bD0aBFSiYSeQQ48Euf5B3GSmyFOOlHC4oRCFDIJ4W42PN/fxzROasFYbwZ7KxmfjQtiUUIhW5LKUWn0hLla896IAOKCmp4tPk5WzBsTxFeHCvj2SCFyqYQYXzse6u5hnITX6D+DfAl1s2bT+TLiL1Ti5ahgdi9P7uh4C2qeC4IFEl9f3xu4mFH4q8nOzqZ0zRut3Y2/rJySKib833qm9o/isRGidME/kcv4Ofj5ifJ9gvBXl52dTf78Ca3djZsqt6KOu35IYUqsOzN7Wi6zI/y9eD25WjxjBOEfIDs7G3XK/tbuxi2RnV/EyAefZ/qkkTw17Y7W7o5wg9hE9BLPI0FoRdnZ2eTPG9fa3fjbyq2o465laUyJdWNmnOWqDsI/m9dTa8Vz7G9MLDkQBEEQBEEQBEEQBEEQBEEQBEEQrolIMAmCIAiCIAiCIAiCIAiCIAiCIAjXRCSYBEEQBEEQBEEQBEEQBEEQBEEQhGvS+rs9C0Ir8nV14OB7U1q7G4IgCMK/gI+TFXsebd/a3RAEQRD+xfy83Dmx8ZvW7oYgCIIgGPk4WbFnVmRrd0MQhOskVjAJgiAIgiAIgiAIgiAIgiAIgiAI10QkmARBEARBEARBEARBEARBEARBEIRrIkrkCX8pb/58gM3HLhL/1l1YK2St3Z0W+Xr7SRbvPG38ectrE3C2twFgw+E0VuxLIrOoEncnW4bFBDNtYHus5M2P7ZUff2fnyUtm34FWp+fn/UmsS0gjr6waHxd7JvSI4I5ebZBIJNfV92MX8lmy8zRnM4vR1dfTxseF6YOi6dXW1+S8i/nlLNiSyKmMIvR6PV3DvXl0eAwB7o4m56k1WhbvOM32E+mUVtcS4ePMI0M70S3cG4D4M5m8+P1e4/kfTx9Azys+SxAE4VZ5Z2c2W5LK2D4jEmv532POzZKEAr49Umj8ef30tjjbmv45dzpPxWOrL7J0cjhBLtZXvd+crZnsTqu46ndQVavj3uWpTO/qwdhoV7PjW86XsTyxiOzyOtzt5Qxt48w9nd1vyHe67Fghv5woYe30tibtd36fTF6lptnrhrd15j+D/ACo1epZerSQXSkVFKk0BDpbMznWncERSgAqa3Xcvvi88dopse7M7On1p/suCIJwpdc+XsT6nftIWL0QaytFa3enRb5YtpYvl68z/vzbsk9wUZrGACfOpXL/C++w5vO5hAT4XPV+z7//Odv2Hjb7DnILihn+wHMWr3npkXuYPHqw8efjZ1P4dOkqzqVlYGttxYj+cTw2dQJ2Nld/5rXEkpWb+GHtNnb9MN/smLq2ji+Xr2NL/CFKKyppExzA7KkT6BETZXJeaXkln36/ij0JJyitqMTTzYXbB8TxyN1jUSjkJvdb9PMGtuxJoLCkjGB/b6ZNGMGI/nEAVFSp6Hv3Y8bzp08ayVPT7vjTYxQEQbge7+zKYUtSOdsfbvv3iZ0OF/LtkSLjz+unRRhjp03nylh5qoTMMkMMMyRCydQubljJmsam1uj55kgRu9MqKKrW4Gwrp2+IIw9398DB2vS93qk8FYsOFXK+oAZbhZSuAfbMjPPE3f7anve5FXXctSztque8fJsPI9o5A4ZY55sjRexMKadMrSPczYaHunvQxd8egL0XK3llS5bx2g9uD6BHoMM19UkQ/ohIMAnCDTJ7RAxuTrbYWRseHkt2nmbh9pP0i/JnYs8ITmUUsWTXafLLVbx2R5zFe+w+ncnOk5csHpu/6Ri/7E9mWEwwd/VuS+LFAj7acJT8chWPj4y95v6eySzi8UW78HGxZ/qgaORSKRuPpPHst78xd0ofBnYIBCCnpIoZX2zDzlrBfQOiqK+vZ8W+JB78fCvfPzECL2d74z3nLN/P7+ezmRgXQZCnknUJqTy1ZDcLHh5ETIgnkf5uzLmrJycuFrI2IfWa+ywIgiAYzOrphZudHDsr0+Auv7KOOVszqW/BPeLTKtidVnHVczQ6Pa9vzaREpbV4/MfjRXx5IJ8QV2se7uFJuVrH8sQiEnOq+WhMMHLp9U2AAEi4VMXihEKcrM0nZTze25sajd6s/eeTxSQXqukd3PTy87/bsjiYUcno9i6Eudrwe3olb27PorJWx/hoV2zlUl4d5EeZWsdn+/Kuu7+CIAj/ZE9PvxN3VyX2djYm7bkFxTz//ufU1//xk2fH/iNs23vY4rHUDMPLr8fuHY+vl7vJseg2ocb/PpmUxiOvfkCwnzez7x1PfnEpy9ZtJ+1SNl++ZTlB1VL7jp5iwQ9rUDrYWzz+0gdfsSchkbtuH0hIgA+rtsbz6JyP+HruC3SObgOARqtl1uv/IzUjmztGDCAkwJfEcyl8vWIjKelZzH/tSeP9Xvy/L9h7+CSTRgwgPMif3w4d56UPvqKiSsVdtw/E1saKuc8+TFlFFR98vfxPjU0QBOHfbFacJ272TbHTd0eLWJxQSJ9gB8a1d+F0Xg3fHS2ioErDywObJkH/d3s2BzKqGNFOSaSnLWnFtaw/W8q5/BoWjA9GITPEOkezqnlhUyaBLlY80tOT4motP58sIblQzdeTQq4pIedsK+fVQeYTsXX6ej7Zl48E6ORrZ2x/c0c2+9OrGBftQpCzNRvOlfLcpkvMGx1EJ1872nrY8OogX07kqthwtuw6v0FBuDqRYBKEG6RPpB/BnobZ0JeKKliy6zRDY4J48+7eAIzvEYG1QsaaQ6k8OCgaX1fTGQPl1bX839rDKGRSNDrTl2ZZxZX8sj+ZMd3C+M/EHgBMiItApzcke+7tF4mLg2mw90fmbTyGk60V38wejqOtVUMfw7ln3mY+2XTcmGD6evtJarU6vnl8OP5uhhd2vdr5MuXjzfy49zxPj+4CwOHUPOLPZvHk7Z2Z3LcdACNig7ln3mbmbzrGN7OH46m0Y0RsCDpdvUgwCYIg/Am9gh3NViedylUxZ1smRdWWk0GXK1dr+WhPDgqpBI3e8kvBwioNc7ZlcjqvxuLxYpWGxYcKCHS24ouJIdg1rLqN8bXnuY0ZrD9TwoQObtc4MoP1Z0qYvzcPbTN96xvqZNZ2NKuKlEI146Nd6R/mZGzbl17JQ909ua+rBwBj2rswc9VFliQUMDrKBblMwtC2zuRW1IkEkyAIQjP6d48xW52UeC6F5979nMKSP35hVVZRxdzPv0chl6PRmj+nUjOyAbh71GCcHOzMjjf6aPEKnJ0cWPL+yzjY2QLg4+HGe18tY8/hE/Tr1ulahmW0cstvvPflMrRancXjhxLPsvvgMZ576G6mjhsGwKjbejFx9mt8uHg5P348B4D1O/ZxLi2Dd56dwe239QTgzpG34enmwjcrN5Nw8hzdO0Zy6MRZfjuUyOypE3j4rtEA3DFiAPc++zZfLFvDxOH9UcjljLqtF9n5RSLBJAiC8Cf0CnYwxk6ZZXV8d6SQwRFOvD7YUPFgbHsXrOUS1p8tY1pXd3ycrDicWcX+jCoe6u7BfV2aJj6EuVnzvz15bE8pZ2Q7Z3T6ej6Mz8XHScFn44KwtzLERKGu1ryxI4ddqRXG1UYtYauQMrSN0qx9SUIh1XV63hzqh6+T4R3e0axq9l6sYnYvT+7sZIi7hrZVMm3FBRbsz2fhpBA8HRQMbaNEp68XCSbhpvl7rGkUhL+ZLcfS0en1zB5hurLozt5teWBgNFqd+azrD9cfwdnOmtuiA8yO5ZepiApwY0y3MJP2mBAPtDo9FwvKr6l/ao2Wc1kl9I3yNyaXAGys5PSN9COvrJr8smoApFIpgzoEGpNLAKFezijtrEnJLTW2bUtMRy6TMq5HuLHNzlrB6K6hnMsqIbOo8pr6KAiCILTc0iOFzF5zESuZhIHh5smXK83bk4vSRm5MxFwp4VIV9y5PJa2olokdzMviGc6pRqOvZ3KsuzG5BNA90IEIdxt+PX99Acwz69P5MD6XWD972ni0bPKEVmcI7Fzt5DzS09PYXlajI8LdhpGRTUGdRCKho48d5WodRdXNl9kTBEEQmvf1ig1Me+FdrK0UDOvb/Q/Pf/fLH3B2cmBw7y4Wj6dmZOPuorxqcimvsJjjZ1MYdVsvY3IJYOLw/thYW/Fr/MFrHwjwyGsf8tZn39GtYzsiw4IsnrM5/iByuYyJwwcY2+xsbRg3uC9nUtK5lJMPwJHT57FSyBnRv4fJ9SP6GX4+fiYFMJTRaxsayNjBfYznSCQSOrePoLSiioLiUgRBEIQbb1tyOTo9zIzzNGmf1NGV+7u4Gye4JeaoABjR1jTZM6gh1jqZqzKel12h4b4u7sbkEkC/UCfujXXDw+HPl8TNLKvl++NF9ApyYMBl8dv2lHLkUhgd5WJss1NIub2dkvOFarLK6/70ZwtCS4gVTMKf8n9rD7P2UCrrXx6Hu1PTH/l6fT1j31tLiJeSTx4cCMBvpzP5ZX8ySTklqDU6XB1s6BPpx6PDO+FgY2Xx/s3tyTTnp/1sTUzn4HtTjG0F5Sq+3HqCA0k5VNdqCHB34u7ebRl9RVLmSlfuoWTJ6hfGmK04uprE9AKCPJzwVBoCJHWdFoVcSoinkhlDO5qdH3/GUBpv4awhrD6YYna8S5gXSx4bZtaenGN4eeftbLmMQ3OsZDJ+euZ2FDLzHHOZqhYAmdRwzFI5v/yyaspVtSafey6rhCAPJ2ytTH+tRPq7NRwvNtuzSRAE4Vp8FJ/D+rOlrLyvjUkta319PZOWJhPsYs1HY4IB2HOhglWnSkgprEGtrcfFVkbvYEdmxHmZ1ctu1NyeTG9tz2J7Sjl7Hm1vbCuo0rDoUAEHL1WiqtPjr7Tijk5u3B7pYunWRlfuoWTJinsj8HGy/FxszoUSNZM6uvJgd09+Siy+6rl7LxhK430+IYS1py2/wMoorSXWz57He3tTUKVh1akSs3MKqwzJmTA38ySQv9KKvRcr0dfXI73GfQLzKjU808+Hse1deHJdeouuWXe2hOzyOl4e6GeS7BoUoWRQhPkMwNRiNdZyCS624k9hQRCaN/fzpazc8hvbvv0ID9emRLVer2fotGcJC/Ljq4aybDv3H2X5xh2cT8ugprYON2cn+neP4Yn7J+Fobzlp0tyeTC9/+BWbfzvIiY3fGNvyi0r47PvV7D1ykmpVDUF+3twzZgjjh/a76hiu3EPJks2LP8DvirJ0fyQlPYt7xgzh0XvGsXTN1queu+vAMbb9nsB3H7zCL5t3Wzwn9VIWoQGGkkAarRa9vt5sn6ozKekAREUEm7RbKRREBPsbj1+rnPwiXnl0KneMuI2HXn7f4jlnU9IJ8fcx2+cpuk1IQ98uEujrxQsPT2H6xJFIpaZxVllFFQDyhvhreL8eDO9nmoQCSLqQiY21Fa7KP54sIgiCcDUf7cll/dkyVk4NN4+dvk81xE6jDZVrDLFTKSlFatRaPS62cnoHOzCjh2fzsVMzezK9tSOb7SkV7JkVaWwrqNKwKKGQgxlVqDQNsVNHV26PvPrKniv3ULJkxT1h1xQ7ncxVEehihWdD4ket0aOQSQh2sebB7h7G8+6OcaN/qBPu9qbxQrnasNJV1lAKvDHR1K1hzyOtrh5dfT3WcikzrkhiXa+FhwqRAI/1Mt0nNqlQTaCzNbYK02dOO0/D+9nzBTX4K68trhSE6yGiauFPGR4bzOqDKew6dYk7ezdtwH38YgGFFTXMGmYoUbDxyAXeXnmQuDY+zGxoO5CUw+qDKZRX1zL3nj4W799ShRUqHlywFZ2+nok92+Bsb83+8znMXXWIvLJqHh5intRpNCA6AP8/SHxca/m5S4WVhPs4czA5h083J5KWV4a1XMaQTkE8M6aLcZ8mgHJVLe+vOcxdvdsSHehuMcF0OY1WR3ZJFb8eT2fj0TRGdQm9puQXgFQqMVmR1KiwQsVvpzPxd3MwSRg2Kq1Scy67hAWbj2NnJefe/pGXXVtD1P+zd9/RUVULF8B3+qT3Xkmjht6R3gkIESzIU1Gkq4A81M8KD0QEqQKR0EGqhKZIlxI6AUIJJQESQnrvmWTa98dAIKaQSbszyf6t5VowmTuzJ5jM7HvuOce19FXuzx8nMTNfpYxERP/W39cC+8MzcOZRNka2fLH0Wlh8PlLzpJjQSfmB+/D9DPz0Tzw6uppgfGd7KBQKXI7Jxf7wDGSJZZgzsPRMUVWk5kkwKfgx5HIgoIUVzEU6uPQkFz+fikdSjgQfdSy/SPT0NHvlh3yLKgx6fNPXucyLBv4tW36qKZ4AACAASURBVCzF4jMJGNXSGs3sjcodYBrRwhJvPltmITm37Fk+z4tMfhl7IWUXyiCVK5Atlqn8eja/41Wp1/KcVK7AtuupcLXQx8DGpQeTniuUyhGbWYS9d9JxLTYPH3Ww1ZgNiolIGP69u2D336dw/Hwo3h3Wr/j20DsPkJKeiWkfjAIAHDhxDt8vW4+ubVvg0/dHQaFQ4Ny129j99ynl/jlfTalWjuS0DIz5fC7kcjne8e8DCzNTnAu9hdkrNiIhJQ1TxgSUe2zfru3g6lTxCS5Lc9UvAvvx8/HQ03v17/esnFzMW7UZY14fgJaNvcocYJLL5Yh6moCmXu4Y99UChN17CJlcjtZNvfHlhHfR1NsDAIpn9dhbl+4ctlYWiIh6qvLrAIC9q+a98rUkp2eghU+jMp8XABJSlBd3WJqblvn93PHXCQBAm+a+pb4mLixCTHwSdv51Epdv3sXkMSMgMuAJQSKqnv6+5tgfnokzj3NKrEjwojspB1MO38/ET6cS0NHVGOM72UIB4HJMHvaHZyq70wCXauVIzZNg0t5oyOUKBLSwhLnhs+50OuFZd7It99ienqY13p1iMovgZW2AKzG5WH0xGY/TC6Gvo4V+Pmb47DUHGD3rOKYGOjC1LT249vzCu1aOyotHnmYWQV9HC7lFcsz/JwahsXmQK4DWTkb4b08HuFoYlHoMVUSlF+LM4xwMbWoBV4uS34vUPCma2JU+X/l8UCypnB5HVNM4wETV0tLdFs5WJjhxq+QA07Gb0RDp6aDXs+Xetp29hybOVlgythe0n43yj+rii7G/HsHFiPhq5wg8chP5hVJsmzGkeFbNqC6++GnvZWw6FQ7/CgZhfBwt4eNY8RXnqsoRFyEmNRtfbg3B290aY3w/P9yISsbuCw+QmJmHXz/uA61nV3QvPhgKIwNdTBxY/iDYy07cisGc3RcBAO62Zhjf369GMkukMszZdRFiiQxjezcv8z4frz6GuHTl1XefDG4NT/sXV5vkF0ogKqOYPb9NXPTqPUGIiCri52gEJzM9/POw5ADTycgsiHS10MNLeUJnx400NLYVYeFQt+LZM2/4WWP8H49wOSa32jmCLiWjQCLHpre9YG+qX/z4i07HY+u1FAxqYlG8Lva/edmI4GWj2kULlVHZAZllIYkw1NfG+E4Vn2yszOM1d1BeQHD6URbaOr+Y0ZqaJ0F4ovKigkLpqzd9r8pzvyzkcTZS86SY2dOxwtlSO8OUm/kCgJ+DEUZWcX8oImo4Wjf1gYuDLY6GXCkxwHTkzGWIDPTRt6tyubdNew+jmbcHVs2eUTxz5Z2hfTF6+hycv3a72jl+3RKMAnEh9qycC0c76+LH/9+vm7Bu1194ve9rcHEo+wSdbyNX+Daq3oUVZanM4BIALPhtG4wNRfjkvTfKvU9MQjIKiyS49+gJ3g8YiPcCBuJJXCLW/3EIH361AFt/+QY+Hq7ILxADQJmDLyIDfRQWSSCXy0vNHqqJ15KXL4bIoPRJwudZCsTlL0O099hZnLp0A+1aNEbbMgaYNu89gtXb9gEAWjfzKfH/GhFRVfk5vNSdXhpgOhmZrexOz/Y03RH2rDv5u77oTi2sMH5PFC7H5FU7R9DlFGV3essT9qZ6xY+/6HQCtl5PxaAm5uV3J2tRmaslVEdukQxPM4vwzdFYjPKzwkcdbBAWn4/g2xlIzJFg6TC34vN1/3YlJhf77mTA2VwPvZ8tVZdTJIO2FjDt4BO0dDTCD/2dkZAjwdZrqfj0wBNseNMTVkZVP/2+704GtAC83ar0xRX5RXKIyrhg7vlFdGKJ6l2MqCo4wETVNrC1BzaeuoPkrHzYmRtBKpPj1J2n6N7MpXimztZpg5FfKC0eXAKUs2FMRHooqObAg1yuwNm7sfBzt4FITweZeeLir/Vq7ooDVx7hwoN4jOpS+sM8oBz4EEsqzmBmaFAi+6tIpHLEp+fhy4AOCOjko8zSwhVGBrrY+E84Lj6IR9cmzjh7NxbHbz7BqvF9yxycKYu3owUWvtcDcem52HI6HGN/PYI1k/vDzabqyyhIZXJ8v/MCQh8lYUArdwxtX/ayghMHtISOtjZO3HqClYfDkJJdgBnDlMVaAaCiVZBUXCGJiKhM/X0tsCU0Bcm5EtiZ6EEqU+DMo2x08zAtXhptw1teKJDISww2ZBZIYayvg4IyZtuoQq5Q4FxUNlo4GMFAVxuZBS/eP3p4muLPuxm4HJOLgBZl71sklsghllacwUyko/KycpVxLiobJyOzsHy4R43M3Glmb4R2LsY4GJ4BC5Eu+vuaI7NAhhXnEqCnow2xVAYVx4qq5M+7GTA10MGgxhUvsdHW2QSeg0V4nCbG9utpmBD8GIFvNKrSjDEiajiG9OqCtbv+RFJqOuxtrCCRSnHiQih6dWoDI0PlSa/dK+agQFxYYmAjPSsbJkaGyBcXVuv55XI5Tl26jlZNvSEy0EdG1ot9Tft2bYfgo2dw/tptvO3fp8zjC8SFEBdWvAeDuamxyoMylXH68g0cPnsZ6+Z/UeGMHEMDA0z9TwDaNPNFh5ZNim/v0qYFRk+fgxWbg/HrD9Px/DRZeSf+yru9JiigqLDPlPe+fTTkCn5ctQU2lub48fPxZd6nU+um8G3kgoioWGwM/htjZvwPW375tkozy4iIXtbfxxxbrqWW7E6Pc551J+Xv/Q1veqJAWlZ30q6h7pSDFvaGMNDVKt2d7mXWeXeSyBRIyJFgZg8HDG9u+SyLGYz0tbHlWhouxeShi3vpC9Rvxufju6Ox0NfRwuz+ztDT0Sp+PLFUgW4eysGl53xsRPj8zxjsupmGyV3sSz1eZRRK5TgWkYWOrsZwtyx9kYMCClT0ynkejuoKGzVV26A2Htjwzx2cuPUE73ZvisuRCcjOL8KgNh7F99HV0UZkQgaO3YxGdHI24tJykZpTUCPPn5lfiFyxBJciEjBo7t4y75OYWf5VF1vP3K3xPZhE+joolMgwtJ1nidv923li4z/huPY4GS3cbLFw31UMaOUBT3vz4oExiUz55pmVXwgjA91S+1O9POOqnZc9Plx5BBtP3sEPb3etdL6XiYuk+HrbOVx4EI+ujZ3K3HPpuQGtPQAAfVu64autIdh94QFGdfGFq40pjPR1IS6SlX78Z4N3xqLqb2xIRDTA1xybQ1Nw6mEW3m5tg6tPc5FdKMMA3xeDC7o6WniYKMaJyCw8yShEXFYR0vJrZhZlVoEMuUVyXI7JxesbH5R5n8Sc8k/kbb+RWit7ML1KjliGxWcS0M/HHB5WBsXl7vl7TrZYBkM9RblrrJdnzgAXzD0Rh02hKdgUmgIdLWBIU0t0dDPB1mupMFXx8VSVWyhDWHw++vmYv3LQzO/ZMhbdG5nB28YQ//d3DIJvp2NcBUsaEhH59+6CoJ0HcTTkKt4PGIiLN8KRlZMH/95diu+jp6uLsMcPcfjMJTx+Go/YxBSkpGfWyPNnZOciJ68A56/dRq8xn5V5n/jk8ven2BR8uFb2YHqV7Nw8zFu1BYN7doKXm3PxwFjRs26QmZ0LI0MDmBobwd7GEhPeeb3UY/g2ckXrpt64cuseAMDw2f5H4sLSg3biwiIYiQxqZaAMAIxEojIH6p7fZmxUennxvcfOYt7KzTA1McLqOZ8Xzz77t9ZNlRck9u7cFo093TBt7nJs//MEpv6n/KUPiYgqY4CvGTZfS8WpR9l4u5U1rsY+704vLlB+0Z2yld0pW1Lz3elpHl7fVPZ2EIk55T/X9rC0Gt+DSaSrjUKpHEOalLw4bXBjC2y5loYbcaUHmC4+ycUPx2KhADB/kAsa2xqWeDwAGPqv/aTauxjD1lgXN+Kqvl3E9bh85Evk6ONd9gXlhnraZQ7AFT67zVify4FT3eAAE1Wbm60ZmrlY4cStGLzbvSmOhT2BhbEBOvk4Ft9nycFQ7L4QAW8HC/i526B/K3c0d7XG9pD7OH7zicrPKVe8mOYplyv/3L2pM97s2rjM+ztYlL2xLgAMaeuJVh4Vn1yyNi1dGCpiZ26EjNxC6OmWPLH2fC+n/EIJIhMykJpTgKNh0TgaFl3qMV7/aT/aNLJD4MTyl0jwdbKEm40ZHsSXvYfGq+SKi/D5xjO49SQFPZu7YN7obqUyl6d/K3ecDn+KyIQMuNqYwsHCuMxBw9Rs5W125uX/GxARVZarhQGa2Bnin4fZeLu1DU5EZsFcpIMObi9KwPKQBATfToeXtQFaOBihj7cZmtkbYVdYKk4+zFb5OV9+z5E9+3M3D9MSS0287PnSD2UZ1NgCLR0r/n1YnSUUyvMwTYy0fCmOR2bheGRWqa+P3BKB1k5GWDGi9P4SFTET6WLRUHfEZxUhNV8CV3MDWBrp4seTsbAx1q31PY5CY3MhlSvQy0u1Wbxd3U1gqKuNiJSaudiFiOovD2cHNPdphKMhV/B+wEAcPnMJlmYm6Nq2RfF9fl6zDdv/PAFfD1e0auqNQT06wa+xJ7bsO4ojZy+r/JzP+43yz8qTRL06tcbocpZOc7Atf8nPYX27ok1znwqfz8ay/P3rqurB46dISc/E36cv4e/Tl0p9fcDYz9G+RWOsX/BVhY9jZWFWvPSd07MBmtSM0u9jKemZsLcp+325JjjaWSMlo/Sg4fOBRHubkkuubwo+jKUbd8Pawgxr5s2Cj0fl9jDp2bEVDEUGuPdI9Y5MRPRvyu4kUnanVtY4EZmt7E6uL3Wnc4kIvp2h7E72hujjY4ZmdobYdTO9it3pxZ9fdCeT8ruTSfndZ1Bj8xrvTrYmusgskBXPQHrO0lB5Luzf+8ueiMzCj//EQ19HGwsGu5RYGhwA7J7lf358ycfULXO/2sq6FJMLXW3gtUZlz2h1MNUrczAwNU95m60xL/SmusEBJqoRA9s0wtI/ryE2LQch92IxpG0j6D5bFychIw+7L0Sgb0s3zBvdrcTSBek54vIeEgCgo/18yqkMBnovflmnvTSQYWFsAJGeDiQyOTr6OJQ4PjW7AHdiUiHSL/9/dWdrEzhbV352UmU0cbbC0bBopOUUlBicik9T7v1hb2EMH0dLrBhXeimLbWfv4nJkIpZ82AtWxsoBqZ3n7mPTqXBs+nRQ8R5Tz+UXSmBlqvqatGKJFDM2nMbtmFQMadsI34zqBJ1/XfEnlkjxwYojaOtphy8DOpZ6XgDF/y6Nna1wNCwKYom0xHJ/92KVG942c+FeF0RUMwb4mmPFuUTEZRXhfHQOBja2gO6z94vEnCIE305Hby8zzB7gUvI9p6D0LMuXPV8JVSJTwOClt430lz60WxjqQqSrBYlMgfauJd87UvMkuJtUUOY62M85mevD6RUb1dYGb2sRlgxzL3X7jrBUXH2ah4X+brBUcam4HLEMIc+WC3SzNCh+XXKFAtdj8+DnUPsXFtxKyIe2FtDmX0XvuVXnE3HyYRZ2jPEpMdgllStQJJfX+gAYEdUP/r27YGHQdjxNSMaZy2EY2qcrdHWUn4Hjk1Ox/c8TGNC9AxZ+MbnE+05aZumBkJc9n21TJJHAQP/FSaCXB1AszU0hMtBHkUSKzq1L7pOakp6JW/cfwbCMvYGec3Gwg4tD3c/UbOzpijXz/lvq9k3Bh3HxRjhWzZ4BKwvlxQH7j4dg7a4/seirKWjm7VHi/lGxCXC0s4a2tjaaeinfx+4+jEavTm2K7yORSBEZHYsBr3WotdfTzNsdh05dhLiwqMRyf3ciogAALXxfrFyx7cAxLN24G4621gj6cRbcnEovjbR4/U4cPnMZh9YtLPFvL5XKIJFIIdLnSUEiqhkDfMyx4nzSs+6Ui4GNzV/qThIE385Aby9TzO7vXLI7vWIWk8rdyaXk5/UX3an8buRkpl/u/kxV1dhWhOMR2UjPl5YYnIrPVp7jsjd58fv3zONszDsZD2N9bSzyd0Mz+9IXn/vaGgLIRHRGETxf2i9KrlAgKVcCn2rsv3s7IR++NqJyV4XwtRHheGQ2CqUle839ZOU506Z2Nb/3L1FZ2KqpRvRv5Q4dbS0s++s68gulGNTmxRXQ2fnKJQw8bM1KvFndfZqGm0+UywRJZWWP6Fs9G5yJjH9xtVhCRh7CY9KK/66ro42uTZxwJTIRd5+mlTh+9ZEwfPV7SIVL5NWGga09oFAol9972Y5z96GlBfRs7gIzI3109HEo9d/zAal2nvZo4qK8wsPNxhSZeYX440JEicc7eSsGSVn5eK2JM1S1/K/ruB2TisFtPPDdm51LDS4BgEhPF8YGujh+8wlSsl9M65VIZfjjYgRMRHpo/Wz2V9+WriiSynHg8sPi++UXSvBn6GP4udmotMQgEVFF+nqbQ0cb+PV8IvIlcgzwfXHldbZYOYjkbmlQ4j3nXlIBbicof49J5WVvdmr9rGA8THtx8UNiThHCk15c1KCrrYXO7qYIjc3FvaSSs1/WXErCt0eeIjFHUs1XWPNMRTpo72pS6j9rI2WBauNsjMZ2qs3W1dEGfjmTgG03Si5bEXwrHSl5UoxsWXtXkj8XmSqGm4UBDPXK/kjrZK6P1DwpDt0rOdN3z610yORAV3fub0FErzaoRyfo6uhg0dodyCsQY2jvF0tTZ+Uoe4ani1OJ9507EY9x465yOSCprOwLHJ7PHIqIelp8W3xyKm4/eFT8d10dHXRv3xKXwsJxJ+JxieOXb/oDn89fiYSUipcPEoKZiTE6t25e6j9bK+USQh1aNi0eTHJztEdsYgp2/HmixGMcP3cVkdGx8O+lXMLbwdYaLRt74cCJc8jLf/EevOfIaYgLizC4Z/lLfVdX/24dUCSRIvjI6eLb8gvE2H8iBK2aeBUvMXjz3kP8sn4nbK0ssOHnr8ocXAKUA38p6ZnYd+xsidu3HTwOqUyGnh1b19prIaKGpa+32bPulKTsTj6V6E7JBbidWNnu9GLZ0sQcSenu5GaC0Ng83Ev+d3dKwbdH45CYW7fdqb+PORQAtt8oef5w9610aAHo7qnsB/HZRZh/Mh4GutpYOsy9zMElAOjeyASGulrYfTMNEtmL79WRB1nIEsvQ07NqfUMiUyA6o/DZAFbZenuZoUimwMG7L86Z5kvkOHQ/C83tDWt82XWi8nAGE9UIKxMROvo44Ny9OLhYm6CF24s1vD3tzeFoaYztIfchVyjgYGGMh4mZ+PPqI+hoaUEKIL9QCjOj0r/4+rV0w5bT4Ziz+wJGv9YERTI5/rgQAXsLI8Skvtjgdsqg1gh9lISpa09iZBcfOFuZ4EpkIk7deYoBrd3R0t22Lr4Nxbo0dsKAVu7Yee4B0nPEaN3IDlcfKvO8060xGtmptgxF1ybO6NXcFdtD7iEjVww/dxs8TMjE/isP4etkiXd7NC2+7+0nKYhNz0VHb4dyl/aLS8vFgSuPYKCrg1aN7HCkjCX6ejR1gbFID7NGdMCEwOOYEHgco7r4QksLOHQtClFJWfj+rc7Feyt19nVCZ19HrPj7BhIz8+Fma4p9lx8iNbsAs6u4PxQRUVksjXTR3sUEF6Jz4Gymj+YvzZRpZGUAB1M97ApLU77nmOrjUZoYh+5lFF9lV1Akh6mo9FVgfbzN8fv1VPx4Ig5vtbKGRK5A8K002Jvq4Wnmi30XJna2x/XYPEw/EI0RfpZwMtNH6NM8nHmcjX4+5sV7/dR3Rvo6GNHCEntupUNHC2hmb4QHKQU4GJ6B4c0t0dLxxVWKj1LFeJQmRgsHoxqdwRWbWQTvCq4KHNbUEkcfZGLl+STEZBahkZUBbifk41hEFjq5maC/b80vC0VE9Y+1hRk6t26GM1fC4Opoh5ZNvIq/5u3mDCd7G2zedwSyZ8u4RUTHYt+xs9DR1oYUMuQXiGFmUnqm5cDuHbH+j0P4ZvFavDdiAIokUuz46wQcbK3xJC6x+H7Txr6JK7fu4eOvF+Jt/z5wcbDFpRt3ceJCKIb07Fy8h4+matvCF0N6dcbBk+eRVyBG59bN8SgmDnsOn0ZjTzd89ObQ4vvO+OgtjP96IT788ieMGtwbsYnJ2HbwOLp3aFVi2cKIqKeIiH6K1k29a2QGV7d2fujWzg9LNuxGQko63J3tsefIaaSkZWL+zAnF91uxJRhyuQI9OrTC9fAIXA8veYGgt7sLmni64Y2BPfDnP+exaN0ORMUmwNvdGTfuRuLQqYt4rZ0fhvTq8u8IRERVouxOxrjwJBfOZnpo7vDiPFGp7mSih0fphTh0LxPaWloAFCiQyMucQdPH2wy/X0/DjyefdSeZAsG302FvooenWS93Jztcj8vH9ANPMKKFFZzM9BAam4czj3PQz8esTlY9eFknNxP08zbD7lvpSM+XopWTUXGeN1tawcNSOSt4c2gqCqQKdG9kguiMQkRnlNz/z8FUDy0djWAu0sXUbvb45UwiPt0fjYGNzRGXLcHe2+loYieC/0t7Pd1JzEd8tgTtXYxfubRfYk4RpHLl85Sno5sJOrkaY/XFJCTlSuBqro+DdzOQlifFd32dqvFdIlINB5ioxgxq0wgXHyRgYGuPErfr6epgyYe9sOLQdQRfjIRMroCjpTHG9fODk6UJvtl+DlcfJqJvS7dSj+njaIl5o1/DhpO3sfJwGOwtjPBhn+bIKSjC6iM3i+/nYm2KDVMHIuj4LRwKfYz8QikcLI0xZVBrjH6t7H2Zatv3b3WBt6MFDl59hFN3nsLB0hjT/NvinSrm+d/orthw8g6O3IjC0bBo2Jga4u1ujTGunx8MX1oCcN/lh/j7ehRWje9b7gDTjahkyBUKFEplWLD3Spn32fm5P4xF5mjqYo3VE/pizfFbWHv8FgCgqYs1lo/rjQ7eJZcknD/mNfx29CaOhEVDXCSFt6MFln3UG6086naAj4jqvwG+5rgck1tqgEBPRxsL/d2x6kIi9t3JeDbIpIexHezgaKqHH47FIjQ2F729Sw8seNmIMHuACzaFpuC3i0mwM9XD++1tkVMoQ9Cl5OL7OZvrY80oT6y/kozD9zORXySHg6keJna2w1utGtZyoFO6OMBCpIvDDzJxPDILTmb6+Ky7AwJalJy9dOZxNjaFpuD/+jjV6ABTllgGkwo2r9XV0cKioe5YezkJpx9l42C4DPamehjX0Q5j2tgUL8VLRPQq/r274Ny12xjSq+QsGT09XayaPQOL1+3ErkP/PNsryAaTRg+Hs4MtZi1YjUthd8tcvs23kSsWfjkZa3YcwNKNf8DR1grj3x6G7Nx8rNi8p/h+ro522Lbke6z+fR8OnDiH/AIxnOxsMG3sKLw3fGCtv/a68L9p4+DmaI8//7mAM1fCYGVuhreG9MbkMQEwEr1YArBtc1+snvM5VmwJxqK122FpborRQ/thyn8CSjzeyQvX8NuOA/jf9HE1tkTgL19Nwa9bgnHo9EUUiAvRuJErAv83E22aKQf4JFIpwp7NWgs+egbBR8+UeowPRw1BE0836OnqYvWcmVi5NRgnzodiz5HTcLK1xtT/BODDUUOgo8PFZoio5gzwMcflmDz09/l3d9LCQn9XrLqQ9Kw7KQc0xra3haOZHn44FofQ2Dz0LmO/Uy9rEWYPcMam0FT8djEZdqa6eL+djbI7XU4pvp+zuT7WjPTA+qspyu4ked6dbPFWS2G609d9neBpbYBD9zNx5nEO7E318ElXO7z50goMN+KVM7hConIQEpVT6jH6eJsV7w/1ejNLWIh08Pv1NKy6kAwTA20Ma2aJCZ1sofvSXk8H72biyIMsLH/d7ZUDTJnPZpcZV9B1AGDOQBesvZyM4xFZEEvk8LIR4Zehrg3mokdSD1pOTk5lz3WkeiEuLg4Z++YIHaNeW3v8FtafvIOdn/vDQ8WZSbVl8poTmDKoFfzqeOZWZf0V+hjz9lzC0g97oUvj2r2qwjLgBzg7q76EIBHVrbi4OCQtf0PoGGpvw5VkbApNwdbR3nC3LH/PDXU0/2QcOrqZoJ+PerxX/ltCdhHe/j0S77axwaQuZS9p9G/20/byPYaoHoiLi4M48oLQMdRS4Lb9+G3HAewPnI9Gro5Cx1HJd0vXoWvbFrW6dF5diEtKxZBxs/DhqCGYPvbNMu8j8unK9yMiAcXFxSFp2QihY9C/bLiagk2hqdj6jqfadKfPDjzBhE62aFHHM7cO38/ET6cSsMjfFZ3c1G8LC/vp+/k+psF4WQxRPRP+NBXRKdnwdLB49Z2JiIjqQGxWIa48zUUzFfd5IiIiqoqY+CRcuH4Hfo09hY5CREQEALibVIAnGYXwtFKPwS6imsIl8ohqyLl7cbgXl46+fm7Q1y29Pm1dSc0uwJKxPWFsUP46rUJJzsrHtcdJuBOjfhsRExFpkgvROXiQXIBe3mbQ14BldFLzpPi6j3ONLo9XU6QyBf55mFW8DAUREZV25koYwh9GYcBrHaCvp349499S0jMxd8bHNbY8nhAkUimOhlxBZnau0FGIiDTahehcPEgRo5eXqaDdKS1fip+HuMJIv+7OGSbnShAWn487SQV19pzU8HCAiaiGrDwcBgDo4uso6ABTz+augj33q9yLTcOcXReFjkFEpPECLyYBUG7sqm+o/gNMrZ1Kb26vLgqkcsw7GSd0DCIitbZ0424AQLe2ftA3V/8BpnYthNmHtyYViIvwzeK1QscgItJ4gc/20+3o6iNod+reyLTOn/NBihjzTsbX+fNSw8I9mOo57sFEDR33YCLSDNyDiTQR92Aiqh+4BxNpOu7BRCQs7sFEVD3cg0mzqf8lr0RERERERERERERERKRWOMBEREREREREREREREREKuEAExEREREREREREREREamEA0xERERERERERERERESkEg4wERERERERERERERERkUp0hQ5AtSs5MR52AT8IHYNIMMmJ8UJHIKJKSEqIg/20vULHIFJJUkKc0BGIqAYkJyXCzqer0DGIqiw5KVHoCEQNWlJCHOyn7xc6BpHGYq/SbFpOTk4KoUMQVZeenh72lPVaLQAAIABJREFU7NmD48ePY+XKlULHUVvz5s2Dg4MDPv74Y6GjEBHVO/3798ePP/6IwYMHIy0tTeg4asnDwwMHDhzA2LFjcePGDaHjEBHVK+xElcNORERUe9iJXo2diOobHVNT09lChyCqrh9++AEGBgb45ptvhI6i1s6dO4ePPvoI5ubmCA0NFToOEVG94ebmho0bN2LChAl49OiR0HHUVmZmJqKiorB48WIEBwdDLBYLHYmIqN5gJ6ocdiIiotrBTlQ57ERU33APJtJ4w4YNQ//+/TFt2jQoFJyQV5GioiJMnDgREydOROfOnYWOQ0RULxgYGCAoKAi//vorrl27JnQctXf06FEcPHgQK1euhLY2P4oSEdUEdqLKYyciIqp57ESqYSei+oQzmEijeXl5ISgoCGPHjsXTp0+FjqMRcnJycP/+fSxfvhz79+9HXl6e0JGIiDTaTz/9hPz8fMydO1foKBrjwoULeOedd+Ds7IyLFy8KHYeISKOxE6mOnYiIqGaxE6mOnYjqCw4wkcYyMjLCzp07sWLFCpw8eVLoOBrlyZMnMDExwaRJkxAcHMyrHImIquitt95CQEAAPvjgA0gkEqHjaAyFQoHTp09jwYIFiIiIQHR0tNCRiIg0EjtR1bETERHVDHaiqmEnovpCy8nJiZ+iSCP9+uuvkEqlmDFjhtBRNJK2tja2bt2Ku3fv4scffxQ6DhGRxmnWrBl27tyJUaNGISIiQug4Gqlz584IDAyEv78/4uPjhY5DRKRx2Imqh52IiKh62Imqj52INB1nMJFG+uCDD9CnTx+MGzcOUqlU6DgaSaFQ4NSpU5g7dy6ePn3KDRiJiFRgamqKXbt2Yf78+Th//rzQcTRWbGwstLW18fnnnyM4OBgymUzoSEREGoOdqPrYiYiIqo6dqGawE5Gm4wwm0jitW7fGli1bMHz4cERFRQkdR+O1adMGmzZtwvDhwzkdl4ioktatW4fk5GR8/fXXQkepF9avX4+EhAR8++23QkchItII7EQ1i52IiEh17EQ1i52INJW20AGIVGFpaYnffvsNX375JYtUDblx4waWLl2KoKAgiEQioeMQEam9iRMnwsHBAbNnzxY6Sr0xY8YM9OrVCyNGjBA6ChGR2mMnqnnsREREqmEnqnnsRKSpOIOJNIaWlha2bNmCiIgIzJ07V+g49c6qVasgFosxc+ZMoaMQEamtTp06Yc2aNfD390dcXJzQceqV5s2bY8eOHRg5ciQiIyOFjkNEpJbYiWoXOxER0auxE9UediLSRJzBRBpj2rRpMDY2xk8//SR0lHpp1qxZaNu2Ld555x2hoxARqSVbW1usWrUKM2bMYJGqBeHh4Zg3bx7Wrl0LY2NjoeMQEakldqLaxU5ERFQxdqLaxU5EmogzmEgj9OjRA0uXLsWQIUOQlJQkdJx6y9vbG3v37sXo0aMRHh4udBwiIrWho6ODnTt34tKlS1i8eLHQceq1RYsWwdjYGFOmTBE6ChGRWmEnqhvsREREZWMnqjvsRKRJdExNTWcLHYKoIk5OTti6dSumTp2K+/fvCx2nXktPT0dcXBx+/vlnBAcHo7CwUOhIRERq4auvvoK1tTW++OILKBS8Nqc2hYSEYMqUKdDT00NYWJjQcYiI1AI7Ud1hJyIiKhs7Ud1hJyJNwiXySK3p6elhzZo1WLt2LS5evCh0nAbh4MGDOHnyJJYtWwYtLS2h4xARCa5///4ICAjAJ598ArlcLnScek8sFmP8+PGYPn062rVrJ3QcIiLBsRPVPXYiIqKS2InqFjsRaRLOYCK1Nnv2bOjq6uLbb78VOkqDcu7cOYwdOxZWVla4evWq0HGIiATj7u6OjRs3Yvz48YiKihI6ToORlZWFR48eYcmSJQgODkZBQYHQkYiIBMNOJAx2IiIiJXYiYbATkabgDCZSW6+//jr69u2L6dOnCx2lwZFIJJg0aRI+/vhjdO3aVeg4RESCEIlECAoKwrJly3D9+nWh4zQ4x48fx759+7Bq1Spoa/MjKxE1TOxEwmEnIiJiJxIaOxFpAi0nJycumklqx8fHB8HBwdxYVWDdu3fHsmXLuJEwETVIv/zyCwwNDTF16lShozRYzzcSvnz5Mn755Reh4xAR1Sl2IvXATkREDRk7kfDYiUjdcYk8UjtGRkbYuXMnli1bhlOnTgkdp0GLiYmBkZERpk6diuDgYK6zS0QNxttvv43hw4dj7NixkEgkQsdpsBQKBU6fPo0FCxYgMjIS0dHRQkciIqoT7ETqg52IiBoqdiL1wE5E6o4zmEjtrFq1CmKxGDNnzhQ6CgHQ0tLCli1bEBERgblz5wodh4io1jVv3hw7duzAyJEjERkZKXQcAtCxY0cEBQXB398fcXFxQschIqp17ETqhZ2IiBoadiL1w05E6oqLN5JaGTt2LHx8fPDNN98IHYWeUSgU+Oyzz+Dv74/BgwcLHYeIqFaZmZlhzZo1+O6771ik1MiVK1cQGBiIoKAg6OvrCx2HiKhWsROpH3YiImpI2InUEzsRqSvOYCK10bZtW2zcuBHDhw/ndE811KpVK2zZsgUjRoxAVFSU0HGIiGrF+vXrkZCQgG+//VboKFSGoKAgpKam4uuvvxY6ChFRrWAnUm/sRETUELATqTd2IlI3nMFEasHS0hKBgYH44osvWKTU1M2bN7F48WIEBQVBJBIJHYeIqMZNnjwZdnZ2+N///id0FCrHzJkz0b17dwQEBAgdhYioxrETqT92IiKq79iJ1B87EakbzmAiwWlra2Pr1q0IDw/H/PnzhY5Dr7BixQrIZDLMmDFD6ChERDWmc+fOCAwMhL+/P+Lj44WOQxVo2rQpdu3ahVGjRiEiIkLoOERENYKdSLOwExFRfcROpDnYiUid6Jiams4WOgQ1bDNmzICHhwdmzJgBhYLjneru9OnTmDFjBqRSKW7fvi10HCKiarOzs8O2bdswY8YM3LlzR+g49AqpqalITU3Fjz/+iD/++ANFRUVCRyIiqjZ2Is3CTkRE9Q07kWZhJyJ1whlMJKhevXrhl19+weDBg5GSkiJ0HKokLy8v7Nu3D2PGjGGhIiKNpqOjg127duH8+fNYunSp0HFIBT///DMsLCwwceJEoaMQEVULO5FmYiciovqCnUhzsROROuAMJhKMk5MTtmzZgilTpnA6p4bJyMjA06dPsWjRIgQHB0MsFgsdiYioSr7++mtYWlriyy+/FDoKqSgkJAQTJ06EoaEhrl+/LnQcIqIqYSfSXOxERFRfsBNpLnYiUgfaQgeghklfXx9r1qzBmjVrcPnyZaHjUBX89ddfOHbsGJYvXw4tLS2h4xARqWzgwIF4/fXX8emnn3I5Ig1UWFiICRMm4NNPP0X79u2FjkNEpDJ2Is3HTkREmo6dSLOxE5E64AwmEsScOXOgpaWF77//XugoVA3nz5/H+++/DxsbG1y5ckXoOERElebh4YENGzZg3LhxiI6OFjoOVVF2djYePnyIpUuXYu/evSgoKBA6EhFRpbET1Q/sRESkqdiJ6gd2IhIaZzBRnRsxYgR69eqFzz//XOgoVE0SiQSTJk3Chx9+iNdee03oOERElSISiRAUFIQlS5YgLCxM6DhUTSdOnMCePXuwatUqaGvzoy0RaQZ2ovqDnYiINBE7Uf3CTkRC0nJycuL8R6ozvr6+2LNnD9555x3cvXtX6DhUQ1577TWsWLECQ4YMQWJiotBxiIgqtGTJEujr6+OTTz4ROgrVEG1tbezYsQPXrl3DwoULhY5DRFQhdqL6iZ2IiDQJO1H9w05EQuESeVRnjI2NsWvXLixevBinT58WOg7VoJiYGBgYGOCTTz5BcHAw5HK50JGIiMo0evRoDB06FB9++CEkEonQcaiGKBQKnDp1Cj/99BMeP36MqKgooSMREZWJnaj+YiciIk3BTlQ/sRORUDiDiepMYGAgcnNzMWvWLKGjUC3Q0tLCpk2b8PjxY8yZM0foOEREpbRo0QLbt2/HG2+8gYcPHwodh2pB+/btsW7dOgwdOhSxsbFCxyEiKoWdqH5jJyIidcdOVP+xE1Fd46KMVCc++ugjeHp64rvvvhM6CtUShUKBadOmYdCgQfD39xc6DhFRCebm5lizZg2+/fZbFql6LDQ0FKtWrUJQUBAMDAyEjkNEVAI7Uf3HTkRE6oydqGFgJ6K6xhlMVOvatWuHDRs2YNiwYYiJiRE6DtWyli1b4vfff0dAQAAePXokdBwiImhpaWHDhg2IiYnBDz/8IHQcqgNr1qxBRkYGvvrqK6GjEBEBYCdqaNiJiEjdsBM1POxEVFc4g4lqlZWVFQIDA/Hf//6XRaqBuHXrFhYuXIigoCAYGhoKHYeICFOmTIGVlRXmzZsndBSqIzNnzkTXrl0xatQooaMQEbETNUDsRESkbtiJGh52IqornMFEtUZbWxvbtm3DzZs3sWDBAqHjUB1bvnw5tLS08NlnnwkdhYgasK5du2LlypXw9/dHQkKC0HGoDjVp0gS7d+/GW2+9hfv37wsdh4gaKHaiho2diIjUATtRw8VORHVBx9TUdLbQIah+mjlzJlxdXfH5559DoeA4ZkNz+vTp4iJ169YtgdMQUUNkb2+Pbdu2Yfr06QgPDxc6DtWx1NRUJCUlYf78+dizZw+KioqEjkREDRA7UcPGTkREQmMnatjYiagucAYT1YrevXtj0aJFGDRoEFJTU4WOQwLx9PTEvn378N5777FQEVGd0tXVxe7du3H27FksW7ZM6DgkoJ9++gnW1taYMGGC0FGIqIFhJyKAnYiIhMNORM+xE1Ft4gwmqnHOzs7YsmULJk2ahMjISKHjkIAyMjLw5MkTLF68GMHBwRCLxUJHIqIG4ptvvoGpqSk3NCWEhIRg/PjxMDExwbVr14SOQ0QNBDsRPcdORERCYSei59iJqDZpCx2A6hd9fX0EBQUhMDAQV65cEToOqYHDhw/j77//Ll5/nIiotg0ePBj+/v6YNm0alyMiFBUVYeLEiZgyZQo6dOggdBwiagDYiejf2ImIqK6xE9HL2ImoNnEGE9WouXPnQiaTYfbs2UJHITVy/vx5jBkzBg4ODrh8+bLQcYioHmvUqBHWrVuHcePGITo6Wug4pCays7MRERGB5cuXY+/evcjPzxc6EhHVY+xEVBZ2IiKqK+xEVBZ2IqotnMFEVWJsbIzu3buXuC0gIADdu3fHzJkzBUpF6koqlWLy5Ml4//33S/1/069fP+jp6QmUjIg0Wbdu3WBqalr8d5FIhKCgICxevBg3b94UMBmpo3/++Qe7du3C6tWroaOjU3y7nZ0d2rZtK2AyItJU7ESkCnYiIqoN7ESkCnYiqg0cYKIq6du3L957773ivzdu3Bhz5szBhAkTkJOTI2AyUldJSUn49NNPsXz5cjg6Ohbf/tlnn6FNmzYCJiMiTTV//nw4OzsX/33BggW4d+8etmzZImAqUmeLFy+GTCbDrFmzim9r2rQpvvzySwFTEZGmYiciVbETEVFNYyciVbETUU3jABNVSYsWLXDnzh0AgImJCdauXYu5c+fi3r17AicjdXbhwgVs2LABv/32W/EVenfu3IGfn5/AyYhI0xgZGcHJyal44/QxY8bAz8+PH4qpQnK5HFOnTsUbb7yB/v37AwDCw8PRvHlzgZMRkSZiJ6KqYCcioprCTkRVwU5ENY0DTFQlfn5+xWVq8eLFuHjxIv744w+BU5EmWLVqFTIyMvDtt98CAG7fvo0WLVoInIqINE2zZs3w4MEDyGSy4hI1YcIEFBQUCB2N1Fx6ejomT56MX375BW5ubkhNTYVYLIaLi4vQ0YhIw7ATUVWxExFRTWAnoqpiJ6KaxAEmqhI/Pz/cvn0bH3/8Mdzc3PD9998LHYk0hEKhwLRp09CvXz+8/vrrLFNEVCXPT+pZWFhgzZo1+L//+z88evRI6FikIa5du4bly5cjKCgIBgYGuH37Nq8cJyKVsRNRVbETEVFNYCei6mAnoprCASZSmbOzMwoLC+Hu7o5PPvkEEyZMQFFREYYMGYLDhw9jzJgxQkckNTR9+nQEBwejR48eyMrKwoQJEzBv3jxIpVI0atQIIpFI6IhEpEGel6nly5fj2LFjOHToEBwdHTFnzhycPXsWWlpaQkckNWNkZISrV6/iiy++gKWlJTZs2ICoqCjMnTuXZYqIVMZORFXBTkRENYmdiFTFTkS1gQNMpDI/Pz88ePAAgYGBmDVrFtq3b4+TJ09i6tSpWLJkCbZv3y50RFJDv/76K37//XfMmTMHf/31F5ycnPDTTz9h9erVePz4MZo0aSJ0RCLSIH5+fmjatCnMzc2xefNm/Pzzzzh+/DikUilGjRoFhUIhdERSM/n5+Rg5ciSsra0REhKC7777Dj///DM6duwIc3NzXjlORCphJ6KqYCcioprETkSqYiei2qDl5OTE3zakklmzZmHkyJF48OABvLy8kJycjGXLluHs2bNCRyMNoKWlhcGDB2PatGnQ1tZGZmYmnJ2dERgYiK1btwodj4g0gIGBAe7du4fc3FxcvHgR3bp1w5YtW7B27VpkZGQIHY80gKOjIyZNmoSRI0fi9OnT6NOnD+RyOQsVEVUaOxFVBzsREVUXOxFVFzsR1RTOYCKVDRs2DM7OztDX18fMmTPxxhtvsEhRpSkUCvz9998YOHAgFixYAENDQ7i5uSEgIEDoaESkITp06AB9fX3o6uri7t276Nq1KxYuXMgiRZWWkJCAH374Ab169UJ8fDx0dXVhaWkJd3d3oaMRkYZgJ6LqYCcioupiJ6LqYieimqJjamo6W+gQpFmcnJywbNkyLF68GHFxcULHIQ0WFRWF7du3IyoqCmlpabhy5YrQkYhIAxgYGEBXVxdjxozBuXPnUFhYKHQk0lD5+fkICQnB77//DltbWxw/fhwFBQVCxyIiDcBORDWFnYiIqoKdiGoKOxFVF5fIIyIiIiIiIiIiIiIiIpVwiTwiIiIiIiIiIiIiIiJSia7QAcpzPfQK7B2dhY5B9URSQhzatu8odIxac+NaKOwcHIWOQQ1McmIC2rRrL3SMWnU99CrsHZ2EjkH1QFJCPNq27yB0jFp1/epl2Du5CB2DGpCk+Fi07dBJ6Bg15vr1G7C3txM6BjUwSUnJaNu2jdAxasSNa1dh58DPbVS3khPj0aZdPf+Mx/NzVEPq+7m58rAnUU1R1/6jtgNM9o7OSFk3TugYVE/Yf7xe6Ai1ys7BEbnntwodgxoYu27vCR2h1tk7OiFt2wyhY1A9YD9mqdARap29kwsSFw0SOgY1IA6zjggdoUbZ29shPKVI6BjUwDSvR4Oadg5OyNz/P6FjUANjN+J7oSPUOntHZ6QEjRU6BtUD9hM2CR1BEPZOLkhY0FfoGFQPOH51UugIZeISeURERERERERERERERKQSDjARERERERERERERERGRSjjARERERERERERERERERCrhABMRERERERERERERERGpRFfoAJpk/fkn2HjhKbZ91Bbu1kaVPi4hS4w3g0IxpqMLJvf0qL2AAM49TMPGC0/xJD0f5oZ6GOpnj/c6u0JXW+uVx56JSMW2K3F4mJIHHS0tNHcyxfjX3NHcybTE/R4k5SLwTDTuxGdDC1po7WqGKT0boZFNye9JoUSGTZee4vjdFGTkS+BiKcKYji4Y0Kz+bCRLqlmz/wyCDoZgz4+T0MjRptLHxadmYtgXK/HB4K747M0+tZgQOHMjAmsPhiAqIRUWpoYY3r01PvJ/Dbo6qo3Hn7/1EJ8t24n/e28wRvVuV+JrExduRej9J6WOaeruiN9/GFf894iYJATuP43rD2JQJJHCw9EG/xnYCf5dW1btxVG9sO50BDacfYjtU3rAw8ak0sclZOZj5IrT+E9XT0zp16QWEwIhD5Kw8WwkolPzYG6kh2GtXfF+dy/oar/65+h8RDI2hTzE4+QcGIt00aeZI8b38oWxQfkfWR4mZeOjtefxTudGpV5bZGI21p6OQNiTdBRJ5XC3McY7XTwxuKVztV8naaaN1zKw6UYmtoxyhruFfqWPS8iR4J1dsXi3pTkmdrSqxYTA+Sd52HwjE08yJTAXaWOIryn+09qiUp/nXjbrSCJM9LXxQ5/Sn73CEgqw+UYm7qUUQi4HvK318X4bC3R2Lf8z7vabmfjjTjb2jXFT+TVR/bFz/Wrs3hiIFdsOwMXds9LHJSfEYdKbgxAw5iO8N3lGLSYErpw7hT82/obYJ1EwNbdAv6EBGPneeOjoqlZ/r18MwbxZUzDxv99h4Ii3SnztwZ2b2Ba0AhHht2BkbIw2nbph9MefwsbeocT9nkY9wtbfluHBnTDIZTL4te+M9yZNh6MLf44aqrXHb2HdidvYNXMoPOzMK31cfHouAn4+gPd7NcPUwW1qMSFw9m4s1p+4jejkLFgYG2BYB2+M7d28Up3o3L04bDh5G4+TsmAi0kMfPzdMHNgKxgZ6Je53+0kqAo+G4U5MKowN9NClsRMmDmgJewvjEveLiM9A0LGbuBGVjCKpDO625ni3RxMMaVv53z9U/6y/8BQbL8Zi29jWcLc2rPRxCVlivLnuBsZ0cMLkHu61mBA49zAdGy/F4klaAcwNdTHUzw7vdXKp3Pm5yDRsuxr/4vycoynGv+aK5o6mJV5HRb4e6IUhLUp/Bjx5PxU/HIrEyWmdYKDLeQcN1cYbWdgcloPNAfZwt9B79QHPJORIMXpPIkb7mWJi+8q/h1XF+ZgCbA7LRkyWFOYG2hjia4wxLU0r9TP0OEOCNVezEJ5SCG0tLXRxFWFyB3NYiHRK3C8itQhrrmUhPLkIWgBaORhgUgdzeFTwPUnLl2HsvkS0dxbhh17W1X2Z9QIHmFTQ08cGLhaGsDGp/MkIALAw1MN3Q3zhaVP5QamqOBORim8P3EcrF+WAT2RyLtafj0FKThG+GOj9ymO/OXAfje1NMKm7O4pkCuwLS8AnO2/h17f90MLZDAAQk56PT3bchoGeNj7o4gptaGFHaBym7LiFje+3hoO5CAAgVyjw1b57uP40C2+0cYSrpSFO3k/B/w5FQCZXYHAL+1r9XpB66tOuCVztrWBrYfrqO7/E0tQIc8cPh5ezbS0lU/rn2n18sXoP2vi4YdpbfRERk4Q1+88iJSMH33zgX+nHyckX48fNh8r9+qO4FHRu7gn/rn4lbjc3fvHBOD41Ex8v2AyRvh7+M7AzzIxFOHblLr5fdxAZOfn4z8DOqr9Aqhd6NXWAi5UxbE0NVDrOwkgf349oBU871X7+VHXmfiK+3n0drdysMLVfE0QmZWPdmUik5Ijx5VC/Co89fS8RX/9xHX4ulpjSrwkSMwvwx9Vo3I3LRODYLtAp44OkVC7HvAO3IJUrSn0tITMfkzddgkhPG6O7NIKpSA8nwxMwd/9NZOYVYnQXnphoiHp4GMPZTA82Rqp9DLYQ6eCbnrZoZFX5AlYVZ6Pz8P2JZLR0EGFSRys8TCvCxuuZSM2X4b+vVf7ijA3XMnAltgB9PI1Lfe1eciE+/zsRDqa6eP/ZwNXfETn46mgS5vS1Q89GpY+5EpuP9dcyYGagU+pr1LB07tkXji6usLJR7aIxMwtLTPtuPtw8fWopmdKlMyex6NsZaNqqLd6f8jmiI+9j5/rVSEtJxuQvfqj04+Tl5iBw0Zwyv3b35jXMmTEBBgYijHj3Q4gMDXFk3y58NWkM5gduhZ2DEwAgKT4WX09+D4ZGxggYMw6AAn/t/h1fTngXSzbuKTUYRQ1DrxaucLE2hY2ZaucHLE1EmP12V3g51O4JvdN3nuKr38+itYcdPvVvi4j4DKw9fgspWfn4v5GdKjz21J0YfLU1BC3dbfDJkDZIyMjFH+cjcPdpGtZM7g+dZxcb3YhKxmfrTkKkp4v3ejaDSF8XwRcjMG7VUaydMgCOlsqLqOLTczHxt2MQ6eni3e5NYWakj+M3n2DOrovIzC3Euz2a1ur3gtRXTx8ruFiIYGOi2ucyCyM9fDfYu/bPz0Wm4duDEWjlYoopPd0RmZyH9RdikZJbhC/6e73y2G8ORqCxvTEmveaOIpkc+8IS8cmucPz6VnO0cDItfh3/JpMrsPxUNLS0gNauZqW+Hpmch4XHH9fY6yTN1cPdEM5murAxUu2zvYVIG1/3sEQjFQalqiLkSQG+/ycNLe31Mam9OR6mS7DxRjZS82SY2c2ywmPjc6SYfjgFxnpa+E9LM4ilCuy6k4OHaRKsHmoHA13leYWYLAmmHU6Bga4W3mtlCm0tLey6k4NPDyVj7XB7OJiU3RcXX8hATlHp8w8NGQeYVOBtZwxvu9KF+1UM9XUwsHntztqRyRVYeToKjR1MsOytFsVXFhnr62JXaBxGtXWEp2352ZedfAwPayOsGdOy+NjBze0wZsM1/HY2GitHK2dM7A6NR4FEhmVvtSie2dTWzRzjf7+JHVfjMKOf8o3ySHgyrj7JxKwB3hjeSlmchrdywNjNN7D+fAwHmBooH1d7+Liq/m9vaKCPIV0qPjFdXTK5HEt3HUdTd0es/u8Y6Okq32SNDQ2w7dglvN23A7xdKvdzvHTncaTn5Jf5tfTsPGTk5KObn1eFr2nV3lOQSGXYNvtjuNopr5R/s3d7fLxgM37bfwZv9GwLI5Fqg91UP3jbm8HbvnRZeBVDfV0MquVZOzK5AiuO3UNjJ3OseK9jifeinZeiMKqjB7wqGOBafuwuGtmaYNUHnYqPdbAwxOLD4TgXkYSeTUqfiNt67hGiUnLLfLw1/0RAKpPjtwnd4GKlfA98o4M7Jm+8hHWnIzG8nRuM9PlRqKHxstaHl7Xqvz8N9bQxwKfyswarQiZXYNWldPja6GPJEIfiq/OM9bWw+3Y23mhmBk+rirMXSuVYeSkdB+/nlHuflZfSYGqgjTXDnWD6bMDo9aam+DA4Dqsvp5caYDp4PxsrLqTbFJA+AAAgAElEQVRBKq/mC6R6wcO7MTy8G6t8nMjQCD0HDquFRC/IZDJsWrkIno2bYfaytdDVVZ78MDQ2wZ+7tmDIqHfhXskBrk2/LkJWRnqZX1u75EcoFArMW7UZbp7KE3y9Bg3Dp+++js0rf8GseUsAKGd7FRUVYtH6XXBwdgUAtO3cHdPfD8CBnZsxbtqX1X3JpIF8HC3h41jxybGyGOrrYnDbRrWQ6AWZXI5lf11DE2crrBzf98VnOQM97Dh3D291awwvB4tyj1/25zU0sjNH4MT+xcc6Wppg0f6rOHcvDj2bK38Oftl/FQoFsGZSf3g+e7whbRvh7cV/YcWhG/jpP90BAL8dvQmpTI610wbAxVr5GXJkZ19M/O0Ygo7fwohO3jAyqN2TnKSevG2N4V3BOa7yGOrpYGCz2r1wVXl+7gka2xtj2ahmL3UiHey6loBRbRwrHOBa9k80PKwNsWZ0i5fOz9lizMYw/BbyBCvfblHu61h//inyimSYO8wXTs8uAH8u5GE65h1+iLwiWQ2+WtJUXlb68HpFryiLoZ42Bnip/rOnCplcgVVXMuFro4fFg2yLO5GRnhb+CM9FQDMTeFqW/7t/441sFMkUWDfcDnbGyr7va6OHr0+k4e/IPAQ0VXa6PeG5KJAqsHiQDZrZKi/gbeNggEl/JWPXnRxM61z6vfrYwzxcjRPX9EvWeJwLWU/cic9GQlYhhrV0KDFt/c12TlAAOHE/tdxjYzMKkJJbhP5NbUsca22ijzau5rgdnwOFQjkyG58lhpG+Toll85o6msLcUBePUvOKbzt0OwmuloZ4veWLwQQdbS1M7uGBoX72KOQZClIztx7GIj41CwE92hQPLgHA6P4doFAAx66EV+pxLtx5hD/P38JHQ7uV+fWHcckAAA+niq9Cv/4gBm183YoHlwBAW1sL/To0Q0GhBA9iEiuVh6gu3X6agYTMArzexrXE+8lbnTyU70V34ss9Nj2vEC6Wxhje1q3Esa3dlT8DD5NKnyx/lJSNTSGPMLZ72bN0bzxJRys3y+LBJQDQ1tJCn+YOKJDIEJGQrepLJKpVd5ILkZgrxdAmJZd+GNXcHAoA/zwuezD1udQ8Kd7fE4c/7+dgTKuyr3AvlMpxP7UQ3dyNigeXAECkq41u7kZIzJUiOff/2Tvv6KiKvgE/W5JN772QQkihhNB7L4oNkaKIIFJFxYa9fvauWF4VRURQaUrviFICodcEQgoJ6b1ttmbL98emsOxmCaIC4T7ncDx7Z+bu3HhnZ35d13h93pZCPkksp0uQI9F/wzAnIPBfci75BCWF+Yy4c2yjcQngjvEPYDQa2ffHlhbd5/jBffy1ZR3jpsy0aCspKuBCZjr9ht7aaFwC8PDyYchtozm4908UctP+IpaI6TvklkbjEkCbyChc3T24kHHu7z6mgMC/xqkLZRRWKhjdM8rsPHZf/xiMRthxMrvZsRW1akK8XRnT23xslwiTk156QSUAhZW1ZBRVMbxzWKNxCcDb1ZHbu0WyOyUXuUoLwLHzxSSE+zUal8AkEw2LD0Ol1XGu/p4CAtcTyQVyCms03Bnvb66f6xrYcv1crI+5fs7Zni6hbpwuqG3Uz11KToWKJYfy6RfpyZBo87RdH+7I5MV15wjxdKBn2L8bBSkgcLWklGgpqtVzR7SzuUzU3qVeJrLu0A2gMxjZna2kXxuHRuMSQN9QR4JcJey8aGyhXIeTnajRuAQQ62uPm0zM+co6i3uXK/V8ebCKyZ2v3OG3tSO47dZzOLuKRfsukFGqwNVByl3xARiBH/blkPhsf8CyBtPm5GLe3ZLOoikJrDxawP7MCrR6A/HBphR1DdFOLanB1NDHFg/1DWV6P+s5YlOLTAqH2ABzz1p/NxleTnakFjXvxRrgJuPX6V1xsVLfolqlQyICkci0oEM9HTmUXUVZrbYxVWCNqo5atQ4fF9OC1OkNpBTIuSPev3GcUqvH0U5M37Ze9G3779YtELg2HEw5z4J1e0jLLcbNyYExg7pixMiCtXs4uugVwLIG0/rEk7yxaAO/vD6DX3ccJPFkBpo6HQntQnlywrDGaKeW1GBq6GOLWXcNYPbdg6y2nckuBCAuItDseoCXO95uzqRkFV72b1Cr0vD24k2MHdyVrtHW8+pn5pUCEFlvYFKqtVYjkRa9+CA6g6Uhtqo+MkrSglo2Ajceh8+XsXBXOhnFNbg62jG6ayhGIyzcnc7+124DLGswbTqRxzvrT/HjzH6sPJjNvvQStDoD8aGePDYitjHaqSU1mBr62GLawChmDI622pZaWA1AXJC50OLv7oiXsz1nC6qbva+Xs4wvp1imXUkvMinpAtzNc6vrDAbeWX+KHpHe3BofxPe70izGfvtQH/RW1lG10nRYtJZyT+DG5ki+ih+PVpJZocVFJubOWFeMRvjxWBW7Z5i8vi+twbQlTc77e8r4/u4gfkupISlHiVZvpJO/A3N6ejVGO7WkBlNDH1tM7eLBQ92se66fK9UAEOtjngLTz0WKl6OE1FKtzXtXqvU42Yn49LYAugY58stJyzVnJxGxZFwIdlbe/yq1yaP14hIbRXIdT/X1ZnScK09uKgIEr9fWzMnDSSxf9DUXMs7h7OrGiLvGgdHI8h++ZnXiacCyBtOfm9fy1buv8vGilWxc+TNH9u+mTqslLr4LUx55ujHaqSU1mBr62GLCQ3O4b/ojVtsyU00OQW1jO5hd9/EPwMPLm4zUyzsMKRW1fPPB/zFy9Hjad+5u0V5eUgxAWFvLvTAwJAyDXs+F8+m079yNuS+9bdGnrLgIeXUVvgGBFm0CNz6H0gv5fscp0gurcHW05+6eURgx1V06+MEkwLIG08Yjmby16gBLHh/F8sRUElPz0dbp6Rzux9zbuzRGO7WkBlNDH1vMGN6JmSOs13RNzSsHIC7EXDnt7+GMl4sDZ3KtR/UBeLk48L9Zwy2up9UbgQI8TfqRkmqTPBNlJRIq1McVvcFIRlEVXSL8+P6RkeitpEGuUpj2yyutTShwY3D4QhWL9ueZ9HMyKXfF+2PEyA/780ic1wewrMG0ObmEd7dlsuiBeFYeK2T/+UqTTBRsSlHXEO3UkhpMLalv9FCfEKb3DbXallpcr5/zN4/yaNLPNe8wFOAm49eHEnCxkpL4Uv3cpXyXmIMIeGyw5XNdKFcxo28ok3oGCSnybgKOFKhZfLyGjIo6XO3F3BnjjBFTZM+uh0IAyxpMW9IVfJBYyfd3+fFbSi1JeWqTTORnz8M93BujnVpSg6mhjy0eTHDloS7Wx58rN8k8MZc4t/m5SPF0FHOurHmZKKuyDq3ecixAjI89+3PUGIxGxCIRIe5SDhdoKFfq8a5PFVijMVCrNVhNHfhpUiV+LlLuj3dl0XHBWfViBAMTkHS+ghdWnyHUy5Hp/cKQa3QsO5zfYsXTS2vPEuzhwIz+YZTVall+JJ9nfk/ht9k9WnzgaajTZIu2NsJ/S+WmxeVnpT6Uj4s9xTWaZsdKJWLaeFmG56YV13I6v4aubZoW/KReIew/X8Gbm84xd0gEEpGIr3ZlIZGIua+7Kdd4QbUGncGIv6uM5YfzWXY4n3KFFndHKff3CGFSrxCbzylw45F4KoOnv1hBG39vHr57EDUKNUu3HUDaQiPIM1+tIsTPk4fHDKKsSs7P2w4y97PlbPxobosKyUJTnSZbtLOR4q6k0mSE9fe09ETw8XClqKJ5xXgDn63YgVgk4vHxwziTbT1SIzO/FIlEzE+bk9icdJpalQYfdxem3taXiSN6NvYL9LEUuFSaOtYnnsRJZk9MmJCzv7WxP72E55cfJdTbmRmD2yFX6/g1KavFe9GLK48R7OnEzMHRlMnVLDuQxdO/Hmb1E0NavBYb6jTZIsq/+RR3pTWmUHFfNweLNh9XB4prVC2ah9FopKhazdGsMr7ckUqErwvDOpgr4n7ed57cCiXv39vNquIBINDDsuCvuk7PxhO5ONlLiA4UPI9aEwdylby0vZgQdzse6uZJrcbAilPVLV5Dr/5RQpCblGndPClX6lhxuobnthWx4r7Qlp/n6us02cJWKooypSlyyNfZ8oju7SSh+KLIImtEeNqz6J7gZhUPYIriC3azTClRptCxN1tJsJsU74vqUy0eG4KdRFDg3QwcTdrDey88TlBoGPdNf5RaeQ3rl/2EWNKy3PwfvPQkAcGhTJzxGJVlJaxfvoS3n3mEBb9tQyJtmdjZUKfJFtYMOw2Ul5oixb39LFMye/r4UVp8eYehxV99jEgsZvKcpxsNVhfj4GiSm9QqhUVbbY3pvFhVbumdXl1ZQWZqCku++RQHRydGT3zosnMRuLHYl5rPsz/tJtTHlVkj4qlRafllz1kkLfwNfX7pHoK9XJg9sjNlNUp+3ZPKU4v+Yu0Ld7dcJqqv02SLqMDmU9yVVJvOan7ulvoBXzdHiqss33trGI1GiqoUHM4o5stNx4j0d2d4vEnp7Whv2oOUGss9rUZp0ltUyE3zaKjFdDFqrY6NRzJxspcSHSQ4r7Y2ks5X8sLaVEI9HZneN9SknztS0HL93PpzBHvImNEv1KSfO1rAM6vP8tvMbi0/zzVT3+hi2vo2n+KuUT9npWauj4s9xfLmleMm/ZylDJNWrOB0vtxMP3cx58uU7Eqv4M5OfoR6Wo6fP749di38HRG4sTmQq+KlneWEukmZ1sUNudbAimR5i9fQK3+WE+xqGlum1LMyRc7zO8pYPj7wCmQiU50mW7S1keKuVGFyaPN1tjyD+jhKKFY07/BWqrQx1kmCRm+kSm3Ay1HCxE6uJOWqeXt3BY/2ckcsEvHNoSqkYhjfwVzvsSNTyYFcNd/e6Sc4N1hBMDBhqj/k7SLjuwc6N9ZiGBDlxcylJ1s0PtzbiY/HNXnJ2UtFLEzM4XhOFT3CW5Zb+WrrNCnrc6jK7CwXkMxOQpXKtkLiUmo1Ot7abPIGn9K7ySvDz1XGg71D+XhHJg/9dAIAsQhevyOG2ADXxrEAm5KLUWj0PNgnFC9ne7YmF/PNnmy0egMP9bUe3SFwY/LRr9vw8XDlp1cewtnRdIga3CWaKW8vatH4yCAfvnhqYuNnezsp36zZzZHUbHp3iGzRPa62TpNSbRJmHOwtNzkHeylVtc2H4AIcSDnPur0n+PKpiTZrI2Xml6LXG8grqeSVqbejrdOxds8JPl62nWqFioebibACeG/JZkqr5My8awAyO+Hnu7Xx2dYz+LjK+H56X5zrI0oHxPgxY+H+Fo2P8HXhk/t7NH62l0r4flcax7LK6dm2ZXnGr7ZOk1Jr+v13sLIXOdhJqFbajr5ooKRGzdgv/mocN29UB7N7ni+R8+OeDJ4e1R4/N0cKq2yvz4v5cFMyZXIN0wZGIZNeWUFTgeubL5LK8XaS8O1dQTjZmwTofmFOPLyu+dSMFxPmYceHtzYZ7+0lIn44WsXxAjU9QiwFdWtcbZ0mZZ3JWNpQePZiHKQiqtW2o4f+rrBTpzfyzu5S1DojDySYKx4F49LNww/z38fL25cPvvsVRyeTY1vPAUN5fubEy4w0ERoeySsff9P42c5exrKFX3H6+CESethWeDdwtXWaVEqT8lsms1yzMpkD8irb6bROHN7Pzo2refWTb3F0sq48DI2IxMnZhYN7djJ+6sNI6g1wRqORg3t2AqDVWu53L8yeRHGBKcJxyiNPm6XXE2gdfLr+CD6ujix67Fac6+sCDeoQwkNfbW3R+HA/d+ZPG9L42V4qYcH2UxzNLKZXdMsi3q62TpNSY4rytnaWk9lLGyOHLkdJtZK731/XeK9nRvfAoV7XEunvjrPMjt0puUwf3rExM4PRaGRXimmNaHTN73fvrzlEaY2K6cM6WdV/CNzYzP8rC28Xe76b1Akne9P/3wFtvZj5y+kWjQ/3duTje+IaP9tLxSzcl8vxnGp6hDdvXL2Yq63TpKyr189JLQ06MqmYKpVl6i1b1Gp0vLUlHYApvazLamtOFCEC7usWZLVdMC7dPHxxsAofJwnf3OmHk129TNTGkTkbSlo0Ptzdjg9GNpV0sJeIWHS8hhOFGroHWzqSWuNq6zSpbMhEMqmIak3zZVdsjq2Xa9Q6Ux8/ZymTO7vxWVIlM9aZ/j5iEbw6yItYnya9XoXKlBpvYidX2gkpw61y02soM0oU5Fepmdk/zKzQd2yAKz3CPTiUXXXZewyNNa+lEu1nUiyUK1q+aRiMRmouYwRysBNbPegBGDEtjuZUAFeib1BqdTz7+xmyypRM7hVCt7CmTXhh4gUWJ+XSMciVuxMCEYtgc3IJb2w8h6pOzx2dAqjTmxZ6YbWGH6ckEFkfeTUk2pvHlp9m6cE8xnYJxM1RKMbZGkjPLSavpJJHxgxuNC4BtI8IoneHSJKSLx9+PbxHe7PPMW1MCr7yatu1Ji7GYDBSrbAdHeFgb4djM0VgG9IYN+f0LbbhDa5QaXhr8Ubu7NeZPh3b2pzDXQM6M6x7LA/c0rvx2qjenZj23mJ+3LSPcUO64eNuqZz86NdtbEo6TdfoNky/o7/N7xC48cgoriG/UsmsIdGNxiWAuCAPerb14WBm83m6Gxja3lzxEB1gis4pV7TMqAMNe5HtvcvBTmJjLzLR3GqxFVVxMfZSMW+P64K6Ts+KA1k8sfQQb45LYEhcIHqDkbfXnyI+1JPRXa/MWeGzrWfYeiqfhDZezdZtErgxySzXkl+jY0Y3z0bjEkCsr4weIY4cyrt89NyQSHMhqJ23aU+ruAInHYPRSI0NgQdMhiIHKwoHuGgvamasrb3o76IzGHnrrxKOFagZ1taZ26Kbj1IUaL1kZ5yjKD+X+2fObTQuAUTFdqBzj76cOLTvsvfoO/QWs88R0SYFX1V5eYvnYTAYGqOAmkPm4IDMoRmjb/0iam6piGxE9KqUCr5+//8YMmo0CT2bN4hJpXaMnjiVZQu/4pPXnmH81NmIJRLW/vIjJYX5AI1Gp4u5f+ZcJBIJiX9uY8nXn1JeWsL0J55v9nsEbizSCyvJK6/l4Vs6NxqXwJRqrle7QA6kXT56bni8+bmmITqnvLZlEeBgkolqVLaNQA520kZjz6U0nuWaWUTiFioW7KUS3p3UH3WdnmV7U5m7cCdv39+foZ1MtTYfGBTHgu2neOmXRKYPMxmZlu4+Q2GFSf5rLh34J+uPsOVYFl0i/Jg2rGOL5iJw45BRqiC/SsPMfqGNxiUwlYLoEe7OoezLZxUZekntoej60hXlyv9QP3cVuoVLUWr1PLs6laxyFZN7BtPNSgSTRmdg29kyeoZ7EObdMqcogdZJZoWWArme6V3dGo1LALE+9nQPlnE4//JOAoMjzN+hdt6mPa1C1fI02VctE9X/t3m9QvP3vZw8dXHbomPVLDkpp4OvPaNjnRGLRGzJUPDW7gpUdUZuizb9fny2vxJPBzFTEoQMKM1x0xuY8ipNh7VQKyGo4d5OLTIweTqZK6wbPAMMzRTes0ZxjeaqajA51W9sap0BR3vzTU5Tp8fZvmWePVXKOp75PYXUolrujPdn9sDwxja5Wsevh/Jo6+vEV/d1agzTHxHny9OrUvjsj/P0i/Rq3GQ7Brk2GpfAdEgd1cGPk3k1JBfIhVpMrYScYlMe7jYBlv8/IwJ9WmRg8nIzV+rZ10cVNJf2yhpFFdVXVYOpIepIranDUWbukaDW6syMZ5fy+aqdqDR1TLu9H5X1NZJq6wU7laaOSrkSd2dHxGIRYwZa5ksXi0XcM6grb2Ru4HhaDiMuMrjpDQbeWbyJdYkniQsL5NPHJ2AnRF20OnIrTB7XbbwtvXzCfVxaZGDydDZ/b+3rD2uGK1hHxdWqq6rB5NiwF9XpcbxEcaGu05sZz2zh6SxrNJgNjgtg0jd7+GLbWYbEBfLL/vNkFsv5ZmpvquojohqMYhqdgSqlFheZ1CyVjN5g5IONp9l4Io/YQDc+vK9bi1PNCNwY5NWY3oEQd0sngjAPuxYZmDwdzX9bGyJ3rmAJUVyru6oaTI52pu/U6Ixc6oej1hlxsvtnDUxqnYHXd5ZwIFdF71BHXhz49711BW5sCvNyAAgKtZQ1QsIjWmRgcvc0Pwva2ZleYoOh5QqJsuLCq6rB5FAfdaRRqxtT2TWg0ahxcm7em/an/32CRq1i7JSZ1NRHOikVphTKapWKmqpKXNzcEYvFjJ0yE5VSwYYVSzmw+w8A2id0Y8ZTLzH/zRdwcbNUAA4YYaql2HfoLXz48lNs/u0Xbhs7kcAQIbNDayC3zPSutPGxNNKH+7m3yMDk6WLuGf53znJFVYqrqsHU4HSr1uosznIarc7MeGYLTxcHhtWnxBvSMZSJn25k/oajDO1ket+nDumIQlPHsr2p7ErOBaBLhB/PjO7Oa8v34+5ofq7VGwy89/shNhzJJDbYi48fHCSc5VoheZWmdNvWUryFezm1yMBkqZ+rP89diUxUo7mqGkwNxjF1naFRPmpAozNcmX5u9VlSixXc2cmP2QOs7xfHcqpRavUMi/G22i5w85BXYzKMhrpZyt1h7nYtMjB5Opj/tjasIf0VyUT6q6rB1CgT6S1lIo3OiLNd87//F8tTl6KpfwhnezFyjYFlyXLaetrx+W2+jZkghkU68uz2Mj4/UEWfUAeOFWrYm6Pm3WHeKOsMXGyr1umNVKn1ONmJsb/Jsz7c9AYmXf0mY+1FsG/GknopLfXItoWXsz2fjbftgRPk0Xwoor+7SfldXqu12FDLarVE+18+XUuJXMNTK5O5UKFibJdAnhxmnposr1KFVm9kWKyv2WFOJBIxqqMfhy9UkVwgp2OQ6VB96TzAlMsWmlL6Cdz46Ooj1uyt5Na3b2Eat3/CI9vb3YWv591vs0+wb/MpKwO8TRtbWXUtnpcYvMqq5MTaqHm0/3Qm1bUq7n7xa4u2+Sv/YP7KP9jw4WMEWamr1ECDkU2lboo2qdPpeWnBGv48mkrnqBA+f/I+XJ1aFpIscGOhqz/oWEtd0NK96J9YR14uMj5/oKfNPkGezecbD6iveVReq8HT2dwoWyZXExNo/QBpCyd7Kf3a+bH6SA5VSi0HM0up0xuY8YNl6sBVh7JZdSibr6b0omu4ScCq0xt4/ffj7EotplOIJ5/c3x0XByGCtrXRdJ6zbGvpYf+fEAm8HCV8Msp2jbwg1+b3xgAXU1u5Uo/HJQavcqX+H03JUKs18MK2Ik4XaxgQ5sTrQ/2EdHg3MXqdSSEhtbd8x+ztm3eyuRiR6OqVvR5ePrz+2Xc2+/gHNV/P1dfflBqosrzUwuBVWVZCZHSctWEAHD+4D3l1FY/ed7tF20//+5if/vcx367ail9gMGKxmCmPPM3d9z9E3oXzeHr7EhjShp2b1lx2jgD9h93Kgd1/kJWeKhiYWgkNMpE1R7D/8izn7erIlzOG2uwT7NW8biDA0ySTlMlVFgav0hoVMcFX7iTqJLOjX1wwvyelU6VQ4+HsgFgsYu5tXZk8qD1ZJTX4uDoS6uPKhsOZAAR5N82xTqfnlWX72JWcS3yYD589NAQXRyFFUWvEtn6uhee5f+Ao4+Vsz2fjmt8vAILcbejn3Or1c4rm9HOXTx1WItfw1G9nTfq5hACeHBrebN+krEqkYhH9owQn7psdXX3QkLUzfYtlon9Cr+Ao4eNbfGz2sSUT+dfXTypX6vFwMN9Xy1R6om3UtPV3qR9rJeKqTKnHQSrCxV5EWlkddXoYEuFolmZcJBJxa5QzRwo0pJRoOZRvMny/tNMyIn9vjpq9OYU839+TUe3+fkrA1sBNb2AK8TRtCjkVlp6tDdFN/wUyqbjF+WCtEVNvQDpXXEuUX9NLXVyjoUJZR1ygbQNTpbKOx1ecJq9SzeTeIcweEG7Rx5YHVUOwlsFoxNPZHj9Xe7LLLWtiFFSbFmbDhitw4xPqZzLaXCi2/LHNrY9u+i+Q2Unp1cJ6TdaIqzcgnc0upF1oU2HooopqymsUdIiwnssY4O1Zd6PRmofcp+WWMH/lH0wc3pMBnaPwdnehskbB7I9+pn98FI+PH2bWP7vQFKESXP/3NBiMvFxvXOrVIYJPHhtvEVkl0HoI8TIZbXLLLQsn51a0vL7Q1SKTSugRafsgaIvYegNSamE1Uf5N4ePF1SoqFFrigpo3MJ3KqeD11SeYPTTGog6UUqtHhMkAN3dEHHK1+XqrUGh4Y81JhncI5M4uoY3fbTAaeX31CXalFtMj0of3J3S18MYVaB0Eu5mE99xqy3QmedVXluf+apBJxXQP/vupSaJ9TOejc+Ua2l5kTCqp1VGh0hPn+8+cnzQ6A89tLSKlRMMt7Vx4foBPiwv/CrROAuqNHAU5FyzaCuqjm/4L7GUyOvfo87fHt40xRYFnnjtDeFRM4/Wy4iKqKsqJimu+XueTr72PVqM2u5adkcZP//uY28c/QPe+A/HwMu2RiX9swd3Ti07detHeo1tj/5OHkvDw8iYwpA0ajZpnpk2gQ0J3Hn72NbP7qpTK+ucVHIdaC6H1kUs5pTUWbQ3RTf8FMjsJPdu1rF6TNWLrDUipeRW0C2xyziuuUlBRq6ZDaPMREiezS3j1133MuTXBog6UUqNDJGoywG0/kY2XiwPdowLoEtG0Dg6mF+Ll4kCot+nvaTAYebXeuNSzXQAfThkknOVaMSH1TtU5lWqLtjwr1/4tZFIxPcKuQj9Xr5M7V6wgyteKfi6gBfq5VWdM+rlewczub9sR4VS+nGh/Z9wchLVxsxNcH7lkVSaqaXna76tFJhXRPejvn3Gi6+sfpZXX0dbLXCaqVBmI9W3eYbSNux0OUpMB6VLOlWmJ8bFDLBI1GtysBTca6pP0GYGJnVwZ0dbSyfaZbWUkBMh4oLMrER6CA+tNH1Mc7e9CoLuMzcklqOuarJt5lSqSztsuAns90SnYDV8Xe9acKGz0+gBYdbQAEaY0drZ4Z3MaeZVqpvQOtWpcAojwcR+9lwUAACAASURBVMLXxZ6tKSWoLopAMhiNbDhdhJ1ERHywSak3Is6P7HIViRlNRgeNzsDaE0X4uNjTPlDI799aiA0LJNjHgw2JJ1Fpmn7Ac4srSDydcQ1ndmV0jgrFz9OVVX8dbfRABFi24zAiEdzSq/kIw4R2ofTqEGn2Ly7cZLAKD/SmV4dIZHZSPN2cUWvrWJ94ksqaJkOCXKnm1+0HCfR2p3OUKcx+ydYkdh5NpUdcOPMfv1cwLrVyYgLdCfJwZNPJPPO9qEJBUnrLinFeD3QK9cTX1YHVR3LQGZrW0cqD2aa9qGPzhtoIP1cqFFp+P3zBLD1mQaWSPalFdAn3xlkmJTbInR6RPmb/4kNNCpAAd0d6RPo01vj7Zf95dp0tolu4Nx/d101QSLRion3sCXSVsiVNjlrX9O7lVddxIPe/cxi6Wjr6y/B1krD2TI3Zee63lGpEwLCrKJZ7MV8dqCClRMPIKBdeHCgYlwQgMjoO/8Bg/tq8Fo26ac0U5uVwLGnvNZzZlRHTKQEvXz+2rlnRGJUFsHHVz4hEIgaMGNXs2Lj4LnTu0cfsX4PBKiQsgs49+mAvMxl5N6z8mQUfv41O13T2TT+bzIHdOxh1z0REIhEymQOOTs4k7txKRVnTXl5XV8fm1ctwcnGlfeeu//SfQOAaERPkRZCXCxuPnEetbXr3csvk7D9XcA1ndmXEh/ni6+bI7wfSzGSi5YnnEIlgZEJ4s2Mj/T2oqFXzW1Ia+ovOgQUVtexOzqVrpH9jir3lial8sOaQ2XecyS3nr+RcxveNbvSg/3nPGf5KzqV7W38+mTpYOMu1cqL9nU36uRQr+rmsy5evuF7oFOxar58rMtfPHSs0yUSxth363tmaYdLPtcC4VKc3kF2uajRqCdzcRHvbEegiYWuGwlwmqtFxMO+/M9JeLR397PFxkrA2tdZcJjpTa5KJIpvPqmIvEdE31IE9F1SUKJr24/25KgrkeobXjw33lOLjJGFbhhJVXdPfymA0silNgZ3YNI9wDzu6BzlY/APwdBTTPcgBbyehjMVNvzuLRSKeGBrJS2vPMvvnk9zWyR+lVs/vx26cQyCYnuPRwRH838ZzPLnyNCPj/DhbJGfDqWLu6RJIG6+mxZecX0N+lZoe4R54OdtzPLeaA1mVeDjZEerpwLYUS2XmiPa+iEUi5o1oy8trzzJj6QnujA9AIhax42wpZwrlzBkY3lgDZErvEBIzynl9wznGdgnEz03GluQS8ipVvHVXrKDIaEWIxSKeuX8k875cxdR3fuSu/p1RqDWs+MN2TbHrDbFYxJMThvPSgjU88vHP3Nq7I2eyClmz5zgThnYnPLDJW+9URh55pZX0ah+Bt/vl009ezIuTRzH3s2VMfXcx44d0Q6c3sHr3MSrkSr546j6kEjEKlYZFm/YhEkG/TlH8ceSsxX16xIXj6yEYalsLYpGIJ29pzwsrjzLzh/3cnhCCUqPjt8OWnuTXM2KRiMdGxPL66hM8sfQQIzsFcbagmvXHchnbI4wwn6b1cjq3kvxKJT0jffBykeHqYMejw2OZv+0Mc5ccZFiHQCoVGn4/fAGJWMS8Ue1tfLMlCo2OJYmZiIA+7Xz584xlDujuEd74uAre460BsUjE3N7evPJHMXPWFTAq2hVlnYHVZyw9ya9nxCIRc3p58eZfpczbXMTwKGdSS7VsPCdnTHtX2ng0ORskF6spqNHRPdgRrysQagpq6th4To69RER8gIwdGZaRk/3CnHC2v+n90G4qxGIx0554gQ9eeoIXZk9i6G13o1Iq2Pz7sms9tStCLBYz9dFn+PT/nuP/npzJwJG3k3E2mR0bfmfUPfcR3KYpquJc8gmK8nPp3KNPY2RSSxkzaRofvvwkb82bQ98hI6mqKGfDyqWERcVw572TG/vNmvcKL82ZzEtzpnDrmPsQi0X8tWUduVmZzH3lHZycr+wcKXD9IhaLePrObjy3ZA/T/7eNO7pHotDoWLX/3LWe2hUhFot4/PauvLpsH3MX7uSWhAjO5JWz7lAG4/pEE+bbFKF++kIpeeW19GwXgLerI66O9sy9vQufrj/Ko9/tZHjnMCpr1azan4ZEIuaZ0T0ax04Z3IHnl+7hiR/+ZFh8GBVyFcsSU2kX6MHEAabUZApNHYv/TEEkgr6xwew8ZRlN2SMqAB+3vx85LHB9IRaJeGJIOC+tO8fsX5O5raOvST933HYtl+sNsUjEo4PC+L9N6Ty56gwj43w4W1TLhtMl3JPgT5uLasAnF8hN+rkw94v0c1V4OEoJ9XRk25lSi/uPiPNpTKlZWK1BZzASIGQJEqBeJurlwSt/lvPIxlJGtXNCWWdk9Znaaz21K0IsEjGnhztv7a5g3rZSRkQ6kVpWx8Y0BXfHOtPmorq7KSUa8uU6ugc54FWfYnxaFzcO5Kl5YnMp4zq4UKs1svy0nGhvO0bWO+yJRSKe6uPBq3+WM3tDCXdEOyMRwx/nVZwt1TK7u7tFjV6B5rnpDUwA/aO8effuOBbtz2HBnmw8nOy4t3swWWVKdqVdvrD69cLwOF9EIvgpKZf5OzPxcZExo38bHuhlXnhw3ckitqSU8MW9HfFytudYjskTpEpZxztb0q3ee3CMDzKpiP5R3sy/txOL9+fww74L6I3Q1seJN+6MYVhsU5SUs0zK/ybG833iBbaklKDU6mnr68wH97SnT6SQF7a1MTAhmk/mjmfBuj189dufeLo6MemWXpzPL2WnFePI9cotvTogEsHCDYl89Ms2fD1dmTNmEFNv62fW7/fdx9i47xQLnnvgig1MfTq25YunJvLDhkS+XrMLqVhMp7YhvDNrDJ3amtKCnb1QiEJlKr44f+UfVu/z5VMTBQNTK6N/jD/vT+jGD3vS+XbnOTyc7bmvdzjnS2vZZcU4cr0yomMQIhEs3pvBZ1vO4OPmwMzB0Uzub57Cct2xHDafzOerKb3wcjEJRBN6hePiIGX5gSw+33YGJ5mUHpE+zB4STYjXlXnlnSusRqExeSx9tSPVap9P7+8hGJhaEf3CnHh7uD+Lj1Xy/ZFK3B3ETOjoTnallt3Z/12qyatlWFsXRMCSE1V8kVSBj5OE6d08uL+zeaqWDalytqbXMv+2ALycWq5cO1mkxmAErd7Ix4mW6W0BlowLxtlKLR6B1k2P/oN5/t3PWbHoa35e8DluHp7cee8UcrMySNq141pPr8X0Hz4KRCJ++2kBC+e/h5ePHxNnPMY9D0w367d93Sr+2rKeN79YdMUGpt6DhvHMmx+z+ucfWPzVx7i6ezDs9ruZMPVhHBybHPuiYjvw1peLWPb9V6xY9HXjtdc+XUB8995X/7AC1xUD2ofw4ZSBfP/Hab7eegIPZwcmDoglq7iaP0//d6kmr5aRCeGIRPDjn8l8sv4wvm5OzB4Zz5TBHcz6rTmYwaaj5/l61nC8XU370L39YnFxsOfXvWf5bMNRnGRSekYF8vAtnRvTCAIM7hjKu5P689OuM3y+8SgezjLu7N6W6cM7NUYppeZVoKjPkPHFpmNW5zp/2hDBwNTK6N/Wi3dHx7Bofx4L9ubg4WjHvd2CyCpXsivN+rnlemR4rA8i4KeDecz/MwsfF3tm9AvlgZ7mqcDXnSpmS0opX0xob9LP5Zqco6pUOt7Zaj0jzOBob2T1NamqVSZ5x1kmqHcFTPRt48jbQ71ZfKKG745W4yGTMKGjC1mVOnZfuIFkokgnRMDSkzV8frAKXycJ07q4cX+8uR5s/TkF2zKUfHarT6OBKcTdjvm3+vLtkWq+O1KDk72IwRGOzO7u3rh2APq1ceTTW31ZcqKGRcdrMBiNRHra8dogL4baiJISsEQUFBRkJdvgtSc/P5/ShdMv3/Eq0RuM1Kh1FoX3AJ5bnUJGiZLVD/ewMlLgRsJ3xg8EBwdfvuMNSn5+PrX7ll6T79YbDNTUqvB0s1T+Pvn5CtJyi9n88ePXYGYC/zYu/Sa36nUFprVV/stT//r36A1GalRaPJ0tPc+eXXaEjOIa1jxpu2CzwPWN96TPbor1UvTRrdfku/UGI3KNAQ8rXmYvbCsis0LLqom2U4wI3HgEPLu1Va2r/Px8Ukq11+S79Xo9tTXVuHtaOoK9+9xjZGec47vVN46RSaDldPC1bzXrKD8/n6q1b16T79YbDNQotXi6WDquzFu8i/SCSta/NOYazEzg38bj7tdazRpqjvz8fEq/m/qvf49N/dyaVDJKFaye1c3KSIEbBd9Zi1v9erFGfn4+he8Pu3zHq0RvMCLXGvBwsJSJXvyjjMyKOlZO+Pt1+gSuPYEv7Lwu19BNn/vCYDQy5ptDvL05zex6ea2W4znVtA8U0hYICNjCYDBy67zPeW3hOrPrZdW1HEnNpmNE8zVXBAQETBiMRkZ/9idvrT1pdr28VsOx7HLigv9+kVkBgZsBgxHGLsvh3d3maUTKlTpOFKqJ8xXShggI2MJgMDBzzDC+ePtls+uV5WUkHz9EVPtO12hmAgI3BgaDkTveXcMbK/abXS+XqziaWUz7UO9mRgoICDRgMBoZs+Aob28xj9wpV2g5nltN+wBBPycgYAuDEcatKOS9PRVm18uVeo4Xaoj1ETIUCPw73PQxlHYSMcNifdiWUoJELKJjkCtVqjo2nCwGYFpfwdtVQMAWdlIJt/TswOak06Z0b1EhVMmVrNlzHIBZowde4xkKCFz/2EnEDO8YxNZT+aa9KMSTKqWW9cdzAZg+qN01nqGAwPWNnUTE0EgXtqfXIhFBBz8HqjV6NqbKAZja1fMaz1BA4PrGzs6OfsNGsXvbBiQSCdEdOyOvqmTHht8BuHfanGs8QwGB6xs7qYQRncPYcjwLiVhMpzAfqhQa1h0yKcpnjoi/xjMUELj+MennvNl2phSJGDoGulKl0rHhdIN+LvQydxAQuLmxk4gYGuHE9kwlEjG095NRrdazKc1Uc3VqF7fL3EFA4O9x0xuYAJ67pR1h3k5sSynhj7OlONqJSQh1Z1rfOCJ9r6zmg4DAzcjLU28nPNCbTUmn2XooBUd7e7rFtGHW6IFEhfhd6+kJCNwQPH9HR8K8ndl6Op8dyQU42ktJCPNi+qB2tPUT6m0JCFyOZ/p708bDju3ptezMVOBgJyIhwIGpXT2J9BK89QQELsec514nOCyC3ds2sPePLTg4OtI+oTv3TptDWKTg6CAgcDlevKcX4b5ubDmWxfaT2TjaS+kS4cfMEfG0DRCi0QUEWsJzI9oS5uXItjNl/JFabtLPhbgxrW8okT5CTRQBgcsxr68nbdylbM9UsvO8CgepiM4BMqZ2cSPS0zL9pIDAP4FgYAJkUjFTeocypbfgDSEg8HeQ2UmZdkd/pt3R/1pPRUDghkUmlfDggCgeHBB1raciIHBDIpOKmZzgweQEQYknIPB3sJfJGDdlJuOmzLzWUxEQuCGR2UmYOrQjU4d2vNZTERC4YZFJxUzpFcKUXiHXeioCAjckMqmIBzq78UBnIVpJ4L/jpq/BJCAgICAgICAgICAgICAgICAgICAgICAgIHBlCAYmAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBgStCSJF3ndD/o0SGxfrwxp2x13oqf4uyWi2TfzxGz3APm8+wM7WU1zecY+dTfZFJLe2bG08XsepoAbmVanyc7RnZ3pcpvUOxt9JXQOBiuk17m5E92/Pew/dc66n8LUqr5Ex4dQG9O0RaPMN36/ewYO0eq+P2fv0cTg72zPpgCUfP5TR7/24xbfju+Sn/6JwFWh9939zMsA6BvDW2y7Weyt+iTK5m0jd76dnWx+IZFu1OZ+HudKvj/nhhJE72piNRjUrLgr/S2J9WQrWqjpgAN6YOjKJXW99/ff4CNxaDFmYxNNKZ14femLUGfz1ZxarkGtZMamOz346MWt7eVcrOaeFIxSKztmq1noVHKjmQq6RGYyDax54Hu3jSPdjRrJ9Wb2TxsUq2Z9RSozYQ5mHHhE7ujIhy+cefS+DG4Z7+neg37FbmvfHRtZ7K32L1zz+wceVSFq3fZdFWUpjPLws+5+SRAygVtfgHBjNy9HjumDAZkahpHclrqvn1uy85un838ppqIqPjGD91Ngk9+5rdT6NR8/tP35G4cysVZaUEh0Vw98SpDBhx27/9mALXMb2e/4Xh8WG8M+nGTFO+ZFcKy/amsuXVsRZtBRW1fLPtBIfSi1Co6wjycmFMryju6x9rtoYuxmAwMuub7eRX1Fq95/rDmSzbe5b8ilr83Z2Y0C+G8X1j/vHnErjx6f9JEsNivHnjjuhrPZUWk1Wu5Ns9OSQXyNEbjXRv487DA9oQ4ml+Jiuu0fDt3hyO5VajqjPQMdCFWf3bEBvQ/JnMYDTyyLJkCqo1rJ/T/d9+FIFWwOAf8xgS4cjrg72v9VRaTHZVHd8dqSa5RIvBaKRroAOzursT4mZuOtEbjKxKqWVTmoJihY4AFyl3xThzT3sXxBftT1VqPT8crWF/ropqjQEfJwnDI514MMENO4n1fexGRjAwCfwjfLQ9A7laZ7NPenEtH27LaLZ9cVIOCxNzGBDlxZiEQJIL5CxOyqVEruGlUTfOxi4g8Hd4d8lmahRqq22ZeaX4e7nx2NghFm32dqaf8Wl39OfugQqL9s1Jp0lKPs+gLoLwJND6+XBTMnJ1ndW286Vy/N0cmD3Uci00ODHU6Q08+cthskrkjO8Zjr+7A1tPFfD0L4f58L5u9Iv2/1fnLyDwX3EoT8kPRytxk0ls9ksr0/DpvjKrbVq9kXlbisitrmNsBzd8naVsS6/lmS1FfHCLP71CTYW4DUYjL+8o5lCeij6hjvQKdSKlRM3bu0rJq67joW6e//jzCQj82xw/uI/lC7/Cxc3dok1RK+eVR6eiqJVz29j78fbz51jSXn788iOKC/OZ8eSLANTV1fHm07PJzcrk9nH34+MXwO7tG3lr3sO8+P6XdO83qPGen77+LEeT9jLyrnGEtY3m0N4/+eyN56mV1zDqnvv+s+cWEPinOHCugAXbT+HmaG/RVqvS8vC3O5CrtUzoG4OfuxP7zxUwf+MxCioUzBttXcG9LDGV0zlleLk4WLQtT0zlsw1HGdA+hPF9ozmUXsTH646g0NQxdYhQM0vgxqagWs2cZck42UuY1DMYMLLyWCGzfk3mx8nx+LvJAKhR63h0RQoKrY57uwbhLJOw9mQxjyxP5puJHYnxt25kWnG0kOTCWryc7P7DpxIQ+O8olOt4bFMJTnZi7u/kCsBvZ+Q8srGEhXf54efSZD75ZH8lm9OV3BrlxDhfFw7lqfnqUDW1WiNTu5jqXukMRp7bXkZWZR13xbjQxkNKcomWn0/Jyaqs453hPtfkOf9NBAOTwFWzNaWEQ9mVNvvsTS/n7c1pKLR6q+25lSoW789lRJwvr99hUv7dnRCITCpm3ckiHurbhkB3y4OigEBrYNP+UyQln2+2PTO/lNiwAG7r06nZPr07RFpcyyoo4+3FmxjQuR2TRvb6R+YqIHC9suVUPgczrSvCAc6X1BId6M6t8cHN9tl2Kp/UgmpeH9OZWzqZ+t2REMp9X+/mu7/SBAOTQKtgfWoNX+wvR2ew3W9PloL39pSirDNabd+aLie9XMvrQ3wZ2takkBgV7cIDK/P44Whlo4FpV5aCQ3kqbm3nwouDTJGAY9q74e1YwdITVQyJdCbc01LBKCBwvbJ93SoWzn8Pnc66c93aX36krKSId/73E3GduwJw65h7+eT1Z9ny+zLuGP8AAcGh7Nm2kczUFJ547T0GjbwDgKF3jGHu/Xfx6/dNBqbTRw9yOHEX98+cy7gHZwEwcvR4Xpg1iRWLvmbkXeOQSAWxXuDGYc3BdD5ZdwSd3vpGtHT3GYqrlSx4eAQJEaYo4bF9onn5l0RWJZ3j3v4xhHi7mo3JKa1hwfaT2EksM5/IVVoWbDvJwPYhfDhlICKRiHt6R/PC0j0s2pnM3T2j8HAWdA0CNy4/7M9FqzPwwwPxBHuY3uXeEZ5M+ekky48W8MSQCABWHi2gqEbD1/d1ID7YpAgfHuvDhIXHWJyUx3t3W2YjyqlQsXBfbquMuBAQaODH4zVo9EYW3OlLcH3EUq8QBx5aW8yKlFrm9vIA4Hihms3pSibFuzKzm8nJaHSsC89tL+XX0zVM7OSKTCpia7qCtPI6Xh7oxYi2TvX9wMdJwrLTco4XqukS2Lr2HSHvmMBVUV6r5fM/z/Ngn9Bm+3y4LYMX154lxNORnuEeVvtsSylBbzAyZ1C42fXx3YKY2ieUOr115YaAwI1OWXUtHy/bzow7rae2qNPpySmpICLwyj0c3l2yGZFIxIuTR13tNAUErmvKazXM33qGqQOirLbX6Q3kVigI93G2eR+lVk9MoBvD2gc2XpPZSYgL8iCzRI7RKOxFAjc287YU8kliOV2CHIn2bt6o88GeUl7dWUIbDzu6BVkXflR1RmJ87BkY0bSuHKRiYnxlZFZoG6/tz1ECMO2SSKX7O7ujN8K29NqreSQBgf+UN56axbcfvUnHLj2JjI6z2iflxBECQ9o0GpcaGDB8FEajkdTTJwBQq5RERsfRb+gtjX1kMgei4jqScz69cc+prqokol0sQ2+/u7GfSCQirnNXaqoqKS8r+acfU0DgX2Puwp28v/oQ3dr6ExPsZbXPsawSQrxdG41LDYxMCMNohFMXSs2uGwxG3vrtAJ3DfOkUZikz7T2bh1KrY2yfaLP0evf2j0VTp2d3St4/8GQCAtcOiUjEkBjvRuMSQKSPE+4OUjJKlY3X9AboEebeaFwC8HSyo42Xo1m/BgxGI+9ty6RTkCsdAl0t2gUEWgtiEQwJd2o0LgFEeNrhJhOTWdGUIWVLuhJnOxGTO5uvhymd3ZjYyRVFnclx4kSRFjsJDIs0T1HZ8Pl0sZbWRqt0dZKrdXy1K4sjF6qoUGjxcrZnQJQX0/uF4erQ9MjHc6tZdiiPlEI5tRo97g5Suod5MGdQOL6uphDSzcnFvLslnR+nJPDzoTwOnK9EJILB0T48OSySk3k1LNibzYVyFYHuMmb0C2NwjOlQU1itZvx3R3hmRFsKqzVsSi6mTmcgPsSNOQPDifS1rehKOl/BkqRc0ksVSMUiEkLdmTUgjMiLFGQtfdZLeWdzGltSbAsjic9ePpfzxzsy8HeV8UDPEBYmWq//cqFCyYx+bZjUK6TZFHkn82oI83bEr/7vrq7TYycRE+7txIz+YZedh8A/i1yp5rPlOzh4NovyagXe7s4MSohhzphBuDo1HVqOnrvAki1JnD6fT61Kg4ezIz3bR/D4+KH4eZoOLesTT/LGog38+n8z+GnzfhJPZyIWiRjaLZZn77+F4+k5/O/3v8gqLCPI24M5YwYxrLtJYC8oq+LO577ixcmjKCirZn3iCbQ6PQntQnl83FCiQmzXvUg8lcGijYmcyylGKhHTLSaMR8cOoW1wUy2Vlj7rpbz+w3o27jtl8/uPLnrlsn/rd5dsJsDLnQdH9eWbNbst2rMLy9DrDUQGmX5XVJo6ZHZSxGLbHkR7TqRzLC2H2aMH4u/lZrOvwL+DXF3Hl9vPcjirjIpaLV4u9gyI8Wfm4GhcHZrSCxzPLueXpPOk5FVRq9Hh7mhH90gfHh0Wi6+b6R3cdCKPd9afYvGs/vy8L5OkjFLEIhgcF8BTt3bgxIUKFvx1juzSWgI9nJg5pB1D4kxGksIqJWO/2MWzt3WgsErFxhN51OkNxId68sjwWNr62RYW9qeX8NPeTNKLa0x7UZgXDw+NIfKicS191kt5e91JNp/Mt/39r12+vsSHm5IJcHdgcr9Ivt+VZtF+oawWvcFIuK9pzuo6PfZSsVmOZIAJvcKZ0Cvc7JrOYOB8iRw/N8dmc/4LXD1yjZ6vD1ZwtEBFhVKPl5OEfm2cmdbNA9eL0ridKFSx/FQ1Z0o01GoNuDtI6BbkwOyeXvg6m849W9LkvL+njIVjgvj1ZDUHc5WIRCIGhTvxeF9vThWp+f5wJReq6ghwlTK9myeD6o0khfI67luRx9P9vCmS69icJqdOb6RTgAOze3gR6WU70uZArpKlx6vIqNAiFYvoHODAzB6eRFwUodPSZ72U93aXsvUyxpjdMyJsthfJdTzV15vRca48uakIsB5ZnlNVx4zunkyMd+f93aVW+9zbyZ17O5mnB9MZjGRVavG/KI1EqUKPi73Y7BqAu4MEV5mY9PLWJ2BdCxTyGhZ/9TEnjxygqqIMDy8feg4YwsTpj+Ls2nQOSDl+mLXLFpOWcgplbS2u7u7Ed+/N5DlP4e1ritL8c/Navnr3VT75cRVrfl7EsQN7EYlE9B48ghlPvsCZk8f4ZcHn5F3Iwi8wiIkzHqPP4BGAqfbQw+NvZfYzr1JSmM/OTWvR1WmJje/C5DlPERbZzuZzHE3aw29Lvic7/RwSqZQOCd2YNOsJ2kQ2ORC09Fkv5ct3XuavLettfv/qxNM220sKC5g17xVuuXsCr82dZrXPM299jLLWcq3WVFcBIJGY1vnt4ydx+/hJZn30Oh2559Px9gto3HP6D7uV/sNutbhfdnoq9jIH3D2tK+kFrgy5SsvnG49xOKOQcrkab1cHBrYPZdbIeFwvSuN27HwxP+8+Q3JOObVqLe5OMnq2C+DRUV3wczd5KW88kslbqw6w9IlRLNl1hv2pBYjFIoZ0DGXeXd05kVXC19tOkl1STaCnM7NHdmZoJ1M9vIKKWsZ8sI7nx/SgsFLBhsOZaHUGOkf48tioLrQNsO6w2cC+1HwW/5lMWkElUomYLpH+PHJLZyIvGtfSZ72UN1cmselo81kXAA5+MMlme2Glgufu7sE9vdvxyHd/YG2HeXdSf2pVlimPqxUaACRicz/pFftSSS+o5NenbuetVUkW487mVQAQF2K+Vho+n8ktZ3RP605KAlePXK3jq93ZHLlQTYWyDi8nO5POqm+opX7uxNNe4wAAIABJREFUSAEpBbXUahv0c+7MGdDmIv1cCe9uy+THyfH8fCifA1lVJv1cO2+eHBrOyXw5C/bmcKFCRaCbjBn9QhkcbaoBU1itZvzC4zwzPKJeP1dCnd5IfLArcwaGEenjZPM5ks5XsuRgPuklCqQSEQkhbszq38ZsXEuf9VLe2ZrBlhTr560GEuf1abbtpVst39/iGg3Vah0B9enxAGYPsKy7qdTqya9SE2VFP7nqWCEZpQqWPNiZd7Zm2pyfwL+HXGPgm8NVHC3QUKHS4+UooV8bRx7q4oarrOn38ESRhuWn5Zwp1aLQGnBzENMt0IHZ3d3xdTadPbakK/ggsZLv7/Jj2Wk5B/PUiEQwMMyRx3t7cKpYy8Kj1Vyo0hHgImFaVzcGhZve8UK5jom/FfFUHw+KavVsSVeY5CR/GbO6uxPpaTuF4oFcFT+fkpNRUYdEDAn+MmZ0cyfionEtfdZLeW9vBdsyLI2kF7ProZBm214YYHmWKqnVUaMx4O/SJJ+dKtbQ0U+GQ32KfVWdAZlUREd/GR39m9baY73cmdjJxULfUK02GaCsBNve8LRKA9Or61NJK65lXNcg/FztSStRsPp4IRfKVXw2wZRf98iFKuatSiYmwJWpfdpgJxFxMq+GHWdLya1U8f3kBLN7Pr/mDDH+LjwyOILD2ZVsPF1MUY2Gc8W1jO0SyO0d7VhxpID/23iOX/ycCb6okN7Sg3no9Abu7RaE3mhk5ZECHll2iu8nJxB6ScG9BjYnF/PelnQSQt15eGA4Co2e9aeKmP3zKb65P54oP+cWP6s1RncOoHuY7cPp5dh+poT95yv5/oHOSG2sjvkTOloNVb+YnAoVbX2dOJhVyde7ssgsU2IvFTM81ocnh7XFyd52jQCBf5bnv/6d1AtF3De8B36erpzLKWbVn0fILirj63kmoeHQmSwe+/RX4sKDmHnnAOykEo6n57D1YDI5xRUsedVc6H7q8xXEhQfx5PhhHEg5z7q9Jygqr+bshUImDO3O6P4J/Lz9AC8tWMNvbfwJ9Wv6gf9x8z7qdAbuH9kLg8HAr9sPMf29n1j62nTa+FsXqtcnnuTNHzfQNSaMueOGolBpWL3nGFPf/pFFLz1Iu1D/Fj+rNcYO6kqv9rYVeZdjc9JpEk9lsOSVadhJrb/jGfmmg+bhs9l8vWYXReU1OMnsua1vJ56cMBxHmfVNfOGGvbg6OfDALb2vao4Cf59XVh3jXFEN43uG4+fmQFpRDasPX+BCmYLPH+gJwJHzZTz1y2Fig9x5aGA7016UU8mO0wXkliv4YUY/s3s+t/wIsYHuPDo8lkPny9hwPI+iKhWphTWM6xHGHQkhLDuQzeu/n6DdI26EeDUJCkv2ZaLTG7mvdzh6A6w4mMWcH5P4YUY/Qr2tOzxsOpHHu+tP0SXMiznDYlBodKw7lsOsRfv59qE+RPm7tfhZrTG6axu6R1xd/uFtp/PZn17Cwul9m92LzpfIATiaVcZ3f52juFqNk72EW+KDmTsiDgc7y/Wn0Oi4UFbLksRMcsoVvDI6/qrmKWCb13eWkF6ubazlk16uYe3ZGnKqtXwyymQsPZqv4tmtRcT4yJjSxQM7iYhTRWr+yFSQW1PHgtHm6Q9f3F5MjI+Mh3t5cSRPxaa0WopqdaSVaxnT3o3bYiSsPF3Nm3+VsMQ7hGC3pt/TX05WUaeH8R3dMRiNrEquYe7GQhaMDiLE3frv7pY0OR/sKaNzoAOzenii1BrZcK6GOesL+N8dQbStjxhqybNa485YV7oFWT83tpTFY0NalOJk/u2BV5QKRak1kF2lZemJavJrdLwyuMmRw1EqQqMzoDcYkVzkHKEzGFFqDVSorBu5BK6Mj16dx/m0s9w+bhLefv5kpZ1l6+rl5F/I4vXPvgPg1JEDvDnvYdrGdGDC1IeR2tlx5uRR9u7YTEHuBT78fpnZPd99/jHaxnRgyiNPc+JwEjs3rqa0qIDz584wauxEht0+hvUrlvDZ/z1HxC/rCQhuymjw+9KF6HR13HnvZAx6PRtWLuXlRx7kw++XERRq3Xnsz81r+d97r9EhoTsPPPwEKoWC7et/44XZk3j3myWER8W0+FmtMXL0eOK7X925aP7SNdjZ2VagePn44eVj7gRlNBrZsno5YrGY2E5dLMaolAryss/z+9KF5OdkM/flt63eW6NRU5h7gS2/L+PU0YPcN/0RZLLWlWLlWvHSz3tJLajg3vqaP+cKKvktKY3s0mq+nDEMgMMZRTzxw5/EBnsxfbhJxj2RVcq2E9nklMr5ca65IXDe4t3EhXgx9/YuHEwrZP3hTIoqFaTmVzCu7/+zd57RTR1pA35UbUu2bLn33iimm15Dh9ACpC/pCZDyZVN3N5tks5tseiGEAKEFQg8pEAi9d3Chu4GNjTvuRbIkS/p+yMgIyWBKwobc5xwO1r1zr+aVNHfmrRPLmG6RrNibzpsr9hMbqLYp+7Z452kMRhP394vHZDKzYl86T8/ewqLnRxDq7diRuj7pHO+uOUTnCD+eHdmZep2Bnw9n8cSszXwzfRgxAepWy+qICT2iSYz2v6nPecVfR7eo91zCR6XA5woRzWYzaw5mIhaJ6BjWPMdcKKtl9ubjPDeyM4GejvePuVitwUkmwV3hZHPcWSZF5SKnpMp+H1uBW8ebv2SSWVrPpM7+zTarY8XkVmj5fFJbAJJyq3n5hzPE+bvyaK/gJvtcLVvTyiz2uYds1+Gv/5ROnL+S6QPCOHq+ivWnSi32udI6JnbyZ3R7X1YlF/KvDVkW+9xlmT3fHS6g0WRuts8lFzF95SnmPZRwFftcKe9vPkenEBVT+4VSrzey7kQJzyw/yewH2ludM62R1RHjOvjRLdR+T78boVJjIL2kjtl7cnGRiXmgW6DDdjUNjZy7WM/8/RfQGkw82tPW+J5fqeWbfReY1k/YruJ2869d5WSVG7injSs+SglZ5Xp+Tq8jr9rAJ8Mtz8PkwgZe3VJGnLecRzq5IRWLOFmiY3u2hvwaA3PG2JZ6/8e2cuK8ZUxNdOdogY5fszSU1BvJLNMzoY0rI2MkfH+6lv/sriDaU26T2bP8RC0Gk5nJ7VwxmmDNmTqe/7WUuXf7tqwnZdXz0b5KOvo78XRXd+oNJtZn1DN9fSlfjfYhqimIrzWyOmJsnJKugU4tnr8eqhqMZJTpmXO0GhepiPvbW+ZmXaOZkjojiUHObDlXz7epNRTWGlHIRIyJU/JUV3ekTbqOh7MED2f7ue7HNEsAUoLfrenr/xJ3nIOpsl5PUm4V0weE82D35geks0xMal41DQYjzjIJq5IKUCvlzLyvPU5NhqXxnQIwGE3syiynRmtA5dI8MKJ8lLw/wTIhjE7wY/zXh0nKreLjiW3pFWkxcAd6OPPqD2dIzqu2cTBVagwsfawLgU2TWt8oLx5fksr8fbm8M8a+xmm9rpEZ27PpG+1pfU+ACZ38eXhhCjN3ZjPjvoRWy+qI9kEq2gfdeFZDRb2eL7Zn82D3IGJb2AjwEtdyLgHU6Rq5UKnlHz+nMblrII/3CeVYfg1rkgspqdHxxb3thcjx34mKmnoOn8nh/+4dzJQRzVEyLk4yktJz0eoMuDjJWLrlMJ4qV+a+9jDOcstYmTSoKwaDke3J6VTXaXF3bR4H0SF+fPr8ZADG9uvE8L9+weEzOcx48X76drBE3AT5ePDCFys5mnbexsFUWaPh+3efIcjHohQN6BTLg/+az5yfdvHfqffYyVCn1fHJii0M6BRnfc9L/Zv8zzl8unIrc159uNWyOqJDdDAdoluOgLgW5dV1fLJ8C4+M6EV8WMuK2rkCS6bhqexCnhzTD5XCmX0nzrJmZzI5RWXMeeVhu2ym0zmFnM4p5NFRvVE4C/ta3A4q6nUczSnnuSHxPNi7eX8sZ5mElPPl1ufzikM5qF3lfDWlh3UumtAtDL3RxK60Ymq0epvNj6N83fjgvq4A3N05mLGf7eBoTjmfPNCN3jEWY1agh4KXVySRfL7cxsFUWa9n+bT+BKotEUj94nx59Jt9zNuVyb8n2hu76nUGvth8hn5xftb3BLinWygPfr2HGZvTmDmlR6tldURCiJqEELXDc62hok7H55vO8FDvSOICWlbKskstC7kzBdU81i8GNxcpB7Iu8lNSHrkX6/hySg+76KIZm8+w/pilZMqgNv7c1bZlw7/AzVGpNZJc2MC07p7c3+HS9+iGs1RMapGWhkYTzlIxq09Vo3aR8MVof5yaosbGtVFhMJaw+7yGmgYjqssW8lGect4balGmRsW6cc/yPJILG/hwuB89m/YHCnCT8vrmElIKtTYOpkqtiSWTgghwsxzrE6rkyZ8LWJBcydt32WfP1utNzDxYTp8whfU9Lf1z45EfCvjqcDmfjwpotayOaO/nTPub3AastU6j662z/8XBcmupu7silfQPb47mbefnzMELWvbnaegf3vxMOpCrwWgGvVAG+aapqiznRNIhpkx/mfEPPmo97uTswqnUo+gatDg5u7Bu1RI81F78e+YCq1Ni+Ph7MRgMHNq1ldqaatxUzc/SsKhY/vb+DAAGj57AE+Pv4kTSId74eBZde/UHwC8wmHdfnc7J5MM2DqaaygpmLP0Zv0DLWimx70BeefxeVs6fxUvvfGQng6a+joUzPiSx7yDrewIMn3Af//fwOBbN/Jh3ZsxvtayOiGvfibj2nRyeay3Xci61xIr5X5GTmcbAEWPx8befTxbO+JDtG34CoNfAofQeNMzhfdau+JaV82cBEJ/QmVETH7yh/gjYUlHXwJGzxTw/qjMPD2jWv13kUpLPldCgb8RZLmX53jQ8XZ35+pkhOMssppR7esaibzSy89QFqjU6GydGdIAHH02x7KU1plsUo9/7kSNni/nssYH0ibcERQR5uvLXRbtIOlti42CqrNOx8uW7rU6Tfm2DmTJjI99sOcG7D9pXGqlrMPDZuuSmfYYGWI/f0zOG+z9dzxe/JDPr6SGtltURCWE+JIS1bOBrDddyLrXE3C0nyCisZFSXCPzVlrnEbDbz7pqDxAd5Mrl3bIvXanSN1u/rSpxkErQGx/upCdw8lRoDSXnVTO8fxoOJzY4OZ5mE1AuX2eeSC1ErZcyc3LbZPtfR32Kfy6pwYJ9T8P44iy1tdHtfxs9JIimvmo8nxNMr0qJbBHo48eqP6Rb73GUOpkqtgaWPdiLQ/ZJ9Ts3j351g/v4LvHO3/e+oXtfIjJ3n6Ruttr4nwISOfjz87XFm7jrPjMntWi2rI9oHutE+8NaUoHtm+UkKqy3ZftP7h7aYmfXmLxkk59UAMKmzP51Cmu2D5qbSeHF+SiZ2vjmnssDNYdEddEzt5s79CZd+I0pcpCJSi3VW3eH703V4uoj5YoQPTlLLOn5cvCt6Yzl7crXU6EyoLssAivKU8e5gS6DnyBglE1cWkVyo44MhXvQMsayjAt0kvL61nNSiBoJUzXbfygYjiyf4E+Bmea72CXXmqXWlLEyt4a2BXnYy1OtNfHW4ij6hztb3vNS/R34qZtaRaj4b4dNqWR3RzteJdr63xmkzfX0phbWWALip3ZozrDQGE2YgtUjHtnMaHu7oRrBKyv68BladqqNGZ+L1vi1nlW/IrGd/XgMd/eR0EBxM//sonaS4yCT8dKwIf3dnekaoUcglTB9gm2nwwYS21OkarZMXWJwclwwWGoPRZgIbENM8SKRiEYEeLmgM9fSMaDaMXZq0yuttS30Ma+NjdS4BRPsq6RbmwcHsSkxms51R6+j5Kur1RvrHeFGlsU0N7x6hZsuZUjT6xlbL6giN3oj+Grs7eyhaVqA+2XoOT6WMx3rZp9jeCAajiaJqHa8MjWJ8J4vSNSDWG4VcwuKDFziUU2l15An8tri6OKFwkrNmRzIBXu70SYhG4Sznhcm20Wyfv3AvtZoGq3MJsHmt0eltHEx3dYmz/i2ViAn2VaPV6emTEGU9fsmBVFZtW1ZkRM/21nMAMSF+9GgXwb4TZzGZzHYOlsOns6nX6hjUJY7KWts02Z7tI9l48BT1Wl2rZXWEpkGP7hrKiNqt5TT797/biKdKyVNj+131Ht3iwxGLxEwZ2QtXF8skNLhbGzxcFSzZdJCdKenWkoKX+HF3CmKRiPsHJ15TDoHfBlcnKQq5hB+TcvH3cKFntA8KuZRnh9gGFXx0fzfqGgy2c1GDwap8aPRGVJfZyQa2aV7gS8VigtQKNPpGekU3K/uXHEjltTqb9xqeEGg9BxDtpyIx0psDWRcdzkVHssuo1zUyIN6PKo3tvNYjyofNJwuo1zW2WlZHaPSNrZiLWnaSfvzrKTyVTjze/+plTbqEeyIWi3iodwTKJqfxoDYBeLjIWXYwm93pxdaSgpcY0i6AvnF+nMirYPXh8zy3+BBfP9oT+Q0aRgRaRikX4yIT8XNaDX6uUnqEuKCQiZna3Xbe/+9QP+r0JutaDbB5rW00c3nozOXODKlYRJCbDK1BT4/g5kEV2KQYlWtss2iGRimtziWAKC853YJcOHRB43C8JBVoqTeY6ReuoKrB9l6JwS5sPVuHRm9qtayO0BhM13TGOIqU+z0YEmVxKp0obmDNqRpK6hqZ0ZQFNSbOjTWnqvl4bxm6RjPt/ZxIu6hjxoFy3JzECHtG3zxKpRvOLgo2/7QSX/8AOvfsh4tCwZTpL9m0+/sHM9HU1dpkvNRf9rpBo7FxMPUcMMT6t0QqxS8whAaNhi49m9cufkEWB1JluW1pn37DRludSwDh0XF06NaL5IN7MJlMiK8ocXX86EE09XX06D+YmqpKm3Oduvdhz5b1aDX1rZbVEVqNBoNed9U2Ko8bD3poiXUrF7Nm8TcEhUXwxIt/c9imz5ARJPYdSNqJVDZ8v5S3nn+Cd2d9i0xuOwd26NqT8KhYzp/L5OdlC3n96Qd5f87S36TffyZcnWUo5FJ+OJRFgFpJr7hAFE4ynhtlG4DzySMDqNMabJwVdVq91SGj1TXaOJgGtWt2ukolYoI8XdHqGukd12x8DmpyKpXVam3ea3jncJuMnJgANd1j/NmfXuBQ/zmSVUS9zsDAdiFU1TfYnOsZG8Cm1PPU6wytltURGp0BfePVs049lLc+02H5njQW7ThFuI+Kl8d2sx5ftT+DtAsVLH1x1FWDUc2YuVqs6pVzusCtQymX4CIT89PxYvxVTvSM8LDYrPrbZrJ+MD7esX1Odsk+Z7LRiQbENK+bLPY55yb7XHOVniD3Fuxz8T5W5xJAtI+SbmHuHMypcmyfy6222OeiHdjnwj3YknYRjd7YalkdcbP2uct5qk8oErGIHRllfL0nj4t1ev5vkL2NcFLnAO7p5M+hnCp+SC2mpEbH++Mt+tv3qcWkldTx7V86CoHetxmlXIyLVMTa9Dr8XSV0D3ZGIRPzTKJtRar3Bns16UXN31ed3oRz02utwdbB1C+seUBJxSICVVK0FXp6BDePjUsOpHKt7W9zSKTCeg4sQX1dA504lN/gWE8qbLDoSWEudnpS90BntmZr0BhMrZbVEbdST3qiizsSEezI0TInqZqLGiPP9/DA0HT//JpGPhzqbf2sBoQrMGPZn+m+9m6Ee9iP1Z05Gj47UImni5h/9L8zbdt3nINJLhXz2vBoPtqcxVvr0pFJRCQEqegX7cWo9r4onSwiS8Qiimt0LNyfR3aZhsLqBkprdFz6OV65j7daabu4l4hFqBUym4ftpUFkuuLiCAcRA6GeLhw5X0W1thH1FRNFQZVlQfjexqwW5Syt1RPupWiVrI74fNu5G96DaVvaRfZklfPBhDZo9EY0+uYHhMFopkpjQCGXIG/Bs+wIZ5kEncHI6ATb0NxR7XxZfPACKXnVgoPpd0Iuk/LGI6N4d/EG/jb7R2RSCR2jgxnYOY4xfTtanRwSsZii8mq+WbuHswUXKbhYSUlFjXXsmK8YB54q20w3iViEWqWwGUOXSueYTbbXXr5n0iVC/bw4eCqb6joNapVtea/8ixbDxNsLWq6zX1pZS0Sgd6tkdcSHyzbd8B5Mmw+fZmdKBp+/cC/1DXrqG5oXvYZGI5W1GpTOcuQyKT3bRdKzXaTdPSbf1ZUlmw5yNO28jYPJbDaz91gWnWND8FELG3HeLuRSCa/dncCHv5zkn2tSkUnEJISo6R/nx+hOQVYnh0Qsorhay4LdWWSX1lJQpaG0uuGyueiKceRoLlLKHY4ju7nIx/73EOKl5PC5Mqo1etRK2997QYXFOfuftS3/zi/WNBDu49oqWR3x2cbTN7wH09ZThexOL+Gj+7razUWNRhNVGn3TXCShe5QP3aPsnyP3JIay7GA2yTnldg6mS+37x/nh5+7C55vOsOVkIXd3DrG7j8DNIZeIeKWvN5/sLeNfO0qRiS3ZOn3DFIyMdUMpt6wnJGIRJXWNLEqpIqdST1GtgdI6o3W8XPmbV7vYKhESMahdxA7Xbleu+8LV9o7NYJWMI/laahpMeFxx74Iai8Hh/d1lLcpZWt9IuFreKlkdMeNA+U3vwfRb0T3YstbtG6bEWyFl1uEKtmfXMSLGDQ8XCR+P8OedHaW8u8vihFDKREzt7sm2c/V235vA9SOTy5n22tvM/uhffPLWK0hlMuITOtOj310MGjUOhdKyBpNIJJQWF7Jy4ddcyD5LcWE+5aXF1rnGbLY1IHiobaNQJRIJKrWn7RgSW8aC6Yq1W2hEFFcSGBrGsSP7qa2usts3qLjgAmDZJ6klyktLCA6PbJWsjpj/+Xs3vQfT9bJywdesXjQbv4Ag3v7sG5SujtdmnRJ7A9C93114+/mz4IsP2LNlA4PvnmDTLj6hk7VdRHQ87//teTasWcYDTz53S/v9Z0MulfC3iT14/4fD/GPZPmQSMR3CfRjQLpjRXaNwdb60bhNTVFXPvG0nOFdcTWFFLSXVGusccuXzzNPN1tkikYhRuzq1MA/ZXhvpZ5+ZHeqt4lBmEdUaHWpX23sXlFvKAb+z2n4PokuUVmmI8HNvlayO+GRt0k3vwXS9zNt6gvnbThLo6cqXT96Fa1Nmf0F5LbM3HeO+vnGoFHKrU63RaIkwr6pvQC6VoHCSoZDLaNA7DgzUGYxXXasK3BxyqZjXhkbx0dZzvLU+02KzCnSjX7Qno9r52NvnDuSTXa6hsKqB0lp9izqR+ooANIlIhNrlSvuc5f8rpicivO2zXEPVLhw5X311+9wmx/uJA5TW6iz2uVbI6ojPd+Tc1B5MlzO0jSVD5K44L95Yl8GalGImdvIn+Iryf/2iLfPwgBgvFHIJq5KLSM6rxl/lxDd787i3SwAqZ6nVqWY0mS1jS2NALhUL21j8TsglIl7po+bj/ZX8a1eFRXfwdaJvmDMjopVX6ElGvj1WQ05lI0W1jZTWX64n2d5X7WKrc0hEoHaWtM7G7WCvpRCVjKMFOmp0JjtHzqVsoPf3Vtpdd4mL9UbCPGStktURMw5V3dQeTJczONKi1wyMUPDWjnJ+PFPHhDauVgedr1Ji44gDGBGtYOs5DalFOjsH04bMej49UImrXMxHw7zt9qW9U7gjpRraxoeeEWr2nS3nUE4lR89XkZJXzaqkAub9pRNqhYxVSQXM3JlDsIczHUPc6RvtSby/K/vPVrD8qL2xSyK299q31o8vdXCt0dTyfS8N3peGRLVYA9a3aZPD1sjqiAe7BzOsrX2Jl9ZwOMfyUPjbT2l25/ZklbMnq5x/jIxh1HXUcfF1k1OpMdiV01Mrm7Jh9EJ9/t+TET3b06dDNLtSMzhw8hyHT+eQlJ7Lsi2H+e7Nx1GrlCzbcpjPVm4lxFdNl9hQBnSKpW14AHuOZbFkk71i42hvFFErR5Gja02mps3xHJwzNs2erz88grAW9mjy81S1WlZHPDKiF6N6trzP2dU4cMqyQeZfv1xtd25nSgY7UzJ4+/ExjO3bscV7qN0s/dLobCOy0s4XUV5TzxNjHDuIBX4/hrUPpFe0D3szSjh49iJHs8tIOV/OykM5LHiyN2qlEysP5fDlljSCPRV0CvWkb5wf8QHu7M8sZdlBewX+yk2N4TrGkaP5pmmsOLrvpbno5ZHtCG1hjybfpui/1sjqiId6RzI8IcjhuWtx+JxFCXttVbLdud3pJexOL+GNsR0Y3anlheSlfmmvMccMaRfA55vOkFFcw9031FuBazEkypUewS7sz9VwOF9LUoGW1KIGvj9Vw9xxgXi4WPZLmnW4giCVlI7+zvQJVRDn48SBXA0rT1bb3dNRZsxNjRfzpfFi3/6S0vZiby9CWqg97tukTLRGVkc80MGdodFXL0v8v8DgKCWzDleQVaZnRIzlWKy3E99NDuZchR690UyUpxxnqZjFqVV0Dbq5faUELPQbOoouPftyZN9OUg7t4/jRg5xKOcK6VUv4aN4K3NWe/LJqCYtmfkxAcChtO3Ylse9AouLbkbR/Nz8vX2R3T7HE/rfY2khmidRezTQZLc9aiYP7XlrXPfXSGy3u0eTl699qWR0x/sHH6T/s93mKm81mFsz4gF/XLCcoNJx/zZiPl0/rdKO+g0ey4IsPyM48w2AmtNiuW58BOLu4kJ1pr5MJXD/DO4XTOy6QPWfyOZBeyJGzRSSfK2HF3nQWPTcCtaszK/am8cX6FIK93Ogc4Uv/tkHEB3uxLy2fpbvtvweH67ZWjiFH+o/RfGlzcAf2haY56tXxiYR6O3Zk+nkoWi2rIx4e0JYRncNb1f+bxWw289m6ZFYfyCDMR8VXTw3G1705cDc1p5QGg5Elu86wZNcZu+uH//sHRneN5K17e+GvVtJgMFLXYLBxoDUYGqnR6m3uK3DrGdrGm54RHuw7V8GhnCqO5laTcqGGVclFzHsowWKfSy5k5q5ci30u2I2+UWri/VzZf66S5UmFdvd0tBZr9dhyaJ+7tMZztP6z/P/S4AhC1I7HRrN97tqyOuLBxECGtbm5fWkdMTipeXrpAAAgAElEQVTOm91ZFWRd1Ng5mC5nSLw3q5KLyCipp6TGUops6ZFClh6x/+zvnp3EyHY+vDHi6hUkBG4dgyMVdA9yZn+elsMFDSQX6kgt1rH6dB1zx/ji4WzZL2nWkWqC3KR09JfTJ9SZOC85By5oWXnKPkBN4mi8tNLI7ehaq550lXMv9vQg2N2xG8JHKWm1rI54IMGNoVG3/ll+V4QLe3K1nK3QMyDMBWepCA9n+weQuqlfGoNtsNbKk7XMSapG7SLm0+E+RDpwzt0p3HEOJo2+kazSeiK8lYxs78fI9n4YTWaWH8ln7t5ctqdfZEwHf+btyyUhSMXM+9rbLN42nCy55X26FPFwOfmVWjxcpKic7b8C/yaDncpZSmK4bSrg8fxq9I0m5BJRq2Sd1MXxhn4R3gqHmVWtoSXn1F+/P0XnEHem9Ay57nvH+bmy5cxFKur1NhH6lz47P9WdV5/yf5V6rY7MCyVEBfkwpk9HxvTpiNFkYvHGg8z6YSebj5xhwoDOfP3jLjpGBzP3tb/Y1NJet+/4Le9Tfql9pENeaQUergpUSvuFUqCXJeLPXelCjyuyf1Iz89AZGpFJJa2S9f4hjsvMRQb5EOkgs6o1tOScmv7pcrrGh/HE6D7We//1y1XUaXTM+9sUm7bniy1R8sE+tiVRjmVZIoC7t709UewCFup1jWQV1xDp68aojsGM6hiM0WRm2YFzzNmRybbTRYztEsI3OzPpEKLmqyk9bOei4/m3vE8FlfYRPRcqNHgo5DYlYS/h32SEULnISIy0VXiO51WgMxiRS8StknVy93CHfYrwcXOYWdUaWnJO/d/SI3QJ8+SRftFE+FiM8a+tTKKuoZGvH7Xd3D23zLLYvlQ68M0fUsktq2PJM7alKy8FOThdR2auQOvR6E1kVeiJVMsYEevGiFg3jCYzK05UMy+pku3Zddwd58aC5EoS/Jz4YnSAjXFgY2btLe9TYa3B7lh+jQF3ZzFuTvaKjX9TmQiVk5huVzhMThQ3oGs0N63dri3rxHaO9xMLV8sJ/x+qgvXW9hIKaxqZP8F2HGoMFiXyUomO85V6ThQ3MDzGlRiv5vVcTqWeMo3xjtzk9vdGq6knJyud0IhoBo0cx6CR4zAajfy8fBHL5s5g3/aNDB0zieXzviI+oTP/nrkAqbT5ub9jw8+3vE+XMpIupyg/D5WHGleV/W/c19+is7ip3OmYaBulnXY8BZ2+AZlc1ipZR09ynEEREhFFiIPMqt+CRTM/4tc1y4mIiefNz+bYZYMBfPr2q+Sfz+bzxT/YHNdq6gGQN5Uu/ParT9i3bSNfr/oVuVPzeGlsbMSgNyCXC2PoZqnXGcgsrCTKz53RXSMZ3TUSo8nEd7vPMHvTcbYez2Vc92jmbD5Oh3AfZj89xGbdtj7p3C3vU365vUHwQlktHkonVAr77zxAbVnzqFzkdI+xzco+llNqWbdJJa2S9d4+cXb3B0tWlaPMqt+CL9ansPpABrGBamY8cReeVzi9esYGMvPJu+yum7EhhdIqDe891BdvlWV9Fx9kcTqnF5TTLaq53HRafgUAbUPsx6fArUGjNzbZrBSMbOfLyHa+FpvV0ULm7stje3oZYzr4MW/fBRIC3Zh5b1tbnejU1avu3AgFVfalUvOrGlq2zzXZolTOUhLDrrTP1Vxmn7u2rJO6ON7TNcJLQYTXjdnndAYjjy89SadgFa8OtbV9XKnDTFtxClcnCR/f06bFdt3DPfh8ku15gK9251Jaq+Pfd8fi7Srs8/x7oTGYOFtuIEItY0SMkhExSowmMytP1TIvuYYd2VpGxypZkFJDe185X4z0sdWTztbf8j4V1tpnhObXNOLuJMbNyV5f9m8KsnNzEtMt0PZZfqJEh/6SntQKWe9p6zjYLtxD5rA0XWvQNZp5al0JHf2deLm3rbJl1WskIkQiETFeMrIrDTSazDaf86XPxE/Z/AxZc9riXPJTSvh0hA/BqjvOBWPDHWcpySip59kVJ/nleLH1mEQsok2AxYAlEYnQNZpoMJgI9nC2mbyKqhvYe9ayyDBemT94E2w+U0qNttlQkVFSR1JuFQNjHUcoJIZ5IJeKWXG0AIOx2ftZWa/njZ/T+GxbNhKxqFWy/hZEeCtIDPew+wfgqZSRGO5x3RPO0La+mIFlh22NqquTChEB/WOERd/vRXpeMU9+sISf9qRaj0nEYtpHWBR/iUSMTm+gQW8gxM/TxrlUWFbFrtQMAIzGq9cQvh42HDxJdV1zXfK03CKOnMlhcDfHe7z0aBeJk0zKd5sOYbisTnhFTT2vfLWGj5ZuQioRt0rW34LIIB96tIu0+wfgpVLSo10kPh6Wcax2VZCSmUdS+nnr9SaTmXlr9yIRixjWvZ3NvdPzilE4yQnzE8bM7SSzqJrpiw+xLiXPekwiFtE20MP6t85gosFgJNhTYTsXVWnYk24JdriVc9GmEwXUaJsz3jKKqknKLmNQG8cbt3aP9LbMRQezbeaiinodf1+dwmebziARi1ol629BhI8biZHedv8A1K5OJEZ6491UmsZDIedYXgUp58ut15vMZhbszkIiEjGknUXZ81e5cLaklv2ZtsrsiqZssj6xrc/MFWg9meU6XlhfxC/pzY4iiVhEG5+mkqwiEXqjmYZGM0Eqmc1ivqjWwL5ci/P0Fk47bMmqo+ayGuGZZTqSCxoYEO44m69bkAtyiYhVJ6ut9bnBsjHvP7eVMONgORJR62T9o+CrlJJVrudIvq3zelVTNlmvEIuhpLC2kU/3l7PnfHM7o8nM/KRK3J3FDI7638/K+l8nO+MM/3z2Ubb+0uyokEgkxLRp3/S3FL2uAV2DloDgEBvnUmlRAUf27gDAaLx1FQN2b15PbU1zZuG5jDOcSDpEr4FDHbbvmNgLudyJtSu+xWBo1puqKsv58I0Xmf/Z+0gk0lbJervZt30T61cvJTQymndmzHfoXALw8Qsg91wmSQf22Bxft3IxYMlQAvALDKairJTt63+0abfh+6UYjY106zPw1gvxJyOjoIKpc7ay9khzCSyJWEy7EO+mv0XoDI00GIyEeLnZrNsKK+rYc9qiw97KddvGlByqNc2G8PSCCo6eLeauBMd7IPeI8cdJKmHZnjRb/aeugde/28Mna49abAitkPV2s/X4eVbuSyfK351ZTw22cy4BeKtc6B4TYPdP5SJHKhHTPSbA6gzrEx+Is0zC6v0ZNvdYtS8dF7mU/m1bVzZJ4PrJKKnj2VWn+eVEcyC3RCyijb+r9W9do4mGRhPBagf2uXO/hX3uogP7XDUDYx0/qxPD3JFLRaxIKrS1z2kMvLEug8925DTZ564t62+Bk0yCQi5me0YZZXWXld43mvjxWDGuThI6BllsC96uco7kVpNV2ux0MJvNrEouQiIW0TPCYstLDPOw++fmJEUmFpMY5nHDzjCB6yez3MALGy+yPrP5O5OIRcR7y5v+5jI9SXqFntTIvlyLHe0a2xNdF1vOaajRNY+FzDI9yYU6BoQ7zpLrGuiEXAKrTtXa6Ulvbi9nxqGqJj3p2rL+FjhJRShkInbkaCjT2G4B81NaHUq5iA5NAXFDIhXU682sTW8OAjGZzfxwpg4nichaOu90qY6vj1bjrRAzY9Sd71yCOzCDqWOwioQgFfP351JSqyPGV0l5vZ6fUovwUsoZHO+NyllK+0A3tpwpReUsJcJbwYXKBn45UYyuaWO9W1mSTWsw8fTS44zr5I9Gb+T75EK8XOU83sfx4tBDIeOZfmHM3JnDU98dZ0Q7S7bQz8eKqG1o5I1RsYhEolbJ+kehZ4SaIW18WJVcSLnGQKdgFUm5VezKLOferoGECxPY70bnmFA6Rgcz+6fdFJfXEBvqR3l1Hat3JOPt7sqwxLaolC50iApm48GTuCtdiAz0Jq+kkp/3pKJrqm99+b5CN0uDzsAj7y5k4sCuaBp0LN96BG93N54Z199he7WbgmcnDuKzlVuZ8p+FjO6dAMCancnUarS88+RYRCJRq2S93UybMJA9x7N46cvV3D8kES93V7YnpZGckcf0CQMJD7BdCF8oqcTPU2W38a/A70vHME86hKiZtyuLkpoGYvxUlNfp+DEpF29XJ4a0C0DlIqN9sAebTxTi5iwj0teNC+X1rEu9gK7JMFCvc1wv/kbQGow8ueAA47uGotE1svrwebzcnHhiQIzD9h4KOVPviuPLLWk8OX8/IzpYshR+Ss6jVmvgn+M6WOaiVsh6u3lqUCz7Mkt5bWUyk7uH4eXqxM60YlJzK3h6UCxh3hbF75F+UexMK+LtH1OZmBiGn7sLB7Musj+rlHFdQugcJuwF+FvQwd+ZBD8nFiZXUlrfSLSnExXaRn46U4uXQsJdkUrcnCS083Vi69k63JzERKjl5FcbWJ9Ri67RoqhcWZLgZtA2mpm6rpBx8So0BhNrTtfgpZDwWBfHKUQezhKe6qZm1uEKpq4tZFiM5Te1Nq2GOp2JfwzwQSQStUrWPwqPdPZg73kNb28v5Z62KryVUg5d0HDogpbxbdxI8LcoWIlBLsR4yfl8fxkXqg14KyXsyq4ntaiBtwb5opDdcfFuvzttOnYlPqEzK+Z/RVlJEeEx8VSVl7Hxp5WovXzoM3gErip34tp3ZPeWDbiq3AmJiKboQi5bf/kBvc5ixL6UOXMr0Gm1/O3pBxk27l60mnrWf78UtZcP9z0+zWF7lYeah555gUUzP+b1px5g4IgxAGz+eTV1tTU8/8a7iESiVsl6OzGbzSybOwOAxD6DSD64x65NTNsOBIaEMXHKUxzcuYXP3n6VURMfwNsvgJSDe0k6sJuhYyfRrlM3AIaOnciuTb+waOZH5OflEBoRTfrJVHZvXk+Xnn3pP2z07yrjnUincF86hPswd8sJiqs0xAaqKa/VsuZgJt5uLgzpGIZK4URCqDebUnNQuciJ9HPnQnktPx85i85gWbdpdPbZrzdKg76Rx7/azD09Y9DoDKzcl463mwtPDklw2N5D6cy0ER35Yn0Kj321mVFdLNUMfjiURa1Wz1v39kIkErVK1tuJ2Wxm9iZLRYx+bYLZn25foqtdqBeh3qpW31OlcOKJIQnM2niM15fsoXd8IAczCtl56gLPj+rsMCNM4NbQMVhFQqAb8w9csNisfJSUawz8dKwYL6WMwXFeFvtcgKWijcpZSoSXi8U+d7L0MvvcrVzjGXl6+SnGdfSz2OdSivBylfF4L8eORg+FjGf6hjJzVy5PLTvJiLaWSiM/Hy+x2OdGRDfb564h62/Fy4MjmbbyFNNWnGJCJ3/EIth4+iI55Rr+OTLauv/TswPCSMqr4q9rzjCpSwCucgk7Mss5UVDLM31DCfJwXAJQ4PbRwU9Oe185C1OqKalrJNpLToXGyM/pdXi5iBkUocDNSUw7Hzlbz2lQOYkJ95CRX9PIhsx6dE0OHe0t1JMaGk1M+6WUsfFKi550pg4vhZhHOzt+Lns4S3iqqzuzjlQzdX0pw5tK2a1Nr6dWb+Lv/dQWPakVsv5WvNhLzfMbSnluQynj410Ri2DTWQ3nqwz8vZ+ndf+n0bFKtmdrmHWkmrzqRiLVMnaf15JarOO57u7WDK55yTWYzNAz2IUTJTpOlNhmTkZ4yIjxurMyAe84B5NYJOKDCW349uAF9p0tZ/2JYpROllTWJ/uGWcsA/WdsPF/tymFz2kV0BiO+bk6M7ehPr0g1z644SVJuFbF+tyai8p5OAZjNZhYfvIBYJKJ3pCdTB4TbbdZ+Ofd1C8LXzYmVRwuYvz8XmURMjK+S14ZH0yXU47pk/aPwz1GxRPko2HCihN2ZZfipnHh+UAT3dnVc5k/gt0EsFvHZC/cyf90+9hzL5Oc9qbgqnOnRNoJpEwbg7mqJSvhw+j18vmobvx48SYPegJ+nigkDOtO3QzRPfrCEI2dyiA9znBlxvUy+q5ullv36fYhFIvp1jOH5SXfh5d7yGH1oWA/8PFUs3XyI2T/tRi6TEBvixxuPjCaxTfh1yXo78VG7seDvjzDrh52s3pGMTm8gItCHfz85ltG9O9i1r6rT/E/0+8+OWCTiw/u6smjvWfZllPBLygWUzlISI715emAsqqYNit+b1IUvt6ax+WShZS5yd2ZclxB6x/gy7dtDJOWUExdwa0qRTOwWhslsZvHes4hEInrH+jJ9cByeri0r1ff3jMBX5cyKgznM25VlmYv8Vbw+OoGuEV7XJevtxMfNmTmP9WTOjkx+TMpFZzAR7uPKm+M7MrJDc3kvV2cZsx/txdfb01mbcgGt3kiIl4KXR7bjnm6Og0IEbh6xSMR7Q/1YklrF/jwNGzLqUMpEdAty4YlualRNNa3fGezL14cr2Hq2Dl2jGR+llDHxbvQMUfD8+iKSC7XEet8aI9GEtm6YzLDkWBViEfQKceHp7p54Klre0PjeBHd8XaWsOlnNwuRKZBIR0Z5yXunrTZdAl+uS9Y+Am5OEmXcHMPdoBevSa9EaTIS4y3i5jxdj2zQrmDKJiA+H+/HN0UrWZ1jaxXg58fEIf7tyggI3hlgs5u8ffMnqb+eStG8n29b/iELpSsfEXjzw5HO4NZWke+U/n/LtV5+we/MG9DotXr7+DBs7ia69+vPGs49wIukQkbH2ZXFuhBH33I/ZbGLN4rmIxGK69e7Pw1NfxMOz5QC4MfdNwcvXn3UrF7Ni/ixkMhnhMfFMfe1tErp0vy5ZbxcXiwspKbRks/zw3TyHbZ555U0CQ8JQurrx7teLWTrnC7asW0ODVkNgSBhPvfQGIybcZ20vlcp469PZLPvmSw7u2srWtd/j4x/IA08+x4SHH3e4p5XA9SEWi/hkygAWbD/J3rQC1h09i9JZTo8Yf54Z1hH3JgfEfx/ux4z1KWxKzaHBYMTPXcH47tH0iQ/imTlbOXK2mLigWxOMMrFXLGazmUU7TiESQd82QUwf0Rkvt5afmw/0a4Ovu5Lle9OYu+U4cqmEmEA1f5/Y3VoarrWy3i6KKuspqLBEhn+787TDNq9PSLwuBxPAlIHtcJZJWbU/gwMZBQSqXXl9QiL39Iy96T4LtIxYJOKD8XF8eyiffecqWX+ytMlm5c6TfUKa7XNjYvlqdy6bz1xE12iy2Oc6+NIrQs2zq06TlFdFrN+tCcK5p6M/ZmDxofwm+5yaqf1Cr26f6xposc8lFTJ//wVkUhExPkpeGxpJl1D365L1tyDe35WZ97Zj3v4LLDxwwXrss4lt6RbWPC/6q5yYfX975u7NY8VRS0ZWlI+Cd+6OYXDcHydA/c+EWCTivcFeLDley4E8LRuy6nGVieka6MwTXVSomhwa/xrkxddHq9h6TkNDoxlfpYS7Y5X0DHHmhV8vklyou2UOjfHxrpiB747XIBaJ6BXswtPdVHi2sI8swOR2bvgoJaw+VcfC1BpkYix6Uh8POgc4X5esvwXx3pbyggtSavj2WA0Acd4yPh7mTdfLyvpJxSI+HOrNkuO1bDun4desekJVMv7RT82waMszqtFk5mSTQ2l9Zr1NRtYlHkhwu+McTKLAwMBbmCh36ygoKODi/CdudzduiqLqBiZ/k8RD3YOZNiD8dnfnT43PkwsICrqxjeT/CBQUFFC3/7vb3Y1bTmFZFWNe+4pHRvbmhcn2NbYFbi+uff5yR48rsIyt8mV/vd3duCmKqjRM/HIXD/eOZPoQx2UlBX57vB76/E8xXoo/vr3ZAzdLUa2B+1fl82AHd57pLmSs/a/j/+qmO2pcFRQUcPrircsAvx2UFhUwdfIIJjz0OH+Z9seeP/8stPOR3zHjqKCggKqf/327u3FTFFbUMeHDtUwZ2JZnR3a+3d0RaAUe49+6Y8ZQSxQUFHDxm0dvdzduiqLqBibPT+WhxECm9b+9mXp/Znye/vaOHy+OKCgooOiDwbe7GzdFUW0jD6wp5oEEN57pdnsDev7MBPxt+//kGBJqUggICAgICAgICAgICAgICAgICAgICAgICAhcF4KDSUBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQOC6EBxMAgICAgICAgICAgICAgICAgICAgICAgICAteF9HZ34E4mwN2Zfa/2vd3dEBD4wxLo7UHywn/e7m4ICPyhCfBQcOCtUbe7GwICfwgC3GTsfjLidndDQOAPi29AED/uO3m7uyEg8Icl0NOVwx8+dLu7ISBwxxHg7sy+l3vd7m4ICPxhCXCTsuux4NvdDYH/UYQMJgEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAYHrQnAwCQgICAgICAgICAgICAgICAgICAgICAgICFwXf/oSee/9msnG06Vs/2tvnKR/DH/bgv25LDpwwfp6/bM98FDIqNEa+GZfLgfOVVLTYCDW15VHe4XQPUJ91fu9tS6dHRll1/wMvt6dw/IjBSx7vAthXorr6nNRdQOTv0m6apt/jIxhVHs/a/u5e3NJOl9Jvd5IgLsz4zr6c2/XQEQiEXuyyvnHz2nWaz+Z1I6e15BT4OZ5e8E61u8/wYG5f8NJ9sd4fMz9eTffrNtrfb1txkuo3RRU1mr4+sed7DmWRVWdBl+1GyN7tuepsf2RSSXW9npDI/PW7WXDwZNU1WkI9/fmwaHdubtPB5v3MZvNLN18mB92JVNSUUOgjwcTB3Th/iHdEYtFNy3Hf5f8SkZeCYv/+ZjduXcW/sK6fcftjru7urDjy5etrytr6vl89Tb2nTiLtkFPVJAvT4/rR/9OsQDsTMngla++t7af+dcH6J0QddN9F7g27649zq/HC9j5j+E4Xfb7+19m/q5MFu45a3396ytD8FDIqdHqmbszkwOZpVRrDcT5q3i0fzQ9onxsrk/NreDZxYcc3vvj+7vSJ9bP4blZ29JZdiCb5dP7E+7tekN9P5VfyZwdmZzOr0TpJKVntA9PDYzFz93Fpt35sjq+3pZOyvkKpBIRXcI8eWpQLBE+bgCsOpTDjC3Nc9HN9Emg9by/+yKbsurY8mjYH2bttii5km9Tq6yv1z4cioez7Vg/VdLAc78UsXhSEGEecrt7bMio5ftT1RTWNOLrKmViOxUT2qrs2p0qaWB+UiXpF3W4yMR0DXJmWndPvBTN83ajycyIb89jMNn39b4EFdN7eF2XfAPm51z1/KOdPXisq/06zWQ289wvRRTVNvLTQ6EAZJXrePKnQmubl/p4Ma6NvZwCN87M995g58Z1rNyehNzJ6XZ3p1WsXPA1qxfNtr7+dv0eVB5qdm5cx8z33nB4zedLfiQsMsbhuU/eeoUDOzbbfQbGxkbWrviWHb+upbQoH4Wris49+vCXaS/i6e17Q32vq6lm+byZHN6zA62mjpCIGB548lk6de9t0y4/N5vvZn/OqZSjSKRS2ndO5IEnnyMkouW12L7tm/js7Vdt5Di8Zzsf/uNFa5t/fjKbLj2Fsu23kn+vPsiG5Gz2vHs/TrI/xrpt3tYTzN/WXL5y81sT8VA6U6fVM3vzcXaczEOrbyQmwINHBrWnb5sgu3usO3qOFXvTKKiow89dwb194pjcO86u3fcHMli9P4PCynrUSieGdw7nmWEdkd/gGvdk7kVmbz5ORkEFMomY3vFBPDuyE15utuu27JJqvt6YyoncMkxmM92i/Hh2ZGdCvN1s2hVW1DF78zGOZBVT32Ag0NOVCT2iub9vPCKRiN2nL/Dakj3W9l88PohecYE31HeB6+O9TWfZePoi2/+vxx9mjbfgwAUWHcy3vl4/rRseChlVGgPf7M9j/7lKqrWN+LjKGdrGm8d6BSOTNMvWaDKz5FA+v56+SFmdHl83OWM7+PFgYiBika0dYd/ZChYdyie3XIu7i5S7E3z5S49gpDdob3hh9WlSLtTYHY/zU7Lg4Q4OroCyOj1/WXyM7mEevHO3xY6wOrmIL3edt7ZZ9mgnwrxcHF4v8Nvy/t4KNp/VsPkvQThJb94O9XuwKLWaxcdqra9/fiAAD2cJNToTC1KqOXihgRqdiRgvGVM6qkgMcr7q/d7ZWc7O81qHn8GpEh0LUmpIK9PjIhPRLdCZqd3c8VLc/Fz+2YFKsioMzL7bfr2oazTz3fEatmZrqNKaCFZJuT/BjaFRFtv696drmXWk2tp+8QQ/wjxkN92n35M/hoVYwCHTB4TjpZSjkEswGE28tOY0OWUaJnUJxNdNzpYzF3l5zWk+uKctfaI8Hd5jd2YZOzLKrvleZ4pqWXW04Ib76uEi481RsXbHjWYzM7ZnIxJBp2B3AOp0jTy74iR1ukYmdgnA19WJgzkVzNyZQ1F1Ay8OjiLe35U3R8VyPL+GdSeKb7hfAn8e/m/yYLw9XFE6yzE0Gnnus+WcK7jIxIFdiAjw5vjZCyxYv5+z+Rf57IV7AYvT6NVZa9h34ix9EqLo0yGa0zmFvL1gHXkl5Uy/Z5D1/h8s3cSancl0iArmvsGJXCit5IvV2zhzvoh3nx5/U31fu/cYP+xKoX2kvaIHcK7gInGh/jw8vIfNcfllTkBDo5FnPl7K+eJy7rurG8G+atbuPc5LM1fzyXOTGdg5jrbhAfznqXGkZubx4+7Um+qzwJ+HZ4fE4+XqZJ2LXlx2lJzSWiZ3D8fP3ZlNJwp5adlRPrrCaZRdallEvja6Pc5XGGdi/d0dvteZgipWHry6IftaHMut4MWlR3CSSXiodyQucik/JuXy9MKDzHmsFwEeFmUor7yOZxYeQNdoYlJiGD4qZzYcy+fphQeZ+ZcexAe60yPah7cUcnanF7M7veSm+iXw52BqdzVeLlIUMlujSUldI//aUYq5hevWnKpm5qEK+oQqmNBWRXKBli8OlFOvN/FwJw9ru5RCLa9tKibUQ84z3T0pq2/k+1M1ZJXp+WZ8oNVYk19twGCCSe1UxHnbOhjC1devzLwxwMfh8fnJFZRrjPQIcWxk+P5kDadLdXi6ND8D/F2lvDHAh9wqPUuPVzu8TuDPy/DdNKgAACAASURBVJTpL6H28sZFoQTgQs5Z5HInpr3+tl1bb19/h/c4tHsbB3Zsdnhu0Vcf8+ua5fQcMIS7732Y0qICNv64krQTKXy8YBVuKsfzU0voGrS8+fxjlBTmM3rSw3h4ebHtlx9495VpvP3FPBK6dAegMO88f3/mYQx6PSMnPoCXjx/bN/zE36c+zDsz5hMV387u3jlZ6cz56B2741Hx7fi/N//LmeMpbF235rr6K3Dn89yozni7uaBwkqEzGJk+bzsZBRUM6xRGhzAfDmcV88riXfxtQg/G94i2XrdyXzqf/5JMv7bBTO4dy5GsYj5Zm0S9zsCjg9pb2y3acYo5m4/TJdKP+/vGk15QwdLdaeSX1/HhX/pfd39P5ZUxde42Qr3deHpYB2q1BlbuS+f4+VIWvzAKV2fLnFVYUcfTs7egkEuZMrAtZmDVvnQen7WJpf83Cj8PyzOjTqtn6pyt1Dboubd3HL7uCg5kFPLF+hQKK+p5eVw34oO8+Nd9vTmWU8rPR85epXcCAs1M7x9qtc81Gk289EMaOeUaxnXwI9zLhZMFtSw5XEB2mYYPxsdbr/t0Wza/nCylf7QnDyUGkpRXzZy9eVRqDDw/MNzabndWOf9cl0nHYDemDwgjq7SeBQfyuVin57WhNxYUml2moXuYO8Pb2q7jVC4tm4o/3ppNbYPR5liPcA/eHBnN7qwK9pytuKG+CAhM7eaOp0KMQibGYDTz6paLnK9s5J62rvgqJWw9p+G1LWW8N8SL3i3oFnvOa9l5XuvwXEphA69vLSPUXcYz3dwp1xj5/nQdWeV65o7xuymH3K+Z9azLqKeNj32QoMls5o3tZaQW6RjfxpUQlZQdORre21OB0WRmRIyS7kHOuPcXs/e8lr15DTfcj9uJ4GD6A9MnytOaSbT+ZDHpxXW8NTqWYW0t3tK7E/x4cGEK8/bmOnQwVWsNfLL1HDKJCIOxJZMG6BtN/HdjFmKxCONV2l0NF7mE4e3svbgL9uVSrzfyn7HxBHpYvNDLjuRTWqtj1gMJdGxyOk3oHMDbv6TzQ0oRk7sEEqR2YXg7X4xms+BgEmgV/TrFEBHgDcCPu1NIzy3mP0+NY1SvBAAmDeqKj4eKxRsPcDTtPIltwtmZksG+E2cZ2bO9jZPIV+3Gog0HGJrYlpgQP9Jyi1izM5mucaHMevkhawZUdJAP7y35leE92tGvo+MI2qthNJlYsH4f36zd02Ibs9lMduFFxvfrbJXFETtT0jlXcJHnJ93Fo6MsEbN39+7AhH/M5usfdzGwcxx+nipG9Uqg0WgSHEwCraZPrK81a2d96gXSC6t5e0JHhidYHKJ3dwrh/q93883OTFsH08VaXJ2kjO8a2qr30TcaeW/diZuaiwA+3XgaMzD70Z5E+loiWkd2COKBr3fz1dY03pvcBYCvtqZT29DIFw8l0r0p+2pcl1CmzN3LR7+eYuGTfQj3diXc25X8inrBwSTQKnqHKuyyk06VNPD29lLKNEaH19TqjMxPrqRvmIJ3h/giEokY10bFW9tKWJJaxd3xbng4SzCazHyyr4wANxkz7w5AKbc4kyI95fx750V2ZNczMtbym8+u1AMwItaVGK+bz2AZFmOfufdrZi0ldUamdfekra99pOGFagMLkiu5wteGm5OEYTGupBZqBQeTgB3d+gwgOCzS+jovO4vA0HAGDB/Tqutrq6uY+8l/kMpkNBoMNucK886z8YcVDBkzkemv/8t6vH2X7rz7yjQ2fL+U+5949rr6+9OyReSey+LNT+fQuUcfAO4aNZ5p945i9cLZVgfTt7M+pb6ulrc+n0unRMs6bejYibz06CTmfPIfPp6/0ua+R/bu4Mt330BTX2f3nt6+/gwYPgaj0Sg4mATs6NcmiHBfi469fE8aGQUVPDqoHdNGdAJgcu843lqxnxnrk+nXNggvNxdqtXrmbj5O/7bBfDSlPyKRiHt6xvK37/awcPspxnePxkPpTKPRxJJdp4nyd+erp+5CIrY84GVSMT8czCItv5w2wdeXITvz1xTcnGXMnToUlcIyX7UJ9uSlRbv45eg5HuhnMdR/s/UEOkMj3z4/gmAvy1zXJy6QBz7fwLI9abw0thsA3+0+Q0m1hrlTh9IpwmKfmNgrljeW7eP7gxnc1zeOYC83RnaJwGgyCQ4mgVbTJ9LTmrWz7kQJmaX1vDUqmmFtLHrE+I7+eLvKWXa0kJS8arqEulNer2f9yVJ6hHvw33GWbMAJnfx59cc01qQU8VBiIJ5KOUaTma925RLnp+SLSW2RNmVAKeUSViUXMalzAJHe11dlqFJjoErbSM8ItZ2DqSU2nbnIkdwqu+NhXi6EebmQX9UgOJgEbpheIc7WrJ1fM+vJKDPwRn9Pa5bPqBglU34sZkFKjUMHU3WDkc8PWnSLK6s0GE1mPjlQib+blC9H+Vj1pAi1jP/srmBHjoaRMcrr7rPRZGbpiVq+TbXPBLzE5rMakgp1vNzbgzFxFp1pTJySJ9aWsOhYDSNilIR5yAjzkFFQ0/iHdTD9MXJOBa6JVm8i1k/JXXHe1mNOMglt/F3JLqvHbLY3xn227RzuLjIGxHrbnbuchQfyqNYaGNvBcRTgjZJXoWXJ4Xz6RHky6LJ+H7tQQ7CHs9W5dIkh8T6YgZOFtQgI3AwpGXnIpRJG9Ghvc3xED0t06LEsSwnKPccyAZg6foBNu0dG9sZkNrP+gKXMxN5jWQA8ObafTXm98f074+7qwi8OytddC52hkYf+NZ+5P+9hVK8EfNVuDtsVXKxCqzMQEXh1ZS3/omUh2KNdhPWY0sWJTtHBZBdexGS6cYO9gMAlNHojcQEqBrcNsB5zkkloE+jBudJam7kou7SWsOsoJ7dgdxZVGj3juoTccP+KqrScK61lcLsAq3MJwNPViVEdg9mTXkJtgwGD0cThc2V0DFVbnUsAzjIJExPDSC+s5lypMBcJ3DzfpVbx3C9FyCUi7op0rNQcyNOgNZgZ38YN0WWlUia2d0dnNLPvvAaA48UNFNQ0MqWzh1VpAugfruShju74KJvjynIqDYhFEOr+25ReqGkwMutQBdFecu5NsC9vZzKb+XDPRdr7OdHOgfNJQKC15GWftXE4XYt5n/0XlbuaXgOG2J07fTwZs9nMoJHjbI536dkXpasbaSeuP/hmx/+zd95xUZ3Z/3/DDExl6L0LKCB2sfeuMTG29LJpJtls2mZLtqUnm2yaJsbEmKaJMfZo7L0LNiwgvfcOA8wwhZnfHxdmGBlQLPv7ZsPn9eKlXJ5bZu597nPO+ZzzOTt+pv/QERZyCUAmV/DIs39iyCihmsNgMHD+1HFiBwy2kEsAEqmMmfPuJTsthfycTMv2z//zOu/+7Xn8g0I6yOz1oAfdwdHUYiRiEb+bZOsTPTA+Fo3eyIFLBa3jitDojcwf2dtmHbp7TDQ6QwuHUwR5sLomHRqdkSG9/CzkEsCoVnm57LKOgemuYGwxoZA4cXt8hIVcAhjUSgxlltZatjk6ODC5f6iFXALo5eeGq1xCZqn1vOdyKwjydLGQS22YNjAUsxku5ld26xp70AN7OF+kxlnkwJRo21hb2+8XiwU/orRehxmID7WNfY0Id6PFDHk1QiVGckkDpWodt/f3tZBLAAsH+2MG9qVdXZXoSuRUCfbjtUrZVTfpWXIwl4dHBHX7XD3oQXehNZro7enExHDr8ykRO9DHy5ncWoPdGPeShDpcpY6MC+v4TF8o01HS0MJDA1S2flKojPv7u+Ct6L5Ens5oZtHWCr5NUjMtQo5XJzJ7OzObCFaJmd3b6uuJHB14cqgrt0Up0Bn/N2Jxv7oKpg/2ZrH1QhmbnhqGl9KaAWoym5n3xWnCPeV8fJdgIB3OqGJjUikZ5Y00G0x4KJwYFeHBU+PCUErsf/TOejK9sS2dPamVHPuzVb+6okHHiqP5nMytRaMzEuwuY+HQAGb365qIubKHkj2sXzQUf9drd7gXDglg4RBbXWCjyUxOlQYfF4mNIQhwJLOag+lVfH7fAH4+X9rpcdPKGlhzqohXb48mt6rpmq/nWvDl0TwcgD9MDLfZ/uYdfWjUdczirdcKWYaim9DP5reCf3+/k02HzrHjw+fwdrMa2yaTmVl/+oRegV4se+l+AA6cTWPt/tOk5ZfRrDfgqVIwdmBv/jB/Ii5y+89iZz2Z/vnlz+xMSObsN/+0bCuvUbNs8yGOX8yiSasjxM+T+6YOY87YgV1+hit7KNnDL//5AwFebl2OaY+X7p3GwzNHduiNVNcoGFmiVqOtorYBmcSJIB/bvhEucinuLnLSC4TqufJaIVshKsi2Z4yjowNB3u6kFXS/yk5vMNLUrOPfT81j2rBYZv/5U7vjsosFJ6hXgBAE1+r0SJ2dOsz5UF+hirGgrIaYUGvwv6iyDk+V8qb0ifot4f0dyWw5W8DPL0zCy8U6P0xmM3cuPkC4twtLHhCykg+nlbH+VD4ZpfU0G1rwUEoY3duHpyf1sch6XInOejK9tvk8ey6VcOKVWZZtFWotXx7M4ERmpbAWeSq4e3gYswd1TcRc2UPJHjY+NwF/t2vPhrtreBh3DQ+z2WY0mcipaMBHJbN5LnMrGxnXR5gzemMLjg4ONg5Te6SW1PHjiVxenz/QIq13PahUC05apE9HwjbIQ0GL2Ux2eQOB7nIMLSYifTsGxoM9BMMwo0xNhJ3j9KAjPjpexS9pDWy4N9imD5DJbGbhmkLC3J34cKbwXjqS18SmFDWZ1XqajSbcZSJGhchZFO+B0tn+89FZT6a3DlawN7uJw49b7YyKJiNfn6kloVCDxmAmSCVmQZwrt/Xp+l5e2UPJHn66Owh/l+4RNjm1ehbEqXh0sDtrL9mv1kmvEqqNrpSyi/YS7OC0Kh2zceFimZDtNjRQcKqMJjMtJjMSsSOL4m0r2XNr9PgpxUjEjpjMZvQtZqQ3sdfBDxfqaNSbeHaER4f+AQAbktVkVev5dn4g7x7uflDkt4blH7zF3q3r+XLTPjy8rKS3yWRi0bypBIdH8OrHXwKQcHg/Ozb+SE5GKvpmLa4engwdNYEHnnoehdL+c95ZT6bFb7zMkT3b2XTM2relqqKMNSs+5ezJY2g1jQQEhzJ74YNMnj23y89wZQ8le/hi/S58/O3LAduDpqmRqooygsIFgkmna0YsdkIksu/gJx7Zz4mDu3nn8+/Z/fPaDn8fM3kmUTFxBASH2WzX63TomrWdHrczVJSVUFVeysx591i2aTUaZHK5TcWVuq4Go8FAaERHOXH/YKHKNzcjzdJPqjg/h3sef4a59z/GF/95rVvX9FvFfzafYnNiFr/8fS5eKmvgyWQyc8e/NxPu68qnj08G4FByIetOpJNeXNNqt0kZGxPI72cMRCnrKH0DnfdkevWn4+xKyiPxvfst28rrNCzfc4ETacU06QyEeKm4e0w0d8R3LXF1ZQ8le9j81zkEeFx78k5FvYZATyUyZ9vYSEhrz6L0YoHASS0SKhJigmzXkrbfLxdWM2dYJG4KCS4yZwqqbDO5i2uESjsvVfcqLMQiRz56ZGKH7RklwnX5u1uDda/cNbLDuPK6Juo1Optx79w/hkatocPY+iYdgA0x1oOr44N9OWy9WM6mRUM6xue+PCvE5xbEAoLE28akMjIqmoT4nNyJURHuPDU2pPP4XCc9md7Ykcme1CqOvWS97xUNOlYcL+RkTi0afYsQnxvsz+x+XffPu7KHkj2sf3xQt+Jzz00Is9tDqV5rBKwxrQBXCSJHBwprbSsWSuqF59FL0WrrlQtzKNrXNhnJVyXBQ+5EWlnHataroY1gCvMQ3okafQty587XuQ/25uDrIuGB+AC+Ot51PLMH146PT9byS3oT6+/yt+kDZDKbuWtdKWFuTnwwXbD9juZr2XS5kYwaPTqjGXepiFEhUp4Y4tq5n9RJT6a3DtewL0fDoUeshGFFk5Gvz6lJLGqmyWAiWOXEglgls3p3XdlzZQ8le1izwA9/l2unIObHujA/1tZuNZrM5NYZ8FaIOsS7juZrOZSnZelt3mxJ6xi7vlgu+FNDAySWY7WYBNLqiSHdkz9ug77FTJPBxKsTPJgYLufu9R1j60aTmcuVem7rrbBcs8ZgQiZ2YGSwjJGdSP39GvGrI5imx/rw8/kyDmVUsWCwlVA5X1hPVaOeJ8eGArAjuZx3dmYyLMyNRWPDMJvNJObW8vP5Muq1Rt68I7qzU1wTqhp1LPrhAiaTmXkD/XGViUnIreXdXVmU1+t4bExop/uOj/IiyK3rh8hNdv0ZpRq9kbxqLd8nFFJQo+UfM22ludRaAx/syWLhkAD6Brh0SjAZWky8vTOTMZGeTOrjxdc3kWDKqWriUEY1t/f3Jdjd9rvwUkq4MqndbDazKakURwfoF9gT0LtWzBoZx4aDZ9l/Jo17psRbtp9Nz6eyroE/zBcM9q3HLvD6N78wMq4Xz8yfCGY4fimLDQfPUteg4b3fz7+h66isbeDht77FZDJx16ShuCnlHLuUxRvfbqO0ur5DhVB7TBoSTbCv/R5ibXB36Z6z4u4it7vPT/tPAzAoSgjMyyTO6I0tGIwtNpVJJpOZRq2O6nrBkJNLBMNP06zrcNz6Ji3V9d2fOwqphM3/fqbTgHsbsosrANiZkMxflm2kRt2Eq0LGgolDWDRnnGX/8YP6MCougiXr9+OqlBHk7c6mw+dILyjjL/dP7/b1/dYxo18gm88UcDC1jIXDwizbk/JqqGrQ8fQkQeJg+/ki3t56keERXjw5qQ9g5mRWJZvPFFCv0fPWgsE3dB2VDc08/vUJTCYz8+NDcZM7cSKzknd+uURZvZbHJ3QMVrVhQowfQR5dG4tucvuBlGtBk85IflUjq45lU1DdxD/nWBvFVjY0o9YaqG7U8eiKY2SUqXHAgWERXvxxZl8C3a3zyNBi4q0tFxnbx4dJsf43RDC1BVA0emOHv6lbgw01TToifYV1RqPrYlyj7rqv47eGaZFKtqQ2cCi3ifl9rQb8+dJmqjQtPBEvkPg7Mxp490gVw4JkPD5U2JZYqGFLagP1zSZen9x1gOBqqGoy8vSWEkxmmBurwlUqIqFQw3+OVlHeaOTRIe6d7jsuTEGgqmvbzE3a/cy3v4/3xknUNcFf1WREInJAdcXxJWJHXCSOlDcKz2lBvQFnkQNNehPvHK7kbLEWkxkG+kt5aYwXwe2qlXJr9TiLHPjbnnLOFGvRt5iJ9HDm6eEeFoLqelHf3MLmyw0MCZAy0L/jsYrqDXx1ppYnh7l3m5D7rWL89Nns/nktJw/t4bYF1kB1yvkz1FRVcP+TzwNCtczSd/7FwGGjuX/Rc2A2cy7xGLt/XktDfS1/evPDG7qOmqoKXl50PyZTCzPn3YPK1Y2zCUf57N1XqCwv6VI+bsT4yfgHdZ34oHLrfA7aQ0GOkCRRkJ3Js/ffQUlBHmInJ4aPncxjL7yMq7vVfmxQ17P8gze5beED9O7b3y7BJJPLCYvs02H77i3rMBqNxPTv3ppdUpAHgJuHF6uXf8LuLetoVNfj4e3D/Yues1RKSWXCmqfVaDoco1EtEM91NVYi9tXFX+Hk1DN3uoMZg8LZmJDJgUsF3DXaeo/P5ZZTqdby+1Z5uG1nsnlzfQIjevvz9IyBmM1mTqaXsDEhk7omHe88MPaGrqNSreGxz3bRYjKzYGRvXBUSTqSX8PaGBMpqm1g0rX+n+06IC7apzrEHd2X3KkLlEjFqTUd7pl4jBOKqG4XEnMp6DRInEa5y20QHqZMYlcyZ8jrB1xGLHHnx9iG8vSGBlQdTmDoglKyyOr7el0zfYE/iI22T8bqLinoNl/IrWbLtHF4uMuaNsC9BXtvYTGpRNUt3JiF3FvPAuBjL37xVcryvyB8ym81sOJmBo4MDA0KvTSqsBwKmx3jz84VyDmVUs2CwNYnxfKGaqkYDT44Rvs8dyRW8szubYWGuLBoTgtkMiXm1/HyhXIjP3d65z3ItqGrUs+jHS5hMMG+gH64yJyE+tyebcrWOx0Z3vv6Mj/IgyK3rueMm7947103uZHefjUlC7K1/a0zLQ+HMIyODWJVQRLSvgvgwN5IK1Wy+UMaEKA9CWsmfygZhTvq4dJQ19lI6U9769+4gp0qDyNGB1aeL2ZNaRaOuBU+FEw8MC2Rhu3sJsCe1khO5day4r99V4xM96B6m9pKzJa2Jw3la5sVaA6EXynRUaUw8MUSwEXZmNvHesVriAyU8MdgVM5BY1MyWtCbqm028NrF78qNXokrTwu+3VdBihjujlbhKHUksauY/x2spbzLyyKDOSZhxoTICVV3TC27S639uNAYT+XVGVl9UU1hv5OUxtvaiWmfio5O1LIhVEustsUswFaoNOImgSW/i30drOFOiw2yGgX4S/jjKzcZPulYonB34Yb4f4i6StUsbjBhN4KMQsS65gbXJDVRrTagkjtzbz4V7+/3vxLd/dQRTv0AVAa5S9qfZEkx7UyuROjla5N5+PFVMH18lHyzoa8kamD84gMdWnScxt9busbuD5Ufy0epbWPnIIPxUUsvx39udyaqEQmbG+Vp6Cl2JSB8FkT7d13a8Viw5kMv2S0IviAm9PW3k5wA+3p+D3FnEoi5IMBCk8aob9Sy5K67LcdeDzUllOAD3DL22LMWvjheQUdHEjL4+lu+7B1fHgMhgAr3d2HMqxYZg2p2YgtTZiUlDBKL1+10niQn155MX7rVUstw1eSgPvP41J5Ozb/g6lm46iEanZ+0bi/D3dLUc/63vtvPNtmPcPro/gd72gwpRwb5EBd+YM3It+PlIEoeTMhjcO4RBvYVs0f6RgRxKSudQUjpT42MtY49eyMRgbEFnEIJ6/SKCYO8p9p9J46GZ1iyq9IIyiitrcaD71UGOjg44XsN+Wa0VTBmF5bx49xTEIkd2Jabw9bZjlNXU88bjQvBCLHJk0Zyx/GXZRp758EfL/ndPHsrdk+PtHrsHnaNfsDsB7nL2p5TaEEx7U0qQOokYHyNUsv54ModofxUf3hdvXYviw3h0xTESsm48a3/5gXS0+ha+f2osfq4yy/Hf3XaJlUezmTUgiAB3+wRspK/KboXOzcKS3ZfZdl7IBpwY48ekdrJ5bSRRclEdD4zuxSPjokgvrWf1iRye+vYk3z4x2lIZ9vXhTKobdXz64PAbvqZwbyUKiZjDaeU8Mi7Kkj1oNps5ki5UGuqMJpRSJ8K8lCRmV9KkM6Jol1V5OE0Ypzfa75fTg46I85US4CLmYI4twbQ/uwmp2IFxYYJN9NPFevp4OfPedF/LfJkbq2LRz8WcKuoYeO0uVpypRWsw8e38IHyVYsvx3z9axQ/n65jZW9kp4RHh6UyE5/UTrp3hauQSgMZgRtpJ01mpyIFmoyAy3qgz4egAz28vpb+flFcm+VDWYOT783U8t62Ur+cG4iEXoTOaKGkQ1q9BATJem+RNRVMLay7W8ZddZbw33Y/4oOsnmXZkNKBvMXNP/46OqNls5r2jlfT2cmZe7K17//yvIbrfQHwDgji+f7cNwXRs7w4kUhkjWuXetvz4HRF9YvnnB8twbM3Cnzn/Xv782N0kJR6/4etYvXwJzVoNH6/chLefv+X4n7/3GhtWrWDizDn4BtiXzgmL7GOXvLkRFLTKxqWnXODO+x7By8ePyxfOsn3Dj+Rlp/OfFWss5M1XH7+DTK7gvkXPduscuZnprFnxKUqVK9PvvKtb+zY1CFUcG1Z+idls4sGnX0QikbJz0xo+fVuo8p84cw4KpQtBYb04f+o4Wk0TMrnVT0w4vB8Avd5KAvSQS91H/zBvAj2U7L2Yb0Mw7Tmfj9RJxIQ4Ifj8w+FUogM9+PiRiRafaOGoPjz8yU5OZpTc8HV8vusCGp2RH1+8Db/WqpqFo/rwzsZEvjuYzOyhvTqtQIrydyfKv3sk7NXQL8SLjQmZpBRW0TfYGjM4lCJI4+kNgq2j0RmROtkPHUmcRGgN1oScMdGBTIwLZtmu8yzbdR6AIE8X3n94/A1VB5lMZua+twVjiwmRowOv3j0KTxf7a9Vjn+22VE39YdYgevl1rXSxfM9F0ktqmTU43HJfenBt6BfoQoCrhP3ptgTT3rQqpGJHxkcJRP+PZ0ro46vgg3kxVp9okB+P/XCRxLzuSSfaw/JjBWj1JlY+PAA/lcRy/Pf2ZLMqsYiZcd4EdFKBFOmtINL71t/3bZfKOZpdy8AgFwYEWW2gmbHenC2o5729OZZtsf5K/jEz0vK7pnUuSuxUm0vEjtTZqcq7GnKrNLSYzBTX6fjL1Aj0LSa2XSpnycE81FqjhZSradKz+EAe98UH0Nu3Z37cbMT5SghwEXEgV2NDMO3P0SIVOzA2VHjPrU1uoLenE+9N9bL6STFKFm0t51TxjffsWXG2Hq3BzDd3+lr9pBglHxyv5fsLDcyIVHRagRTh4UyEx833k9qwNLGOHZmCLzg+TMaEcNt3/ycJtcjFjjw2uHMSrFFnRuTgwAu7KunnK+GVCR6UNbTw/UU1z++s5Ks5vnjIupcs6OjgwNWEgBr1gvzdzkwNTXoTDw5Q4SFzZFeWhuVn6tG3mHl44P+GT/SrI5gApsV6s/JkIRUNOnxcJBhbTBzOqGZ0hIelpPO7hweiMZhsSlJrNQaUEhFa/Y0FhUxmM0ezqokLVCEVi6jTWF/m43t78cvFchJya5k3yN/u/s2GFpqv7Dh2BVQysV1JkWvBlGgvxkR4cLFYzfqzJTy79hKf3dMfZ7Ejx7Kq2ZdaySf39LMp378SaWWN/HiqmJenR+KhuLkvCp3RxO7LFQwLdyfU8+qVJz+dLmblyUJCPWS8MPnaNdZ7IGDmiDi+3naM8ho1vh4qDMYWDpxNY/zAKORS4d7++NoTaHV6G5m0WnUTSrkEja772TDtYTKZOXQunQERQUidnahtsAYJJw2JZvORJI5fy+/p7QAAIABJREFUyuauSUPt7q/VGWjWd20wuSpkNyTxtufUZd75fieerkreeMKquz9n7EBW707knVU70BuMDIwKJjW/jPd+2IVKIUXc6iRNHNyHcH8vvvj5ME5iEWMHRFFQUcN7P+zCRS5Fq+u+wXetmDQkmnB/Lx65bbQlm2jasL78ddlGtp+4xL1ThhET5s+J5GxeWLIWT5WCv9w/HW83FxJSclh34AxanYFXH7225tg9sGJ6XADfHc2iQq3FRyXD2GLiUGoZY3r7IG+tlFm5aAwafYvtWtSkQyFxQmuniqY7MJnNHEkrp1+QO1InEXUa61ydEO3H1nOFnMyqZH68/WQCYS3qej1UyZyufy3q68+YPr5cLKhhXWIef1iZwLLfjcBZLMLXVcaj4yKZEONnIbnG9vElNtCNP605w6pj2fxxZl/SSgTS6e+398ND2TFjr7sQixy5b2QvVhzK4F8bzvG7VpJp9YkcSmqFLN020umhMRG88fMF/rTmNM9MiUYlc+KXc0Uk5dfYjOvBtWFKpJLvk+qoaDLioxBjNJk5ktfEqBA5cifh3fX1vEC0V9huddoWFM6OaA03pk1tMps5lq+hr68UidiBumbrsz8uTM629AYSCrXMjbUfuG02mmi+ij62SuJ43fOlK5gx01W+QVsygsFkptloZlSIlFcnWau9Ij2deWlnGWsv1fP0cA+MJnhiqDtBrk4Wcg+E7+HB9UV8lljNd0HXr6+/La2BEFcnhgV1tPE2pqhJq9TzzbzADtIWPega46bdxoaVX1JVUYaXjx9Go4GTh/cRP3oCMrnwXX/43XqaNRoLuQRQX1uDXOlCs/bGSFqTyUTi0YP0iRuARCpFXWdN2Bs+fgp7f9nIuYRjNnJw7aFr1qJr7joAolS52lz71RAeFc2Chxcxbc5CvHyExI7h4ybjFxjCio/eZvfP65lz78OcOnaQY/t28sYnXyORXHuiWlFeDm++9CR6vZ6X3vig2xVWBoNg/9XX1bD0x624eQgB/JETp/Hc/Xfw/ReLGT/9dhwdHZn/4OMsefPvvP3n3/Pg03/EReXKvm2bSDl/BgCR6Ffptv+fwvRBYXx7IJnyOg2+bnKMLSYOJhcwNjYIuUR49//wwiw0OoOtT9TYjFJ6E+w2k5nDKYX0D/VC6iyirsk6HybGBbPlVBYn0ktYMNJ+JUez3kizoetrUMkk3fKJ7hkTzbazOfzt+6O8NGcoUf7unM4qY8XeS8glYgshZMZMV6/strVPqzey6Is9FFY1cNfoPgyN8KWkpolVh1J47LPdfP7kFPzdr13Crz2MJhP/WjgCBwcHtpzK4pU1x6lpaObesR2VaZ6cPgCxowN7L+SzdEcSlfUa/niHfV/zxyOpfHsgmTBvFS91MqYHXWNajBcrE4pt43OZNYyOcLfG5x7sf4vjczXEBbggFTvaxueiPPjlUgUJuXXMG2i/lcWtjs8B7E+v4v19uXgqnPhnO4WhygYdi368RIPOyMMjAunjoySnWsOPp0t45qcUFi+MRSUV09ZuprNLuJ5ruy3Ohwm9PblnqDVxf1qMF0+vSeb7U8XcOdAXT4UzH+zLxUPuxCM9vZduGab0kvP9hQZbPylfy6hgqcVP+mqOL1qD2dZPam5BebP8pAItfX2cO/hJY0NlbMtoIrGomTtj7L+/b7WfNClczqhgGZcqdGy83MiLO40smeWDs8iB4wVa9udo+Ximt40E4JWw+EnBUl6ZYK32ivR04k+7q1iX3MBT8dfeduNaYWgRvpfSBiMr5vjSy12wN8aHyXh+ZyWrL6qZG6NEJfn1Vwb+Ki3VabE+fHeykANpVdwTH8ipvDrUzUamx1qdabHIkaxiNXtTK8mv1lJc10x1040FyttQrzHQqGshMbeW2Z8l2h1Tpu7cgVp9quim92Bqj/gwwfkZG+WJr0rC4v057EmtYFyUF+/vyWZqjDfhnnLLwqtvERZTtdaAzFmEVOzIv3dmEBfgwsheHpZxutZFt0FnRN1sRCW9vsfnXEEdGn0Lk69oeGgPbf2q/F0lfLQwrlNt3h50jlkj+/HVL8fYe/oyD0wfQUJKDvVNWmaO7GcZ4yQWcSGrnF0JKeSWVlFUUUtVffd1fO2hrlFDo1bHieRspjz/kd0xZdX2+04ArNp54qb3YGqPn48k8c6qHSjlUpa+eK+lwgrATSln6R/v4+UvNvHKV1sBUEid+cOCSRw4m2YhvpzEIj598R7++vkmPlizhw/W7MFZLOLBGSOprGvg+KUbrwLrDFOGxtjdvnDSEPadSeV0ah4xYf4s//kITiIRX738kKVabNKQaHzdVSzbfIiJg/swbuCNSRP81jC9fwDfHs1if0op947sRWJ2FWqtgen9rJWZYpEjWeW17EkuIb+ykeJaDVU3SVqtTqOnUWckIbuSWR/sszumrF7b6f4/HM++6T2Y2mNYhCCJMa6PL76uMj7edZk9l0qYPSiYMC+lXfm+UVE++LnKOJtXjbHFxNtbLxIX5MbIKB8Lgda2FjU2G1BrDai6KSn78NgINDojPyXmcihNqPYdGOLBSzNjeW3zBVStfbFm9A+kTqNn+YF0Fn1zEoBIXxdevXMAL605g6qTPgw9sI9pkUpWJdVxMKeJu/u5crpIi1pnYlqk1VEROzqQVa1nX3YT+XV6ShqMVGtuTqVYfbOJRr2JU0Va5vxQYHdMm9ScPay5UH9LejBdC2Rix06bvza3mJG3aq639VC6PdpWamFooAxvhYikUuF9oHB25L4BHddMT7mYsWEKdmU2Uqdtwa2bWXwAebV6itRGfjeo4/FL1AZWnKllYZwKF4mjxXk1msyYzWbqmltwFjlYHOke2GL8tNms/245Jw7s5o57Hub8qZM0qusZN322ZYxY7EReVgZH926nKD+XsuJCaqtvTsN6dX0tmsYGkhKP87vZ4+yOqSzrvMJj8+pvb3oPpqjYfkTF9uuwfeod8/lmyXtcOpfI5NvuZPn7bzJ26iyCwyMtxJih1YZrUNchlck79KfKSkvhrT89TaO6nmf+9iZDRtr/zF1BKhMybONHT7CQSyBUII2dOosNK7+kKC+HkF6RjJ9+O+q6WlZ/+Sl/e+oBAEIjevPCv/7NW3/+PUqX/43s1v+fmDkonG/2J7P/Yj73jYshIaMUtUbPjEHWPn1ikSOZpXXsPp9HXkU9xdWNVDV0bkt1B3UaHY3NBk5mlDL9jY12x5TVdi6r/f3hyze9B1OIt4oPfzeB19ee4C+rjgDgrpDwjwXD+XR7EqpWqWS5sxPNnRBsOkMLilaCbue5HPIq1Pxh5kAenNDXMmZ0TAAPLN7B4m3neO/B7s8lAGexyHKvpvQP4fHP9rB8zwXuGBZhOX8bpg8MA2By/1D++v0R1p1IZ+GoPgR72c7ztr5WAR5KPnl8Uqc9tnrQNabFePNdQjEH0qu5Z2gAp/LrW+NzVrlBsciRrJIG9qZWkV/TFp+7OUmY9VqjEJ/Lq2P252fsjilTd+5/rT5dctN7MLXHtkvlvL83B6VEzAfzYiwVVgAbksqobjLw+uwoJrcqD42L8mBQkIo/rE1hZUIRz04IsxB1zQYTsisSxXVGE4oueid1htv7d1SJcXRwYE5/X97Znc2FogYhoTGrhnfv7ING34KmHRloaDFTpzEgdxbhfBP7eP4WMTVCzqoLDRzK1XJXnAuni5tR60xMjbD64WJHB7JqdOzP0ZJfb6BEbaRa2zUxeq2obzbRpDdzqljHnWvst1Dp0k+61HDTezC1x9BAYe6NCZXhqxDzSWId+7I1jA2V8dGJWib3khPmJrb4Fm2kjlpnQmZyQOnsaFGDmH1FP6mhAVK85SKSym6N/H3befv6OFvIJQAHBwemRyq4WK4npUL3P9GL6VcZrQ/xkBHjp2R/eiX3xAeyL7USN5mYYeHWrLLF+7PZcK6UCG85/QJUTI72om+AC2tOF7M/rfuyRC1mc7v/C/+OifRg/qAAu+N9VZ1nWs/o60v/wK6biN2sqqHJ0d4s3p9DRnkTAa5Sqpv07EmtZE9qR2dz7henGRis4h8ze5Pd2vDPHoH21OqL+KkkbHjy+mS1TubUInZ0YExk5xqhZrOZJQdy2HCulBAPGUvuisPbjt5sD66OUD9P+oYHsOeUQDDtTkzBTSlnZJy1kez7P+7mp32niQryoX9kENOH9SWuVwA/7E5g96nL3T6nyWRd6Fpa/z9+YG/unmw/K8zPs/P5cNuo/gyM6lqz39P1+jLhVu08yZL1+/FUKVj2p/uJDOrY36N3iC8b336KzMIKdAYDkUE+yCTOrNx5wua6/L3cWPWvR8ktqaK+SUtEoDcucilPvLuKIO+bnwlxNXi4CAtnWwVaVlEFA6KCOkgR3jFmAMs2H+J0al4PwdRNhHgqiQlwtRBMe1NKcJM7MzzSGkT6eNdl1p/KI9LXhX5B7kyJ8yc20I01J3PZl2LfeOsKJpO5w//H9PaxkelrD98uHKGZA4IYENJ1f7ObUTUEQjXTx7suk16mZvZVxrornKlp0lHZ0Ex2q5SePQJt0Tcn8XOVsen5js2fu4KjgwPPTI3m/tG9yKtsxMtFQpCHgm3nhcSP9v2f7hkRzu2Dgsgub0ApdaKXjwtnc6sBCLhKL8Ue2CLY1Ylob2cLwbQ/uxFXqaONFNsnJ6vZmKImwsOZvj4SJkcoifGWsPZSPQdyut/LrqUdJ2NqteNGh8iZ19d+oLZNDsIepkcp6efXdWChu7IK1wo/FzHNRjNNehOKdg18dUYTDToT3grhvG3/2usF5S4VXVN2Y9u+WqMJN7r/eRIKhUDs+PCOEioXypppNppZfaGe1Rc6JpbM+aGAGVFK/ja+p/+FPQSEhBEZE8fx/QLBdGzfDlRu7gwaNsoy5uvF77J9w2pCI3oT3W8gYybPIKpvf7auWcmx/Tu7fU5Ti6nD/+PHTGDW/Pvsjvf2ta/eADBhxu3E9B/U5fnakzA3ArHYCYWLimathrysDGqrKzmyZztH9mzvMPaJuVPoO3Aoby791rLt0rlT/Puvz2LQ63nhlXcZM2XmdV2Hp7cQvGvfC6oNbdu0Guu77fa7H2Ly7HnkZ2eiULoQ0iuSS+dOAeAb2JM5fqMI8VYRG+TJvlaCae+FPNwUEkb0tj63H249w7rj6UT6u9E/1JupA0KJC/Fi9ZFU9l7I7/Y5W+zYbWNjg7hrlH2b28+tc/mpWYPDGRDW9fuxM8m4rhAf6cfPL99JRolAvkb5u2EG/vnjcaYOEKrg/dwVNBtaaGw2oJRaA2TNBiNqrR4fV8F2yioTEjFmDA63OUeIl4oBYd6czS7v9vXZg8jRkUn9Q1i6I4mCSjUxQZ3HFaYNCOVQciEZJbUWgslsNvPR1rOsO5FOqLeKpU9MtnyGHnQfQnxOwf5WgmlfWpUQnwuz+sCLD+SyIamsNT7nwuQ+XvT1V7LmTAn706u7fc72c6vt/2Mi3Jk/yH6Vkm8XsaQZsd6Wnkid4Xrjcz+eLmbZkQI85E4sXhhLLy/b5yynSoOz2IEJUbbP8IAgFYHuUs4VCPZSW3yxukmP+xW9naoa9TdVuq7t+FpDC+eLBKnXl39O7zDuSFYNR7Jq+Pv0CGbF3Vif1N86gl2diPZy4mCuhrviXNifo8VV4kh8oNX3+DShjo2pjUS4O9HXx5lJ4XJivJ1Zl9zAgdzuJ0KY2sW426bT6GApc2Ptx9Z8FZ37BdMjFfTz7TpucLP8pEm9ZHySWEdGtR5/FxHVWhP7cjTsy+lYqb9wXSkD/JxZMtPH6ifZuQ53mSOaG6wC6wxd+2eCX3erzv3fxq+SYAKhimnJgRyKa7Ucy65hRl8fS2OtsvpmNpwrZVIfL16/vY+NBEetpussibaSckOLyUbftKZddoWb3AmpkyN6o4n4MNvAcVWjnpQSNTKnzo27QDcpgVdpIthdvPpLGnnVGlb+zrb5bFuGgUTsSKSPko8XduyntOZ0Eafy6nh/fizucmc8FM52x+1KKWf35Ur+NiOKYPfrD6xdLFLT21fZZQXUpwdz2XCulCgfBR8t6Iv7TZbp+61h5og4Plizh8KKGo6cz+C2Uf0tcmqlVXX8tO80U+Nj+fdTc23mS7W664CeqHWs3mBE0k6Xu6rdfu4uCqTOTuiNRob3tZU4rKxr4FJ2MTJJ5xnfQT7uBPncXL1xgB/3nmLJ+v34ear44k8PEOzb0fnPK63mbHoes0b2o3eIr832smo1A2cJvZrKa9ScSM5mTP9IwgOswZFGrY7knGLunTrspl8/COTdI29/R7CvO28vmmt77WWCoR7YSm5JnMQ25EQb2gyL9gZGD64d0/sFsnj3ZYpqmjiWXsHMAYEW6cTSOi3rT+UxOdafN+YPtJlbNVepqG0rHzcYTUjEVmOkpl31k5vCGamTCEOLifhetkG5qoZmUorrkHWilw8CkRLYSX+m68W/NiaRX9XIqidtm2C3X4sAvj2Sxbbzhax4bBQeCqsxajSZKKrREOXrgodSwpIHOs6dnReL2XWxmL/f0Y8Qj+47U3uTS3BXODM03IuBodZ5fyq7Cg+FM0EewndyPKMCk9nM2D6+9G9HxJ3KqUTs6EDfoP8+cfxrx9QIJZ8m1FCsNnC8QMP0KKXVdmswsDFFzcRwBa9O8ra13bRdVzG1qQEZTNDetalpt5+rVIRU7IDBZGZooK0NU60xklKh67TPEUCAyokA1f+fvie9PYVPlV6lY3CA9drTqoT3SIy38Pc+XhKggbw6Pb3a6aCbzGbKG41EeQnbThVpWHKimqeGeTA2zHYOFdQbcBY54Cm/PhfhUnkzHjKRzfnbMCxIxoczOwZ+liXWUNFk5LVJPnjJbw1J97+C8dNm8/WSdykrLuT0sUNMmHE7IrFwryrKSti+YTWjJk3npdfft5lDdbVdB+8cHYXv3WDQ4yyxzqK6GmtSnqubOxKpDIPewID4kTb711RVkpFyEYmsc//ALzAYv8CuE4a6i+UfvEly0mkWr9xk+R4AGurrUNfV4BswlrDI3rz68Zcd9t2y5jvOnzrBP99fZkMApSef5+0/P4PZbOIvb39M/JgJ1319Ib0icXJ2piivYyV7eYmQLd/Wy+rMiSOYTC0MGzPRhoi7cOoEYrGY3rH9r/s6emDFjMFhfLT1LEXVDRy5XMSswb2sPlFtI+uOpzOlfwhv3TfG1m5r7Fre0Wq3tdjI0Fc3WPdzU0gEu83YwrAoWzK2Sq0luaAKqXMXdpunC4GeN7cZeGpRNWnFNcwdHkVssDXAnZBegrHFZCG0ogOFOZJWXM3QCL92+wuywW37ttms9nwOs9n+9q5QUtPIMyv2Myc+gt9Nso1PaFolyCViEc0GIw8v2cmgXj68PM+2Z2eTTsi6b39fFm87x7oT6fQOcGfJY5PwUPb0eL5RTIvxZsnBPIrrmjmWXcuMWC+rjafWsSGpjEm9PXl9dlT34nNtNt6V8TnNFfE5sSP6FhPxoXbic6UNyLqojr4V8TmAdedKWXakAF8XZ5YsjCXITgzNWewIZoH0vFIP2Ww205bm0ae1h3t6eZNNv6hytY4ajYEYv+4l3NZqDDy3LoWRvdz5/ThbOfX8GoGsCHCVEOsfwLSYjskfL25IZVCwioeGBxJ+DW0venB1TI2Q82liPcVqIycKtUyLkFvnUKORjamNTAyT8coEjyv8pK6rmEQWP8mMpN0zVtNuP1epUOGjN5kZGmA7F6o1LVyu1FuUEuwhwEVMwHVWJ3WG1w9VU1Bn5Os7bSvt2sgYidiBSA9nPpje8flce6mB0yU63pvqaSF2ens6A03k1xlsKolMZjNljS309rw1fp67TIS3XER+Xcd3XVtP3K7Iu18TfrV1jFOivRA5OvDJwVw0+hamtSu/VTcLNynUU2Yz8VJLG7jYysAbOzFuPBTCQ5VVYQ2Ql9U3k1JqLfcTOzowItydM/l1pJbalgF+cSSPf2xJ67IE91bA10VCdqWGE9k1Ntt/Ol0MwOgID1RSMfFhbh1+PFvJm8EhbkT7KZGIHe2OC2hddOMCXOgfdH0yDYYWE3nVGvr4dr4A7k+rZN3ZEnp5yVlyd78ecukmYPrwvohEjnz0016amvXMGmk10Otb9b/D/T1t5ktKbgnnM4WMfmOL/UWrrXIos9CajVZaVUdydrHld7HIkdH9I0lMySUl11Y65dMNB/jzZxso7UIi71bgYlYRH/+0F283F77660N2ySWAkqo63lm1k31nUi3bTCYzyzYdxFUhY+YI4XvU6PS89d12Nh9Ostl/+c+HMZnNzJ9gS/zeLIgcHZFLnTlwJo28UmvwSG8w8s224yikzoxvrUoa0TecpIwCsooqbI6x8dA5AOJjwm7JNf6vY0qcv7AW7UlFozcyvZ+1qlWtFYK/oV4Km7l1ubiOiwXCu9posj+32iqHMsuta0xpnZbkYqtEl9jRkZGR3pzOqeJysa101+f70/nbunNdSuTdCvipZGSVN3A8w/Y5W3NSaFo7urdgIPq5ySit07LptG028LqEPBqaDUzrF4hELCK+l1eHn7bKobggdxvi51qxLjGPD3ak2LzXLhfXcSi1jPnxYZZ7tetSMW9tuUhDs9UYLK7VsPVcITMHBHaQY+nB1TE5QonIAZYm1KAxmJnaTh5PrRPuR6ibk63tVqnjUrmwTnVqu7VmomVXW22vsgYDlyusv4sdHRgeLONMsZbUSlsbbfnpWv61r6JL6Yf/nxgZIkMqdmBjitpm+8bkemRiB8aECo79mFA5MrED6y+pLdIQALsyG6nXmSz9lkJcnShpMLIxRd0a0BCQWqEjoVDD+DA5zqLOybaukFmto7eXfbvNUy5maKCsw4+LsyNOjg4MDZQR5t5j83WF0VNmIBKJ+eaT/6DVNDFumrUmtFEt2FJBob1s5lBmajJpF4W1vsVo/xlvqxzKy7JmKFeUlZCRctHyu0gsZvCIMVw8c5LM1GSb/X/4YjH/+ccLVJZ1vzL3RuDu5U1xfi6H92yz2f7TN8sAGDf1NpQqVwbEj+zw4+4pfOa4wcOIiBakvBrV9bz/z5cwGg389Z0lN0QuAUikMoaNncT50yfJTrcqAjTU13Fo1y9ExfbHw0vI+j68+xeWvv1Pmhqs87ysuJC9v2xk/Iw7kCuur1q/B7aYOiAMkaMDi385i0ZntJHHU7dK8Yb5uNrabYXVXMgT1D869YlcBD85s9Tam6y0tpGUAitJKxY5Mio6kFOZZVwutCV9P9uZxF+/P9KlRN6tQGpRNe9uOsW5HKsv12ww8tW+S4R6qxjeWt01OjoAqZOIdcdtqxjWHktD5ixmXKxQYTe8lTjbmJBpMy6nvJ4LeRUMjewoydUV/N0VNOuNbDmdbSGUANQaHb+czibQQ0m4rytSJzFyiRN7L+RTqbZmsRuMLWw4kY5S6sTAcGGu7b2Qx0/H0ojwc+WzJyb3kEs3Cdb4XJ4Qn4tpF5/TdhKfK2vkYrHg63QenxPsgqxK630tU+s6xud6uXEmv57UMluZ/y+OFvCPrRmUqW9Ou4xrRXJJA0sP5eGldOKze+LskksA8aFu6FvMbE+xVRg6nV9HcZ2OIcGC0ku/QBe8lc5sPl9m812tP1eKAzD1GtpPtIe73Amd0cSO5Aobkq+h2ci6s6X4qST0C1QR7iknPtStww+Ah9yJ+FA3vJQ9ttvNwKRwOSIH+OxUneAntZPHa2j1k0LcxDZzKK1Sz6VWf+eqflKN9T6XNRq5XHmFnxQk5WyJjrRK27ny5Zl6/nWg+r/uJ/kqRGTXGjhZaBvPWJcszP1RwTJcJI4MDZB2+PFoTVgb6CelT6tfMiZEilTswLqURhs/aXeWBrXOxNjQW6dOMiVCTn69keMF1s+iM5rZkt6El9yRGO//jTn0q61gclc4Ex/qxvHsGgLdpMQFWAmPcC85/q4SfjpdjMkMfioJ2ZVNbLtULlQomcxo9C12K2gm9/Hmh4Qi3tyRwd1DAzAYzWxMKsHXRUJhrfVheHpcGOcK6nlu7SXmDvInwFXKmfw6DmVUMzXGm36B/12d7IdGBnMwo4pXf0ln/mB/fF0knMyt4UR2LXf092NgcNeSfDeC5GI1xXXNxIe5XbV0uLReh9FkttGdbQ+z2czyI0LAcXSkByevIMwAYgNcbqiC6rcID5WCEbHhHDmfSZCPO/0irDIbEYHeBHi58v3uBFpMZvy9XMksrGDL0fOIHB0xtpjQNOtQKTp+59OGxfLtjuP866st3D9tBAajkbX7TuPnoSK/3Hrvnl0wkTOpeTz5n++5a9JQAr3dSEzJZf/ZNGaM6MuAyJub0Xo1LN10EJPZzJj+kSRlFpKUadsTLSLQmz4hfsTHhBEb5s/7q3dTVFGLr7uKfWdTOXU5l7eeuBOlTHiOw/29GD+oN19vO0ajVkd4gBenLuey59Rlnl0wyUaW7mJWEUWVtQyPDb9uab/2eOneaTz85jcsem8Vd0+ORypxYvuJi2QUlvPG43Ms9+0PCyZxKjWPJ95bxcKJQ/H1cOFMWj57Tl1mdP9ICxHVg+7BQyFhWC8vjmVUEOguJy7Ieq97+bjg7yZjzclcYS1ylZFVoWZbUpF1LdK1oJJ1zPWY0tef749l88bP57lnRDgGo4kNp/Pxc5VRUG0NPjw9uQ9n86p5dlUi8+JDCXSXcyqnikOpZUyLC6Bf8M2v/usKD4+N4GBqKa9uSmJ+fCi+rjJOZlZyPLOCOYODGdRaMTQtLoBfzhXy3dEsytXNxAa4klxUx86LxQyP8GL2oO5LAV0qrKW4VsOwXl5dSvs9MLoXf1t3jhdXn2ZyX3+qG3WsTcgl0k/FPSPCLOPuHRHO4dQynl2VyO2DgtHqjaw7lYdCImbRxD7dvr4eCBlcQwNlnCjQEKgS09fHGtQJd3fGTylm7aV6TGZBri67Rs+OjIbWzHAzWoMJF0nHDK9JvZSsvlDP24d/ZVItAAATX0lEQVQruSvOFX2LmU2X1fgqxRTWW52pJ+M9SCpp5sXtpdwZqyLARcyZYi2H8zRMiVAQ5/t/M8jkIhHx8CA3lp+u5Z97yxkRLOdUkYbDeRqeHuZh+U5cpSJ+P8KDD49V89y2UqZFKSlRG9h0WU20tzO39REy3/1cnLh/gCvfn6/nxR1lTAhXUN5oZPNlNd4KEU8PtxK32dV6smv0xPlKrlrBpW8xU97YwojgX6178X8ebu6eDIgfwZnjh/ALDKZP3ADL34LDI/HxD2TrT99hMrXg7RdAfnYG+7dtbq1QMqLVNKFUdfQJRk+ezqYfvmLJm3/njrsfwmDQs2Pjj3j5+lNSmGcZ9+DTL3Lp3Clefe5RZsy9B9+AIC6cSSDh0F7GTp1FdL+B/4VvwYo77n6Io3u288X7b5CbmU5gSBhJicc4fewQU26f36HS6mrYvuFHaqoqiOk/mIb6Wg7v/sXm7yo3DwYNHw0IlU5lxYUMiB/ZpbTfQ0//kZTzZ3j9hSe4beEDyBUKdm1ei765mcee/6v1s9zzMImH9/HK848zZfY8mrUatq9fjVyu4L4nnu3W5+hB5/BQShkW5c/R1GKCPJX0C7Xeu16+rvi7K1h9JFXwidwVZJXWsfV0FiIHB4wIVTMqeUcbY8qAUFYeSuG1tSe4d2wMBmML605k4Osmp6DKGgh/ZuZAzmSX8fsv97FgZG8CPJScyizlYHIh0weG0f8qEng3G1MHhLHq0GX+sfoY94yJRil1YtuZHLLL6lj82ERErVX5KrmEx6b047Od5/nrqiOMig7gZHoJB5MLeXbWIMt3MqJPAJP7hbDyYArF1Q3ER/pTVtfEhpMZSJzEPDPTWp13Kb+SoupGhkX5dSrt5+DgwMvzhvGXVUd44vM93BEfQbO+hc2JmdRrdHz86ERLsPUvc+N5Ytkenli2hwUje+Po4MD2sznklNfz6t0jUUqdMJvNfL7rAgBjY4I4ntaxb1zfEE9CvHp6nnUX7nIn4kNdOZ5TS6CbhLgAa7VduJcMf5WEn86UYDKb8XORkF2lYdulChwdARNdxOc8+SGxmDd3ZLbG50xsTCprjc9ZKwSfHhvKuQI1z61LYe5AP2t8LrOGqdFe9LuKBN7NxvJjBZjMMDLcnQtFai5c8fdeXnKifBTcFufN7suVfLQvh/TyRqJ9leTXaNl8oQw/lYQHhwt9CR0dHHhmfCivbc/khfWXmRbjRWpZI79cqmDeQF9CPKxzKLmkQYjPhbp2GZ/705RevLQxlafWXGLuAD+MJjNbL5ZTqzXwwbwYS/VMD/47cJeJGBog5URhMwEuIvr6WNeaMDcn/JQi1iY3WvyknBoDOzKbLFV+WoMZF0nHezYxXMbqiw28c6SGhX2VGEyw6XIjvgoxhWorabRoiCtJpTpe2FXJ3GgF/i5izpToOJKvZUovGXFXkcC72XhggIrDeVreOFTD3BglvkoRCUXNnCxs5vbeCgb4de96XKUinhnmyocn6nhuZyXTI+SUNBjZlNpItJcTt7XrzZRSoaO4wSiQVTdB2u+B/i4cL2j7LAp8FGJ2ZTVRrDby2gRPRP8jc+1X7QFOi/UmIbfWJjsCwEnkyPvz+7L0YC6bkkoxmcz4uUp4ZGQI/m5SXtmaxpn8Oib16egMRPooeP2OaL47UcDnh/PwdZHw0IhgGnRGC/EBEOguY8UDA/jqeAE7kivQ6FvwV0l4alwYdw+135fpVkIpEbPs3v58cSSPrRfK0BpaCHaX8ccpEcwdaF+H9mZhy4UydqZU8MndcVclmOq1QqBHYSdABEI2Skm9YCh8n2C/0eKfpkb0EEzXgZkj+3H8Ural6qYNTmIRn7xwLx+v3cv6g2doMZkJ8HRl0ZyxBHi58fLnm0i8nMvU+NgOx4wK9uXfT81jxdajfLJ+P34eKh67fQzqpmaWbjxoGRfs48HKfz3CFz8fZuuxC2ia9fh7ufLsgkncP214h+PeShiMLZbKrM1Hkth8JKnDmIdnjqJPiB9OYhGLn7+bzzYe5Ocj59Hq9EQF+/LJi/cyql0PK4A3H5/D8i1H2H82lbpDWsL9vXhr0Z0dvu+Nh8+x7fhFlv/lgZtCMEUF+bDi5Yf4fPMhvttxApPZTJ8QX5Y8fw+j+0daxgW09oj6bNNBNh46R6O2GX9PV566czy/mzXKJhOmB93D9H4BnMyqtKleAmEt+vDeeD7dm8rG0/mYzGb83WQ8Oi6SAHc5/9yQxJncKibFduxZEemr4s0Fg/jmSCbL9qXj6yrld2MjUWsNfHHAmj0a5KHgq8dG8dWhTLafL0KjN+LvJuPpyX24Z0R4h+PeaiilTnz+u5Es25/GlnOFaPUtBHvKeWlmX+YNDbGMEzk68P69Q1hxKJODl8vYfbEYH5WUR8dF8uCYCIvUTHew5VwBOy4Us/Sh4V0STOOj/XhrwSC+P57NJ3tScZU7cdvAIB4dH4WsnTRNbKAbH98/jBWHMvh8fzpyiYgREd48MaE3njepN9VvEVMjlSQWaZkSYfv+cxI58N50X5Yl1rA5VS3Ybi5OPDzIDX8XJ147UMGZ4mYm9uooixjh6cyrk3xYmVTLF6dq8FGKeWigGw16E1+etmaTB6qc+GJOAN+crWVnRgMagxk/pZgn491ZGHfrEnFuBu4b4IaktYopsUiLn1LMH0d7MifGNgh2R7QKN6mIH87XsSyxBqWzI7dHu/DEUA+bQMFjQ9xxk4rYmtbApwnVKJ0dGR+u4Imh7jbyeEfymvguqY6Xx3ldlWBStzbWVTr/agUSfhUYN2025xKOMW7abTbbnZyc+Of7y/hu6fvs2vQTJpMJb78A7nrkKXz9A/nglT9x8UwCoyZN73DMsMg+vPT6+6z77gtWff4R3r7+LHhoEU0Nan5YvsQyzi8wmP+sWMOar5ZyYMcWmjVNePsH8MBTL3D73Q/d8s9+JaQyOW98+i0/LF/M0b070DQ14BcYzCPP/YXbFtzf7eMlt/Y7Sr14jtTWqq/2iIrtbyGY9mxZz8GdW3njk2+6JJi8/fx5d/lqVn+xmO3rf8BoNBIV24/n//Vveve1yt5FxcTxr4+Ws2bFUn74YjEyuYJBw0dzz+PPWKqtenBzMHNQGCfTS5g+0NZOchKL+PiRiSzZfo6NJzMEkslDweNT+hHgoeTvq49xOquMyf1DOxwzyt+dt+8bw9f7L7F0RxK+bgoemRRHg1bPsl3nLeOCPF349g8z+HLPRbadyUajM+LvruCZmQO5d0z0Lf/sV8JF5sxnT0zm0x1J/Hg0FZPJTN9gTz5/agp9g22fu4cm9EXqJGbt8XROpBcT4K7kr3PjmTfCNkntzftG0+ewB9vOZHMopQiFxInhUf48Ob2/DXGzOTGL7WdzWLZoSpe9o8b3DebD303g2wPJLN2RhJNIxMBwb959cJxFug8gJsiTz5+cwvI9F1mxV6i+jA325JPHJxEfKcRDSmubKK4RKly+O5hi93x/nRvfQzBdJ6bFeJGQW8e0aDvxuXnRLD2cz6bzZZhMtMbngvB3lfLKtgzO5NczqU/HXlqR3gpen92b7xIK+fxIfmt8LoiGZiPLjxVYxgW6SVlxfz++Ol4oxOcMLfirpDw1NoS7h3TeH/BWwNhislRm/XKpgl8uVXQYc398AFE+CpxEjny8IIZvTxaxP72a7clCf/npMd48PjrYpt/SlGgvHICViUUsPpCLl9KZx0cH88CwQJtjb7lYzs6USj65K7bL+NywMDc+mB/DyoQiVhwvROToQJy/kldvi6Kv/3+XkOuBgKkRchKLm22ql6DVT5rqxbJT9fycKpBMfkoxDw9U4a8U8dqhGs6WNDMhvKNcYYSHM69O8GDleTXLz9TjoxDz4AAXGvQmVpy1Vk0HqsR8PtuHb5Pq2ZmlQWMw4acUs2iIioV9//vPg9LZkU9m+fDl2Xq2ZTShNZgIUol5YYQbc6Kvr+fY7X2Ugp90Uc2y03UonR2Z3VvBE0NcbfykrelN7M7S8PEMr5tCMCmcHflkljdfn1OzO0uDxmCml4cT/57iyfCg/53YtkNAQMD/ycYbxcXFVH712P/vy/g/ia+P5/PtiUJWPzqY0P8jeqd/+OkiT40NI+6/XLm1I7mcd3b+v/buNraq+o4D+G8Z1IFLhlOeROVJgxHdnNsEp+J0WeKLvdBoshhnooshzJEws5gYN80249wCmcMpPiIPhmXMvfBhqYC6WBmghIkDWhhYKNLT9t4+rNhKsUC2F2TJFJr2SHvPubefz9ue5v/LTf7tPed7/r/fnlh088yYPbXvN/XH3rk0Jk2a1OfPy12SJNG94fmsy8ilp16siadfXh9/eWheTJ2Yjxv0ub9dGfNvui6+cn4+Bza//Pd/xi+feyX+cPct8a1Lpvd53RevvK2i91XE8b3VvururMvIpWff3B3PvfV+/PGuOTHlrHy07vnxirdj3nUzSn5yayCfxZm3PjIs9kvLwuuzLiOXlv3j37F8a2esvHlSTB5TXm0QHq5pjW+eM+qEUHCobW3qiZ9Ut5w0SPufCfesqah9lSRJ1LaWto1PufjT0iXx52VPxKOrXopzJk/r/xdK4P75d8QP5i2IGReX9uTWQP2t+sV47Nf3x88XPRGXzb6qz+tmjq2qmH2UJEl0vvirrMvIpWde2xbPvr49Vv/0ezFlXD5eqvjRU6/FXddfGpdMLu3JrYH665b6ePCFt+P3P7w2rpjR90vEY254oGL2UF+SJInWp2/PuoxcWrrxQCzb1Birbr80Jp+Zj4fF81fXxryrz/vESbJSGMhnMXbu8orfLyeTJEk0/+Y7WZeRS8u2HowV73XFihvHx+Qx+WhDv+DVYsz9+pc+cZKsFAbyWUy8941c7iGvGHLK6pq7Yn97T0wbm4+wC/Jsx94k9jW3x/RJ+byRgnJVl3RGQ1t3TBvnjTsYLI0Hj8Tmxp64aKxTe/D/9tRtj8b9e+O8aRdkXQqUpdoDbbGv+GFMmzAm61KgotQ1d8X+jp6Ydpbnc/BZ7GztjQ86j8bUM/IRdpULAVMZ21DfEWtri9F79OTDRkulrbs3Ft50UYyuKl3HxWLXx7G2thg7kq7+L4aIWP/enqjetD16j2Q7xL21szsWL/h+nD4qfw/rCh0fRvWm7bG9/uTtKeFkNuwuxpptSfQePZZpHa1dh2PRLd+I008r3f+ihrbuWLMtifqi/0UMzMYPDsW6Pd3ReyyXDQRO0H7oaNx3Tf/t8QZT18fHYt2e7tiS9PR/McPOlg01UbP2lTjSm+1Jr462Yvxs4ZIYNfqztWkZSm3FlqhZ+0r8a8enp35AxPqdSbz67r7Mv7e1fdgTj9zx7Tj9tPw9wCt0HopX390X2/e3ZV0KZWTD3o5YW9eag+dzR2LhjRfG6KpTb+01UPvbe2JtXWvUtx4q2ZpUnk0HDse6+o8yv09qO3QsHv7uWTF6ZOkik/2dR2Jd/Uext+NI/xfnVFnPYBrultQ0RETErKlnRNWI7LLCORec2Ct3qO1q6Y4Hq3eXfF3K1+IX3oiIiCsunh5VI7P703ftZTMyW7s/dQ3Ncf8zL2VdBmXm8dd3RUTE7PPHRtWI0t3IfNo1Fw7tvMGTeef91li8bmfJ16V8Pbn5+Eyoy88dFVWfz26/DNRXJ5a+1UtL99F4qKa15OtSHlYu+V1ERHxt1lUxsiq7dpOz5uS3zU39rtpY/OB9WZdBTj1WfXz+7BUzJmb7vW3muZmt3Z9dSXv8YvXGrMugzCx56/hMqFlTxmT8fO7L/V80yN5p6IxH32wo+bpUlie3HIyIiMsnfSHT+6SrJ5f+/mdzcjge33yw5OsOJjOYGBbMYILBZwYTDJwZTDD4zGCCU2cGE5waM5hg4MxgglNjBhMAAAAAAAAVQcAEAAAAAABAKgImAAAAAAAAUhEwAQAAAAAAkIqACQAAAAAAgFRGZF1AXwrNSYy/c2nWZVAhCs1J1iUMqWJLc4y78rasy2CYKbY0Z13CkCs0N8X4Wx/JugwqQKG5KesShlyhqTEm3LMm6zIYRgpNjVmXMKgKhWLMHD8u6zIYZgqFYtYlDJpiS1OMu+GBrMtgmCm2DIPveM1JjJ+7POsyqACV/myuL4Wmxph47xtZl0EFyOv9z+fOPvvs/2RdBAAAAAAAAOVDizwAAAAAAABSETABAAAAAACQioAJAAAAAACAVARMAAAAAAAApCJgAgAAAAAAIBUBEwAAAAAAAKkImAAAAAAAAEhFwAQAAAAAAEAqAiYAAAAAAABSETABAAAAAACQioAJAAAAAACAVARMAAAAAAAApCJgAgAAAAAAIBUBEwAAAAAAAKkImAAAAAAAAEhFwAQAAAAAAEAqAiYAAAAAAABSETABAAAAAACQioAJAAAAAACAVARMAAAAAAAApCJgAgAAAAAAIBUBEwAAAAAAAKkImAAAAAAAAEhFwAQAAAAAAEAqAiYAAAAAAABSETABAAAAAACQioAJAAAAAACAVARMAAAAAAAApCJgAgAAAAAAIBUBEwAAAAAAAKkImAAAAAAAAEhFwAQAAAAAAEAqAiYAAAAAAABSETABAAAAAACQioAJAAAAAACAVARMAAAAAAAApCJgAgAAAAAAIJX/AjY3N5f7rN/XAAAAAElFTkSuQmCC\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# get column names\n",
"feature_names = X_train.columns\n",
"# we need to specify the background color because of a bug in sklearn\n",
"fig, ax = plt.subplots(figsize=(30, 10), facecolor=\"k\")\n",
"# generate tree plot\n",
"plot_tree(model.estimators_[0], filled=True, feature_names=feature_names, ax=ax)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The main difference here compared to our housing example is that the splitting criterion is no longer the mean squared error, but instead is something known as the **_Gini index_**:\n",
"\n",
"$$ G = 1 - \\sum_{i=1}^n p_i^2 $$\n",
"\n",
"where $p_i$ is the probability of an object being classified to a particular class (in our case \"Yes\" or \"No\"). For classification tasks, the goal is to _minimise_ the Gini index across each split, which amounts to finding which segments are most \"pure\".\n",
"\n",
"From the figure, we can already start seeing some features that might be interesting for predicting churn, e.g. `TotalCharges`, `tenure`, and `TechSupport` seem like good indicators."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Hyperparameter tuning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our baseline model has an accuracy of 0.771 and ROC AUC score of 0.801 on the validation set. Let's now examine whether we can improve this by tuning the:\n",
"\n",
"* number of trees in the forest\n",
"* minimum number of samples per leaf\n",
"* maximum number of features per split\n",
"\n",
"In our previous lessons we manually inspected how the performance evolved when we changed these hyperparameters one at a time. Instead we can automate this process using scikit-learn's `GridSearchCV` to search for the best combination of hyperparameter values:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.model_selection import GridSearchCV\n",
"\n",
"# define range of values for each hyperparameter\n",
"param_grid = [\n",
" {\n",
" \"n_estimators\": [10, 20, 40, 80, 100],\n",
" \"max_features\": [0.5, 1.0, \"sqrt\", \"log2\"],\n",
" \"min_samples_leaf\": [1, 3, 5, 10, 25],\n",
" }\n",
"]\n",
"\n",
"# instantiate baseline model\n",
"model = RandomForestClassifier(n_estimators=10, n_jobs=-1, random_state=42)\n",
"\n",
"# initialise grid search with cross-validation\n",
"grid_search = GridSearchCV(\n",
" model, param_grid=param_grid, cv=3, scoring=\"roc_auc\", n_jobs=-1\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 2.15 s, sys: 285 ms, total: 2.44 s\n",
"Wall time: 17.3 s\n"
]
},
{
"data": {
"text/plain": [
"GridSearchCV(cv=3, error_score=nan,\n",
" estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,\n",
" class_weight=None,\n",
" criterion='gini', max_depth=None,\n",
" max_features='auto',\n",
" max_leaf_nodes=None,\n",
" max_samples=None,\n",
" min_impurity_decrease=0.0,\n",
" min_impurity_split=None,\n",
" min_samples_leaf=1,\n",
" min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0,\n",
" n_estimators=10, n_jobs=-1,\n",
" oob_score=False, random_state=42,\n",
" verbose=0, warm_start=False),\n",
" iid='deprecated', n_jobs=-1,\n",
" param_grid=[{'max_features': [0.5, 1.0, 'sqrt', 'log2'],\n",
" 'min_samples_leaf': [1, 3, 5, 10, 25],\n",
" 'n_estimators': [10, 20, 40, 80, 100]}],\n",
" pre_dispatch='2*n_jobs', refit=True, return_train_score=False,\n",
" scoring='roc_auc', verbose=0)"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%time grid_search.fit(X, y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once the search is finished, we can get the best combination of parameters as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'max_features': 'sqrt', 'min_samples_leaf': 25, 'n_estimators': 80}"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"best_params = grid_search.best_params_\n",
"best_params"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Similarly we can get the best model in the search:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,\n",
" criterion='gini', max_depth=None, max_features='sqrt',\n",
" max_leaf_nodes=None, max_samples=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=25, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, n_estimators=80, n_jobs=-1,\n",
" oob_score=False, random_state=42, verbose=0,\n",
" warm_start=False)"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"best_model = grid_search.best_estimator_\n",
"best_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see how this model performs on our validation set in terms of metrics and the confusion matrix:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy on train: 0.819\n",
"ROC AUC on train: 0.876\n",
"Accuracy on valid: 0.828\n",
"ROC AUC on valid: 0.891\n"
]
}
],
"source": [
"print_scores(best_model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAEJCAYAAADo2Y5JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deVgUV9o28LuafRFwoVtcokmMWxSX6MhH3JWgCKLBGR1RMtEwRoOOmDiiUceBaDD5IkSTTNyyN0oUERnfEFQmGsH4hmgU9xBXFmkVBQWRpev9Q2npBnpxmmqW++dV11Bdp089FceHc+pUnSOIoiiCiIg0ZJYOgIiosWFiJCLSwcRIRKSDiZGISAcTIxGRDiZGIiIdTIxEJJnCohJLh2AUoTk9xzj6L+uQq7pj6TDISCf3RFo6BDKBnbV56hkzKxY5Bfr/nXZSuOHAZwvNc8InYKZLbRxyVXdwNb/Q0mGQkZrNb+QWQDBjXTmqIly9ftvACc15RtM1q8RIRE2AIACCgbt4Fk6MvMdIRNISBOM2EyQnJ8PPzw8+Pj5QKpW1jh88eBABAQEICAjAm2++iZIS/fc6mRiJSFoyK+M2IxUUFCAmJgZxcXFISkpCfHw8srOzNceLi4sRERGBmJgYJCcno2fPnoiJidEf4hNfHBHRkxBkxm0A8vPzkZOTo7UVFxdrVZeRkQEvLy+4ubnB0dERvr6+SElJ0Ry/fPkyOnTogG7dugEARo0ahf379+sNkfcYiUhixnSVHx4PDg5Gbm6u1pGwsDDMnz9fs69SqeDu7q7Zl8vlOHnypGa/a9euuH79Os6dO4eePXviu+++w82bN/WenYmRiKRlwuCLUqlEVVWV1iEXFxet/bqeOBRqJF4XFxesXbsWK1asgFqtxp/+9CfY2NjoPT0TIxFJy5jBlUfHPTw8DFanUCiQmZmp2VepVJDL5Zr9qqoqtG/fHjt27AAAnD59Gp07d9ZbJ+8xEpG0TLjHaAxvb28cOXIEhYWFuH//PlJTUzF8+PDHpxMEzJo1CwUFBRBFEZ999hn8/Pz01snESETSMvOotEKhQHh4OEJCQjBp0iT4+/vD09MToaGhyMrKgkwmQ2RkJF577TWMGzcOrVq1wuzZs/XW2axeCezht5JvvjQht3/+yNIhkJEEmO+VwB5TP8TV60V6yzzV3hXn4/9mnhM+Ad5jJCJpCQIgM+4eo6UwMRKRtIy5h2jCPcaGwMRIRNIyYVTaUpgYiUhaMpnhwRUZW4xE1JKwK01EpINdaSIiHWwxEhHpMn4SCUthYiQiaTWBGbyZGIlIWsa88mfCK4ENgYmRiKTFe4xERDo4Kk1EpIP3GImIdLDFSESky5iJaHmPkYhaEEEmg2DgXWhDxxsaZ/AmIkkJgmDUZork5GT4+fnBx8cHSqWy1vHTp08jKCgIEydOxJw5c2otwaqLiZGIpCUYuRmpoKAAMTExiIuLQ1JSEuLj45Gdna1VZvXq1ViwYAH27NmDp59+Glu3btVbJxMjEUnK3C3GjIwMeHl5wc3NDY6OjvD19UVKSopWGbVajZKSEgDA/fv3YW9vr7dO3mMkIkk9HJTWn/iqD+fn59e5rnTNtaVVKhXc3d01+3K5HCdPntT6TkREBF599VWsWbMGDg4O+Pbbb/Wen4mRiCQlE2SQGRhckT0atQ4ODkZubq7WsbCwMMyfP1+zX9d6fjUTb1lZGd5++218+eWX8PT0xOeff44lS5Zg06ZN9Z6fiZGIpGXMPcRHx5VKZZ0txpoUCgUyMzM1+yqVCnK5XLN/4cIF2NnZwdPTEwAwdepUfPjhh3pPz3uMRCQpU+4xenh4oFOnTlqbbmL09vbGkSNHUFhYiPv37yM1NRXDhw/XHO/SpQuuX7+OixcvAgAOHDiAvn376o2RLUYikpYxgysmDL4oFAqEh4cjJCQEFRUVmDJlCjw9PREaGooFCxagb9++ePfdd7Fw4UKIooi2bdtizZo1+k8v1tVBb6J6+K3E1fxCS4dBRrr980eWDoGMJACwM1Mzql94Eq7dLNFbpnM7J5yICTTPCZ8AW4xEJCljHscx9QFvc2NiJCJJCTIBgsxAYjRwvKExMRKRpAQY8RyjNKHUi4mRiCTFrjQRkS4TnmO0FCZGIpIUW4xERDqYGImIdAgyw+9KW3qiWiZGIpIW7zESEWkTYERX2sKZkYmRiCTFe4xERDpMmajWUpgYLeSlF5/HyjcmwtbWGqd/y8WCd+Jwt6RMq0zon0Yg9E/DUfagAhcuXcdb732LO8WlcHGyx/oVwejeVQFBELB971F8+NV+C11Jy/H94VOI/HgPyssr8fxzHbF++XS4ODsYVeaVJVtw8doNTbkrebfw4sBu2Lbudakvw+KawiuBkg795OTkoEePHkhPT9f6fPTo0cjJyZEyFItq6+aMj1bOQMiSLfjDlChcyb2Ff4RN1Coz9IXn8LeQsZg0bwOGB0djX/ppxC77MwBg2ev+yFPdgfe0NRjzyvuYFTQMg/s+bYlLaTFu3r6LsMhv8NXa1/Bzwkp06dgW//xoj9Flvlz7Gn6MW4of45biw7enw7WVA97/+1RLXIrFNcQqgeYm+Zi4jY0NVqxYgXv37kl96kZjtFdPHD9zRdOC2JrwI/44brBWmf69nsLBn88jT3UHAJD8nxMYN6wPbKytEPHBTqz4MBEAoGjnAltbaxTfuy/tRbQwaT+dw4DeXfDsUw9nhp4dNAw7Un7WmlbfmDLlFZWY98+v8e6iKejUvrW0F9FIMDHWQS6Xw9vbG2vXrq117NNPP4Wfnx8CAgIQHR1da0rz5qKjojVyC+5o9vNUd+Di7IBWTo9XLjt2+jKGD+qOzo/+8QQHeMHO1gZtXJ0AAFVVamyMDEHG9reR/stv+O1KgbQX0cLkFtxGR4WbZr+D3A13S8q0bn8YU+brpCNo384V/qP6SRN4Y2RMUmxpiRF4uGLX4cOHtbrUBw8eRFpaGnbt2oXExERcuXIF27dvt0R4DU5Wz196VZVa83PG8d+xdvN3+Pr9vyLty79DLYoovFOC8srHvyzmrPwK3XyWwM3FCX9/bXyDx92SqeuZz9nKSmZSmX9tS8Nbs33NG1xTZKY1paslJyfDz88PPj4+UCqVWsfOnj2LwMBAzTZs2DD4+/vrrc8iidHZ2RlRUVFaXeqjR49iwoQJsLe3h7W1NYKCgnDkyBFLhNfgcgpuQ9Hu8boVHdxdcbuoBKVl5ZrPnB3tkH7sN4ycuRajX3kPe9J+BQDcLirBaK9eaN/OFQBQcr8cCamZ6Nezs7QX0cJ0UrRGwc1izX7ejSK4uTjCycHO6DInz19DZaUaLw58TrrAGyFzd6ULCgoQExODuLg4JCUlIT4+HtnZ2ZrjvXr1QlJSEpKSkrB9+3a4urpi1apVeuu02Hs3Q4cO1epSq9XqWmUqKyulDksSaT+dxaA+XfFM54dr4b4aNAz/cyhLq0x7d1ckf/o3Tfd68exxSEh9uBLapLEDsCT0YQvR1sYak8cOxKGfL0h4BS3PaK9eyDx1Gb9fVQEAPk/4EX7D+5pUJv2XbAwf3N3i988sTSYTjNqMlZGRAS8vL7i5ucHR0RG+vr5ISUmps+zGjRsxePBgDBo0SG+dFn1cJyIiAgEBAbhx4wZmzZqFPXv2YOrUqbC2tkZCQgK8vLwsGV6DuXn7HsIiv8GX0bNhY2ONyzk38fqqr9C/11NYv3w6hgdHI/uKCh9+uQ/7Pn8LMpmAn379HX9/fwcAYHlsImKWTkPG9mUQRWDvwRP4dPsPlr2oZs69TSt8tHIGXonYioqKSnTt1A6frgrB8TNXsOCdOPwYt7TeMtV+v6bCUx5tLXgVjYMpD3jn5+fXuXxqzZUCVSoV3N3dNftyuRwnT56sVWdxcTG+/fZbJCcnG4zRoomxuks9e/ZsjBw5EsXFxQgKCkJlZSWGDRuGGTNmWDK8BrUv4wz2ZZzR+uzX4qsYHhyt2d+84xA27zhU67vF9+5j9tufN3iMpO2lF5/HSy8+r/VZa1cn/Bi3VG+Zav9/Sct8PEeXMWMr1ceDg4ORm5urdSwsLAzz58/X7Ne1nl9diTc5ORljx45F27aGfzlJmhg7deqEtLQ0rc+GDh2K8+fPAwDmzZuHefPmSRkSEUnMlDdflEplnS3GmhQKBTIzMzX7KpUKcrm8Vp379+/HnDlzjIqRb74QkaRMaTF6eHgYrM/b2xsbNmxAYWEhHBwckJqaiqioKK0yoiji9OnTGDBggFExWnbSMyJqcQTB8MCLKQNUCoUC4eHhCAkJwaRJk+Dv7w9PT0+EhoYiK+vhoGZhYSFsbGxgZ2dnoLaH2GIkIkkZM+psyqg0AAQEBCAgIEDrs82bN2t+btu2ba1XkfVhYiQiSZnSlbYUJkYikhTnYyQi0sHESESkg11pIiId1aPShspYEhMjEUmKXWkiIh3sShMR6WCLkYhIB1uMREQ6uHwqEZEOjkoTEelgV5qISAcHX4iIdLDFSESkgy1GIiIdTIxERDoaYqJac+PSBkQkuer7jPVtpkpOToafnx98fHygVCprHb948SJmzpyJiRMnYvbs2SgqKtJbHxMjEUmquittaDNWQUEBYmJiEBcXh6SkJMTHxyM7O1tzXBRFzJ07F6GhodizZw969eqFTZs26a2TXWkikpQpo9L5+fl1Lp9acwnVjIwMeHl5wc3NDQDg6+uLlJQUhIWFAQBOnz4NR0dHDB8+HADw+uuvo7i4WO/5mRiJSFIyQYDMQGasPh4cHIzc3FytY2FhYZg/f75mX6VSwd3dXbMvl8tx8uRJzf7Vq1fRrl07LFmyBGfOnEH37t2xYsUKveevNzG+8847er+4fPlyvceJiOoikxkeXJE9usmnVCrrbDHWJIpire/X7IpXVlbif//3f/HNN9+gb9++iI2NRXR0NKKjo+s9f72JsbpZSkRkToIAGBp0rs5rHh4eButTKBTIzMzU7KtUKsjlcs2+u7s7unTpgr59+wIA/P39sWDBAr111psYq/vnAFBWVoYrV67gueeeQ3l5Oezt7Q0GS0RUF3M/x+jt7Y0NGzagsLAQDg4OSE1NRVRUlOb4gAEDUFhYiHPnzqFnz55IS0vD888/r7dOg6PSJ06cwNixYzFnzhyoVCqMGDECx44dMzpoIqKaBBh+XMeUJ3YUCgXCw8MREhKCSZMmwd/fH56enggNDUVWVhbs7e3x8ccfY/ny5ZgwYQKOHj2KiIgI/TGKdXXQa5g+fToiIyPx1ltvYffu3Th48CDWr1+PhIQEE0KXRg+/lbiaX2jpMMhIt3/+yNIhkJEEAHZmGqqdpTwB1b1yvWXkzrb4LLifeU74BAy2GMvKytCtWzfN/ogRI2rdDCUiMpZMMG6zJIO/A6ytrVFUVKTp81+8eLHBgyKi5qspvBJoMDHOnTsXM2bMwI0bN7Bo0SKkp6cjMjJSitiIqBkSjHiOsdFPIjFq1Cg888wzSE9Ph1qtxrx587S61kREpmg28zFWVlZCrVbD2toaNjY2DR0TETVjTWHaMYODLwkJCZg5cyaysrLwyy+/IDg4GN9//70UsRFRM2TwUZ0nnGHHnAy2GL/44gvs3r1b8yR5Xl4e5syZA19f3wYPjoiaHysIsDKQ+axMepLR/AwmRhsbG63Xazp06MDuNBE9OWOmFWusgy+nT58GAPTo0QORkZGYOnUqrKyssGvXLgwcOFCyAImoeTHmOcVG+xxjzWl9AOCHH37Q/CwIAmfXIaIn8vAeoqHBF4mCqUe9iTEtLU3KOIiohWgWj+sUFhZiz549KCkpgSiKUKvVuHLlCj744AMp4iOiZqYpPK5jMDEuXLgQ9vb2yM7Ohre3NzIyMvDCCy9IERsRNUMymQCrRv5KoMHnGPPy8rBp0yYMHz4cM2bMwLZt23D16lUpYiOiZkgwcrMkg4mxXbt2AICuXbviwoULUCgUqKysbPDAiKh5kkHQrPtS79bYn2Ns27YttmzZgv79+2PDhg1wdnbGvXv3pIiNiJqhpjD4YrDFGBkZCVtbWwwaNAh9+vTB+vXr8dZbb0kRGxE1Q+ZeVxoAkpOT4efnBx8fHyiVylrHP/roI4waNQqBgYEIDAyss0xNRrUYQ0JCAACLFy/G4sWLTQqYiKgmc7cYCwoKEBMTg127dsHW1hbTpk3DkCFDtGYBO3XqFNatW4cBAwYYVWe9iXHAgAF6szbXfSGiJ2HuUemMjAx4eXlpVjb19fVFSkqK1oJ+p06dwubNm3Ht2jUMHjwYS5YsgZ2dXb111psY//3vfxsdWGMxN+JVFJVxYKipmLXtV0uHQEZq52SL9S/3NktdpjzHmJ+fX+e60jXXllapVHB3d9fsy+VynDx5UrNfUlKCXr16YcmSJejYsSMiIiLwySefIDw8vN7z15sYO3bsqDdwIqInIYPhwY3q48HBwcjNzdU6FhYWpvXKcl3r+dVMvE5OTti8ebNmf9asWVi2bNmTJUYiooZgSotRqVTW2WKsSaFQIDMzU7OvUqm0ZgTLy8tDRkYGpkyZAuBhIrW21p/6DI5KExGZkwxGrBL4qKyHhwc6deqktekmRm9vbxw5cgSFhYW4f/8+UlNTMXz4cM1xe3t7vP/++7h27RpEUYRSqYSPj4/BGA0qKyvD+fPnIYoiysrKTPqPQERUk0wGWD0agKlvk5nQZFMoFAgPD0dISAgmTZoEf39/eHp6IjQ0FFlZWWjTpg0iIyMxd+5cjBs3DqIo4tVXX9VbpyDW1UGv4ddff0VYWBisra2xfft2BAYG4l//+lejnJMx9tAlDr40IecLSiwdAhnJnIMvaw78jtv39f87be1gjWVjnjXL+Z6Ewbz83nvv4YsvvoCbmxvat2+P9957D6tXr5YiNiJqhprCmi8GE2NZWZnWg5IjRoyodTOUiMhYBt+TNmLd6YZmcFTa2toaRUVFmlGiixcvNnhQRNR8CTDcIrP07DoGE+PcuXMxY8YM3Lx5E4sWLUJ6ejoiIyOliI2ImqGmMImEwcQ4atQoPPPMM0hPT4darca8efO0utZERKawEgy/EmhoedWGZjAx3rlzB66urvDz89P6rPq9RCIiUzTpVQKreXl51XpK3d3dHYcOHWqwoIio+RKMGFxp9Gu+nDt3TvNzRUUFUlNTtT4jIjJFU7jHaNIrgTY2NpgwYQLS09MbKh4iauYMvg5oRFe7oRl1j7GaKIo4deoUiouLGzQoImq+hEd/DJWxJKPvMVa/Odi2bVu8/fbbDR4YETVPVjLA2kBf1crC09sYTIw7d+5Enz59pIiFiFoAU6YdsxSDeZlrvBCROZky7ZilGGwx9ujRA8nJyXjhhRfg6Oio+ZzPMRLRk2gKo9IGE+OBAweQkpKi9ZkgCDh79myDBUVEzZcxk0Q02kkkysvLYWtri6ysLCnjIaJm7uFEtYbLWFK9p586daqUcRBRCyGDYNRmiuTkZPj5+cHHxwdKpbLecj/88ANGjx5tsL56W4wGJvYmInoi5r7HWFBQgJiYGOzatQu2traYNm0ahgwZUmuym5s3b2Lt2rVG1VlvYnzw4AHOnDlTb4J8/vnnjY+ciOgRc08ikZGRAS8vL82AsK+vL1JSUhAWFqZVbvny5QgLC8MHH3xgsM56E+O1a9cwf/78etdsPXDggPGRExE9IgiGB1eqD+fn59e5fGrNlQJVKhXc3d01+3K5HCdPntT6zldffYXevXujX79+RsVYb2Ls1q0bdu/ebVQlRETGEmBEV/rR/wYHByM3N1frWFhYGObPn6/Zr6/xVu3ChQtITU3FF198gevXrxsVo8HHdYiIzKl6iVRDZQBAqVTW2WKsSaFQIDMzU7OvUqkgl8s1+ykpKbhx4waCgoJQUVEBlUqF6dOnIy4urt7z15sYBw0apDdwIqInIYPhN1uqj3t4eBisz9vbGxs2bEBhYSEcHByQmpqKqKgozfEFCxZgwYIFAICcnByEhIToTYo1z1/L8uXLDQZERGSyR+9K69tMGZZWKBQIDw9HSEgIJk2aBH9/f3h6eiI0NPSJn8MWxGb0XE7soUsoKtO/kDc1HucLSiwdAhmpnZMt1r/c2yx1JZzMQ0m5/iWYnWytEOTZwSznexK8x0hEkmrSrwQSETUEAYbXjW7060oTEZmTTCZAZmBU2tDxhsbESESSEmB4VJotRiJqUZrCDN5MjEQkKd5jJCLSIcCIFmNjXyWQiMicrAQBVgYSo6HjDY2JkYgkxa40EZEuY974a+yLYRERmdPDSSQMPMcoTSj1YmIkIkk1i+VTiYjMSXj0x1AZS2JiJCJJcVSaiEgXB1+IiLTxHiMRkY6mcI/R0qPiRNTCVK8rbWgzRXJyMvz8/ODj4wOlUlnr+L59+xAQEIAJEyYgIiIC5eXl+mM07fRERP8dGQTNLN71bia0GAsKChATE4O4uDgkJSUhPj4e2dnZmuOlpaWIjIzE559/jr179+LBgwdITEzUWye70haSffYSDqako6qyCu4e7eA3ZSzs7O3qLHvh9O/4d3wqFkXO1Xx2Lus3HPlPJqoqq+DauhX8//QSHJwcpAq/xfHs4IKgfh6wkQm4dqcMnx+9irJKtVaZqQM6YFBnN816JteLy/BpxhWtMtMGdICilR0+PHRJstgbG1O60vn5+XUun1pzCdWMjAx4eXnBzc0NAODr64uUlBSEhYUBABwdHZGWlgYbGxuUlpbi1q1btZZg1dUgLcbIyEjNcoXVDh8+jDFjxuDevXsNccompfReKf5nxz5MnjkBf138CtzauOKH79LrLFt48zbS9v6otah4fk4B9iX9gMkzJuC1RTPQup0bDn6fIVX4LU4rOyvMGtIZH/94Ccv2nsONew8wpX/thZqebeeETzMuY1XKeaxKOV8rKQ7u7Ib/17WNVGE3WoIR3ejqwZfg4GCMGTNGa/vyyy+16lOpVHB3d9fsy+VyFBQUaJWxsbHBwYMHMWrUKNy+fRtDhw7VG2ODJMY333wTp06dQlpaGoCHTdlVq1ZhzZo1cHZ2bohTNimXfrsKj84KtGnXGgAwwMsTZ46fh+6CjRXlFUje/j3G+A/X+vz0sXPoN/h5uLV5+Ftv6FgveI3gOuAN5fn2Lrh0qxSqew/vS/0n+xa8urTWKmMtE9CltQPG9ZTjn+N6YN7QrmjjaKM57uFih/G95Nhz6rqksTdGgpF/AECpVOLAgQNa2yuvvKJVX10LndY1rdmIESNw9OhRjBo1CqtWrdIbY4MkRicnJ7zzzjuIjIxEaWkp1q9fj9GjR2PIkCE4ceIEpk2bhsmTJ2P27NnIzc0FAGzZsgUBAQGYPHmywaCbuuI7d9HK9fEvCBdXZzx4UI7yB9o3hFN2paH/kL5wb99O6/PCm7ehVqux88tkbI1VYl/Sf2BrZwNqGG0cbVBYWqHZv11aDkdbK9hbP/7n4+Zgg7MF95BwIh//SDmPizdLMH/40wAAO2sZQr26YGsd3e+WqPpxHUMbAHh4eKBTp05am243WKFQ4ObNm5p9lUoFuVyu2b9z5w4OHz6s2Q8ICMD58+f1xthggy/e3t4YOnQoli5divT0dCxatAjl5eVYvnw5YmNjkZiYiJkzZ2LlypUoLy/HZ599hsTERCQkJECtVuPGjRsNFZrF1beUtyB7/Ndx7MgJyGQC+g1+vlY5dZUa2WcuYdzLozFrwXQ4OTvhu4QDDRZvS1ffM3XqGn+NN0vKEXvwIq7ffQAASDl3A3JnO7RzssWrf+iM/b/dQG5RmQTRNn6CkZuxvL29ceTIERQWFuL+/ftITU3F8OGPe1miKGLx4sXIy8sDAHz33XcYOHCg3jobdPAlIiICI0eOxMcffwx7e3ucPXsWOTk5mDNnjibgBw8ewNbWFn369MGUKVMwZswYhISEaN0zaG5c3FyQd+3xPZC7xfdg72AHW9vHrb6szLOoqKjEZ7FKVFWpUfno5z/OCoSzizPc27eDcysnAEDfQb2xbXOC5NfRUtwqrcAzbZ00+60dbHDvQSXKqx63/jq52aOzmwOOXL6t+UwAUKUW0d3dGe1d7PFSDzmcbK3gYGOFhSOeQezBi1JeRqNh7lcCFQoFwsPDERISgoqKCkyZMgWenp4IDQ3FggUL0LdvX0RFRWHOnDkQBAHdunXDP//5T711NmhidHZ2houLCzp27AgAqKqqQteuXTVD5VVVVbh16xYAYOPGjTh+/DgOHTqEWbNmYd26dRg0qHneN3u6+1NI23sIhTdvo0271jj+Uxae6/2MVplX5k/T/HynsBhbY77BrIXBAIAefbvhP3t/hPfowXBwcsCFU9nw6KSQ9BpaktP5dzF1QAfInW2huleOkc+1w6+5RVplRBGY/kJH/HajBDdLyjGqW1tcu3Mft+9XYFHSaU25F59ug0GdXVv0qHRDzFQbEBCAgIAArc82b96s+Xns2LEYO3as0fVJ+rhOt27dcOPGDRw7dgwDBw5EfHw8UlNT8d577+Evf/kLdu7ciYEDByIvLw8XLlxotonRydkRE/7og8Rv/gfqyiq4tXWF/1Rf5OcU4Lud+zUJsD7P9X4Gd4vuQbkxAaIowtWtFcb/0fi/dDLN3QeV+Oynq3hj6NOwkgm4ce8Btvx0FV3bOOAvf3gKq1LOI7eoDMpfcrFg+NOQCQJu36/ARp1RaXrM0m+2GCKI9d3wMpPRo0fjq6++QqdOnQAAmZmZePfdd1FeXg4XFxdER0ejc+fO2Lp1K3bs2AFHR0d07NgR0dHRcHJyMlC7tthDl1BUVtkQl0EN4HxBiaVDICO1c7LF+pd7m6WuX68Wo7xSf9qxtRbQ/yn9zxo2pAZPjFJiYmxamBibDnMmxhNGJsZ+FkyMfPOFiKTVBFbDYmIkIkk9fB/acBlLYmIkIkk1gQYjEyMRWYClM58BTIxEJCnDc+tY/nEeJkYikhSXNiAi0sXFsIiItLErTUSkg11pIiIdfFyHiEhXE8iMTIxEJCneYyQi0mHMutGmrittblxXmoikZe61DQAkJyfDz88PPj4+UCqVtY7v378fgYGBmDhxIubNm4eioqI6anmMiZGIJGXKKoHGKCgoQExMDOLi4pCUlIT4+HhkZ2drjsVVWuYAAAtISURBVN+7dw+rVq3Cpk2bsGfPHvTo0QMbNmzQWycTIxFJy5gVAk1oMWZkZMDLywtubm5wdHSEr68vUlJSNMcrKiqwatUqKBQPl//o0aMH8vPz9dbJe4xEJClTBqXz8/NRVVWldczFxUVrCVWVSqW1eJ5cLsfJkyc1+61bt9as91JWVoZNmzZh5syZes/PxEhE0jOyRRgcHKxZe75aWFgY5s+fr9mvaxECoY4nxO/evYt58+ahZ8+emDx5st7zMjESkaRMmahWqVTW2WKsSaFQIDMzU7OvUqkgl8u1yqhUKsyePRteXl5YtmyZwRiZGIlIUqZ0pT08PAzW5+3tjQ0bNqCwsBAODg5ITU1FVFSU5nhVVRVef/11jB8/HvPmzTMqRiZGIpKWmd98USgUCA8PR0hICCoqKjBlyhR4enoiNDQUCxYswPXr13HmzBlUVVXh+++/BwD06dMHq1evrv/0XCWQLIWrBDYd5lwl8OqtB6hU60871jIBT7W1M8v5ngRbjEQkKc6uQ0Skg4mRiKgOlp4kwhAmRiKSFFuMREQ6msB0jEyMRCQtthiJiGqxdHvQMCZGIpKUTADERj5RLRMjEUlKgBFdaUkiqR8TIxFJyrg1XyyLiZGIpGVM1mNXmohaGku3CA1hYiQiSQmCEc8xssVIRC2JIBhxj5GJkYhaEr75QkSkoyl0pbl8KhFJytzrSgNAcnIy/Pz84OPjA6VSWW+5JUuWYNeuXQbrY2IkIkkZWlPamHepayooKEBMTAzi4uKQlJSE+Ph4ZGdn1yrz+uuva603rQ8TIxFJytyJMSMjA15eXnBzc4OjoyN8fX1rJcDk5GSMGTMG48ePN6pO3mMkIokZ31HOz8+vc/nUmkuoqlQquLu7a/blcjlOnjyp9Z3XXnsNAPDLL78YdV4mRiKSlDGtweoywcHByM3N1ToWFhaG+fPna/brWs9P+C9Hb5gYiUhSprwRqFQq62wx1qRQKJCZmanZV6lUkMvl/1WMTIxEJD0jG3QeHh4Gy3h7e2PDhg0oLCyEg4MDUlNTERUV9V+Fx8EXIpKUuR/XUSgUCA8PR0hICCZNmgR/f394enoiNDQUWVlZTxajWFcHvYmKPXQJRWWVlg6DjHS+oMTSIZCR2jnZYv3Lvc1S1/1yEYaSjgDAwdZyT3mzK01E0rL0+35GaFaJ0cWuWV1Os9fOydbSIZCR2jjamK0umSDAUD/V0q8ENquuNBGROXDwhYhIBxMjEZEOJkYiIh1MjEREOpgYiYh0MDESEelgYiQi0sHESESkg4mRiEgHE2MjkZOTgx49eiA9PV3r89GjRyMnJ8dCUVFNkZGRWLBggdZnhw8fxpgxY3Dv3j0LRUUNgYmxEbGxscGKFSv4j6yRevPNN3Hq1CmkpaUBAEpLS7Fq1SqsWbMGzs7OFo6OzImJsRGRy+Xw9vbG2rVrax379NNP4efnh4CAAERHR9ea1ZganpOTE9555x1ERkaitLQU69evx+jRozFkyBCcOHEC06ZNw+TJkzF79mzNdPxbtmxBQEAAJk+ejFWrVln2AshoTIyNTEREBA4fPqzVpT548CDS0tKwa9cuJCYm4sqVK9i+fbsFo2y5vL29MXToUCxduhTp6elYtGgRysvLsXz5csTGxiIxMREzZ87EypUrUV5ejs8++wyJiYlISEiAWq3GjRs3LH0JZATO09XIODs7IyoqCitWrMCePXsAAEePHsWECRNgb28PAAgKCsLu3bsRHBxsyVBbrIiICIwcORIff/wx7O3tcfbsWeTk5GDOnDkAHi7O9ODBA9ja2qJPnz6YMmUKxowZg5CQEK3V7KjxYmJshIYOHarVpVar1bXKVFZypnJLcXZ2houLCzp27AgAqKqqQteuXZGYmKjZv3XrFgBg48aNOH78OA4dOoRZs2Zh3bp1GDRokMViJ+OwK91IVXepVSoVvLy8sHfvXpSVlaGyshIJCQnw8vKydIj0SLdu3XDjxg0cO3YMABAfH4+///3vUKlUmDBhAnr27ImFCxfCy8sLFy5csHC0ZAy2GBup6i717NmzMXLkSBQXFyMoKAiVlZUYNmwYZsyYYekQ6RF7e3vExsZi9erVKC8vh4uLC6KjoyGXyxEUFISXX34Zjo6O6NixIwIDAy0dLhmBM3gTEelgV5qISAcTIxGRDiZGIiIdTIxERDqYGImIdDAxNmM5OTno1asXAgMDNdvEiROxc+fO/7ruOXPmYNeuXQCAwMBAFBcX11v27t27CAkJMfkcKSkpmDlzZq3Pjx49Cn9/f4Pf79GjBwoLC006Z0REBLZu3WrSd6j54XOMzZy9vT2SkpI0+wUFBfD390efPn3Qs2dPs5yjZv11KSoqQlZWllnORSQFJsYWRqFQoEuXLrh8+TLOnDmDnTt34v79+3B2dsbXX3+NHTt2YNu2bVCr1XBzc8OKFSvw7LPPoqCgABEREVCpVOjQoYPmlTfgYcvsyJEjaNOmDTZu3IjExERYW1ujS5cuiI6OxtKlS1FWVobAwEDs2rULly9fxurVq3Hnzh1UVVVh5syZmDJlCgDgww8/RHJyMtzc3NClSxeD13Pp0iXNbDcqlQo9e/ZEbGws7OzsAACxsbHIysqCWq3GwoULMWrUKACo9zqJAAAiNVvXrl0T+/fvr/XZsWPHxMGDB4t5eXliQkKCOHjwYPHu3buiKIri0aNHxenTp4ulpaWiKIrijz/+KI4fP14URVGcN2+eGBMTI4qiKF6+fFns37+/mJCQIIqiKHbv3l28deuWuH//fvGll14S79y5I4qiKK5Zs0b85JNPtOKoqKgQ/fz8xFOnTomiKIrFxcXi+PHjxePHj4v79u0T/fz8xLt374oVFRXiX//6V3HGjBm1ruunn34SJ0yYIIqiKEZHR4u7d+8WRVEUy8vLRX9/fzElJUUT18aNG0VRFMXz58+Lf/jDH8Rbt27pvc4lS5aIW7Zs+e/+w1OTxxZjM1fdUgMeTm7QunVrvP/++/Dw8ADwsLVXPcnqDz/8gCtXrmDatGma7xcVFeHOnTvIyMjAkiVLAABdunTBkCFDap3ryJEjGDduHFxdXQEAS5cuBQCtGcgvX76Mq1evYtmyZVoxnjlzBr///jt8fHw08QQFBeHrr7/We32LFy9Geno6Nm/ejMuXL0OlUqG0tFRz/M9//jMAoHv37nj22Wdx/Phx/PLLL/VeJxHArnSzp3uPUZejo6PmZ7VajcDAQCxevFizr1Kp4OrqCkEQINZ4e9Tauvb/daysrCAIgma/uLi41qBMVVUVXFxctGK6efMmWrVqhffff1/rHFZWVgavb9GiRaiqqsL48eMxcuRI5Ofna9Uhkz0eXxRFEdbW1nqvkwjgqDTV8OKLL2Lv3r1QqVQAgG3btuGVV14BAAwbNgzx8fEAgLy8PBw9erTW9729vbFv3z7N0gwbNmzAF198AWtra1RVVUEURTz99NOws7PTJMb8/Hz4+/vj1KlTGDZsGFJSUlBcXAy1Wm1wUAd4uObKG2+8AT8/PwiCgBMnTmjNbl49Fdjp06dx5coV9OvXT+91EgFsMVINw4YNQ2hoKGbNmgVBEODs7IyPPvoIgiDgH//4B5YuXYrx48ejffv2dY5ojxgxAtnZ2Zrua7du3RAVFQUHBwf07t0b48ePx7Zt2/DJJ59g9erV2LJlCyorK/G3v/0NL7zwAgDg/PnzCAoKgouLC3r27Inbt2/rjTk8PBxvvPEGXF1d4eDggMGDB+Pq1aua49euXcOkSZMgCALWrVsHNzc3vddJBHB2HSKiWtiVJiLSwcRIRKSDiZGISAcTIxGRDiZGIiIdTIxERDqYGImIdDAxEhHp+D+rah1Fcgz5XQAAAABJRU5ErkJggg==\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_confusion_matrix(\n",
" best_model,\n",
" X_valid,\n",
" y_valid,\n",
" display_labels=class_names,\n",
" cmap=plt.cm.Blues,\n",
" normalize=\"true\",\n",
")\n",
"plt.grid(None)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In terms of the AUC score, we see about a 10% boost over our baseline model - not bad! Our confusion matrix has also visibly improved."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model interpretability"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As we did in the housing example, we now examine which features were deemed to be important for our Random Forest model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"