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Abstract 

We describe VGEM, a technique for converting probability-
based measures of semantic relatedness (e.g. Normalized 
Google Distance, Pointwise Mutual Information) into a 
vector-based form to allow these measures to evaluate 
relatedness of multi-word terms (documents, paragraphs). We 
use a genetic algorithm to derive a set of 300 dimensions to 
represent the human semantic space. With the resulting 
dimension sets, VGEM matches or outperforms the 
probability-based measure, while adding the multi-word term 
functionality. We test VGEM's performance on multi-word 
terms against Latent Semantic Analysis and find no 
significant difference between the two measures. We 
conclude that VGEM is more useful than probability-based 
measures because it affords better performance, and provides 
relatedness between multi-word terms; and that VGEM is 
more useful than other vector-based measures because it is 
more computationally feasible for large, dynamic corpora 
(e.g. WWW), and thus affords a larger, dynamic lexicon.  
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Introduction 
Measures of Semantic Relatedness (MSRs) are statistical 
methods for extracting word associations from text corpora. 
Among the many applications of MSRs are cognitive 
modeling applications (e.g. Fu & Pirolli, 2007), augmented 
search engine technology (e.g. Dumais, 2003), and essay 
grading algorithms used by Educational Testing Services 
(e.g. Landauer & Dumais, 1997). 

Two of the varieties of MSRs are vector-based and 
probability-based. Probability-based MSRs, such as PMI 
(Pointwise Mutual Information; Turney, 2001) and NGD 
(Normalized Google Distance; Cilibrasi & Vitanyi, 2007), 
are easily implemented on top of search engines (like 
Google™ search) and thus have a virtually unlimited 
vocabulary. However, these techniques cannot measure 
relatedness between multi-word terms (e.g. sentences, 
paragraphs, documents). 

Vector-based MSRs, such as LSA (Latent Semantic 
Analysis; Landauer & Dumais, 1997) and GLSA 
(Generalized Latent Semantic Analysis; Matveeva, Levow, 
Farahat, & Royer, 2005), have the capability to measure 
relatedness between multi-word terms. However, these 
MSRs have non-incremental vocabularies based on limited 
corpora. The general problem with vector-based MSRs is 

that these measures traditionally require preprocessing steps 
of creating a word-by-document or a word-by-word matrix, 
and dimensionality reduction. For example, LSA creates a 
word-by-document matrix, and reduces dimensions using 
Singular Value Decomposition. Since Singular Value 
Decomposition is computationally infeasible for sufficiently 
large matrices, LSA is limited by both the size of the 
lexicon, and the size of the corpus. GLSA avoids the 
corpus-size problem by using a word-by-word matrix, but it 
is still very computationally expensive to create a GLSA 
vector-space for all possible words. These techniques 
require complete corpus re-processing when even a single 
document is added to the corpus, and thus cannot be used in 
combination with large dynamic corpora such as the World 
Wide Web.  

There have been some attempts to reduce the vector-MSR 
preprocessing procedure by avoiding complex 
dimensionality reduction techniques such as Singular Value 
Decomposition. HAL (Hyperspace Analogue to Language, 
Lund & Burgess, 1996) is a vector-based MSR that uses a 
subset of words from the word-by-word matrix as the vector 
dimensions. However, HAL is limited in several ways. HAL 
uses a very simple co-occurrence measure to determine the 
values in the word-by-word matrix, whereas measures like 
PMI and NGD may work better. Second, HAL still requires 
a major preprocessing step, creating the word-by-word 
matrix. Thus, unlike PMI and NGD, HAL still cannot be 
used in combination with large dynamic corpora.  

In this paper, we describe VGEM (Vector Generation 
from Explicitly-defined Multidimensional semantic space), 
a technique to convert probability-based MSR output into 
vector form by explicitly defining the dimensions of the 
human semantic space. Unlike other vector-based MSRs, 
given a standard set of dimensions, VGEM requires no 
preprocessing, and can be easily implemented on top of 
search engines (like Google™ search). Unlike probability-
based MSRs, VGEM can measure relatedness between 
paragraphs and documents. We derive high-fidelity 
dimensions for VGEM via a genetic algorithm, and test 
VGEM’s performance against a probability-based measure 
using human free-association norms. Finally, we test 
VGEM's performance on measuring relatedness of multi-
word terms against that of LSA. 

VGEM 
To convert a probability-based measure, M, to vector form 
we first need to define VGEM's semantic space. VGEM's 



semantic space is explicitly defined with a set of dimensions 
d = {d1, d2, ..., dn}, where each dimension is a word. To 
compute a vector for some target word, w, in this semantic 
space, VGEM uses M to calculate the semantic relatedness 
between w and each dimension-word in d: 

v(M,w,d) = [ M(w,d1), M(w,d2), ..., M(w,dn) ] 
 

For example, if d = {"animal", "friend"}, the vector for 
the word "dog" would be [M("dog","animal"), 
M("dog","friend")]. If M("dog", "animal") is 0.81 and 
M("dog","friend") is 0.84, then the vector is [0.81, 0.84]. 
See Table 1, Figure 1. 

 
Table 1: Sample two-dimensional VGEM semantic space. 

Words Dimensions 
 Animal Friend 

Dog 0.81 0.84 
Cat 0.81 0.67 

Tiger 0.79 0.13 
Robot 0.02 0.60 

 
Figure 1. Graphical representation of the sample two-

dimensional VGEM semantic space in Table 1. 
 
Like other vector-based measures (e.g. LSA, GLSA), 

VGEM defines the relatedness between two words to be the 
cosine of the angle between the vectors that represent those 
words. As the angle becomes smaller, and the cosine 
approaches 1.0, the words are considered more related. A 
value of 1.0 means that the two words are identical in 
meaning. For example, in Figure 1 the angle between “dog” 
and “cat” is relatively small, so the cosine of that angle will 
be close to 1.0 (.994), and the two words will be considered 
to be more related than any other pair of words shown. 

Using this vector-based approach allows VGEM to 
represent a group of words as a vector sum of the words that 
make up the group. To compute a vector for a paragraph, 
VGEM creates a vector representation for each word in that 
paragraph and adds those vectors component by component. 
This vector sum represents the meaning of the whole 
paragraph, and its relatedness to another vector may be 
measured as the cosine of the angle between them. 

Continuing with the example in Table 1/Figure 1, the vector 
to represent the words "dog cat tiger" would be the sum of 
first three vectors in Table 1, v=[2.41, 1.64]. 

Advantages of VGEM 
The main advantage of VGEM over probability-based 
MSRs is that it can compute relatedness between multi-
word terms. A probability-based MSR cannot find the 
relatedness between two paragraphs because the probability 
of any two paragraphs co-occurring (word for word) in any 
context is virtually zero. VGEM, like other vector-based 
measures, can represent a paragraph or a document as a 
vector, and then compare that vector to other vectors within 
its semantic space. 

The main advantage of VGEM over other vector-based 
MSRs is that VGEM does not require extensive 
preprocessing. Among other things, this affords VGEM a 
larger dynamic lexicon. Other vector-based MSRs cannot 
handle corpora that are very large or corpora that change 
often, as adding even a single word may require 
reprocessing the corpora from scratch. 

An additional advantage of this technique is the potential 
to model human expertise and knowledge biases. Explicit 
specification of the dimensions allows us to bias the 
semantic space. That is, we can use specific medical terms 
in the dimension set to represent the semantic space of a 
medical doctor, and specific programming terminology to 
represent the semantic space of a software engineer. 
Unfortunately, this last point is beyond the scope of this 
paper. 

Dimensions 
Picking the right set of dimensions is key in obtaining high 
performance using VGEM. We use a genetic algorithm to 
pick a good set of dimensions. 

Method 
NSS In this report, we base VGEM on the probability-based 
MSR – Normalized Similarity Score (NSS). NSS is an MSR 
that is derived from NGD. To be more precise, the 
relatedness between two words x and y is derived as 
follows: 

NSS(x, y) = 1 – NGD(x, y) 

where NGD is a formula derived by Cilibrasi & Vitanyi 
(2007): 

NGD(x, y) = 

! 

max{log f (x),log f (y)}" log f (x,y)

logM "min{log f (x),log f (y)}
 

ƒ(x) is the frequency with which x may be found in the 
corpus, and M is the total number of searchable texts in the 
corpus. It is not necessary to use NSS with VGEM, as PMI 
and other similar metrics may be used. We chose NSS 
because some previous testing has revealed that overall it is 
a better model of language than PMI (Lindsey, Veksler, 
Grintsvayg, & Gray, 2007). 

 



Corpora We trained our technique on two separate corpora. 
The first corpus was a subset of about 2.3 million 
paragraphs from the Factiva™ database ("Factiva," 2004) as 
a training corpus for NSS. The corpus consisted of archived 
news articles. We also used a standard TASA (Touchstone 
Applied Science Associates) corpus, used for LSA by 
Landauer & Dumais (1997). The TASA corpus is a 
collection of text representative of the reading material that 
a person is supposed to have been exposed to by their first 
year in college (Zeno, Ivens, Millard, & Duvvuri, 1995). As 
corpus choice makes a great difference (Lindsey et al., 
2007), future research will explore other corpora (e.g. 
WWW, Wikipedia, and Project Gutenberg). 

 
MSR Evaluation Function We use the Nelson-McEvoy 
free association norms (Nelson, McEvoy, & Schreiber, 
1998) to compare VGEM’s associative ratings with human 
ones. The association norms consist of 5019 cue-targets sets 
gathered from more than 6000 participants, where target 
words were participants' free-association responses to the 
respective cue words (e.g. cue='old', targets={'new', 'young', 
'ancient', 'man', 'wrinkle', 'age', 'grandparent', 'house', 
'wise'}). Number of targets per cue in the Nelson-McEvoy 
set varies from 1 to 34 (M=14.38, SE=.07). For each set of 
cue-targets we picked n random distracter words, where n is 
equal to the number of targets. Distracter words were 
chosen from the same dataset (e.g. 'buyer', which is a target 
word for cue='owner', could have been chosen as a 
distracter word for cue='old'). We took a random sample of 
500 cue-targets-distracters test cases to evaluate a given 
MSR, M (for our purposes, each evaluated MSR is actually 
VGEMNSS-Factiva with a different set of dimensions). In our 
chosen set of 500 test cases the number of targets per cue 
varies from 2 to 28 (M=14.18, SE=.23). 

To evaluate each cue-targets-distracters test case, each of 
the targets-distracters lists is sorted according to the M-
derived relatedness values, M(cue,word), where 
word∈{targets,distracters}. The score for each cue-targets-
distracters test case for a given MSR, M, was calculated as 
follows: 

Number of targets in top n words 
Scorecase = 

n 
where "top n words" are the top half of the sorted targets-
distracters list. If, according to M, all target words are more 
related to cue than any of the distracter words, the score for 
that test case is 100%. If none of the target words are picked 
by M to be more related to the cue than any of the distracter 
words, the score is 0. The overall score for M is the average 
of all test case scores. 

 
Candidate Dimensions Candidate dimensions were chosen 
from a subset of Alan Beale’s 2+2gfreq wordlist (Beale, 
2007), which is a list of 32,638 English words plus 
variations thereof. Beale’s word list is arranged by groups, 
based on word-frequency data supplied by Google™. We 
used words from groups 11 through 13 (a total of 5,066 
words), which contain words that are widely used, but are 

not overly common (e.g., the, of, and) nor overly specific 
(chemical compounds, medical jargon, etc.). 

 
Genetic Algorithm (GA) We used a genetic algorithm to 
derive a set of 300 'good' dimensions from the 5,066 
candidate dimensions described above. 300 is the number of 
dimensions used in the popular implementation of LSA, 
derived by Landauer and Dumais (1997). It also seems to be 
a reasonable, computationally-inexpensive size of the 
VGEM semantic space for beginning to explore VGEM 
capabilities.  

The genetic algorithm was set up as follows. We chose a 
population size of 100 individuals with chromosomes of 300 
dimensions. The initial population’s genetic makeup was 
chosen uniformly at random from the set of candidate 
dimensions. The population was split up into two arbitrary 
designations of male and female, where males are intended 
to be more variable (prone to mutations) while females are 
more stable.  

For each iteration of the genetic algorithm, the population 
was ranked in accordance with the MSR evaluation function 
described above. The lower-ranked half of the individuals of 
each gender was then removed from the population.  

Next, each remaining female was crossed with two males, 
where the males were chosen uniformly at random, with 
replacement, from the remaining population. Each pair 
produced one new female and one new male. An offspring 
received 150 unique dimensions from each parent’s 
chromosome. To increase variance, the chromosome was 
then subjected to mutation. We replaced n dimensions in 
each chromosome with dimensions chosen uniformly at 
random from the set of candidate dimensions, 0 ≤ n < 60 for 
males and 0 ≤ n < 6 for females. 

Due to constraints on time and computational resources 
we ran only 8,000 generations for each of the training 
corpora. Future work will involve a more rigorous search 
for better dimension sets.  

 
Hill-climbing (HC) After the genetic algorithm completed, 
the highest scoring set of VGEM dimensions was passed 
through a hill-climbing algorithm to refine the results. Here 
we try replacing each dimension in the winning set with an 
unused dimension from the candidate set. If such a 
replacement increases the score, it is incorporated in the 
final solution. 

Results 
Hill-climbing significantly improved the best results of the 
genetic algorithm, proving that the GA had not converged 
yet. Improvements for the VGEM-NSS-Factiva were 
1.77%, t(499)two-tail=6.68, p<.01, and for VGEM-NSS-
TASA were .65%, t(499) two-tail=4.15, p<.01. See Figure 2. 

VGEM-NSS-Factiva performed significantly better than 
NSS-Factiva, t(499)two-tail=12.03, p<.01. VGEM-NSS-TASA 
matched the performance of NSS-TASA, showing no 
significant difference, t(499)two-tail=.16, p=.87. See Figure 2. 

 



 

 
Figure 2. Performance of NSS trained on Factiva and TASA 

corpora, and VGEM-NSS on same corpora with GA- and 
HC- derived dimensions. Error bars signify standard error. 
 

Discussion 
The current report is a demonstration of VGEM and should 
not be interpreted as a test of VGEM-NSS-TASA versus 
VGEM-NSS-Factiva. Our demonstration of VGEM is 
limited by our use of only 300 dimensional VGEM spaces, 
the relatively small number of candidate dimensions 
(5,066), GA generations/population size (8,000 and 100), 
and the use of only two relatively small training corpora. It 
may well be the case that VGEM-NSS-TASA would 
perform better than VGEM-NSS-Factiva with higher 
dimensionality, more GA iterations, or a different set of 
candidate dimensions.  

However, we can safely conclude that using VGEM on 
probability-based MSRs like NSS does not hinder and can 
even improve performance. We speculate that VGEM can 
improve the performance of probability-based MSRs 
because VGEM dimensions provide context. That is, 
relatedness between two words is not merely defined as, 
"how often do these words co-occur," but rather, "how often 
do these words occur in the same context." This especially 
helps in the case of synonyms, as synonyms are rarely found 
near each other in text. 

Additionally, translating NSS into vector form provides 
the capability to measure relatedness of multi-word terms. 

Multi-word terms 
Our motivation for translating probability-based MSRs into 
vector form is to add the capability to measure relatedness 
between documents, not merely single words. NSS (and 
similar measures) can be used to find relatedness between 
documents based on the relatedness of all the words in these 
documents. However, there are two problems with this. 
First, these computations are computationally expensive 
(e.g. to relate two 10,000 word documents would require 
100 million NSS computations). Second, and perhaps more 
importantly, some terms are more important than others, and 
a simple average of word-to-word relatedness values would 
not be an accurate approximation of document relatedness.  

Vector-based measures like VGEM and LSA resolve both 
of these problems. The computational complexity of 
measuring relatedness between two documents is linear (to 
relate two 10,000 word documents would require 20,000 
vector additions). As for term weighting, in vector addition 
the vector lengths represent term weights. 

Method 
To test VGEM's capability of measuring the relatedness of 
multi-word terms we compare VGEM performance (based 
on the dimension sets that we had derived) to that of LSA. 
LSA is a powerful technique that has been used with 
success for automatically grading student essays (Landauer 
& Dumais, 1997), to model human language learning 
(Landauer & Dumais, 1997), to model language 
comprehension (Lemaire, Denhiere, Bellissens, & Jhean-
Iarose, 2006), and more.  

We test VGEM and LSA on how well these measures can 
pick out 2-sentence blocks from within a given text passage 
when presented with distracters from other passages. The 
assumption here is that text extracts from the same 
document should be found more related than text extracts 
from different documents. 

We used thirty-two short text passages to make cue-
targets-distracters test cases. The text passages were chosen 
randomly from TOEFL-like reading comprehension sections 
on the Web ("Reading Comprehension," 2005; Reading 
comprehension and vocabulary," 2007). We created 32 test 
cases, one for each passage. The cue for each test case was 
the concatenation of the first two sentences of the passage. 
The remaining pairs of sentences from that passage were 
targets for that test case. The set of distracters consisted of n 
pairs of random sentences from the other thirty-one text 
passages, where n is equal to the number of targets. The 
number of targets per cue varied from 1 to 10 (M=4.38, 
SE=.57). The overall performance for each MSR on these 
32 test cases is evaluated using the same procedure as for 
the free association test cases, described in the MSR 
Evaluation Function section above. 

Results 
Performance difference between VGEM-NSS based on the 
TASA corpus (M=89.1%, SE=2.6%) and LSA trained on 
the same corpus (M=87.7%, SE=2.8%) was not significant, 
t(31)two-tail=.58, p=.568. The difference between VGEM-
NSS based on the Factiva corpus (M=82.5%, SE=2.9%) and 
LSA based on the TASA corpus was not significant,  
t(31) two-tail=1.68, p=.103. See Figure 3. 

 



 
Figure 3. Performance of VGEM-NSS and LSA on within 
document text identification. Error bars signify standard 

error. 
 

Discussion 
Given the derived sets of dimensions, we find VGEM's 
multi-word text relatedness measurement capabilities to be 
on par with those of LSA, without the need for 
computationally expensive preprocessing. The genetic 
algorithm may be viewed as a necessary preprocessing step 
for VGEM, but it only needs to be done once, whereas LSA 
has to be retrained every time the corpus changes. It may 
even be possible to avoid the genetic algorithm altogether, 
and simply use an established ontology as a set of 
dimensions for VGEM.  

It should be noted that it is possible for text extracts from 
the same document to be less related to each other than text 
extracts from different documents, so 100% performance 
may not be possible or wanted in the above evaluation. It is, 
however, encouraging that both LSA and VGEM trained on 
the same corpus (TASA) picked almost 90% of text extracts 
within documents to be more closely related than across 
documents.  

The real power of these vector-based techniques is that 
multi-word terms provide more context than individual 
words. For example, we used VGEM-NSS-Factiva with the 
best-found set of dimensions to compare the sentence (cue) 
"when was the last time you scored a goal" to (target) "my 
favorite sports are basketball and football" and to 
(distracter) "the goal of this paper is to provide a technical 
description of our measure." Although the distracter 
sentence has a word in common with the cue ("goal"), 
whereas the target sentence has no words in common with 
the cue, VGEM can actually tease out the context and score 
the cue-target pair as more related than the cue-distracter 
pair.  

As with LSA (Landauer & Dumais, 1997), we speculate 
that the larger the body of text, the more accurate VGEM's 
judgments should be. In future studies we plan to examine 
VGEM's ability to judge document similarity and compare it 
to human judgments. 

Summary 
In this paper we described a technique for converting 
probability-based MSRs like NSS and PMI into vector form 
to allow these computationally inexpensive measures to 
compare multi-word terms (documents, paragraphs). The 
proposed technique, VGEM, was used to convert a 
probability-based measure, NSS, into vector-based form. 
We used a genetic algorithm to derive a set of dimensions 
for VGEM-NSS, and tested VGEM-NSS against NSS on 
human free-association norms. Finally, we tested VGEM-
NSS capability to measure relatedness of multi-word terms 
against another vector-based measure, LSA. 

The results are promising. On tests of human free-
association norms VGEM did not hinder and even improved 
the performance of NSS. We speculate that VGEM can 
improve the performance of probability-based measures 
because VGEM calculates word relatedness based on 
whether words occur in similar contexts, as opposed to how 
often words co-occur. Additionally, VGEM-NSS was able 
to measure multi-word term relatedness. On tests of multi-
word term relatedness VGEM-NSS did as well as the more 
computationally expensive measure, LSA.  

We conclude that VGEM is more useful than probability-
based MSRs because it affords better performance and 
provides relatedness between multi-word terms. We 
conclude that VGEM is more useful than other vector-based 
measures because it is more computationally feasible for 
large, dynamic corpora (e.g. WWW), and thus affords a 
larger, dynamic lexicon. Although the use of a genetic 
algorithm may be viewed as a computationally expensive 
step, we hold that it needs to be done only once to establish 
a universal set of dimensions, whereas other vector-based 
MSRs have to be reprocessed every time the corpus 
changes.  

Future studies will include a more rigorous search for a 
universal set of dimensions for VGEM, explore the use of 
established taxonomies as dimension sets, and evaluate 
VGEM across different corpora (e.g. the World Wide Web, 
Wikipedia, etc.). Additionally, we plan to examine practical 
applications of VGEM, such as semantic search indexing 
and text-summary generation.  

Acknowledgements 
We would like to thank TASA for making their corpus 
available for academic research. We would also like to 
thank Thomas Landauer for giving us permission to use the 
TASA corpus, and for making the corpus available, and for 
providing access to the LSA engine online at 
http://lsa.colorado.edu/.  

This work was supported, in part, by grants from the 
Office of Naval Research (N000140710033 ) and the Air 
Force Office of Scientific Research (FA9550-06-1-0074 ) to 
Wayne Gray. 



References 
Beale, A. (2007). Release 5 of the 12dicts word lists. 2007, 

from http://wordlist.sourceforge.net/12dicts-
readme-r5.html 

Cilibrasi, R., & Vitanyi, P. M. B. (2007). The Google 
similarity distance. [Article]. Ieee Transactions on 
Knowledge and Data Engineering, 19(3), 370-383. 

Dumais, S. (2003). Data-driven approaches to information 
access. Cognitive Science, 27(3), 491-524. 

Factiva. (2004). 2007, from http://www.factiva.com 
Fu, W. T., & Pirolli, P. (2007). SNIF-ACT: A Cognitive 

Model of User Navigation on the World Wide 
Web. Human Computer Interaction. 

Landauer, T. K., & Dumais, S. T. (1997). A solution to 
Plato's problem: The latent semantic analysis 
theory of acquisition, induction, and representation 
of knowledge. Psychological Review, 104(2), 211-
240. 

Lemaire, B., Denhiere, G., Bellissens, C., & Jhean-Iarose, S. 
(2006). A computational model for simulating text 
comprehension. [Article]. Behavior Research 
Methods, 38(4), 628-637. 

Lindsey, R., Veksler, V. D., Grintsvayg, A., & Gray, W. D. 
(2007). Be Wary of What Your Computer Reads: 
The Effects of Corpus Selection on Measuring 
Semantic Relatedness. Presented at the 8th 
International Conference of Cognitive Modeling, 
ICCM 2007, Ann Arobor, MI. 

Lund, K., & Burgess, C. (1996). Hyperspace analogue to 
language (HAL): A general model semantic 
representation. Brain and Cognition, 30(3), 5-5. 

Matveeva, I., Levow, G., Farahat, A., & Royer, C. (2005). 
Term representation with generalized latent 
semantic analysis. Presented at the 2005 
Conference on Recent Advances in Natural 
Language Processing. 

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (1998). 
The University of South Florida word association, 
rhyme, and word fragment norms. (Publication. 
Retrieved 12/06/2006, from 
http://www.usf.edu/FreeAssociation/.  

Reading Comprehension. (2005). 2007, from 
http://www.majortests.com/sat/reading-
comprehension.php 

Reading comprehension and vocabulary. (2007). 2007, from 
http://education.kulichki.com/lang/toefl1.html 

  
Turney, P. (2001). Mining the Web for Synonyms: PMI-IR 

versus LSA on TOEFL. In L. De Raedt & P. Flach 
(Eds.), Proceedings of the Twelfth European 
Conference on Machine Learning (ECML-2001) 
(pp. 491-502). Freiburg, Germany. 

Zeno, S., Ivens, S., Millard, R., & Duvvuri, R. (1995). The 
educator's word frequency guide: Touchstone 
Applied Science Associates (TASA), Inc. 

  

 
 


