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Abstract
Graph Convolutional Networks (GCNs) and their
variants have experienced significant attention and
have become the de facto methods for learning
graph representations. GCNs derive inspiration
primarily from recent deep learning approaches,
and as a result, may inherit unnecessary complex-
ity and redundant computation. In this paper,
we reduce this excess complexity through suc-
cessively removing nonlinearities and collapsing
weight matrices between consecutive layers. We
theoretically analyze the resulting linear model
and show that it corresponds to a fixed low-pass
filter followed by a linear classifier. Notably, our
experimental evaluation demonstrates that these
simplifications do not negatively impact accuracy
in many downstream applications. Moreover, the
resulting model scales to larger datasets, is natu-
rally interpretable, and yields up to two orders of
magnitude speedup over FastGCN.

1. Introduction
Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017) are an efficient variant of Convolutional Neural Net-
works (CNNs) on graphs. GCNs stack layers of learned
first-order spectral filters followed by a nonlinear activation
function to learn graph representations. Recently, GCNs and
subsequent variants have achieved state-of-the-art results
in various application areas, including but not limited to
citation networks (Kipf & Welling, 2017), social networks
(Chen et al., 2018), applied chemistry (Liao et al., 2019),
natural language processing (Yao et al., 2019; Han et al.,
2012; Zhang et al., 2018c), and computer vision (Wang
et al., 2018; Kampffmeyer et al., 2018).

Historically, the development of machine learning algo-
rithms has followed a clear trend from initial simplicity to
need-driven complexity. For instance, limitations of the
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linear Perceptron (Rosenblatt, 1958) motivated the develop-
ment of the more complex but also more expressive neural
network (or multi-layer Perceptrons, MLPs) (Rosenblatt,
1961). Similarly, simple pre-defined linear image filters (So-
bel & Feldman, 1968; Harris & Stephens, 1988) eventually
gave rise to nonlinear CNNs with learned convolutional
kernels (Waibel et al., 1989; LeCun et al., 1989). As ad-
ditional algorithmic complexity tends to complicate theo-
retical analysis and obfuscates understanding, it is typically
only introduced for applications where simpler methods are
insufficient. Arguably, most classifiers in real world appli-
cations are still linear (typically logistic regression), which
are straight-forward to optimize and easy to interpret.

However, possibly because GCNs were proposed after the
recent “renaissance” of neural networks, they tend to be a
rare exception to this trend. GCNs are built upon multi-layer
neural networks, and were never an extension of a simpler
(insufficient) linear counterpart.

In this paper, we observe that GCNs inherit considerable
complexity from their deep learning lineage, which can
be burdensome and unnecessary for less demanding appli-
cations. Motivated by the glaring historic omission of a
simpler predecessor, we aim to derive the simplest linear
model that “could have” preceded the GCN, had a more
“traditional” path been taken. We reduce the excess com-
plexity of GCNs by repeatedly removing the nonlinearities
between GCN layers and collapsing the resulting function
into a single linear transformation. We empirically show
that the final linear model exhibits comparable or even su-
perior performance to GCNs on a variety of tasks while be-
ing computationally more efficient and fitting significantly
fewer parameters. We refer to this simplified linear model
as Simple Graph Convolution (SGC).

In contrast to its nonlinear counterparts, the SGC is intu-
itively interpretable and we provide a theoretical analysis
from the graph convolution perspective. Notably, feature
extraction in SGC corresponds to a single fixed filter applied
to each feature dimension. Kipf & Welling (2017) empiri-
cally observe that the “renormalization trick”, i.e. adding
self-loops to the graph, improves accuracy, and we demon-
strate that this method effectively shrinks the graph spectral
domain, resulting in a low-pass-type filter when applied to
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Figure 1. Schematic layout of a GCN v.s. a SGC. Top row: The GCN transforms the feature vectors repeatedly throughout K layers
and then applies a linear classifier on the final representation. Bottom row: the SGC reduces the entire procedure to a simple feature
propagation step followed by standard logistic regression.

SGC. Crucially, this filtering operation gives rise to locally
smooth features across the graph (Bruna et al., 2014).

Through an empirical assessment on node classification
benchmark datasets for citation and social networks, we
show that the SGC achieves comparable performance to
GCN and other state-of-the-art graph neural networks. How-
ever, it is significantly faster, and even outperforms Fast-
GCN (Chen et al., 2018) by up to two orders of magnitude
on the largest dataset (Reddit) in our evaluation. Finally,
we demonstrate that SGC extrapolates its effectiveness to a
wide-range of downstream tasks. In particular, SGC rivals,
if not surpasses, GCN-based approaches on text classifi-
cation, user geolocation, relation extraction, and zero-shot
image classification tasks. The code is available on Github1.

2. Simple Graph Convolution
We follow Kipf & Welling (2017) to introduce GCNs (and
subsequently SGC) in the context of node classification.
Here, GCNs take a graph with some labeled nodes as input
and generate label predictions for all graph nodes. Let
us formally define such a graph as G = (V,A), where V
represents the vertex set consisting of nodes {v1, . . . , vn},
and A ∈ Rn×n is a symmetric (typically sparse) adjacency
matrix where aij denotes the edge weight between nodes
vi and vj . A missing edge is represented through aij = 0.
We define the degree matrix D = diag(d1, . . . , dn) as a

1https://github.com/Tiiiger/SGC

diagonal matrix where each entry on the diagonal is equal
to the row-sum of the adjacency matrix di =

∑
j aij .

Each node vi in the graph has a corresponding d-
dimensional feature vector xi ∈ Rd. The entire feature
matrix X ∈ Rn×d stacks n feature vectors on top of one
another, X = [x1, . . . ,xn]

>. Each node belongs to one
out of C classes and can be labeled with a C-dimensional
one-hot vector yi ∈ {0, 1}C . We only know the labels of a
subset of the nodes and want to predict the unknown labels.

2.1. Graph Convolutional Networks

Similar to CNNs or MLPs, GCNs learn a new feature repre-
sentation for the feature xi of each node over multiple layers,
which is subsequently used as input into a linear classifier.
For the k-th graph convolution layer, we denote the input
node representations of all nodes by the matrix H(k−1) and
the output node representations H(k). Naturally, the initial
node representations are just the original input features:

H(0) = X, (1)

which serve as input to the first GCN layer.

A K-layer GCN is identical to applying a K-layer MLP
to the feature vector xi of each node in the graph, except
that the hidden representation of each node is averaged with
its neighbors at the beginning of each layer. In each graph
convolution layer, node representations are updated in three
stages: feature propagation, linear transformation, and a
pointwise nonlinear activation (see Figure 1). For the sake

https://github.com/Tiiiger/SGC
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of clarity, we describe each step in detail.

Feature propagation is what distinguishes a GCN from
an MLP. At the beginning of each layer the features hi of
each node vi are averaged with the feature vectors in its
local neighborhood,

h̄
(k)
i ← 1

di + 1
h
(k−1)
i +

n∑

j=1

aij√
(di + 1)(dj + 1)

h
(k−1)
j .

(2)
More compactly, we can express this update over the en-
tire graph as a simple matrix operation. Let S denote the
“normalized” adjacency matrix with added self-loops,

S = D̃−
1
2 ÃD̃−

1
2 , (3)

where Ã = A + I and D̃ is the degree matrix of Ã. The
simultaneous update in Equation 2 for all nodes becomes a
simple sparse matrix multiplication

H̄(k) ← SH(k−1). (4)

Intuitively, this step smoothes the hidden representations lo-
cally along the edges of the graph and ultimately encourages
similar predictions among locally connected nodes.

Feature transformation and nonlinear transition. Af-
ter the local smoothing, a GCN layer is identical to a stan-
dard MLP. Each layer is associated with a learned weight
matrix Θ(k), and the smoothed hidden feature representa-
tions are transformed linearly. Finally, a nonlinear activa-
tion function such as ReLU is applied pointwise before
outputting feature representation H(k). In summary, the
representation updating rule of the k-th layer is:

H(k) ← ReLU
(
H̄(k)Θ(k)

)
. (5)

The pointwise nonlinear transformation of the k-th layer is
followed by the feature propagation of the (k + 1)-th layer.

Classifier. For node classification, and similar to a stan-
dard MLP, the last layer of a GCN predicts the labels using a
softmax classifier. Denote the class predictions for n nodes
as Ŷ ∈ Rn×C where ŷic denotes the probability of node
i belongs to class c. The class prediction Ŷ of a K-layer
GCN can be written as:

ŶGCN = softmax
(
SH(K−1)Θ(K)

)
, (6)

where softmax(x) = exp(x)/
∑C
c=1 exp(xc) acts as a nor-

malizer across all classes.

2.2. Simple Graph Convolution

In a traditional MLP, deeper layers increase the expressivity
because it allows the creation of feature hierarchies, e.g.

features in the second layer build on top of the features of
the first layer. In GCNs, the layers have a second important
function: in each layer the hidden representations are aver-
aged among neighbors that are one hop away. This implies
that after k layers a node obtains feature information from
all nodes that are k−hops away in the graph. This effect
is similar to convolutional neural networks, where depth
increases the receptive field of internal features (Hariharan
et al., 2015). Although convolutional networks can bene-
fit substantially from increased depth (Huang et al., 2016),
typically MLPs obtain little benefit beyond 3 or 4 layers.

Linearization. We hypothesize that the nonlinearity be-
tween GCN layers is not critical - but that the majority of the
benefit arises from the local averaging. We therefore remove
the nonlinear transition functions between each layer and
only keep the final softmax (in order to obtain probabilistic
outputs). The resulting model is linear, but still has the same
increased “receptive field” of a K-layer GCN,

Ŷ = softmax
(
S . . .SSXΘ(1)Θ(2) . . .Θ(K)

)
. (7)

To simplify notation we can collapse the repeated multi-
plication with the normalized adjacency matrix S into a
single matrix by raising S to the K-th power, SK . Fur-
ther, we can reparameterize our weights into a single matrix
Θ = Θ(1)Θ(2) . . .Θ(K). The resulting classifier becomes

ŶSGC = softmax
(
SKXΘ

)
, (8)

which we refer to as Simple Graph Convolution (SGC).

Logistic regression. Equation 8 gives rise to a natural and
intuitive interpretation of SGC: by distinguishing between
feature extraction and classifier, SGC consists of a fixed
(i.e., parameter-free) feature extraction/smoothing compo-
nent X̄ = SKX followed by a linear logistic regression
classifier Ŷ = softmax(X̄Θ). Since the computation of X̄
requires no weight it is essentially equivalent to a feature
pre-processing step and the entire training of the model re-
duces to straight-forward multi-class logistic regression on
the pre-processed features X̄.

Optimization details. The training of logistic regression
is a well studied convex optimization problem and can
be performed with any efficient second order method or
stochastic gradient descent (Bottou, 2010). Provided the
graph connectivity pattern is sufficiently sparse, SGD nat-
urally scales to very large graph sizes and the training of
SGC is drastically faster than that of GCNs.

3. Spectral Analysis
We now study SGC from a graph convolution perspective.
We demonstrate that SGC corresponds to a fixed filter on
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the graph spectral domain. In addition, we show that adding
self-loops to the original graph, i.e. the renormalization trick
(Kipf & Welling, 2017), effectively shrinks the underlying
graph spectrum. On this scaled domain, SGC acts as a low-
pass filter that produces smooth features over the graph. As
a result, nearby nodes tend to share similar representations
and consequently predictions.

3.1. Preliminaries on Graph Convolutions

Analogous to the Euclidean domain, graph Fourier analysis
relies on the spectral decomposition of graph Laplacians.
The graph Laplacian ∆ = D−A (as well as its normalized
version ∆sym = D−1/2∆D−1/2) is a symmetric positive
semidefinite matrix with eigendecomposition ∆ = UΛU>,
where U ∈ Rn×n comprises orthonormal eigenvectors and
Λ = diag(λ1, . . . , λn) is a diagonal matrix of eigenvalues.
The eigendecomposition of the Laplacian allows us to define
the Fourier transform equivalent on the graph domain, where
eigenvectors denote Fourier modes and eigenvalues denote
frequencies of the graph. In this regard, let x ∈ Rn be a
signal defined on the vertices of the graph. We define the
graph Fourier transform of x as x̂ = U>x, with inverse
operation given by x = Ux̂. Thus, the graph convolution
operation between signal x and filter g is

g ∗ x = U
(
(U>g)� (U>x)

)
= UĜU>x, (9)

where Ĝ = diag (ĝ1, . . . , ĝn) denotes a diagonal matrix in
which the diagonal corresponds to spectral filter coefficients.

Graph convolutions can be approximated by k-th order poly-
nomials of Laplacians

UĜU>x ≈
k∑

i=0

θi∆
ix = U

(
k∑

i=0

θiΛ
i

)
U>x, (10)

where θi denotes coefficients. In this case, filter coefficients
correspond to polynomials of the Laplacian eigenvalues, i.e.,
Ĝ =

∑
i θiΛ

i or equivalently ĝ(λj) =
∑
i θiλ

i
j .

Building upon these ideas, Defferrard et al. (2016) use
Chebyshev polynomials of the (scaled) normalized Lapla-
cian. Chebyshev polynomials are recursively given by
Ti(x) = 2xTi−1(x) − Ti−2(x) with T0(x) = 1 and
T1(x) = x. The resulting filtering operation is then

UĜU>x =

k∑

i=0

θiTi(∆
′
sym)x, (11)

where ∆′sym = 2/λmax∆sym − I denotes the scaled normal-
ized Laplacian such that its eigenvalues lie between −1 and
1, and θi denotes a learnable scalar parameter.

Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017) employ an affine approximation (k = 1) of Equa-
tion 11 with λmax = 2 to define graph convolutions. By

setting the coefficients θ0 and θ1 such that θ = θ0 = −θ1,
we attain the basic GCN convolution operation

g ∗ x = θ(I + D−1/2AD−1/2)x. (12)

In their final design, Kipf & Welling (2017) replace
the matrix I + D−1/2AD−1/2 by a normalized version
D̃−1/2ÃD̃−1/2 where Ã = A + I and consequently
D̃ = D + I, dubbed the renormalization trick. Finally,
by generalizing the convolution to work with multiple filters
in a d-channel input and layering the model with nonlinear
activation functions between each layer, we have the GCN
propagation rule as defined in Equation 5.

3.2. SGC and Low-Pass Filtering

The initial first-order Chebyshev filter derived in GCNs
corresponds to the propagation matrix S1-order = I +
D−1/2AD−1/2 (see Equation 12). Since the normalized
Laplacian is ∆sym = I −D−1/2AD−1/2, then S1-order =
2I−∆sym. Therefore, feature propagation with SK1-order im-
plies filter coefficients ĝi = ĝ(λi) = (2− λi)K , where λi
denotes the eigenvalues of ∆sym. Figure 2 illustrates the
filtering operation related to S1-order for a varying number
of propagation steps K ∈ {1, . . . , 6}. As one may observe,
high powers of S1-order lead to exploding filter coefficients
and undesirably over-amplify signals at frequencies λi < 1.

To tackle potential numerical issues associated with the
first-order Chebyshev filter, Kipf & Welling (2017) pro-
pose the renormalization trick. Basically, it consists of
replacing S1-order by the normalized adjacency matrix af-
ter adding self-loops for all nodes. We call the resulting
propagation matrix the augmented normalized adjacency
matrix S̃adj = D̃−1/2ÃD̃−1/2, where Ã = A + I and
D̃ = D + I. Correspondingly, we define the augmented
normalized Laplacian ∆̃sym = I− D̃−1/2ÃD̃−1/2. Thus,
we can describe the spectral filters associated with S̃adj as a
polynomial of the eigenvalues of the underlying Laplacian,
i.e., ĝ(λ̃i) = (1− λ̃i)K , where λ̃i are eigenvalues of ∆̃sym.

We now analyze the spectrum of ∆̃sym and show that adding
self-loops to graphs shrinks the spectrum (eigenvalues) of
the corresponding normalized Laplacian.

Theorem 1. Let A be the adjacency matrix of an undirected,
weighted, simple graph G without isolated nodes and with
corresponding degree matrix D. Let Ã = A+γI, such that
γ > 0, be the augmented adjacency matrix with correspond-
ing degree matrix D̃. Also, let λ1 and λn denote the smallest
and largest eigenvalues of ∆sym = I−D−1/2AD−1/2; sim-
ilarly, let λ̃1 and λ̃n be the smallest and largest eigenvalues
of ∆̃sym = I− D̃−1/2ÃD̃−1/2. We have that

0 = λ1 = λ̃1 < λ̃n < λn. (13)
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Figure 2. Feature (red) and filters (blue) spectral coefficients for different propagation matrices on Cora dataset (3rd feature).

Theorem 1 shows that the largest eigenvalue of the normal-
ized graph Laplacian becomes smaller after adding self-
loops γ > 0 (see supplementary materials for the proof).

Figure 2 depicts the filtering operations associated with
the normalized adjacency Sadj = D−1/2AD−1/2 and its
augmented variant S̃adj = D̃−1/2ÃD̃−1/2 on the Cora
dataset (Sen et al., 2008). Feature propagation with Sadj cor-
responds to filters g(λi) = (1− λi)K in the spectral range
[0, 2]; therefore odd powers of Sadj yield negative filter coef-
ficients at frequencies λi > 1. By adding self-loops (S̃adj),
the largest eigenvalue shrinks from 2 to approximately 1.5
and then eliminates the effect of negative coefficients. More-
over, this scaled spectrum allows the filter defined by taking
powers K > 1 of S̃adj to act as a low-pass-type filters. In
supplementary material, we empirically evaluate different
choices for the propagation matrix.

4. Related Works
In this section, we review and analyze related works. We
begin with a review of graph convolutional models and then
transition to graph attention models. Lastly, we discuss
other works on graphs.

4.1. Graph Neural Networks

Bruna et al. (2014) first propose a spectral graph-based
extension of convolutional networks to graphs. In a follow-
up work, ChebyNets (Defferrard et al., 2016) define graph
convolutions using Chebyshev polynomials to remove the
computationally expensive Laplacian eigendecomposition.
GCNs (Kipf & Welling, 2017) further simplify graph con-
volutions by stacking layers of first-order Chebyshev poly-
nomial filters with a redefined propagation matrix S. Chen
et al. (2018) propose an efficient variant of GCN based on
importance sampling, and Hamilton et al. (2017) propose
a framework based on sampling and aggregation. Atwood
& Towsley (2016), Abu-El-Haija et al. (2018), and Liao
et al. (2019) exploit multi-scale information by raising S to
higher order. Xu et al. (2019) introduce Graph Isomorphism

Networks which is claimed to be the most expressive variant
of GNNs. We refer to Zhou et al. (2018); Battaglia et al.
(2018); Wu et al. (2019) for a more comprehensive review.

Recently, Thekumparampil et al. (2018) proposed a novel
attention-based GCN model for citation networks. The
authors point out that a linear version of GCN could per-
form similarly to GCNs on these classification tasks, which
matches our findings.

Graph Attentional Models learn to assign different edge
weights at each layer based on node features and have
achieved state-of-the-art results on several graph learning
tasks (Velickovic et al., 2018; Thekumparampil et al., 2018;
Zhang et al., 2018a; Kampffmeyer et al., 2018). However,
the attention mechanism usually adds significant overhead
to computation and memory usage. We refer the readers to
Lee et al. (2018) for further comparison.

4.2. Other Works on Graphs

Graph methodologies can roughly be categorized into two
approaches: graph embedding methods and graph laplacian
regularization methods. Graph embedding methods (We-
ston et al., 2008; Perozzi et al., 2014; Yang et al., 2016;
Velikovi et al., 2019) aim at representing nodes as feature
vectors in a high-dimensional continuous space. Among
them, DeepWalk (Perozzi et al., 2014) and Deep Graph
Infomax (DGI) (Velikovi et al., 2019) use unsupervised
strategies to learn graph embeddings. DeepWalk relies on
truncated random walk, treats each walk as a sentence, and
uses a skip-gram model to generate embeddings, whereas
DGI trains a graph convolutional encoder through maxi-
mizing mutual information. Graph Laplacian regularization
(Zhu et al., 2003; Zhou et al., 2004; Belkin & Niyogi, 2004;
Belkin et al., 2006) introduce an additional regularization
term based on graph structure which forces nodes to have
similar labels to their neighbors and helps the models gen-
eralize. Remarkably, Label Propagation (Zhu et al., 2003)
makes predictions by spreading label information from la-
beled nodes to their neighbors, which is similar to feature
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Figure 3. Performance over training time on Pubmed and Reddit. SGC is the fastest while achieving competitive performance. We are not
able to benchmark the training time of GaAN and DGI on Reddit because the implementations are not released.

Table 1. Dataset statistics of the citation networks and Reddit.
Dataset # Nodes # Edges Train/Dev/Test Nodes

Cora 2, 708 5, 429 140/500/1, 000
Citeseer 3, 327 4, 732 120/500/1, 000
Pubmed 19, 717 44, 338 60/500/1, 000

Reddit 233K 11.6M 152K/24K/55K

propagation in SGC. However, Label Propagation continues
until convergence while SGC propagates the feature for a
fixed number of iterations.

5. Experiments and Discussion
We first evaluate SGC on citation networks and social net-
works and then extend our empirical analysis to a wide
range of downstream tasks.

5.1. Citation Networks & Social Networks

Datasets and experimental setup. We evaluate the semi-
supervised node classification performance of SGC on the
Cora, Citeseer, and Pubmed citation network datasets (Ta-
ble 2) (Sen et al., 2008). We supplement our citation network
analysis by using SGC to inductively predict community
structure on Reddit (Table 3), which consists of a much
larger graph. Dataset statistics are summarized in Table 1.

On the citation networks, we train SGC for 100 epochs us-
ing Adam (Kingma & Ba, 2015) with learning rate 0.2. In
addition, we use weight decay and tune this hyperparam-
eter on each dataset using hyperopt (Bergstra et al., 2015)
for 60 iterations on the public split validation set. On the
Reddit dataset, we train SGC with L-BFGS (Liu & Nocedal,
1989) using no regularization, and remarkably, training con-
verges in 2 steps. We evaluate SGC inductively by following
Chen et al. (2018): we train SGC on a subgraph comprising
only training nodes and test with the original graph. On
all datasets, we tune the number of epochs based on both
convergence behavior and validation accuracy.

Table 2. Test accuracy (%) averaged over 10 runs on citation net-
works. †We remove the outliers (accuracy < 75/65/75%) when
calculating their statistics due to high variance.

Cora Citeseer Pubmed

Numbers from literature:
GCN 81.5 70.3 79.0
GAT 83.0± 0.7 72.5± 0.7 79.0± 0.3
GLN 81.2± 0.1 70.9± 0.1 78.9± 0.1
AGNN 83.1± 0.1 71.7± 0.1 79.9± 0.1
LNet 79.5± 1.8 66.2± 1.9 78.3± 0.3
AdaLNet 80.4± 1.1 68.7± 1.0 78.1± 0.4
DeepWalk 70.7± 0.6 51.4± 0.5 76.8± 0.6
DGI 82.3± 0.6 71.8± 0.7 76.8± 0.6

Our experiments:
GCN 81.4± 0.4 70.9± 0.5 79.0± 0.4
GAT 83.3± 0.7 72.6± 0.6 78.5± 0.3
FastGCN 79.8± 0.3 68.8± 0.6 77.4± 0.3
GIN 77.6± 1.1 66.1± 0.9 77.0± 1.2
LNet 80.2± 3.0† 67.3± 0.5 78.3± 0.6†

AdaLNet 81.9± 1.9† 70.6± 0.8† 77.8± 0.7†

DGI 82.5± 0.7 71.6± 0.7 78.4± 0.7
SGC 81.0± 0.0 71.9± 0.1 78.9± 0.0

Table 3. Test Micro F1 Score (%) averaged over 10 runs on Red-
dit. Performances of models are cited from their original papers.
OOM: Out of memory.

Setting Model Test F1

Supervised

GaAN 96.4
SAGE-mean 95.0
SAGE-LSTM 95.4
SAGE-GCN 93.0
FastGCN 93.7
GCN OOM

Unsupervised
SAGE-mean 89.7
SAGE-LSTM 90.7
SAGE-GCN 90.8
DGI 94.0

No Learning Random-Init DGI 93.3
SGC 94.9
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Baselines. For citation networks, we compare against
GCN (Kipf & Welling, 2017) GAT (Velickovic et al., 2018)
FastGCN (Chen et al., 2018) LNet, AdaLNet (Liao et al.,
2019) and DGI (Velikovi et al., 2019) using the publicly
released implementations. Since GIN is not initially eval-
uated on citation networks, we implement GIN following
Xu et al. (2019) and use hyperopt to tune weight decay and
learning rate for 60 iterations. Moreover, we tune the hid-
den dimension by hand. For Reddit, we compare SGC to
the reported performance of GaAN (Zhang et al., 2018a),
GraphSAGE (Hamilton et al., 2017), FastGCN, and DGI.

Performance. Based on results in Table 2 and Table 3, we
conclude that SGC is very competitive. Table 2 shows the
performance of SGC can match the performance of GCN
and state-of-the-art graph networks on citation networks. In
particular on Citeseer, SGC is about 1% better than GCN,
and we reason this performance boost is caused by SGC
having fewer parameters and therefore suffering less from
overfitting. Remarkably, GIN performs slight worse because
of overfitting. Also, both LNet and AdaLNet are unstable
on citation networks. On Reddit, Table 3 shows that SGC
outperforms the previous sampling-based GCN variants,
SAGE-GCN and FastGCN by more than 1%.

Notably, Velikovi et al. (2019) report that the performance of
a randomly initialized DGI encoder nearly matches that of a
trained encoder; however, both models underperform SGC
on Reddit. This result may suggest that the extra weights
and nonlinearities in the DGI encoder are superfluous, if not
outright detrimental.

Efficiency. In Figure 3, we plot the performance of the
state-of-the-arts graph networks over their training time rel-
ative to that of SGC on the Pubmed and Reddit datasets. In
particular, we precompute SKX and the training time of
SGC takes into account this precomputation time. We mea-
sure the training time on a NVIDIA GTX 1080 Ti GPU and
present the benchmark details in supplementary materials.

On large graphs (e.g. Reddit), GCN cannot be trained due
to excessive memory requirements. Previous approaches
tackle this limitation by either sampling to reduce neigh-
borhood size (Chen et al., 2018; Hamilton et al., 2017) or
limiting their model sizes (Velikovi et al., 2019). By apply-
ing a fixed filter and precomputing SKX, SGC minimizes
memory usage and only learns a single weight matrix during
training. Moreover, SGC can be trained up to two orders of
magnitude faster than fast sampling-based methods while
having little or no drop in performance (Figure 3).

5.2. Downstream Tasks

We extend our empirical evaluation to 5 downstream appli-
cations — text classification, semi-supervised user geoloca-

Table 4. Test Accuracy (%) on text classification datasets. The
numbers are averaged over 10 runs.

Dataset Model Test Acc. ↑ Time (seconds) ↓

20NG GCN 87.9± 0.2 1205.1± 144.5
SGC 88.5± 0.1 19.06± 0.15

R8 GCN 97.0± 0.2 129.6± 9.9
SGC 97.2± 0.1 1.90± 0.03

R52 GCN 93.8± 0.2 245.0± 13.0
SGC 94.0± 0.2 3.01± 0.01

Ohsumed GCN 68.2± 0.4 252.4± 14.7
SGC 68.5± 0.3 3.02± 0.02

MR GCN 76.3± 0.3 16.1± 0.4
SGC 75.9± 0.3 4.00± 0.04

Table 5. Test accuracy (%) within 161 miles on semi-supervised
user geolocation. The numbers are averaged over 5 runs.

Dataset Model Acc.@161↑ Time ↓

GEOTEXT GCN+H 60.6± 0.2 153.0s
SGC 61.1± 0.1 5.6s

TWITTER-US GCN+H 61.9± 0.2 9h 54m
SGC 62.5± 0.1 4h 33m

TWITTER-WORLD GCN+H 53.6± 0.2 2d 05h 17m
SGC 54.1± 0.2 22h 53m

tion, relation extraction, zero-shot image classification, and
graph classification — to study the applicability of SGC.
We describe experimental setup in supplementary materials.

Text classification assigns labels to documents. Yao et al.
(2019) use a 2-layer GCN to achieve state-of-the-art results
by creating a corpus-level graph which treats both docu-
ments and words as nodes in a graph. Word-word edge
weights are pointwise mutual information (PMI) and word-
document edge weights are normalized TF-IDF scores. Ta-
ble 4 shows that an SGC (K = 2) rivals their model on 5
benchmark datasets, while being up to 83.6× faster.

Semi-supervised user geolocation locates the “home”
position of users on social media given users’ posts, con-
nections among users, and a small number of labelled users.
Rahimi et al. (2018) apply GCNs with highway connections
on this task and achieve close to state-of-the-art results. Ta-
ble 5 shows that SGC outperforms GCN with highway con-
nections on GEOTEXT (Eisenstein et al., 2010), TWITTER-
US (Roller et al., 2012), and TWITTER-WORLD (Han
et al., 2012) under Rahimi et al. (2018)’s framework, while
saving 30+ hours on TWITTER-WORLD.

Relation extraction involves predicting the relation be-
tween subject and object in a sentence. Zhang et al.
(2018c) propose C-GCN which uses an LSTM (Hochre-
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Table 6. Test Accuracy (%) on Relation Extraction. The numbers
are averaged over 10 runs.

TACRED Test Accuracy ↑
C-GCN (Zhang et al., 2018c) 66.4
C-GCN 66.4± 0.4
C-SGC 67.0± 0.4

Table 7. Top-1 accuracy (%) averaged over 10 runs in the 2-
hop and 3-hop setting of the zero-shot image task on ImageNet.
ADGPM (Kampffmeyer et al., 2018) and EXEM 1-nns (Chang-
pinyo et al., 2018) use more powerful visual features.

Model # Param. ↓ 2-hop Acc. ↑ 3-hop Acc. ↑
Unseen categories only:
EXEM 1-nns - 27.0 7.1
ADGPM - 26.6 6.3
GCNZ - 19.8 4.1
GCNZ (ours) 9.5M 20.9± 0.2 4.3± 0.0
MLP-SGCZ (ours) 4.3M 21.2± 0.2 4.4± 0.1

Unseen categories & seen categories:
ADGPM - 10.3 2.9
GCNZ - 9.7 2.2
GCNZ (ours) 9.5M 10.0± 0.2 2.4± 0.0
MLP-SGCZ (ours) 4.3M 10.5± 0.1 2.5± 0.0

iter & Schmidhuber, 1997) followed by a GCN and an MLP.
We replace the GCN with SGC (K = 2) and call the re-
sulting model C-SGC. Table 6 shows that C-SGR sets new
state-of-the-art on TACRED (Zhang et al., 2017).

Zero-shot image classification consists of learning an
image classifier without access to any images or labels from
the test categories. GCNZ (Wang et al., 2018) uses a GCN
to map the category names — based on their relations in
WordNet (Miller, 1995) — to image feature domain, and
find the most similar category to a query image feature
vector. Table 7 shows that replacing GCN with an MLP
followed by SGC can improve performance while reducing
the number of parameters by 55%. We find that an MLP
feature extractor is necessary in order to map the pretrained
GloVe vectors to the space of visual features extracted by
a ResNet-50. Again, this downstream application demon-
strates that learned graph convolution filters are superfluous;
similar to Changpinyo et al. (2018)’s observation that GCNs
may not be necessary.

Graph classification requires models to use graph struc-
ture to categorize graphs. Xu et al. (2019) theoretically
show that GCNs are not sufficient to distinguish certain
graph structures and show that their GIN is more expressive
and achieves state-of-the-art results on various graph classi-
fication datasets. We replace the GCN in DCGCN (Zhang
et al., 2018b) with an SGC and get 71.0% and 76.2% on
NCI1 and COLLAB datasets (Yanardag & Vishwanathan,

2015) respectively, which is on par with an GCN counterpart,
but far behind GIN. Similarly, on QM8 quantum chemistry
dataset (Ramakrishnan et al., 2015), more advanced AdaL-
Net and LNet (Liao et al., 2019) get 0.01 MAE on QM8,
outperforming SGC’s 0.03 MAE by a large margin.

6. Conclusion
In order to better understand and explain the mechanisms
of GCNs, we explore the simplest possible formulation of a
graph convolutional model, SGC. The algorithm is almost
trivial, a graph based pre-processing step followed by stan-
dard multi-class logistic regression. However, the perfor-
mance of SGC rivals — if not surpasses — the performance
of GCNs and state-of-the-art graph neural network mod-
els across a wide range of graph learning tasks. Moreover
by precomputing the fixed feature extractor SK , training
time is reduced to a record low. For example on the Reddit
dataset, SGC can be trained up to two orders of magnitude
faster than sampling-based GCN variants.

In addition to our empirical analysis, we analyze SGC from
a convolution perspective and manifest this method as a
low-pass-type filter on the spectral domain. Low-pass-type
filters capture low-frequency signals, which corresponds
with smoothing features across a graph in this setting. Our
analysis also provides insight into the empirical boost of
the “renormalization trick” and demonstrates how shrinking
the spectral domain leads to a low-pass-type filter which
underpins SGC.

Ultimately, the strong performance of SGC sheds light onto
GCNs. It is likely that the expressive power of GCNs origi-
nates primarily from the repeated graph propagation (which
SGC preserves) rather than the nonlinear feature extraction
(which it doesn’t.)

Given its empirical performance, efficiency, and inter-
pretability, we argue that the SGC should be highly ben-
eficial to the community in at least three ways: (1) as a
first model to try, especially for node classification tasks;
(2) as a simple baseline for comparison with future graph
learning models; (3) as a starting point for future research in
graph learning — returning to the historic machine learning
practice to develop complex from simple models.
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(Supplementary Material)

A. The spectrum of ∆̃sym

The normalized Laplacian defined on graphs with self-loops,
∆̃sym, consists of an instance of generalized graph Lapla-
cians and hold the interpretation as a difference operator, i.e.
for any signal x ∈ Rn it satisfies

(∆̃symx)i =
∑

j

ãij√
di + γ

(
xi√
di + γ

− xj√
dj + γ

)
.

Here, we prove several properties regarding its spectrum.
Lemma 1. (Non-negativity of ∆̃sym) The augmented nor-
malized Laplacian matrix is symmetric positive semi-
definite.

Proof. The quadratic form associated with ∆̃sym is
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∑
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Lemma 2. 0 is an eigenvalue of both ∆sym and ∆̃sym.

Proof. First, note that v = [1, . . . , 1]> is an eigenvector of
∆ associated with eigenvalue 0, i.e., ∆v = (D−A)v = 0.

Also, we have that ∆̃sym = D̃−1/2(D̃ − Ã)D̃−1/2 =

D̃−1/2∆D̃−1/2. Denote v1 = D̃1/2v, then

∆̃symv1 = D̃−1/2∆D̃−1/2D̃1/2v = D̃−1/2∆v = 0.

Therefore, v1 = D̃1/2v is an eigenvector of ∆̃sym associ-
ated with eigenvalue 0, which is then the smallest eigenvalue

from the non-negativity of ∆̃sym. Likewise, 0 can be proved
to be the smallest eigenvalues of ∆sym.

Lemma 3. Let β1 ≤ β2 ≤ · · · ≤ βn denote eigenvalues of
D−1/2AD−1/2 and α1 ≤ α2 ≤ · · · ≤ αn be the eigenval-
ues of D̃−1/2AD̃−1/2. Then,

α1 ≥
maxi di

γ + maxi di
β1, αn ≤

mini di
γ + mini di

. (15)

Proof. We have shown that 0 is an eigenvalue of ∆sym.
Since D−1/2AD−1/2 = I−∆sym, then 1 is an eigenvalue
of D−1/2AD−1/2. More specifically, βn = 1. In addition,
by combining the fact that Tr(D−1/2AD−1/2) = 0 =∑
i βi with βn = 1, we conclude that β1 < 0.

By choosing x such that ‖x‖ = 1 and y = D1/2D̃−1/2x,
we have that ‖y‖2 =

∑
i

di
di+γ

x2i and mini di
γ+mini di

≤ ‖y‖2 ≤
maxi di

γ+maxi di
. Hence, we use the Rayleigh quotient to provide

a lower bound to α1:

α1 = min
‖x‖=1

(
x>D̃−1/2AD̃−1/2x

)

= min
‖x‖=1

(
y>D−1/2AD−1/2y

)
(by replacing variable)

= min
‖x‖=1

(
y>D−1/2AD−1/2y

‖y‖2 ‖y‖2
)

≥ min
‖x‖=1

(
y>D−1/2AD−1/2y

‖y‖2
)

max
‖x‖=1

(
‖y‖2

)

(∵ min(AB) ≥ min(A) max(B) if min(A) < 0,∀B > 0,

and min
‖x‖=1

(
y>D−1/2AD−1/2y

‖y‖2
)

= β1 < 0)

= β1 max
‖x‖=1

‖y‖2

≥ maxi di
γ + maxi di

β1.

One may employ similar steps to prove the second inequality
in Equation 15.

Proof of Theorem 1. Note that ∆̃sym = I − γD̃−1 −
D̃−1/2AD̃−1/2. Using the results in Lemma 3, we show
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that the largest eigenvalue λ̃n of ∆̃sym is

λ̃n = max
‖x‖=1

x>(I− γD̃−1 − D̃−1/2AD̃−1/2)x

≤ 1− min
‖x‖=1

γx>D̃−1x− min
‖x‖=1

x>D̃−1/2AD̃−1/2x

= 1− γ

γ + maxi di
− α1

≤ 1− γ

γ + maxi di
− maxi di
γ + maxi di

β1

< 1− maxi di
γ + maxi di

β1 (γ > 0 and β1 < 0)

< 1− β1 = λn (16)

B. Experiment Details
Node Classification. We empirically find that on Reddit
dataset for SGC, it is crucial to normalize the features into
zero mean and univariate.

Training Time Benchmarking. We hereby describe the
experiment setup of Figure 3. Chen et al. (2018) benchmark
the training time of FastGCN on CPU, and as a result, it is
difficult to compare numerical values across reports. More-
over, we found the performance of FastGCN improved with
a smaller early stopping window (10 epochs); therefore, we
could decrease the model’s training time. We provide the
data underpinning Figure 3 in Table 8 and Table 9.

Table 8. Training time (seconds) of graph neural networks on Cita-
tion Networks. Numbers are averaged over 10 runs.

Models Cora Citeseer Pubmed

GCN 0.49 0.59 8.31
GAT 63.10 118.10 121.74
FastGCN 2.47 3.96 1.77
GIN 2.09 4.47 26.15
LNet 15.02 49.16 266.47
AdaLNet 10.15 31.80 222.21
DGI 21.24 21.06 76.20
SGC 0.13 0.14 0.29

Table 9. Training time (seconds) on Reddit dataset.
Model Time(s) ↓
SAGE-mean 78.54
SAGE-LSTM 486.53
SAGE-GCN 86.86
FastGCN 270.45
SGC 2.70

Text Classification. Yao et al. (2019) use one-hot features
for the word and document nodes. In training SGC, we nor-
malize the features to be between 0 and 1 after propagation
and train with L-BFGS for 3 steps. We tune the only hy-
perparameter, weight decay, using hyperopt(Bergstra et al.,
2015) for 60 iterations. Note that we cannot apply this fea-
ture normalization for TextGCN because the propagation
cannot be precomputed.

Semi-supervised User Geolocation. We replace the 4-
layer, highway-connection GCN with a 3rd degree propa-
gation matrix (K = 3) SGC and use the same set of hy-
perparameters as Rahimi et al. (2018). All experiments on
the GEOTEXT dataset are conducted on a single Nvidia
GTX-1080Ti GPU while the ones on the TWITTER-NA
and TWITTER-WORLD datasets are excuded with 10 cores
of the Intel(R) Xeon(R) Silver 4114 CPU (2.20GHz). In-
stead of collapsing all linear transformations, we keep two
of them which we find performing slightly better possibly
due to . Despite of this subtle variation, the model is still
linear.

Relation Extraction. We replace the 2-layer GCN with a
2nd degree propagation matrix (K = 2) SGC and remove
the intermediate dropout. We keep other hyperparameters
unchanged, including learning rate and regularization. Sim-
ilar to Zhang et al. (2018c), we report the best validation
accuracy with early stopping.

Zero-shot Image Classification. We replace the 6-layer
GCN (hidden size: 2048, 2048, 1024, 1024, 512, 2048)
baseline with an 6-layer MLP (hidden size: 512, 512, 512,
1024, 1024, 2048) followed by a SGC with K = 6. Follow-
ing (Wang et al., 2018), we only apply dropout to the output
of SGC. Due to the slow evaluation of this task, we do
not tune the dropout rate or other hyperparameters. Rather,
we follow the GCNZ code and use learning rate of 0.001,
weight decay of 0.0005, and dropout rate of 0.5. We also
train the models with ADAM (Kingma & Ba, 2015) for 300
epochs.

C. Additional Experiments
Random Splits for Citation Networks. Possibly due to
their limited size, the citation networks are known to be
unstable. Accordingly, we conduct an additional 10 experi-
ments on random splits of the training set while maintaining
the same validation and test sets.

Propagation choice. We conduct an ablation study with
different choices of propagation matrix, namely:

Normalized Adjacency: Sadj = D−1/2AD−1/2

Random Walk Adjacency Srw = D−1A
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Figure 4. Validation accuracy with SGC using different propagation matrices.

Table 10. Test accuracy (%) on citation networks (random splits).
†We remove the outliers (accuracy < 0.7/0.65/0.75) when calcu-
lating their statistics due to high variance.

Cora Citeseer Pubmed

Ours:
GCN 80.53± 1.40 70.67± 2.90 77.09± 2.95
GIN 76.94± 1.24 66.56± 2.27 74.46± 2.19
LNet 74.23± 4.50† 67.26± 0.81† 77.20± 2.03†

AdaLNet 72.68± 1.45† 71.04± 0.95† 77.53± 1.76†

GAT 82.29± 1.16 72.6± 0.58 78.79± 1.41
SGC 80.62± 1.21 71.40± 3.92 77.02± 1.62

Aug. Normalized Adjacency S̃adj = D̃−1/2ÃD̃−1/2

Aug. Random Walk S̃rw = D̃−1Ã

First-Order Cheby S1-order = (I + D−1/2AD−1/2)

We investigate the effect of propagation steps K ∈ {2..10}
on validation set accuracy. We use hyperopt to tune
L2-regularization and leave all other hyperparameters un-
changed. Figure 4 depicts the validation results achieved by
varying the degree of different propagation matrices.

We see that augmented propagation matrices (i.e. those
with self-loops) attain higher accuracy and more stable per-
formance across various propagation depths. Specifically,
the accuracy of S1-order tends to deteriorate as the power K
increases, and this results suggests using large filter coef-
ficients on low frequencies degrades SGC performance on
semi-supervised tasks.

Another pattern is that odd powers of K cause a significant
performance drop for the normalized adjacency and random
walk propagation matrices. This demonstrates how odd pow-
ers of the un-augmented propagation matrix use negative
filter coefficients on high frequency information. Adding
self-loops to the propagation matrix shrinks the spectrum
such that the largest eigenvalues decrease from≈ 2 to≈ 1.5
on the citation network datasets. By effectively shrinking
the spectrum, the effect of negative filter coefficients on high
frequencies is minimized, and as a result, using odd-powers

ofK does not degrade the performance of augmented propa-
gation matrices. For non-augmented propagation matrices —
where the largest eigenvalue is approximately 2 — negative
coefficients significantly distort the signal, which leads to
decreased accuracy. Therefore, adding self-loops constructs
a better domain in which fixed filters can operate.

# Training Samples SGC GCN

1 33.16 32.94
5 63.74 60.68
10 72.04 71.46
20 80.30 80.16
40 85.56 85.38
80 90.08 90.44

Table 11. Validation Accuracy (%) when SGC and GCN are trained
with different amounts of data on Cora. The validation accuracy is
averaged over 10 random training splits such that each class has
the same number of training examples.

Data amount. We also investigated the effect of training
dataset size on accuracy. As demonstrated in Table 11,
SGC continues to perform similarly to GCN as the training
dataset size is reduced, and even outperforms GCN when
there are fewer than 5 training samples. We reason this study
demonstrates SGC has at least the same modeling capacity
as GCN.


