Welcome, M. F. Hasler (logout) | My Drafts (12) | Sequences awaiting review

This site is supported by donations to The OEIS Foundation.

Logo

  Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a007455
A007455 Number of subsequences of [ 1,...,n ] in which each odd number has an even neighbor.
(Formerly M2480)
4
1, 1, 3, 5, 11, 17, 39, 61, 139, 217, 495, 773, 1763, 2753, 6279, 9805, 22363, 34921, 79647, 124373, 283667, 442961, 1010295, 1577629, 3598219, 5618809, 12815247, 20011685, 45642179, 71272673, 162557031, 253841389, 578955451, 904069513 (list; graph; refs; listen; history; edit; text; internal format)
OFFSET

0,3

COMMENTS

G.f. = (-1-x-2 x^3)/(-1+3 x^2+2 x^4) (* Harvey P. Dale, Feb 18 2011 *)

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..400

R. K. Guy, William O. J. Moser, Numbers of subsequences without isolated odd members, Fibonacci Quarterly, 34, No. 2, 152-155 (1996).

Index entries for linear recurrences with constant coefficients, signature (0,3,0,2).

FORMULA

a(n) = 3*a(n-2) + 2*a(n-4).

MATHEMATICA

CoefficientList[Series[(-1-x-2 x^3)/(-1+3 x^2+2 x^4), {x, 0, 40}], x]  (* Harvey P. Dale, Feb 18 2011 *)

LinearRecurrence[{0, 3, 0, 2}, {1, 1, 3, 5}, 40] (* Harvey P. Dale, Feb 10 2015 *)

PROG

(Haskell)

a007455 n = a007455_list !! n

a007455_list = 1 : 1 : 3 : 5 : zipWith (+)

   (map (* 2) a007455_list) (map (* 3) $ drop 2 a007455_list)

-- Reinhard Zumkeller, Jul 16 2012

Auto-generate:

CROSSREFS

Cf. A007481, A007482, A007484.

Sequence in context: A320353 A155989 A125557 * A034729 A115786 A252089

Adjacent sequences:  A007452 A007453 A007454 * A007456 A007457 A007458

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy.

Last modified June 16 21:20 EDT 2019. Contains 324155 sequences. (Running on oeis4.)